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Abstract

A two-dimensional flow and transport model was developed for simulating transient water
flow and nonreactive solute transport in heterogeneous, unsaturated porous media containing air
and water. The model is composed of a unique combination of robust and accurate numerical
algorithms for solving the Richards’, Darcy flux, and advection–dispersion equations. The mixed
form of Richards’ equation is solved using a finite-element formulation and a modified Picard
iteration scheme. Mass lumping is employed to improve solution convergence and stability
behavior. The flow algorithm accounts for hysteresis in the pressure head–water content relation-
ship. Darcy fluxes are approximated with a Galerkin and Petrov–Galerkin finite-element method
developed for random heterogeneous porous media. The transport equation is solved using an
Eulerian–Lagrangian method. A multi-step, fourth-order Runge–Kutta, reverse particle tracking
technique and a quadratic–linear interpolation scheme are shown to be superior for determining
the advective concentration. A Galerkin finite-element method is used for approximating the
dispersive flux. The unsaturated flow and transport model was applied to a variety of rigorous
problems and was found to produce accurate, mass-conserving solutions when compared to
analytical solutions and published numerical results. q 1998 Elsevier Science B.V.

1. Introduction

The vadose zone is prone to contamination from agricultural chemicals, hydrocar-
bons, and many other hazardous substances and, in some cases, functions as a receptacle

) Corresponding author. Fax: q1-906-487-3371; e-mail: asmayer@mtu.edu
1 Fax: q1-360-650-7302; e-mail: rjmitch@henson.cc.wwu.edu

0169-7722r98r$19.00 q 1998 Elsevier Science B.V. All rights reserved.
Ž .PII S0169-7722 97 00042-9



( )R.J. Mitchell, A.S. MayerrJournal of Contaminant Hydrology 50 1998 243–264244

for controlled waste storage and disposal. When water is applied to the soil surface,
either naturally or by irrigation, it may transport chemical contaminants through the
vadose zone to the underlying groundwater aquifer. Because of the vadose zone’s
susceptibility to contamination and its direct link to aquifers, transport phenomena in the
vadose zone are of significant environmental concern. Although vadose zone contamina-
tion by nonaqueous phase liquids is an important problem, the following work focuses
on systems containing air and aqueous phases only, where the contaminant is distributed
in the aqueous phase and the air phase is immobile.

Mathematical models play a significant role in the analysis of the fate and transport
of contaminants in the vadose zone and in the development of water and agricultural
management and remediation strategies. A common approach when modeling transport
in the vadose zone is to assume ideal conditions, such as uniform water content and

Ž . Žsteady-state water flow in one-dimensional 1-D domains e.g., van Genuchten and
.Wierenga, 1976; Bresler and Dagan, 1981; Jury, 1982 . The ideal approach eliminates

the need for the solution of the flow equation and, therefore, minimizes the amount of
model input data and the computational demand. However, results generated by ideal
models often do not agree with laboratory and field observations, and their utility for

Ž .predicting field-scale processes is questionable van Genuchten, 1991 .
To better approximate the transport of contaminants in the vadose zone, models

should consider the physical influences of transient flow as well as the natural
Ž .heterogeneity and multidimensional aspects of porous median Nielsen et al., 1986 .

However, maintaining numerical accuracy when modeling transient flow and transport
Ž .in unsaturated, heterogeneous porous media is difficult Gee et al., 1991 . Serious mass

balance and convergence problems can develop due to the nonlinear nature of the
Ž .unsaturated flow equation Richards’ equation , particularly when using the pressure-

Ž .head-based form Celia and Bouloutas, 1990 . Some of these problems have been
resolved through the development of schemes using the mixed form of Richards’

Ž .equation Allen and Murphy, 1986; Celia et al., 1987; Celia and Bouloutas, 1990 . An
algorithm based on a fully-implicit time approximation and a modified Picard iteration
scheme applied to the mixed-form of Richards’ equation has produced accurate solutions

Ž .with excellent global mass balance Celia and Bouloutas, 1990 .
Some studies have shown that hysteresis in the water content–pressure head relation

Ž .can impede solute transport in the vadose zone e.g., Russo et al., 1989 . In order to
model hysteresis, a family of scanning curves bounded by main wetting and draining
curves is used to describe the relationship between pressure heads and water contents.

Ž .Parker and Lenhard 1987 introduced a technique similar to the models of Scott et al.
Ž . Ž .1983 and Kool and Parker 1987 , where scanning curves are generated by applying
scaling relations to the main wetting and draining curves. The advantage of the method

Ž .of Parker and Lenhard 1987 is that closure of the scanning loops is enforced to
Ž .eliminate the pumping effect, which can cause mass balance errors Jaynes, 1984 .

Since the Darcy flux is the only coupling between flow and transport, it is imperative
that the flux is calculated with precision. Finite-difference methods for calculating fluxes
from predetermined heads are easy to apply and are efficient, but produce velocities that
are discontinuous at element boundaries. These discontinuities can cause local mass
balance errors, which may accumulate globally and produce errors in transport computa-
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Ž . Ž .tions Yeh, 1981 . The finite-element method introduced by Yeh 1981 produces
continuous velocities at element boundaries and better mass balance accuracy than

Ž .finite-difference methods. A scheme based on the finite-element method of Yeh 1981
was developed for multidimensional heterogeneous porous media by Srivastava and

Ž .Brusseau 1995 . This method was shown to be accurate in random heterogeneous
porous media where the contrast between hydraulic properties was not large.

