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Assuming that  the complex spectral curves measured under different experimental conditions 
can be expressed as a sum of arbitrary contr ibut ions with identical spectral shapes in all curves, 
we developed computat ional  methods to find the shapes of these contr ibut ions and  their ampli-  
tudes. One of these methods exploits the minimizat ion program MINUIT ,  the second is based 
on al ternating iterations. Both methods were checked using simulated complex curves. 

1. I N T R O D U C T I O N  

When studying optical absorption, photoconductivity or luminescence spectra 
in extrinsic region in semiconductors we often face the situation that the obtained 
spectral curves are composed of several overlapping bands. Such situation occurs 
both in relatively pure undoped or slightly doped semiconductors where the presence 
of background impurities and native defects or their complexes determined the form 
of optical spectra and in intermediate or heavily doped semiconductors, where 
complexes are formed. To decompose complex spectra into the individual contribu- 
tions is a comparatively easy task if the shapes and positions of elementary contri- 
butions are known either from other experiments or from theoretical calculations. 
This approach is frequently used when the necessaryinformationis at hand, agreement 
of calculations with experiments being ensured by fitting parameters. 

Another method of decomposition was suggested by Fock and Alentzev [1]. 
This method assumes that a set of composed spectra formed by overlapping individual 
bands of different amplitudes and identical shapes in every curve is at our disposal. 
If the number of different spectral curves for decomposition is sufficiently high, 
we can - in some cases - obtain the simple bands by subtracting one spectrum 
from another after it was multiplied by a properly chosen constant factor. This 
method works well if we can unambiguously choose this multiplication factor, e.g. 
if at the edges of the spectra the regions could be found where overlapping can be 
neglected; then from the ratio of intensities in this region the multiplication factor 
can be determined [1]. We used this method for decomposition of complex photo- 
conductivity curves of SI GaAs samples and found that it works well only with 
comparatively simple, only slightly overlapping spectra. We failed to find a simple 
algorithm for simplification of spectra in a more complicated case, when we could 
not establish with certainty the regions with no overlap, needed for reliable applica- 
tion of this method. 

The approach we shall describe in what follows is based on the assumptions 
identical with those of the method of Fock and Alentzev. The geometrical insight 
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into the problem is used to determine the first approximation of amplitudes of contri- 
butions for the minimization or iteration procedure. The test calculations were 
performed on simulated spectra. 

In the first part the formulation of the problem is given and the method of its 
solution is suggested. Then a possible way how to decrease drastically the number 
of unknowns is discussed. However, the cost for it is rather high. The equations 
became more complicated and not easy to solve. The experience with the minimiza- 
tion program MINUIT in solving this problem creates the body of this paper. 

2. THEORY 

Let the spectral curves we want to use for calculations be known in a set of points 
and expressed in the form 

N 

(1) eEi(2J) = E Aik q~k@j) 
k = l  

where FEi(21) are the measured experimental values of the i-th spectral curve (photo- 
conductivity or absorption) for the wavelength 2 i . We suppose that these curves 
are composed of N elementary curves q~k(2j), k -- 1, 2 . . . .  ,N.  Equation (1) can also 
be written in a matrix form ~ = ~r where ~ is the M • P matrix, d is the 
M • N matrix and ~p is the N • P matrix. The conditions under which we can write 
the spectral curves as a linear combination of elementary contributions has been 
discussed elsewhere [2]. These elementary spectral curves are supposed to be identical 
for all M experimental curves. The amplitude of the k-th elementary contribution 
to the i-th experimental curve is denoted by Aik, we suppose, for the sake of simplicity, 
that Aik are not negative. The number of wavelengths at which the measurements 
were performed is P. Hence we have M x N unknown amplitudes A~k and N • P 
unknown values of elementary curves Cpk(2s). The number of equations equal to the 
number of measurements is M • P. Consequently, if the condition 

(2) M x P > = N  x P + N  • M 

is fulfilled, where the equality sign holds for the case when all M x P equations 
are independent, the set of equations can be solved for unknowns Aik and q~k(2j). 
That means that for the number of measurements we must have 

M x N  
(3) P => (M - N ~ - -  3 " 

Under this condition the number of unknowns is equal to or smaller than the number 
of  equations at our disposal and we can search for the solution of the system of 
equations (1). However, the number of measurements for each curve is usually 
much larger than the minimum value of (3), so that we have an overdetermined 
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problem and using the least squares methods the spectral shapes of elementary 
curves might be determined with sufficient accuracy. 

