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Abstract-Presented here are the results of a numerical study of natural convection heat transfer in a stably 
stratified, fluid saturated low porosity medium, in which Darcy flow prevails. In this investigation, the 
boundary layer approximations are discarded and a wide range of ambient thermal stratification levels is 
considered. The results indicate that the ambient thermal stratification has a significant effect on the flow 
and temperature fields, and that this effect differs considerably at higher levels of stratification. The flow 
reversal and temperature defects are significantly smaller in the porous media than in a viscous fluid, due 
to the stabilization of the flow by the solid matrix. To generalize the result, the Nusselt number data are 
correlated with the thermal stratification parameter to yield a functional relationship. 0 1997 Elsevier 

Science Ltd. 

1. INTRODUCTION 

Buoyancy-driven convection in a fluid saturated, den- 
sity-stratified porous medium has applications in a 
wide range of areas including geothermal fields and 
nuclear-waste deposits. In the current study, the ther- 
mal and fluid transport adjacent to a vertical surface 
embedded in a stable, thermally stratified saturated 
porous medium is investigated, with particular atten- 
tion given to how the thermal stratification affects the 
convection heat transfer. 

The fundamental nature of natural convection flows 
in isothermal porous media is well-documented in the 
literature [l] and a number of boundary layer studies 
of convection heat transfer from surfaces to a ther- 
mally stratified porous ambient medium have also 
been reported. In an early study, Johnson and Cheng 
[2] considered different wall and boundary conditions, 
and found that similarity is not possible for the case 
of an isothermal surface in a stably stratified medium. 
This had been shown to be true earlier for natural 
convection in a stably stratified viscous fluid [3]. More 
recently, approximate integral solutions for the 
porous media problem have been presented by Bejan 
[4], Nakayama and Koyama [S], and Singh and 
Sharma [6]. 

Similarity solutions for convection heat transfer in 
porous media, where both the wall and ambient tem- 
peratures increase with height, have been developed 
by Nakayama and Koyama [7], and Takhar and Pop 
[8], and series and local nonsimilarity solutions have 
been presented by Lai et al. [9]. For the case of buoy- 

t Author to whom correspondence should be addressed. 

ancy-induced flow over an isothermal curved surface 
in a thermally stratified porous medium, where both 
the surface and ambient temperatures increase with 
the height, Nakayama and Koyama [lo] utilized simi- 
larity methods, while other investigators [ 121 provided 
approximate analytical solutions based on an earlier 
study of the Falkner-Skan equation [ 111. Other 
approaches include series solutions [ 131, the appli- 
cation of perturbation methods for the case of non- 
Darcy flows [14] and numerical solutions that consider 
convective, boundary and inertia effects for boundary 
layer flows [ 151. 

Boundary layer analyses have been shown to be 
inaccurate for natural convection flows in stratified 
fluids, especially for large stratification levels, i.e. steep 
increases in the ambient temperature with respect to 
height [16]. The results of this investigation indicate 
that it is desirable to solve the complete equations in 
order to obtain accurate solutions and to understand 
the physical mechanisms that govern these flows. For 
this reason, in the current investigation complete 
numerical solutions are presented for Darcy flows in 
linear, stably-stratified fluid saturated porous media. 
A wide range of ambient stratification levels is con- 
sidered. The flow and thermal fields as well as Nusselt 
number data are given and the fundamental physical 
processes of these complex flows and thermal trans- 
port are examined. 

2. ANALYSIS 

The physical configuration and the coordinate sys- 
tem are shown in Fig. 1, where a vertical surface 
of height L is embedded in a fluid saturated porous 

4329 



4330 D. ANGIRASA and G. P. PETERSON 

R 
t? 

ko 

K 
L 
NU 

P 
RU 
t 
T 
11, 2! 
u, V 

VC 
x, Y 

x, y 

NOMENCLATURE 

gravitational acceleration 
average heat transfer coefficient 
thermal conductivity of the stagnant 
medium 
permeability 
height of the surface 
average Nusselt number 
dynamic pressure 
Rayleigh number = g/lAtKL/va 
temperature 
nondimensional temperature 
velocity components 
nondimensional velocity 
components 
convective velocity = &AtK/v 
space coordinates 
nondimensional space 
coordinates. 

Greek symbols 
thermal diffusivity = k,/(PC), 

; coefficient of thermal 
expansion = - I/p (i?p/St), 

I’ kinematic viscosity 

P density of the fluid 
fr ratio of heat capacities of the stagnant 

medium and the fluid = (pC),/(pc), 
T time 
r* nondimensional time 

ti stream function 
W vorticity. 