With the mixed finite-element method, the pressure head and Darcy flux are
determined simultaneously, which produces Darcy fluxes with a higher order of

Ž .accuracy than the finite-difference and finite-element methods e.g., Chiang et al., 1989 .
Unfortunately, the mixed method requires the most computational effort of all the
methods. It has not been demonstrated that the potential increase in accuracy obtained
with the mixed finite-element method is sufficient to justify the extra computational
burden for transient, unsaturated problems in multiple dimensions.

There are many algorithms in the literature for the numerical solution of the
advection–dispersion equation. The application of finite-element methods is subject to
local Peclet and Courant number restrictions, i.e., PeF2 and CrF1, where the local
Peclet number is defined as PesÕD lrD, Õ is the pore water velocity, D l is the
characteristic length of the element, D is the dispersion coefficient, the local Courant
number is defined as CrsÕD trD l, and D t is the time step. Upstream weighting
methods were developed to improve finite-element solutions by reducing numerical

Ž .oscillations under high Pe conditions Sudicky and Huyakorn, 1991 . The Petrov–
Galerkin, finite-element upstream weighting technique developed by Westerink and

Ž . Ž .Shea 1989 and Cantekin and Westerink 1990 has been shown to produce stable,
Ž . Ž .accurate solutions Noorishad et al., 1992 for high Peclet numbers Pe-` , but it is

still subject to the restriction that Cr-1.
Transport models based on Eulerian–Lagrangian methods, specifically the modified

Ž .method of characteristics MMOC have been shown to be a practical alternative for
Ž .advective-dominated problems in saturated porous media e.g., Chiang et al., 1989 . The

MMOC method, which employs a fixed grid system, is more computationally efficient
Ž .than forward particle tracking or adaptive techniques Zhang et al., 1993 and, unlike

finite-element methods, the MMOC method is not limited to the constraint that Cr-1.
Ž .Binning and Celia 1996 introduced a finite volume, Eulerian–Lagrangian localized

Ž .adjoint ELLAM method to solve the advective–dispersive transport equation and
showed that the method was accurate over a wide range of Pe and Cr. However, the
MMOC and ELLAM methods have not been extensively applied in heterogeneous or
unsaturated porous media.

The objective of this study is to develop a numerical model that is capable of
accurately simulating transient-hysteretic flow and solute transport in a 2-D, unsaturated,
heterogeneous domain. The model is constructed from accurate, efficient, and mass
conserving techniques. The model employs the mass-conserving, finite-element formula-

Ž .tion of Celia and Bouloutas 1990 for approximating the pressure head and associated
Ž .water contents. The methods of Parker and Lenhard 1987 and Lenhard and Parker

Ž .1987 are used to estimate hysteresis in the pressure-saturation relationships. The
Ž .finite-element scheme of Srivastava and Brusseau 1995 is applied to estimate the

Darcy flux. A variety of backtracking and interpolation techniques are investigated to
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determine the most appropriate methods for applying the MMOC algorithm in 2-D,
transient, unsaturated, heterogeneous conditions. The model is applied to flow and
transport problems and the numerical results are compared against analytical solutions
and published numerical results.

2. Governing equations

The general algorithm for the model developed in this work is to solve, in sequence,
the water mass conservation equation, Darcy’s flux equation, and the solute mass
conservation equation, subject to initial and boundary conditions.

2.1. Flow equation

The nonlinear partial differential equation most commonly used to predict the
pressure head field and associated water contents in the domain is known as Richards’
equation. The application of Richards’ equation assumes that the porous media is rigid,
the fluid is incompressible and isothermal, the fluid density is unaffected by solute
concentrations, and the air phase does not affect water flow. Also, Richards’ equation
does not explicitly account for preferential flow or other non-continuum flow phenom-
ena. The mixed form of Richards’ equation can be written as:

Eu
s=P K u P= cyz . 1Ž . Ž . Ž .

E t

Here, c is the pressure head, u is the volumetric water content, defined as the
volume of water in the void space divided by the bulk volume. The hydraulic

Ž .conductivity in Eq. 1 is assumed to be isotropic and is defined as:

r g kk uŽ .r
K u s sK k u , 2Ž . Ž . Ž .s r

m

where r is the water density, g is the gravitational constant, k is the intrinsic
Ž .permeability, k u is the relative permeability, K is the saturated hydraulic conductiv-r s

ity, and m is the water dynamic viscosity.
Ž . Ž .For closure, constitutive relationships are necessary for the u c and K u functions.