From the form of the system of nonlinear equations (1) we can infer immediately 
that it has two annoying properties. If  q)k(2j) are solutions of the system, then also 
C k q~k(2j) are solutions if simultaneously Aik are replaced by AiJC k. That means 
that the system (1) has to be completed by normalization equations. Moreover, also 
the linear combination N 

= s 
k = l  

where ~ is a nonsingular matrix, is a solution if the matrix of amplitudes d is replaced 
by ~ e - 1 .  We shall return later to the problem how to cope with this property. 

To prove the existence of roots and the convergence of the Newton's process 
of  iteration for the system (1) we can use the theorem of  Kantorovitch [3] if we limit 
ourselves to the P linearly independent equations. The Jacobian of the system (1) 
completed by normalization equations is of the form of a sparse matrix consisting 
mostly of zero elements. The matrix has the inverse and also the sum of second 
order partial derivatives is limited. That means that the assumptions of the theorem 
are fulfilled and hence it follows, that the iteration process will converge if we choose 
the initial approximation sufficiently close to the roots of the system. The range 
of  convergence depends on the constraints imposed on the solutions. 

This approach using, e.g., Newton's iteration method is obviously unpractical 
as the order of the Jacobian matrix is too high and special programs to deal with 
sparse matrices are needed. Instead of solving system (1) we could, in principle, 
eliminate first cpk(2j) and solve instead of ( l )  the new system for Aik only and calculate 
(Pk (2j) as a second step. We shall demonstrate this approach for the simple case 
o f M  = 3 a n d N =  2. 

We eliminate the unknowns (pl(2i) and (pz(2j) for each wavelength using, e.g., 
the Kramer's method. If  we explore the linearly independent combinations of equa- 
tions FEi, FEk, we come, after some calculations, to one equation for A~k 

(4) FEi(2i) Dzs - FE2(2j) Di3 + FE3(2j) D12 = 0 

where we denoted 

Dkl = Akl Ak2 1 
All  Aiz 1, " 

To obtain the solution for six unknowns A~k we have to use six independent sets 
of FE~(2j) values in this case, i.e., j = 1, 2 . . . . .  P, and P = 6 in accordance with 
the relation (3). 

The existence of solutions of the system (4) and the convergence of the correspond- 
ing Newton's procedure can be again proved by the Kantorovitch' theorem [3], 
after verifying the existence of the inverse of the Jacobi matrix as well as the other 
necessary conditions (the existence of the norm of the matrices involved in calcula- 
tions [3]). The normalization conditions can be included in the system (4)in some 
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way convenient for calculations, e.g., 

P N 

E FEi(2j) = 2 A,k 
j = l .  k = l  

for each curve i = 1, 2 . . . .  , M. 

A similar set of equations can be derived for all possible M, N and P satisfying 
the relation (3) and also the existence of roots can be proved. In this procedure 
the number of unknowns is only M x N instead of  M x N + N x P as in the 
previous case. But the equations for A~k are much more complicated and of higher 
order so that this approach cannot be recommended either. 

For practical solution we used the minimization program MINUIT  [4]. We 
estimated the zero approximation for the amplitudes A~k from the shape of the 
experimental curves FEi(2j) as parameters of the minimization procedure. With 
their help we calculated ~0k(2j) using the set of equations (1) which we treated as 
a set of linear equations for an overdetermined problem. We minimize the z-square 
function defined as the sum of  squared differences of the experimental points FEi(2j) 
and calculated values according to (1). The correct values of Aik and consequently 
the correct values of ~0g(2j) were then searched for by the MINUIT  program. The 
details of the minimization procedure are described in the paper by F. James and 
M. Roos [4]. 

To solve the system (1) for ~ok(2j) we used either the subroutine DECOMPSOLVE 
[5], or, more favourably, the subroutine NNLS (nonnegative least squares [6]), 
in which the constraint that the solutions pk(2j) should be nonnegative could be 
used directly (but more machine time was needed in this case). 