Subscripts 
f fluid 

wall 
; stagnant medium 
Cc reference. 

porous medium 

medium. The temperature of the vertical surface is t,, 
and the ambient temperature, t,,,, increases linearly 
with respect to x, beginning with tm,,) at x = 0. The 
buoyancy-driven Darcy flow and transport adjacent 
to the vertical surface can be described by the fol- 
lowing two-dimensional equations in nondimensional 
form : 

au av x+z=o 

c?U i?V 8T -_-=~ 
ay ax do 

where IJ is the ratio of heat capacities of the stagnant au av 
medium and the fluid. w=Z-Z 

Two other parameters which appear in the non- 
dimensional conservation equations are the Rayleigh allows equation (2) to be written as 

number, Ra = gfiAtKL/vcc and the thermal strati- 
fication parameter, S, defined as : 

1 dt,., ,y---- 
At dX 

Fig. I. Geometry and coordinate system. 

(4) 

Here, Kis the permeability, g is the gravitational accel- 
eration, c( is the thermal diffusivity given by 
CI = k,/(pC’),and v is the kinematic viscosity. The tem- 
perature potential, At is given by (tw- t,,J_ The fol- 
lowing nondimensional variables were defined in 
arriving at equations (l)-(4). 

V=k and T= 
(t-t,.,) 

(tw - t,.“) (5) 
‘ 

where V, is a convective velocity given by 
V, = gBAtK/v. The nondimensional boundary con- 
ditions are : 

Y=O: V=O,T=l-SX and 

Y+CC U=O,T=O. (6) 

The wall temperature condition, in nondimensional 
form, can be obtained as : 

Defining the nondimensional vorticity as : 

(8) 
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dT 
w=Z. 

Although vorticity is not a variable of interest here, it 
is still defined for convenience, because the left-hand 
side of equation (2) has the appearance of vorticity. 
The nondimensional stream function, ti, is defined 
such that : 

u=% and V=- 
l?Y 

Combining equations (8) and (10). 
tion equation can be expressed as : 

a* 
z. (10) 

the stream func- 

(11) 

Finally, the average Nusselt number is defined as : 

where i is the average heat transfer coefficient. 

3. NUMERICAL METHODS 

The energy equation is solved using the alternating 
direction implicit scheme (ADI) of Peaceman and 
Rachford described by Roache [17]. The convective 
terms were discretized with upwind differencing and 
the diffusion terms with central differencing. The 
unsteady energy conservation equation is then mar- 
ched in time to an asymptotic, steady-state solution. 
Vorticity is evaluated from equation (9) using a cen- 
tral difference formulation. The stream function equa- 
tion, equation (11) was iteratively solved within each 
time-step by the successive over relaxation (SOR) 
method. It should be noted that in the current prob- 
lem, the wall vorticities are not required to obtain the 
vorticity field and the wall vorticity equals the local 
Nusselt number. The vorticity could be evaluated 
using the field solution of T through equation (9). 
The average Nusselt number was calculated by the 
numerical integration of equation (12) using an open- 
ended formulation of Simpson’s rule [ 181. 

The initial conditions for marching the discretized 
equation given in equation (3) are : 

z*=O T=O,U=O,V=O forallXand Y (13) 

and the boundary conditions for equations (3) and 
(11) are shown in Fig. 2. The width of the com- 
putational domain was conservatively estimated from 
the similarity solution for S = 0 [19] and fixed by a 
trial and error process. 

An absolute error criterion with a value of less than 
10m5 was used to ensure that the solution had reached 
a steady-state solution. Constant grid spacings were 
employed in each direction and the number of grid 
points in each direction was varied to make the grid 
dependent error less than 1% in each of the field 

aT/aXJ,,,=O 

r ay/ax=o, T,,=O 1 

av/aY=o 

aT/axl,,,= 0 

Fig. 2. Numerical boundary conditions. 

variables. The number of grid points employed was 
81 x 101, which yields a maximum error of 2.5% in 
the Nusselt number at its asymptotic value. The cal- 
culations were time consuming and typically 40000 
time-steps were required to reach a steady-state solu- 
tion. A time-step of 0.001 was chosen after checking 
that this value had no impact on the steady-state solu- 
tion. 