Ž .These constitutive relationships, which contribute to the nonlinearity of Eq. 1 , are
porous media specific and hysteretic in nature. The empirical relationships of van

Ž . Ž . Ž .Genuchten 1980 and the van Genuchten 1980 and Mualem 1976 were used to
describe the hydraulic constitutive relationships. These relationships were chosen be-
cause of the wider availability of parametric data and the availability of a reliable
hysteresis algorithm. The relationships are expressed as:

ymn< <S s 1q ac , 3Ž .e

u c su q u yu S , 4Ž . Ž . Ž .ir s ir e

2m1r2 1r mk u sS 1y 1yS , 5Ž . Ž .Ž .r e e
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Ž . Ž .where S is the effective normalized water saturation, a , n, and m s1y1rn aree

fitting parameters which describe the shape of the functions, u is the saturated waters

content, and u is the irreducible water content.ir
Ž .Modified versions of the c u hydraulic relationships are used when hysteresis is

considered in the simulations. Hysteresis is modeled using the method of Parker and
Ž . Ž .Lenhard 1987 and Lenhard and Parker 1987 , which has been shown to compare well

Ž .with experimental results Lenhard et al., 1991 . This approach simulates scanning
curves between the main wetting and draining curves by scaling the main curves and
forcing the scanning curves to pass through appropriate reversal points. An advantage of

Ž .the method of Parker and Lenhard 1987 over other methods is that closure of the
scanning loops is enforced, which minimizes mass balance problems. Their hysteresis
algorithm also incorporates air entrapment by scaling the water permeabilities. Since

Ž .hysteresis associated with K u functions for wetting phases is assumed to be small
Ž . Ž .Mualem, 1976 , hysteresis in the K u function is ignored in this work.

2.2. Darcy flux

Ž . Ž . Ž .Darcy’s law, which is coupled to Eq. 1 by K u and u c , is used to determine the
water flux field. Although Darcy’s law was derived for saturated media, it is applied to
unsaturated media. The flux equation is given as:

qszusy K u P= cyz , 6Ž . Ž . Ž .

where q is the Darcy flux vector, z is the pore velocity vector, and z is the elevation
measured positive downward.

2.3. AdÕection–dispersion equation

Ž . Ž .The advection–dispersion transport equation, which is coupled to Eqs. 1 and 6 by
Ž .u c and q, is used to determine solute concentrations. The solute transport equation for

Ž .a nonreactive substance in the water phase is given by Bear, 1979 :

E u CŽ .
s=P u DP= C y=P qC , 7Ž . Ž . Ž .

E t

where C is the solute concentration and D is the dispersion tensor as defined by Bear
Ž .1979 :

Õ Õi j
< <D sl Õ d q l yl qD td , 8Ž . Ž .i j T i j L T d i j< <Õ

where l and l are the longitudinal and transverse pore-scale dispersivities, respec-L T

tively; d is the Kronecker delta; Õ and Õ are the ith and jth components of thei j i j
< <average pore velocity, respectively; Õ is the magnitude of the total pore velocity vector;

D is the molecular diffusion; and t is the tortuosity; which can be evaluated byd
Ž . 7r3 2relationships such as that of Millington and Quirk 1961 , where tsu ru .s
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3. Numerical methodology

3.1. Solution of Richards’ equation

Ž .The finite-element approximation described by Celia and Bouloutas 1990 was used
Ž .to discretize the 2-D form of Eq. 1 . A standard Galerkin finite-element method was

used with bilinear shape functions to approximate the spatial derivatives. Green’s
formula was applied to reduce the second derivative terms to first-order derivatives and
boundary terms. A first-order, fully-implicit, finite-difference method was used to
approximate the temporal derivative. The temporal terms resulting from the finite-ele-
ment approximation were lumped to improve solution convergence and stability behav-

Ž .ior Celia and Bouloutas, 1990 . A modified Picard iteration method is used to linearize
the equation. The discretized form of the equation is given in Appendix A. Application
of these numerical methods results in the following matrix-vector equation:

lq1,mlq1,m lq1,mq1� 4A c s B , 9� 4 Ž .p i p

where the superscripts l and m are the time and iteration levels, respectively. For 1-D
problems, the matrix-vector equation is solved with a direct banded LUD solver. For
2-D problems, a biconjugate gradient squared iterative method with a Jacobi precondi-

Ž .tioner from the NSPCG software package Oppe et al., 1988 is applied. At each
Ž . Ž .iteration level, new hydraulic coefficients are calculated using Eqs. 3 – 5 .

3.2. Solution of the Darcy flux equation

Ž .A finite-element method has been developed by Yeh 1981 to approximate the Darcy
Ž .fluxes hereafter referred to as Yeh’s FEM . The method produces nodal fluxes that vary

linearly within an element and are continuous on the element boundaries. Yeh’s FEM
reduces mass balance errors that can be associated with finite-difference techniques, but
requires more computational effort. Yeh’s FEM was shown to be sufficiently accurate in

Ž .variably saturated conditions by Yeh et al. 1993 . The discretization is performed by
Ž .applying the Galerkin method to Eq. 6 using bilinear shape functions. This scheme

generates a set of N linear equations each for the x- and z-components of the Darcy
flux. In matrix-vector notation, the equations can be written as:

lq1 lq1w x � 4 � 4A q s B , 10Ž .x x x

lq1 lq1w x � 4 � 4A q s B . 11Ž .z z z

The discretized form of the equations are given in Appendix A. The coefficient
w x w xmatrices A and A are time invariant and need to be inverted only once. Thex z

solution procedure decouples the two flux components such that each set of N linear
simultaneous equations has to be solved for each flux component at each time step.