To avoid the ambiguity in decomposition of the complex spectral curves we took 
care to ensure that the number of curves to decompose M be sufficiently higher 
than the number of elementary curves N so that the constraints imposed on the 
problem limit sufficiently the number of possible solutions. The knowledge of  the 
shape of at least some of the elementary curves was also of great help. In more 
complicated cases with several elementary contributions the computer time was 
saved if the curves were decomposed by parts, starting at lower energy side where with 
certainty only two or three elementary curves participated in the measured spectra. 
Then the values of their parameters were fixed and next part of curves and parameters 
was added. In some cases, if there were some physical grounds for it, we also used 
additional demand that the chosen elementary curves be the shortest ones. 

In addition to the minimization procedure MINUIT we used for decomposition 
also the method of alternating iterations. After estimation of the zeroth approxima- 
tion of the A~k and introducing it into (1) we solved this system taken now as a system 
of linear equations for the unknowns ~0k(2j). The standard subroutine (nonnegative 
least squares method [6]) was again used for solution so that the constraints that 
~0k(2j) should be nonnegative was respected. The obtained (pk(2j) values were then 
used and system (1) was now solved again as an overdetermined linear system for 
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next approximation of A~k using the same method. This procedure was repeated and 
the error was calculated in each step: The convergence of  the process was very good 

if we succeeded at the beginning in assessing correctly (within ,-~ 30~ accuracy) 

the zeroth approximation of A~k values. 
The results were in agreement with the minimization procedure M I N U I T  and 

were obtained in much less machine time needed for the MINUIT .  As a rule 
we used both of the procednres for each set of  curves to check the reliability of  the 
decomposition. 

3. GEOMETRICAL INSIGHT INTO THE PROBLEM OF UNIQUENESS 
OF THE DECOMPOSITION 

We shall consider now the experimental curves F i and elementary contributions ~oj 
as vectors formed by p-tuples of  nonnegative numbers, Let the rank of the matrix 

of  all experimental curves F i be N, then we can choose the basis 01, i = 1 . . . .  , N, 
of  the subspace F of all linear combinations of  elementary vectors (o~, j = 1, 2, ..., N 
which also form the basis of  this space. The condition that all experimental curves 
are linear combinations of  q)j vectors with nonnegative coefficients implies that all Fi 

vectors are contained in one polyhedral of  the total space. 
We demand that among our set of  F~ vectors we have vectors lying in N - 1 

dimensional hyperplanes, N - 1 in each of all N hyperplanes. By the decomposition 

procedure we found a basis 0 of  F subspace, the vectors of  which can be expressed 
as 

(5) Oi = ~.i1~~ + ~i2~02 + . . .  + ~iN~os. 

As all vectors Oi in general are not of  the same polyhedron as F, naturally not all 
~k have to be nonnegative. For  Fz vectors lying in hyperplanes we can write (e.g., 
for the case of  N = 3) 

(6) Fi = a~1~/1 + ai2~/z + a i 3 0 3  = (ai1~11 + ai2~2i q- a130~31) (Pl q- 

"}- (ailN12 q- ai2~22 -t- ai3~32 ) 1~2 -t- (ailcxl3 + ai2~23 -t- ai3~33 ) (t93 

where one of the coefficients of  ~o~ is equal to zero. Let, e.g., 

(7) (aile~a + ai2c~23 + ai3~33 ) = 0 .  

Using all N - 1 vectors Fi from the i-th hyperplane we obtain N - 1 equations 
for unknown eli, which together with normalization equation determine in a unique 

way all ~u, i = 1, 2, 3. Repeating the process for all hyperplanes, we obtain all 
elements of  transformation matrix c~ which, according to our assumption, is not 
singular. With the help of  its inverse we can obtain the elementary contribution (p~ 
(i.e. the " t rue"  basis o f F )  in the unique way. 

Let us suppose now that not N - 1 but at least one of  F~ vectors lies in each 
o f N  hyperplanes. Then in the case o f N  = 3 we shall have 

(8) ailO~lk q- a i2~2 k -I- ai30~3k = O, 
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if qo k is missing in a given hyperplane. As all ai) a r e  nonnegative, at least one of ejk 
must be less than zero. Let, e.g., a3k < 0. We shall also suppose that the vectors 
~o k are partly nonoverlapping. From the conditlon of nonnegativity of OK we obtain 

l 
( 9 )  ~31~01 "}- . . .  "1- N3kqgk -Jc" . . . .  I]13 ~ 0 

for all tuples ofqo vectors. We can write for the ICr 
I 

( l o )  1 3kl < + . . .  + = - -  ~3N " 
~0k q% 

After choosing such value of 2~ for which ~pk(;(;) > 0 and simultaneously ~Pi()~j) = 0, 
i 4: k, we obtain la3kl = O. The same procedure can be applied for other Fi vectors 
in the rest of hyperplanes. The conclusion is that under these conditions ~ can be 
only a permutation matrix, the basis vectors again can be chosen in a unique way. 

