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In modeling shocks in open channel flows, the traditional finite difference schemes
become inefficient and warrant special numerical treatment for smooth computations.
This paper provides a general introduction to the non-oscillatory high-resolution
methodology, coupled with the advantages of using these conservative methods for
open channel applications. Results of the numerical experiments are presented and
compared to standard algorithm results, analytical solutions and experimental results
to demonstrate the robustness of the high-resolution formulation. Finally results of
flows with mixed flow conditions (as in hydraulic jump), indicate that the contribution
of the Boussinesq pressure term is minimal. Besides showing robustness in capturing
shocks in open channel, the results indicate that the effect of the grid spacing on the
shock resolution is small. However, for jumps with high Froude numbers, the present
formulation slightly underestimates the peak depth.q 1998 Elsevier Science Limited.
All rights reserved
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1 INTRODUCTION

A major difficulty in the numerical approximation
of nonlinear hyperbolic conservation laws is the presence
of discontinuities in the solution. Traditional Finite Differ-
ence schemes (i.e., Lax–Wendroff, MacCormack) generate
spurious oscillations in the numerical solution in the vicinity
of the discontinuities. A characteristic feature of all central
Finite Difference (FD) schemes of 2nd-order or greater accu-
racy is that they produce dispersive errors in capturing the
shock profile. Suppressing these oscillations in the vicinity
of the shock requires the addition of artificial smoothing
terms. The FD schemes also have a poor shock-capturing
ability in terms of their resolution. The shock discontinuity
often transverses several grid nodes. In reality, discontinu-
ities in the physical flow field, referred to as shock waves, do
not exhibit oscillations. On the other hand, the correspond-
ing numerical solution with higher-order accurate ($ 2)
schemes exhibits oscillations. These oscillations are purely
of numerical origin. To overcome the above two limitations,
standard methods based on central differencing, together
with artificial viscosity, have often been replaced by high-
resolution shock-capturing schemes.

To enjoy the advantages of higher-order schemes,
coupled with an oscillatory free solution, over the past

decade the focus has shifted toward developing and solving
the flow equations with high-resolution schemes. These
include the Total Variation Diminishing (TVD) schemes
of Harten,12 Flux Corrected Transport (FCT) methods of
Boris and Brook5 and Zalesak,25 switches and cell-averaged
piecewise fits utilized in the Piecewise Parabolic Method
(PPM) of Collela and Woodward7 and the Essentially
Non-oscillatory (ENO) schemes of Harten and Osher.13

The basic idea in all theses high-resolution schemes can
be traced back to the work of Vanleer.23

A distinct difference exists between high-resolution
schemes and higher-order central finite differencing schemes,
which needs explanation. Central difference schemes,
which do not have high-resolution shock-capturing ability,
always result in oscillations (non-monotonous solution).
The addition of artificial viscosity simply suppresses these
oscillations but does not totally eliminate them. In this
sense, the artificial viscosity can be thought of as a ‘filtering
mechanism’, which filters the oscillations after they are
produced by the basic numerical solution. To make the pre-
sent discussion self complete, we briefly touch upon the
results of Berger and Stockstill,4 who had applied a Stream-
line Upwind Petrov–Galerkin (SUPG) formulation for open
channel flows. They had smoothed the oscillations by
changing the magnitude of upwinding parameter (a
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dimensionless number), whose value depends on the degree
of oscillations present in the computational domain. Correlat-
ing their formulation to the standard Finite-difference algo-
rithms, the oscillations are allowed to form and then
smoothed by keeping a track of the shock-front. In contrast
to this role of artificial viscosity (or filtering), when a high-
resolution scheme is used, numerically induced oscillations
arepreventedfrom occurring (a feature that is incorporated
in the basic flux differencing methodology), not just filtered
away.