ŽWhen considering a 2-D domain having heterogeneous porous media or variably-
.saturated homogenous porous media , the flux component normal to a material boundary

should be continuous, while the tangential component should, in general, have a jump
Ž .discontinuity Srivastava and Brusseau, 1995 . To preserve the discontinuity in the
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Ž .tangential direction, a scheme developed by Srivastava and Brusseau 1995 is applied.
This scheme applies Yeh’s FEM, but on a row by row and column by column basis in
2-D domains. The resulting z-components of the flux will be linear and continuous in
the z-direction, but have jump discontinuities at the element boundaries in the x-direc-
tion. A similar result is obtained for the x-components of the flux. In this way, nodes
will have a different flux value depending on from which direction the boundary is

Ž .approached. Srivastava and Brusseau 1995 have shown that this scheme is more
accurate than Yeh’s FEM and comparable finite-difference methods in simulations of
randomly heterogeneous porous media where the element boundaries corresponded with
material interfaces.

Ž .The solution for the fluxes in the x-direction lateral are determined by applying
Yeh’s FEM one column at a time. In matrix-vector notation the equations can be written
as:

lq1lq1� 4A q s B , 12� 4 Ž .L x Lx x

where L defines the length of the column. The z-component of the Darcy flux isx

estimated on a row by row basis:

lq1lq1� 4A q s B , 13� 4 Ž .L z Lz z

where L represents the length of each row. Instead of solving a set of N simultaneousz

equations for each direction, a series of uncoupled, symmetric, banded systems are
solved, which is more efficient than solving the coupled system. The matrix-vector
equations are solved with a direct banded LUD solver.

3.3. Solution of the adÕection–dispersion equation

The MMOC method was implemented to approximate the advection–dispersion
Ž .equation, Eq. 7 , because of its applicability in heterogeneous environments where

Courant numbers are expected to exceed the critical value Crs1. Given a defined flow
field and prescribed time step, the MMOC algorithm begins by backtracking along a
velocity characteristic to the foot of the characteristic x . The concentration at the foot of˜ i

˜Ž .the characteristic C x is then approximated using an interpolation procedure. The grid˜ i

point from which the particle backtracked, then assumes the interpolated concentration
˜ ŽC , which is subsequently dispersed using a Galerkin FEM Neuman, 1984; Healy andi

.Russell, 1989; Yeh et al., 1993 .
Ž .Eq. 7 can be expressed in Lagrangian form as:

dC
s=P u DP= C , 14Ž . Ž .

d t

where:

dC E C
s qz=PC 15Ž .

d t E t
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represents the total derivative, which indicates the rate of change of C along velocity
characteristics.

Ž .Single-step reverse particle tracking Neuman, 1984 is used to backtrack along
velocity characteristics. With this approach, a fictitious particle from grid point x , isi

sent backward to the point x , which is defined as:˜ i

Ž .t v d t . 16kq1 ix sx y˜ Hi i
tk

Ž .Eq. 16 infers that a particle leaving x at t will arrive at the grid point x at t .˜ i k i kq1

Velocities are assumed to be piece-wise linear, which is consistent with the approxima-
tion method used for the Darcy flux.

˜The solute concentration C at x , is approximated by interpolation, using:˜i i

nI

C̃ s C x N x , 17Ž . Ž . Ž .Ýi j j j i
js1

where N is a shape function and n represents the number of nodes used in thej I
˜interpolation. The grid point x then assumes C as the advected concentration at timei i

t . If x reaches across an inflow boundary, it is assigned the concentration at the˜kq1 i

boundary. At no-flow boundaries the particle is reflected back into the domain.
˜Once the advected concentration C is determined at each node, the dispersive flux isi

Ž .approximated by solving Eq. 14 using a Galerkin finite-element method. A backward-
difference time-stepping scheme is used along with mass lumping. The matrix-vector
form can be expressed as:

lq1 lq1 lq1w x � 4 � 4A C s B . 18Ž .c i c

The discretized form of the advective–dispersive equation is given in Appendix A.
For 1-D simulations, a direct banded LUD solver is used to solve the matrix-vector
equation. In 2-D, a biconjugate gradient squared iterative method with a Jacobi

Ž .preconditioner from the NSPCG software package Oppe et al., 1988 is applied.
The accuracy of the MMOC method in variably saturated media is a function of the

Žtechnique used to backtrack a particle along a characteristic Allen and Khosravani,
.1990 and the interpolation method used to determine the advective concentration

Ž .Healy and Russell, 1989 . When the velocity field is uniform, a simple one-step, Euler
Ž .algorithm can be used to solve Eq. 16 accurately. In heterogeneous conditions,

velocities can change rapidly over space and time. Backtracking accurately under these
conditions can present difficulties. Various techniques have been suggested for tracking
particles for complex velocity fields. The semi-analytical method described in Pollock
Ž .1988 is efficient and gives exact backtrack positions in 1-D heterogeneous systems. In
brief, a particle travels from x to x moving across entire or partial elements in varying˜i i

sub-intervals of time until the sum of the sub-intervals equals D t. The sub-intervals of
time are calculated analytically by knowing the nodal velocities and assuming piece-wise
linearity. In 2-D, where velocities vary linearly from node to node in both directions, the
semi-analytical method is not applicable. Under these conditions, either fourth-order