4. RESULTS AND DISCUSSION 

When the ambient conditions are isothermal, the 
numerical value of S is zero. If the ambient tempera- 

ture t,,,, equals the surface temperature, t,, at X = 1, 
then S = 1. Between these two limits of S, the wall 
temperature at Xis necessarily larger than the ambient 
temperature. When S > 1, a portion of the surface at 
the top falls below the ambient temperature, resulting 
in a downward flow in this region. The upward and 
downward flow meet at a location where the tem- 
perature potential, At, vanishes and together emerge 
as a horizontal plume. For S = 2, the plume location 
is at the mid-height of the surface. In the previous 
studies surveyed in the introduction, this interesting 
phenomena of plume behavior and its effect on heat 
transfer were not considered. If the ratio of the heat 
capacities, 0, has a value of less than unity, it has no 
influence on the steady-state solutions and, hence, in 
the current investigation this value is assumed to be 
unity. 

The numerical results obtained in this investigation 
were first compared with two previous analytical stud- 
ies in terms of the vertical natural convection bound- 
ary layers. In Table 1, Nusselt number data are com- 
pared with the similarity solution of Cheng and 
Minkowycz [ 191 for S = 0. In Table 2, the numerically 
obtained Nusselt number data are compared with the 
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Table 1. Average Nusselt number, Nu, 

Ra = 10’ 5x lo3 lo4 

Present 27.93 61.70 86.26 
Cheng and Minkowycz [19] 28.08 62.79 88.8 

Table 2. Nu/Nu, for all Ra (S = 0.2) 

Present 0.92 
Lai and Kulacki [20] 0.92 

local nonsimilarity solution of Lai and Kulacki [20] 
for S = 0.2, which corresponds to a lower level of 
ambient thermal stratification. In both cases, the 
numerical results obtained using the method 
developed herein compare quite favorably with the 
analytical solutions. 

The thermal potential that drives the buoyancy- 
induced flow in a porous medium decreases with 
increasing values of the thermal stratification 
parameter, S. Consequently, as shown in Fig. 3, the 
vertical velocities diminish. In Fig. 4, the excess tem- 

Ra=lo',X=l 
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3. Effect of thermal stratification on vertical velocity 
profiles. 
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Fig. 4. Effect of thermal stratification on temperature 
profiles. 

perature profiles (local temperature with the ambient 
temperature removed) are illustrated for different 
values of the thermal stratification parameter, S. Here, 
increasing S spreads the thermal layer farther, while 
reducing the residual temperature levels. In the viscous 
fluid flow, the velocity at the wall must be zero to 
satisfy the no slip condition [16], while in porous 
media with low porosity, hence low velocity, it is poss- 
ible to obtain a finite vertical velocity at the wall. This 
depends on the value of the wall temperature gradient, 
i.e. equation (2). A further contrast between the flow 
of viscous fluids and ilow through a saturated porous 
medium is the extent of the flow reversals occurring 
away from the vertical surface. The reverse velocities 
in the outer regions of a porous medium are extremely 
small when compared to viscous flow [16], but are 
clearly non-zero (Fig. 3). 

Similarly, the temperature defects associated with 
vertical buoyancy-induced, viscous flows in thermally 
stratified fluids are very small for flow in a porous 
medium (Fig. 4). A temperature defect in the outer 
region occurs because the fluid coming up from below 
in a thermally stratified environment finds itself in a 
warmer surroundings, resulting in a ‘negative tem- 
perature’ in the wings of the temperature profiles [ 161, 
which leads to the afore-mentioned flow reversal in 
the outer region of the flow. This phenomenon is well- 
understood in the context of viscous flows. However, 
for flow in a porous medium, the presence of a large 
amount of solid material inhibits the development of 
temperature defects and the concomitant flow rever- 
sal. The solid matrix slows down the flow and redis- 
tributes it well, so there is very little temperature 
defect. While this value is small, it is still non-zero. 
This has a consequence when a larger value of S (> 1) 
is considered and a horizontal plume emerges from 
the vertical wall. 

In order to understand the flow field better, par- 
ticulary at large S, stream function contours are pre- 
sented in Fig. 5. For S = 0, the normal boundary 
layer structure is easily discerned. As the value of S 
increases to 0.6, the velocities fall and the flow field 
spreads farther away from the surface by drawing 
fluid from the bottom and the lower half of the side. 
At S = 1, the entrainment from the side diminishes 
and a larger portion of the outflow occurs at the side. 
One particularly interesting phenomenon of the hori- 
zontal plume emanating at X = 0.5 for S = 2, is illus- 
trated in Fig. 5(d), where the physical mechanism that 
produces this flow field is more complex. 