As the ENO formulations have proven to have an edge
over the other high-resolution formulations cited above in
other applications, its performance in solving the one-
dimensional open channel flow equations is investigated.
The family of ENO schemes constructed in Harten and
Osher13 use both cell averages and point values of the
flow variables in the discretization of the spatial flux
terms. Reconstructing the flow variables at the grid nodes,
before the solution is marched to the next time level is often
complicated. Shu and Osher,22 after detailing this problem,
simplified the implementation of the ENO schemes by using
a Lax–Friedrich (LF) type of discretization for the spatial
flux terms. The formulation presented in the next section is
very similar to their findings. The ENO methods (also
referred to as Non-Oscillatory methods) are an improve-
ment over the TVD schemes, generate oscillatory free
solutions and have high-resolution shock-capturing ability
as a built-in feature. Methods based on the ENO formulation
manifest many properties desirable in numerical
simulations. The conservation property, the avoidance of
numerical oscillations, the adherence to signal propagation
principles, and the achievement of higher order accuracy
makes the ENO schemes a robust tool in solving the open
channel flow problems.

The objective of this work is to illustrate that a high-
resolution shock-capturing scheme is more robust, efficient
and simpler both in formulation and programming for
simulating open channel flows. Emphasis here is laid
more on the numerical results, while rigorous
analytical and theoretical proofs can be found in the refer-
ences cited.

2 GOVERNING EQUATION AND THE
NUMERICAL FORMULATION

The high-resolution ENO method is applied to the equations
that govern open channel flow. The basic governing flow
equations for one-dimensional flows can be written as6

U½ ÿt þ F½ ÿx ¼ S½ ÿ (1)

where the elements of
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in which h is the flow depth,q is the specific discharge,g is
the gravity term,So is the bottom slope of the channel and
Sf is the friction slope, which is computed from Manning’s
equation. Starting from the initial time level,n, where the
values of the flow variables are known, the solution, based
on the explicit finite difference discretization, at the
unknown time level,n þ 1, is obtained as
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In eqn (2),Dt is the time step, which is computed using the
Courant-Friedrich-Lewis (CFL) stability condition,

Dt ¼ Cn
Dx

max(uþ
�����
gh

p
)

Dx is the spatial grid increment,u is the flow velocity,Cn

( # 1) is the Courant number (0.9 in the present work) and
F̂i61=2 are the split fluxes at the cell interfaces.

With reference to Fig. 1, the flux contribution at any grid
node is decomposed to its positive and negative components
whose magnitude is given as

F þ
i ¼ 0:5(Fi þ aUi) (3)

F ¹
i ¼ 0:5(Fi ¹ aUi) (4)

wherea $ max(l1,2) in which l is the two eigen values of
the Jacobian matrix,]F/]U. For the system of equations
represented by eqn (1), the eigen values are
l1,2 ¼ u 6

�����
gh

pÿ �
. Conversely, eqns (3) and (4) imply

that the total flux at any grid node is the summation of its
positive and negative components, or

Fi ¼ F þ
i þ F ¹

i (5)

At the cell interfaces,i 6
1
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, the spatial flux terms are

computed as
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Fig. 1. Sketch of positive and negative flux contribution at any
grid node.
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The functionDF is the flux limiter and is responsible for
obtaining monotonous (oscillation free) solutions.

Comparing eqn (2) to any other finite difference discre-
tization method (Lax–Wendroff, MacCormack) reveals the
basic difference between the central differencing and
the high-resolution schemes. While in the former, the
fluxes,F, at the grid nodes directly contribute to the spatial
discretization, the latter differ by using the split fluxes,F̂.
Evaluation of the split fluxes, eqn (6) takes into account both
the direction of propagation of wave (F 6 , eqns (3)–(5)) and
the restricted flux gradients through the use of limiters (DF 6 ,
eqns (9) and (10)) to ensure an oscillatory free solution,
aspect absent in the central differencing formulation.