Ž .Runge–Kutta methods e.g., Baptista et al., 1984; Yeh et al., 1993 or a multiple-step



( )R.J. Mitchell, A.S. MayerrJournal of Contaminant Hydrology 50 1998 243–264 251

Ž .Euler method Allen and Khosravani, 1990 must be applied.
For the multiple-step Euler method, N Euler steps of length D t are taken, such that:s

x N sx Ny1 sz D t , 19Ž .˜ i i i s

where:

N

D ts D t , 20Ž .Ý s
ss1

and for the multiple-step, fourth-order Runge–Kutta method, N equal sub-intervals of
D t are taken, as in:s

1
N Ny1 1 2 3 4x sx y D x q2D x q2D x qD x , 21Ž .˜ Ž .i i i i i i6

where:

D x1 s z D tŽ . xi i s i

2
1D x s z D tŽ . x qD x 2i i s i i

22Ž .
3

2D x s z D tŽ . x qD x 2i i s i i

4
3D x s z D t .Ž . x qD xi i s i i

Interpolation of the concentration at the foot of the characteristic is commonly
performed using a linear method. However, near steep concentration fronts, linear

Žinterpolation will introduce numerical dispersion in the solution Cheng et al., 1984;
.Healy and Russell, 1989 . Second-order accurate quadratic interpolation will reduce

Ž .numerical dispersion, but it can produce oscillations in the solution Cheng et al., 1984 .
Ž .For 1-D transport problems, Healy and Russell 1989 have shown that a combination of

quadratic and linear interpolation can produce oscillation-free solutions with reduced
dispersion. In their method, quadratic interpolation is applied first, a criteria is then used
to test for an oscillation, and, if an oscillation exists, the concentration is recalculated
using linear interpolation. Linear, quadratic, and quadratic–linear interpolation methods
were incorporated into the MMOC transport model, as well as the multi-step Euler and
fourth-order Runge–Kutta backtracking techniques. An analysis of the backtracking and
interpolation methods is conducted in Section 4 to determine the most appropriate
methods for 2-D transient, unsaturated, heterogeneous conditions.

4. Test examples

Test examples were designed to demonstrate the performance of the flow, Darcy flux,
and transport algorithms in 1-D and 2-D water-unsaturated systems. Test problems also
are used to investigate the performance of backtracking and interpolation techniques
used in the application of the MMOC method.
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4.1. 1-D flow example

To evaluate the performance of the flow model, simulations were conducted using the
Ž .1-D numerical experiment of Celia and Bouloutas 1990 . The test represents the

infiltration of water into a dry porous media. The porous media hydraulic properties for
Ž . Ž . y1the test are defined by Eqs. 3 – 5 where u s0.102, u s0.381, as0.0335 cm ,ir s

y1 Ž .ns2, and K s0.00922 cm s . The initial condition is c z,0 sy1000 cm. Thes
Ž . Ž . Ž . Ž .boundary conditions are c 0,t sy75 cm top and c 100,t sy1000 cm bottom .

Ž . ŽTwo grid sizes D zs0.5 and 2.5 cm were used along with a fixed time step D ts600
.s . The simulations evolved for 24 h. The solutions were compared to a dense grid

Ž .solution D zs0.125 . The results shown in Fig. 1 agree with the results shown in
Ž .Figure 6a of Celia and Bouloutas 1990 . The solutions are oscillation-free and converge

to the dense grid solution. The relative mass balance error for these simulations was on
the order of 10y4 %.

4.2. 2-D flow example: constant infiltration

To test the application of the flow model in 2-D heterogeneous conditions, a
Ž .simulation was conducted using Test Problem 1 of Kirkland et al. 1992 . The

unsaturated test region, shown in Fig. 2, is 500 cm wide by 300 cm deep and is divided
upto nine alternating blocks of clay and sand. The hydraulic parameters of the sand are
given as u s0.0286, u s0.3658, as0.0280 cmy1, ns2.239, and K s541.0 cmir s s

dayy1. The clay hydraulic parameters are u s0.1060, u s0.4686, as0.0104 cmy1,ir s

ns1.3954, and K s13.1 cm dayy1. A constant flux of 5 cm dayy1 was applied to thes

top center 100 cm of the domain and a no-flux boundary condition was applied to all
other boundaries. The initial pressure head was defined as y50,000 cm. The simulation

Ž .evolved for 12.5 days using a constant time step D ts4000 s and the grid spacing was
D zsD xs5 cm. Given that the domain is symmetric about the vertical center, only the
right half of the domain was simulated.

Ž .Fig. 1. Pressure head profile as a function of depth after 24 h and grid size for the Celia and Bouloutas 1990
test case.
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Ž .Fig. 2. Unsaturated domain for comparison with the Kirkland et al. 1992 test case. Zero-flux boundary
conditions are applied except as noted. All dimensions are in centimeters. The figure is modified from Figure 1

Ž .in Kirkland et al. 1992 . Note that only the right half of the domain, designated with solid lines, is simulated
here.

