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Abstract. The effects of thermal dispersion and thermal radiation on the non-Darcy natural convec-
tion over a vertical flat plate in a fluid saturated porous medium are studied. Forchheimer extension
is considered in the flow equations. The coefficient of thermal diffusivity has been assumed to be
the sum of molecular diffusivity and the dispersion thermal diffusivity due to mechanical dispersion.
Rosseland approximation is used to describe the radiative heat flux in the energy equation. Similarity
solution for the transformed governing equations is obtained. Numerical results for the details of the
velocity and temperature profiles which are shown on graphs have been presented. The combined
effect of thermal dispersion and thermal radiation, for the two cases Darcy and non-Darcy porous
medium, on the heat transfer rate which are entered in tables is discussed.
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Nomenclature

A constant.
C empirical constant.
CT temperature difference.
d pore diameter.
f nondimensional stream function.
g gravitational constant.
K permeability of the porous medium.
kd dispersion thermal conductivity.
ke effective thermal conductivity.
Nux local Nusselt number.
p pressure.
q local heat flux.
qr radiative heat flux.
R radiation parameter.
Rax Rayleigh number.
T temperature.
u, v velocity components in thex andy directions.
x, y cartesian coordinates.
α molecular thermal diffusivity.
αd dispersion diffusivity.
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αx, αy thermal diffusion coefficients inx andy directions, respectively.
β thermal expansion coefficient.
γ mechanical dispersion coefficient.
δT boundary layer thickness evaluated atθ(η) = 0.001.
η similarity parameter.
ψ dimensional stream function.
θ nondimensional temperature.
ρ fluid density.
µ viscosity.
ν fluid kinematic viscosity.
σ Stefan–Boltzman constant.
χ the mean absorption coefficient.

Subscripts
w evaluated on the wall.
∞ evaluated at the outer edge of the boundary layer.

1. Introduction

Recently, the study of convection boundary layer flow in porous media has received
considerable interest, because of its wide applicability in energy, such as geo-
thermal energy technology, petroleum recovery, filtration processes, packed bed re-
actors and underground disposal of chemical and nuclear waste. Cheng [1] presen-
ted a comprehensive review about heat transfer in geothermal systems. Plumb and
Huenefeld [2] and Nakaymanet al. [3] used the Forchheimer extension to study
the non-Darcy natural convection from the vertical wall. Study of the thermal
dispersion effects becoms, prevalent in the porous media flow region. Fried and
Combarnous [4] proposed a linear function to express the thermal dispersion. Also,
a linear dispersion model taking the porosity of the porous medium into account
is used for free convection in a horizontal layer heated from below was introduced
by Georgiadis and Catton [5]. Cheng [6] and Plumb [7] gave another model for
flow and heat transfer in porous media by taking thermal dispersion effects into
consideration. An analysis of thermal dispersion effect on vertical plate natural
convection in porous media is presented by Hong and Tien [8]. Lai and Kulacki [9]
investigated thermal dispersion effect on non-Darcy convection from horizontal
surface in saturated porous media. Effects of thermal dispersion and lateral mass
flux on non-Darcy natural convection over a vertical flat plate in a fluid saturated
porous medium was studied by Murthy and Singh [10].

At high temperatures thermal radiation can significantly affect the heat transfer
and the temperature distribution in the boundary layer flow of participating fluid.
Gorla [11], and Gorla and Pop [12] has investigated the effects of radiation on
mixed convection flow over vertical cylinders. Aliet al. [13] investigated natural
convection–radiation interaction in boundary layer flow over a horizontal surface.
Ibrahiem and Hady [14] studied mixed convection–radiation interaction in bound-
ary layer flow over a horizontal surface. Forced convection–radiation interaction
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heat transfer in boundary-layer over a flat plate submersed in a porous medium
was analyzed by Mansour [15]. The present investigation is devoted to study the
combined effect of radiation and thermal dispersion on Forchheimer natural con-
vection over a vertical flat plate in a fluid saturated porous medium. The Rosseland
approximation is used to describe the radiative heat flux in the energy equation.
The wall temperature distribution is assumed to be uniform.

2. Analysis

Consider the non-Darcy natural convection–radiation flow and heat transfer over
a semi infinite vertical surface in a fluid saturated porous medium. The governing
equations for this problem are given by
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ρ = ρ∞[1− β(T − T∞)], (5)

whereq2 = u2 + v2 along with the boundary conditions

y = 0: v = 0, Tw = const.,

y →∞ : u = 0, T → T∞,
(6)

whereu andv are the velocity components in thex andy directions, respectively,
(ρ∞Cp)f is the product of density and specific heat of the fluid,ke is the effective
thermal conductivity of the saturated porous medium.p is the pressure,T is the
temperature,K is the permeability constant,C is an empirical constant,β is the
thermal expansion coefficient,µ is the viscosity of the fluid,ρ is the density, and
g is the acceleration due to gravity,αx, αy are the components of the thermal dif-
fusivity in x andy directions, respectively. The quantityqr on the right-hand side
of Equation (4) represents the radiative heat flux in they direction. The radiative
heat flux term is simplified by the Rosseland approximation (cf. Sparrow and Cess
[16]) and is as follows:

qr = −4σ
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, (7)
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where σ and χ are the Stefan–Boltzmann constant and the mean absorption
coefficient.