If none of the above discussed conditions i~ met, the choice of the basis vectors 
Oi is, in general, not unique. However, the vectors ~,  will be close enough to the 

/ 

vectors ~o, if vectors F, lie close to the hyperplanes and/or if vectors ~oi are "almost" 
nonoverlapping. The procedure used above enables an estimation of the distance 
between corresponding if, and (p~ vectors. 

T a b l e  1 

2j C o r r e c t  v a l u e s  o f  (p C a l c u l a t e d  by  M I N U I T  C a l c u l a t e d  b y  i t e r a t i o n s  

1000 0'0000 0"0183 0.0000 0.0000 0"0184 0"0000 0.0000 0"0181 0'0000 
1100 0"0785 0"0392 0"0000 0-0786 0"0389 0"C022 0.0789 0"0385 0"0014 
1200 0"1564 0"0773 0"0000 0"1566 0"0768 0'0044 0.1573 0'0760 0'0028 
1300 0"2334 0"1409 0"0000 0-2338 0"1402 0'C064 0"235] 0'1391 0'0035 
1400 0-3090 0'2369 0.0000 0"3096 0'2361 0"~080 0"3118 0-2349 0"0033 
1500 0"3827 0"3679 0"0000 0.3836 0"3671 0'0091 0'3871 0'3659 0"0021 
1600 0-4540 0"5273 0.0000 0"4553 0'5265 0.0100 0.4603 0'5255 0'0001 
1700 0"5225 0"6977 0"0000 0"5242 0"6971 0'0106 0"5296 0.6947 0"0000 
1800 0-5878 0"8521 0"0001 0"5899 0"8516 0"0114 0"5955 0.8482 0.0000 
1900 0"6494 0'9608 0.0019 0.6517 0"9603 0"0142 0"6589 0"9576 0"00G0 
2000 0-7071 1"0000 0.0183 0-7090 I'G000 0'0317 0.7176 1.0000 0'0136 
2100 0-7604 0"9608 0.1054 0.7595 0"9637 0"1188 0-7632 0'9684 0.1022 
2200 0-8090 0"9521 0-2679 0"7998 0.8642 0"3775 0.7888 0-8840 0"3654 
2300 0"8526 0"6977 0"7788 0-8304 0-7241 0-7815 0-7965 0.7678 0-7764 
2400 0-8910 0"5273 1.0000 0'8616 0"5613 1"0000 0.8146 0.6176 1.0000 
2500 0"9239 0"3679 0.7788 0"9009 0"3933 0'7868 0.8638 0"4354 0'7869 
2600 0-9510 0'2369 0"3679 0-9341 0"2468 0-3881 0"9233 0"2635 0"3858 
2700 0"9724 0.1409 0-1054 0"9665 0'1370 0.1471 0"9553 0-1407 0.1351 
2800 0-9877 0"0743 0"0183 0"9903 0"0748 0"0461 0'9897 0.0687 0'0448 
2900 0"9969 0"0392 0"0019 0-9989 0"0356 0'0320 0-9988 0-0286 0-0304 
3000 1-0000 0.0183 0.0001 1.0000 0.0139 0'0330 1.0000 0"0073 0"0302 
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Until now we discussed the cases where the rank of the F matrix was equal to N. 

I f  it is less than N, then we can decompose F~ vectors only into M < N ~ vectors 
that are linear combinations of  ~o~ vectors. In any case the new t) i vectors are simpler 
than the original F~ vectors and often the desired shape of the qh curves can be 

anticipated. I f  we can supplement the original set of  F, vectors in some way with 
new vectors and increase the rank of  the F,  matrix, the process of  decomposition 
can be repeated and full decomposition achieved. 