The pressure head contours produced by the model described here, which are not
Ž .shown, were similar to those presented in Figure 6 of Kirkland et al. 1992 . The relative

mass balance error for the simulation was on the order of 10y4 %. Shown in Fig. 3 is the
horizontal flux profile calculated at zs95 cm. The horizontal flux profile is in good

Ž .agreement with the finer grid D xs2.5 cm finite-difference flux solution given in
Ž .Figure 4 of Kirkland et al. 1992 . However, an oscillation in the vertical flux solution

occurs at one of the sand-clay boundaries, as shown in Fig. 4 for xs5 cm. The
oscillation arises because of the sharp changes in pressure and in hydraulic conductivity

Fig. 3. Horizontal flux along the zs95 cm position measured from the center of the domain after 12.5 days
Ž .for the Kirkland et al. 1992 test case.
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Ž .Fig. 4. Vertical flux along the xs5 cm position after 12.5 days for the Kirkland et al. 1992 test case.

found at the sand clay boundary. The Galerkin finite-element method used to approxi-
mate the Darcy flux forces local flux conservation at the nodes, which produces a
poorly-behaved solution when sharp changes in conductivities and pressures occur
between nodes. The oscillations can be eliminated by using an upstream-weighted

Ž .residual method such as a Petrov–Galerkin approximation Westerink and Shea, 1989 .
The solution obtained with the Petrov–Galerkin approximation is shown to be oscilla-
tion-free in Fig. 4 and is in good agreement with the finer grid solution from Figure 5 of

Ž .Kirkland et al. 1992 .

4.3. 2-D flow example: transient infiltration

Ž .A similar experiment to Test 1 of Kirkland et al. 1992 was performed, where a
transient rather than a constant flux was applied to the surface. The purpose of this
experiment was to test the ability of the hysteresis algorithm to close scanning loops and

Fig. 5. Main wetting and drying pressure head–water content curves for the Berino loamy sand along with the
Ž .primary scanning curves for the node at 5, 5 cm resulting from the transient infiltration experiment.
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y1 Žmaintain good mass balance. The transient flux alternated between q s20 cm day 10
. Ž . y1 Ž .day , q s0 6 days , and q s20 cm day 1 day . The pressure head and water0 0

content were monitored throughout the simulation at a grid point positioned in the sand
Ž .at xs5, zs5 cm . Fig. 5 shows the main wetting and drying curves for this point,

along with the primary scanning pressure head–water content curves resulting from the
Ž .simulation. As expected with the method of Parker and Lenhard 1987 , the scanning

curves are closed, which resulted in good mass balance accuracy. A relative mass
balance error on the order of 10y4 % was maintained throughout the experiment.

4.4. 2-D transport example: backtracking tests

In the following tests, numerical experiments are conducted to determine the accu-
racy and efficiency of backtracking techniques for 2-D transient, unsaturated, heteroge-
neous conditions. Multiple-step Euler and Runge–Kutta backtracking algorithms are

Ž .considered. A 2-D grid Fig. 6 consisting of 1-cm square elements was used to examine
the two backtracking algorithms. The velocities in the domain represent severe changes
in velocity that might be encountered in heterogeneous conditions. Nodes 7–9 in Fig. 6
are assigned a velocity of 1=10y1 cm sy1 while all other nodes are assigned a velocity

y3 y1 Ž .of 1=10 cm s . A time step size D ts500 s was chosen such that a particle
backtracking from node x would cross the discontinuity at the element boundary andi

Ž .reach x in D t Fig. 6 . The velocities in the x-direction were set equal to the velocities˜ i

in the z-direction. Since Õ sÕ , and, by assuming that the velocity varies linearlyx z

between nodes, an analytical solution could be obtained for comparison purposes. For
analysis of the Euler and fourth-order Runge–Kutta algorithms, N was chosen such that
the number of function evaluations were equal. Given that the fourth-order Runge–Kutta
method requires about four times the amount of function evaluations as that of the Euler

Fig. 6. Two-dimensional grid representing the boundary between two types of porous media. The velocities at
nodes 1–6 are Õ s Õ s10y3 cm sy1 and the velocities at nodes 7–9 are Õ s Õ s10y1 cm sy1. The pointx z x z

x represents the backtrack position from the node x .˜ ˜i i
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Table 1
Error Analysis

) ) )Method Error

Multiple-Step Euler
y1Dt 2.95=10240
y2Dt 9.82=10700

Dt 3.42=10y 22000

Fourth-Order Runge-Kutta
y3Dt 4.27=1060
y4Dt 3.97=10175
y5Dt 2.64=10500

)

Dt is the subinterval of the time step Dt, where s is the number of subintervals.s
) ) Ž .Relative error % between the analytical backtrack result and the backtrack position approximated by the
multi-step Euler and the multi-step fourth-order Runge-Kutta methods.

method, an Ns240 for the Euler method corresponds to an Ns60 for the fourth-order
Runge–Kutta method.

The results of the test are shown in Table 1. The error shown in the table is the
Ž .relative error % between the analytical solution and the values determined by the two

multi-step techniques. Since the Euler method is only first-order accurate, it gives poor
approximations of the backtracked position. Even with an Ns2000, the Euler method
does not reach the lowest degree of accuracy achieved by the fourth-order Runge–Kutta

Ž .method D t . Therefore, it can be concluded that the multi-step fourth-order Runge–60

Kutta method is more accurate and more efficient than the multi-step Euler method.
Similar results have been obtained in one-dimensional tests of the two methods
Ž . ŽMitchell and Mayer, 1994 . In regions of relatively high concentrations in or near a

.solute plume , the multi-step fourth-order Runge–Kutta method should be used to
backtrack. In regions outside the vicinity of a plume, an Euler method can be applied to
improve overall computational efficiency.