In the bottom half, the wall temperature is larger 
than the ambient temperature, while in the top half, 
the reverse happens. As a result, an upward flow from 
the bottom leading edge and a downward flow from 
the top leading edge develop, each over half the length 
of the surface. These two flows meet at the midpoint 
(X = 0.5) and emerge horizontally as a plume. The 
location of this plume will be higher if the value of S 
lies between 1 and 2. The isotherm contours of the 
residual temperature for the flows under discussion 
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Fig. 5. Stream function contours. S =(a) 0, (b) 0.6, (c) 1 and 
(d) 2. La,, = 0, A$ =(a) 0.005, (b) 0.005, (c) 0.002 and (d) 

0.0025. 

here are illustrated in Fig. 6. As shown, with increasing 
thermal stratification parameter, the wall temperature 
gradients fall and the shape of the isotherms confirms 
the horizontal spreading of the flow at higher values 
of S. It is interesting to note that in both Figs 5(d) 
and 6(d), the fields are not symmetric about the hori- 
zontal axis at X = 0.5. 

The previous investigation of Angirasa and Sri- 
nivasan [ 161 explained the physical instabilities occur- 
ring in the horizontal plume for a viscous flow as 
originating in the unequal temperature defects in the 
two flows, i.e. they have opposite signs. This results 

(a) (b) 

,,/,,,,,,,/,,,I,/,/ll,, 

0 0.05 0 1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25 

Y Y 

Fig. 6. Isotherm contours of excess temperature. S =(a) 0, 
(b) 0.6, (c) 1 and(d) 2. T,,,, = l--SC, AT=(a) 0.1, (b) 0.1, 

(c) 0.1 and (d) 0.25. 

in time-dependent flow ‘ripples’ or ‘striations’ of an 
unsteady flow. In a porous medium, however, the 
magnitude of the temperature defects is very small as 
was explained above. Consequently, the horizontal 
plume is not unsteady and no striations are observed, 
but the very small temperature defects in the upward 
and downward flows marginally change the symmetry 
of the flow in the two halves. This asymmetry is time- 
dependent and periodic. From a numerical point of 
view, the temperature field in the plume flow does 
not satisfy the relative error criterion in the solution 
presented, although absolute convergence is satisfied. 
The reason for this is clearly the very small magnitude 
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Fig. 7. Nusselt number variation with thermal stratification. 

of these instabilities. No attempt is made here to deter- 
mine numerically the time period for the asymmetry 
to repeat itself, since the changes are of the same order 
of magnitude as the numerical errors. 

Figure 7 presents the variation of the average Nus- 
selt number as a function of the thermal stratification 
parameter, S, for Rayleigh numbers of 1000, 5000 and 
10 000. At any Rayleigh number, the average Nusselt 
number decreases with increasing S. The Nusselt num- 
ber is zero when S = 2, with the top half of the surface 
gaining an amount of heat which is equal to the 
amount lost by the bottom half. For all Rayleigh 
numbers, the Nu-S variation is linear in the range 
0 < S < 1.5. Hence, in an attempt to obtain a general 
correlation for the Nusselt number in terms of the 
thermal stratification parameter, the Nusselt number 
data are plotted in Fig. 8 as a fraction of NuO, the 
Nusselt number for S = 0 for the same Ra. As illus- 
trated, the data collapse on a single line, with a linear 
variation in the range, 0 < S < 1.5. The data are cor- 
related by a least-square fit [ 181 to yield the following 
expression : 

NU 
---Z 1-0.44s OdSd 1.5. 
N% 

(14) 

The above correlation is expected to be valid as long 
as the porosity is low enough that the Darcy flow 
assumption is justified. 

0 02 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

s 
Fig. 8. Reduced Nusselt number. 

5. SUMMARY 

A numerical study was carried out for natural con- 
vection heat transfer from a vertical surface to a stable 
thermally stratified fluid saturated porous medium. 
The porosity of the medium was assumed to be small 
enough that the Darcy flow approximation is valid. 
However, approximations associated with boundary 
layer type flow are removed to enable the con- 
sideration of a much larger range of thermal strati- 
fication levels, where the flow and transport are quite 
complex. The temperature defects and flow reversal 
in the outer regions, which have been previously 
observed in viscous flows, are extremely small for the 
flow in a porous medium of the type studied here. 
This can be attributed to the low porosity, where the 
presence of a large solid matrix stabilizes the flow and 
effectively redistributes it. The Nusselt number data 
are correlated to yield a functional relationship 
between the Nusselt number and thermal stratification 
parameter. 
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