4. D E C O M P O S I T I O N  O F  S I M U L A T E D  C U R V E S  

A set o f  seven curves F,  for decomposit ion was obtained by summation of  two 
gaussian curves and one curve of  sinusoidal shape. Their amplitudes were chosen 
in such a way that the rank o f  matrix Y was 3. The number o f  points for each curve 
was P = 21. In table 1 the values of  elementary curves at all points are given together 
with values obtained by decomposit ion procedure. 
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Fig. 1. Example  o f  decomposi t ion  o f  s imulated curves. Dots  - -  s imulated curves. Fu l l  lines - -  

calculated curves and e lementary  contr ibut ions.  
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As the first step the singular values of FE matrix were found (they were equal 
to 21.3724, 4.2442, 2.0574, 0.0283, 0.0000, 0-0006, and 0-0000) and in this way the 
dimensionality of  the problem, i.e., the rank of ~ was established. Then the zeroth 
approximation for amplitudes was chosen intentionally far enough from correct 
values using random numbers A~ = A~ ~r (0.5 + RND), where A~.~, rr is the correct 
amplitude and RND is the random number ranging from 0 to 1. Afterwards the 
calculations using MINUIT and the iteration procedure were performed. An example 
of curves decomposed into elementary contributions is shown in fig. 1. 

If  the errors an Ai ~ were below ~ 3 0 ~ ,  then the average errors in calculated 
amplitudes were below ~ 3' 5~  after 5 steps of iteration and below ,-~ 2.3~ if MINUIT  
was used. They decreased with increasing M and P. The largest errors in the shape 
determination of the elementary curves are apparent from table 1. The errors depend 
somewhat on the form of  the elementary curves. The larger the halfwidth of the 
curve the less is the error in the determined amplitude and in the shape in the vicinity 
of its maximum. All calculations were performed in single precision. 

5. DISCUSSION 

The methods described above offer the possibility of  decomposing even complicated 
spectra into the individual contributions without knowledge of their shapes. We 
assumed only that these shapes are identical for each elementary curve in all composed 
spectra of our set and that they do not depend on the experimental conditions. The 
validity of this assumption will be discussed in [21. The values of A~k for zero approxi- 
mation were determined approximately from the shape of  the complex curves, 
sometimes with the help of literature data. In more complicated cases several 

estimations were made and results then compared. 
The total number of elementary curves needed for decomposition was determined 

using singular value decomposition of the F matrix, the rank of this matrix being equal 
to the number of basis vectors. If  the determined number of elementary curves N 
was smaller than needed (in the case of large experimental errors), the fit remained 
poor. On the other hand, if it was larger, then the surplus curve showed to be either 
of small amplitude with scattered points or of the shape close to some of  other 

elementary curves. 
The number of experimental curves M used for decomposition was usually twice 

as large or more than the number of elementary curves N, so that the uniqueness 
of the decomposition was ensured with sufficient precision. The highest number 
of curves we simultaneously used for decomposition was 28, the largest N was 5. 
We used this method for the determination of the ionization and absorption cross 
sections of impurity centres in SI GaAs crystals, doped with Cr or V ions. Absorption 
or photoconductivity curves obtained either with samples with different impurity 
concentrations or with different population of impurity levels were used for de- 
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composition. The results are described in a separate paper  [7]. Luminescence spectra 

were decomposed by this method, too. 

As a result of  calculations we obtained the spectral shapes of  cross sections for the 
individual impurities and amplitudes of  their contributions to the composed spectral 
curve and their confidence interval, which also enable us to estimate simultaneously 
the error in the determination of the spectral shapes of  the elementary curves in 

a suitable form. 

6. CONCLUSIONS 

The decomposition of complex spectral curves into the individual contributions 

of  arbitrary shapes can be achieved with the help of  the minimization program 
M I N U I T  or by the alternating iterations. The uniqueness of  the decomposition 
is ensured by the physical constraints on the values of  elementary contributions 
and their amplitudes (non-negative values) and/or by additional demands on the 

properties of  elementary contributions. The procedure was checked using simulated 
curves. Also the convergence range for zero approximation of  the parameters of  

decomposition was investigated and was found to exceed 30 per cent of  their value 
for the case where the number of  curves for decomposition is at least twice as large 
as the number of  elementary curves, provided that they behave well in the sense 
discussed above. 

The described method of  decomposition of complex spectra enables the study 
of  the behaviour of  deep impurities by optical methods in more complicated cases 
of  compound semiconductors and has larger area of  applicability. 

The author is indebted to M. Lokaji~ek and V. Kuadnit who kindly shared their experience 
in using MINUIT and to M. Nekvinda for valuable discussions and comments. 
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