The radiative heat flux in thex direction is considered negligible in comparison
with that in they direction (Sparrow and Cess [16]). The normal component of
the velocity near the boundary is small compared with the other component of
the velocity and the derivatives of any quantity in the normal direction are large
compared with derivatives of the quantity in the direction of the wall. Under these
assumptions, the Equations (1)–(5) become
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The quantityαy is variable and is defined as the sum of molecular thermal diffus-
ivity α and dispersion thermal diffusivityαd. Plumb [7] has been expressed for the
dispersion thermal diffusivity asαd = γ |u|d, whereγ is the mechanical dispersion
coefficient whose value depends on the experiments andd is the pore diameter.

Having invoked the Boussinesq approximations, with substituting Equation (5)
into Equations (9) and (10), eliminating the pressure and the velocity components
u andv can be written in terms of stream functionψ as:u = ∂ψ/∂y andv =
−∂ψ/∂x, we obtain
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Introduce the similarity variable and similarity profiles:

η = Ra1/2
x

y

x
, f (η) = ψ

αRa1/2
x

, θ(η) = T − T∞
Tw − T∞ , (14)

where Rax is the modified Rayleigh number, Rax = Kgβ(Tw − T∞)x/αν.
The problem statement then becomes

f ′′ + 2F0Rad f
′f ′′ − θ ′ = 0, (15)
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θ ′′ + 1
2f θ

′ + γRad(f
′θ ′)′ + 4

3R[(CT + θ)3θ ′]′ = 0. (16)

The boundary conditions become

f (0) = 0, θ(0) = 1, f ′(∞) = θ(∞) = 0 (17)

where the parameterF0 = C
√
Kα/vd represents the structural and thermophys-

ical properties of the porous medium, the radiation parameter is defined byR =
4σ (Tw − T∞)3/χke, CT = T∞/(Tw − T∞) is the temperature difference, and
Rad = Kgβ(Tw − T∞)d/αν is the pore diameter dependent Rayleigh number
which describes the relative intensity of the buoyancy force, such thatd is the pore
diameter.

It is noteworthy thatF0 = 0 corresponds to the Darcian free convection and
γ = 0 represents the case where the thermal dispersion effect is neglected. Also,
R = 0 corresponds the case where the thermal radiation effect is neglected.

From the definition of the stream function, the velocity components become

u = α
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2x
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x (f − ηf ′).

The local heat transfer rate which is the primary interest of the study is given by
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whereke is the effective thermal conductivity of the porous medium which is the
sum of the molecular thermal conductivityk and the dispersion thermal conductiv-
ity kd. Together with the definition of the local Nusselt number,

Nux =
(

qw

Tw − T∞
)
x

ke
, (19)

one can write

Nux Ra−1/2
x = −[1+Ds f ′(0)+ 4

3R(θ(0)+ CT )3]θ ′(0) (20)

whereDs = γRad is the dispersion parameter.

3. Results and Discussion

In order to get the physical insight, the system of ordinary differential equations
(15)–(16) along with the boundary conditions (17), are integrated numerically by
means of the fourth-order Runge–Kutta method with shooting technique. The step
size1η = 0.05 is used while obtaining the numerical solution withηmax= 10 and
five-decimal accuracy as the criterion for convergence. Numerical computations
are carried out for 06 F0 6 0.5 and 06 R 6 7, 0 6 CT 6 1,1 6 Rad 6 7
andγ = 0.0,0.3.
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Figure 1. Variation of velocity profiles with similarity variableη, for varyingR andCT , at
Rad = 1.0,F0 = 0.1 andγ = 0.3.

Figures 1 and 2 illustrate the velocity and temperature fields, respectively, for
different values ofR andCT with fixed values ofF0,Rad andγ . It can be seen
from Figures 1 and 2 that the velocity and temperature profiles thicken as the
radiation parameter and the temperature difference increase. Figures 3 and 4 show
the velocity and temperature profiles, respectively, for different values ofF0 andγ
with fixed values of Rad, R, andCT . It can be seen from Figures 3 and 4 that both
velocity and temperature profiles thicken as the mechanical dispersion coefficient
increases. Also, it is noteworthy that an increase in the parameterF0 reduces the
velocity profiles while it enhances the temperature profiles. Figure 5 shows the
velocity profiles for varying Rad andF0, with fixed γ,R andCT . From Figure 5
we observe that, for the Darcy case(F0 = 0), the velocity profiles thicken as
the parameter Rad increases. It is interesting to note that, for the non-Darcy case
(F0 > 0), the velocity profiles thin near the wall, while it thicken far from the
wall as the parameter Rad increases. Also, we observe from Figure 6 that due to an
increase in Rad there is a thickening in the temperature profiles.