4.5. 1-D transport example: interpolation test

For the 1-D case, the transport model was tested with each interpolation method
Ž .against the analytical solution of Ogata and Banks 1961 for nonreactive solute

transport. A 60-cm 1-D domain was chosen with a steady-state velocity field having a
magnitude of 5=10y4 cm sy1. The domain was discretized into 120 elements
Ž . Ž Ž . .D zs0.5 cm . Initially, the concentration was set to zero C z,t-0 s0 . A Dirichlet

Ž Ž . .boundary condition was applied at the left boundary C 0,t s1 and a no-flux
condition was fixed at the right boundary.

Interpolation accuracy is controlled by the Cr number in a steady-state flow field. If
D z, D t, and Õ are chosen such that Cr is an integer value, particles backtrack from node
to node. Under these circumstances, there is no error due to interpolation. To demon-
strate this case, a time step of 2000 s was chosen, which corresponds to Crs2. The
result after 40 time steps is shown in Fig. 7. The solution using linear interpolation
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Ž .Fig. 7. Normalized concentration profile with depth after 50 times steps D ts2000 s . Displayed are the
analytic solution and numerical solution using linear interpolation for the case where Crs2 and Pes100.

matches the analytical solution very well. Identical results were achieved from all three
interpolation methods. A numerical solution produced by either a Galerkin or Petrov–
Galerkin finite-element method in this case would have oscillations because the methods

Ž .are limited to CrF1 Westerink and Shea, 1989 .
Interpolation error arises when the foot of the characteristic lies between nodes,

which occurs when the Cr number has non-integer values. The maximum error occurs
when the foot of the characteristic lies in the center of an element, corresponding to a Cr

Ž .number that is a factor of 0.5 0.5, 1.5, 2.5, etc. . To test the performance of the three
interpolation schemes for this extreme case, a time step of 1500 s was chosen, which
corresponds to Crs1.5. The dispersivity was adjusted to produce test cases with
Pes10 and Pes100. Simulations were carried out for 50 time steps.

Fig. 8 shows the analytical solution and the numerical solutions from the linear and
quadratic interpolation methods, respectively, for the case when Pes10. The solution

Ž .Fig. 8. Normalized concentration profile with depth after 50 times steps D ts1500 s . Displayed are the
analytic solution and numerical solutions using linear and quadratic interpolation for the case where Crs1.5
and Pes10.
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Ž .Fig. 9. Normalized concentration profiles with depth after 50 times steps D ts1500 s . Displayed are the
analytic solution and numerical solutions using linear, quadratic, and quadratic–linear interpolation for the
case where Crs1.5 and Pes100.

resulting from the quadratic interpolation is in close agreement with the analytic solution
and is free of oscillations in this case. The quadratic–linear method produced the same

Ž .result not shown as the quadratic interpolation method. Numerical dispersion appears
in the solution when applying linear interpolation. The dispersion due to linear interpola-
tion increases as Pe™`, as is demonstrated in Fig. 9 for the case where Pes100. The
numerical solution generated for Pes100 with quadratic interpolation is shown in Fig.
9 with the corresponding analytical solution. The results shown in Fig. 9 demonstrate
that oscillations will occur when applying the quadratic interpolation at non-integer Cr
and high Pe. The oscillations tend to increase with the Pe number. The quadratic–linear
method eliminates the oscillations, as shown in Fig. 9, while producing slight numerical
dispersion. A comparison of the profiles given in Fig. 9 reveals that the numerical
dispersion produced with the quadratic–linear method is smaller than that produced by
the linear method. From the results of this analysis, it is apparent that the quadratic–lin-

Fig. 10. Two-dimensional steady-state flow field representing a preferential flow path in a dry media. The
largest velocity vector has a magnitude of 2.5=10y3 cm sy1 and Õ is represented as approximately 10=Õ .z x
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Ž .Fig. 11. Normalized concentration CrC surface plot resulting after 5000 s using quadratic interpolation.0

ear technique is superior to both the linear and quadratic schemes for interpolating
concentrations.

4.6. 2-D transport example

To test the MMOC model in a more complex flow field, the model was applied to
simulate the transport of a nonreactive solute in a preferential flow path within a dry
vadose zone. The velocity distribution for the problem is shown in Fig. 10. The

Ž y5 .dispersivities were chosen to be small l sl s10 cm to produce a highlyL T

advective problem. The flow field in this problem presents a severe test for the transport
Žcomponent of the model, due to the wide range of Peclet numbers 0-Pe -1 andx

. Ž .0-Pe -126 and Courant numbers 0-Cr -0.1 and 0-Cr -1.54 . The simula-z x z

tions were conducted with Dirichlet boundary conditions along the zs0 cm boundary
Ž . Ž .C s1 for 0FxF10 cm , and the zs30 cm boundary C s0 for 0FxF10 cm0 0

and no-flux boundary conditions on other boundaries. The domain contained 1281 nodes
Ž .D xsD zs0.5 cm . Simulations were run for a total time of 7500 s using a D ts300
s.

Ž .Fig. 12. Normalized concentration CrC surface plot resulting after 5000 s using quadratic–linear0

interpolation.
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Ž .Fig. 13. Normalized concentration CrC surface plot resulting after 5000 s using linear interpolation.0

The concentration distribution shown in Fig. 11 is a result of applying quadratic
interpolation. The plot illustrates the oscillations that will occur when the Pe numbers
are high and when only quadratic interpolation is applied. Fig. 12 shows that the
oscillations can be eliminated when the quadratic–linear interpolation method is em-
ployed. Note also, that the profile in Fig. 12 retains the same steep advective characteris-
tic displayed in Fig. 11. The results from using linear interpolation in the model are
shown in Fig. 13. As expected, the solution is numerically dispersed, when compared to
the other two interpolation methods, with the dispersion being greatest along the

Ž .direction of flow z-axis .

5. Conclusions

A 2-D numerical model was developed for simulating transient, hysteretic flow and
nonreactive solute transport in unsaturated porous media. The uniqueness of the model is
that it employs a combination of numerical formulations that previously have been
demonstrated to accurately solve Richards’, the Darcy flux, and the advection–disper-
sion equations. The formulations were applied, and in some instances, enhanced to
perform accurately and efficiently in 2-D heterogeneous, unsaturated conditions.

The mixed form of Richards’ equation and the numerical formulation described by
Ž .Celia and Bouloutas 1990 was used to approximate the flow equation. The flow

component of the model was subjected to the infiltration test of Celia and Bouloutas
Ž .1990 and was shown to produce accurate solutions with excellent mass balance in 1-D

Ž .and agree with the results published in Celia and Bouloutas 1990 . The flow model also
reproduced, with good mass balance accuracy, the results of a 2-D numerical experiment

Ž .of Kirkland et al. 1992 . This experiment simulated infiltration of water into a 2-D
domain consisting of initially, very dry alternating blocks of sand and clay. A transient

Ž .experiment was also performed in the 2-D domain of Kirkland et al. 1992 and it was
Ž .demonstrated that the hysteresis algorithm of Parker and Lenhard 1987 produced

closed hysteretic scanning curves and conserved mass.
Ž .The finite-element scheme described by Srivastava and Brusseau 1995 , which is a

Ž .modification of the finite-element method described by Yeh 1981 , was used to
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determine the Darcy flux field. The finite-element method produced oscillations in the
vertical flux solution at boundaries where a high contrast in hydraulic properties resulted
in a severe pressure discontinuity during infiltration. However, by applying a Petrov–
Galerkin finite-element technique to the flux equations, an oscillation-free and accurate
solution was attained.

A modified method of characteristics technique was used to approximate solute
transport. A variety of backtracking and interpolation methods were examined. It was
determined that a fourth-order Runge–Kutta method is superior to other algorithms for
backtracking along characteristics in 2-D heterogeneous porous media. It was also
shown that a quadratic–linear interpolation technique outlined by Healy and Russell
Ž .1989 can be extended to two dimensions and is superior to both linear and quadratic
interpolation. When these techniques are employed, the MMOC model proved to be
effective in 2-D, unsaturated domains having a range of Pe and Cr numbers.

Appendix A. Discretized equations

The discretized form of Richards’ equation is given as:

lq1,m lq1,mq1ˆN du E N Ec E Nk k i klq1,mq1 lq1,mˆHH y c q K qD i xž / žž /D t dc E x E x E z

=

lq1,mq1ˆEc N Ni k klq1,m lq1,m lK d x d zsHH y u q uz D/ ž / ž /E z D t D t

lq1,m
N du E Nk klq1,m lq1,mˆy c y K d x d z ,i zž /ž /D t dc E z

ˆwhere D t is the time step size, and in the Galerkin finite-element approximation, ci

designates a trial function:

n

ĉ s N c ,Ýi j j
js1

where N is the linear shape function, which is equivalent to the weighting function.k

The discretized form for the x-component of the Darcy flux is given as:

E Nklq1 lq1,m lq1HH N q d x d zsHH y N K c d x d z ,ˆŽ . Ž .D k x D k x iE x

and the z-component of the Darcy flux is expressed as:

E Nklq1 lq1,m lq1HH N q d x d zsHH y N K c q N K d x d z ,Ž .ˆŽ . Ž .D k z D k z i k zE z
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where:
n

q s N q .ˆ Ýi j j
js1

Ž .The discretized form of Eq. 14 is given as:

lq1 lq1ˆ ˆN E N E C E N E C E Nk k i k i klq1 lq1 lq1 lq1ˆHH u C q D q D qD i x x x zž / ž / ž / žD t E x E x E x E z E z

=

lq1 lq1ˆ ˆE C E N E Ci k ilq1 lq1 lq1ˆD q D y N q C d x d zŽ .z x z z k s i/ ž /E x E z E z

Nk lq1,m lˆsHH u C y N q C d x d z ,Ž .D i k s 0ž /D t

where:
n

ˆ ˜C s N C ,Ýi j j
js1

and q and C are the prescribed surface flux and concentration, respectively.s 0
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