The value of the similarity variable at whichθ(η) becomes equal to 0.001 is
noted as the boundary layer thickness (Murthy and Singh [10]). Variation of the
boundary layer thicknessδT as a function of the radiation parameterR in the non-
Darcy (F0 = 0.1, Rad = 1.0) porous medium is plotted in Figure 7 for varying
values of the temperature differenceCT and the dispersion parameterγ .

Numerical results of the Nusselt number for varying values ofR,CT , γ and
F0 and with Rad = 1 are presented in Table I. It is obvious that, an increase in
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Figure 2. Variation of temperature profiles with similarity variableη, for varyingR andCT ,
at Rad = 1.0,F0 = 0.1 andγ = 0.3.

Figure 3. Variation of velocity profiles with similarity variableη, for varyingF0 andγ at
Rad = 1.0,R = 5.0, andCT = 0.2.
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Figure 4. Variation of temperature profiles with similarity variableη, for varyingF0 andγ at
Rad = 1.0,R = 5.0, andCT = 0.2.

Figure 5. Variation of velocity profiles with similarity variableη, for varying Rad andF0, at
γ = 0.1,R = 0.5 andCT = 0.01.
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Figure 6. Variation of temperature profiles with similarity variableη, for varying Rad, at
γ = 0.1,R = 0.5,F0 = 0.2 andCT = 0.01.

Figure 7. Variation of boundary layer thicknessδT as a function of radiation parameterR
in the non-Darcy(F0 = 0.1,Rad = 1.0) porous medium for varying values of temperature
difference and dispersion parameter.
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Table I. Values of Nux/Ra1/2
x for selected values ofγ,R, CT andF0 with Rad = 1

γ = 0.0 γ = 0.3

R CT F0 = 0.0 F0 = 0.1 F0 = 0.5 F0 = 0.0 F0 = 0.1 F0 = 0.5

0.0 – 0.44390 0.42969 0.39314 0.48983 0.47107 0.42442

0.5 0.0 0.50931 0.49245 0.44947 0.54961 0.52877 0.47693

0.2 0.56269 0.54384 0.49589 0.59936 0.57689 0.52089

1.0 0.94906 0.91563 0.83643 0.97130 0.93715 0.85166

1.0 0.0 0.56669 0.54754 0.49898 0.60309 0.58037 0.52381

0.2 0.65961 0.63704 0.57994 0.69112 0.66545 0.60143

1.0 1.27141 1.22972 1.12617 1.28850 1.24524 1.13831

5.0 0.0 0.89918 0.86714 0.78686 0.92259 0.88828 0.80290

2.0 1.17293 1.13120 1.02654 1.19097 1.14748 1.03891

1.0 3.25379 3.20437 3.10475 3.26825 3.21802 3.17684

7.0 0.0 1.02515 0.98819 0.89618 1.04579 1.00695 0.91032

0.2 1.35838 1.30982 1.28175 1.37400 1.32393 1.30042

1.0 4.24058 4.19233 4.14758 4.25523 4.20616 4.16549

Table II. Values of Nux/Ra1/2
x for selected values of

Rad, γ andF0 with R = 0.5 andCT = 0.01

γ = 0.0 γ = 0.1

Rad F0 = 0.0 F0 = 0.2 F0 = 0.0 F0 = 0.2

1 0.51154 0.48102 0.52526 0.49234

3 0.51154 0.44380 0.55167 0.46977

5 0.51154 0.41978 0.57686 0.45574

7 0.51154 0.39881 0.60099 0.44570

the values of the parametersR,CT andγ enhances the heat transfer rate. Also,
it is clear that, the values of the Nusselt number is reduced as the parameterF0

increases. In Table II, the Nusselt number results are presented for varying Rad, for
Darcy and non-Darcy cases, and considering or neglecting the thermal dispersion
effects, with fixingR andCT . It is clear that, with neglecting the thermal dispersion
effect (γ = 0), there is no variation in the heat transfer rate with varying Rad for
the Darcy case(F0 = 0), while an increase in Rad enhances it for the non-Darcy
case(F0 > 0). Also, from the same table we note that, for the non-Darcy case
(F0 > 0), the increase in the value of Rad reduces the heat transfer rate.
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