In the present work, the limiter was computed using the
minmod function (Hirsch15). This flux limiter can be
expressed as

DF þ
i ¼ minmod F þ

i þ 1 ¹ F þ
i ,F þ

i ¹ F þ
i ¹ 1

ÿ �
(9)

DF ¹
i ¼ minmod F ¹
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i
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(10)

The minmodfunction between two variables is defined as

minmod(a,b) ¼

a if lal , lbl and ab$ 0

b if lbl , lal and ab$ 0

0 if ab , 0

8>><>>: (11)

Eqn (11) indicates that theminmodoperator, and hence the
flux limiter, can take three values. When the two arguments
a and b are of opposite sign, the value returned by the
operator is zero. When the two arguments are of the same
sign, the operator choosesa or b depending on which has a
smaller value. In addition to this limiter, the other limiters
that have found wide application arecmplim (compressive
flux limiter), Vanleer’s limiter and Roe’ssuperbeelimiter.15

3 APPLICATIONS

With the highlights of the numerical scheme outlined,
extensive tests have been performed to study the method’s
performance on a wide variety of one-dimensional open
channel flows, with particular focus on its shock-capturing
ability. To illustrate the method, results are presented for
shocks formed by surges (i.e., sudden opening and closing
of a gate), oscillating wave, dam break on wet bed and

formation of a hydraulic jump. The first three examples
have been selected for benchmarking purposes. As ana-
lytical solutions are available these tests demonstrate the
advantages built into the present technique and illustrate
the ENO’s robustness compared to current state-of-the-art
techniques reported in the literature. Lastly results of a
hydraulic jump for different Froude numbers are compared
to experimental and other computational results. For all the
cases studied here, a Courant number of 0.9 is used in deter-
mining the time step based on the CFL stability condition.

3.1 Simulation of surges

Surges in open channels frequently arise due to either a
sudden opening or closing of a control gate. The hydraulic
events that follow sudden gate movement are important
aspects in the design of channels. The resulting flow,
which is unsteady and rapidly varying, commonly occurs
in sudden release of discharge from a power plant or from a
reservoir. In particular, satisfactory prediction of both the
arrival of wave front and its depth are sought. As analytical
solutions are available for horizontal smooth channels, they
can also be used as a benchmark for comparison to the
shock-capturing ability of a numerical scheme.

3.1.1 Sudden closure of a gate
The hydraulic characteristics arising out of a sudden closure
of downstream gate are presented in this section. For com-
parison purposes, the present numerical scheme is applied to
problems with data reported in the literature.9 The definition
sketch of the problem is shown in Fig. 2. The test problem
consists of a horizontal smooth rectangular channel 5000 m
long with an initial depth and specific discharge of 6 m and
18.75 m2/s, respectively. A surge was created at the down-
stream end by an instantaneous closure of the gate. For the
computations, initial conditions ofh ¼ 6 m and qx ¼

18.75 m2/s were specified throughout the channel domain.
Numerically, specifying a zero discharge at the downstream
end for all time levels creates the surge wave. Physically this
corresponds to the case of an instantaneous closure of the
gate. The other flow variable at the downstream boundary
(i.e., flow depth) was calculated using theCþ characteristic
curve resulting from eqn (1) (Chaudhry6). As the wave front
does not reach the upstream boundary for the time period
simulated, no specific boundary condition was specified
upstream. Thus the flow variables were kept equal to the
initial values. The analytical solution for the above problem
derived by Abbott1 is used as the benchmark.

The gate closure was simulated with a grid spacing of
10 m until the wave reached the upstream boundary. Fig.
3 compares the transient profiles to the analytical solution at
two different times, 141þ Dt s and 354þ Dt s. The plot
indicates that the present ENO formulation can capture the
shock front with no significant dissipation or spurious oscil-
lations. Furthermore, the shock is captured in oneDx, the
best possible outcome, indicating the high resolution of
the shock front. Fig. 4 plots the cumulative variation of

Fig. 2. Definition sketch for sudden closing of a gate.9

A non-oscillatory scheme for open channel flows 135

Adva



the error������������������������������������������∑
gridnodes

hexact¹ hcal

ÿ �2
s

as a function of the number of grid nodes, when the shock
is at mid-section (t < 354 s). This plot shows the close
agreement between the analytical and numerical solutions,
almost independent of grid resolution.

3.1.2 Sudden opening of a gate
A sudden opening of the gate is simulated by a sudden
increase in the discharge at the upstream end of the channel
containing a uniform water depth and no flow. The defini-
tion sketch of the problem is illustrated in Fig. 5. The initial
condition in the 2000 m long frictionless channel is a
uniform depth of 1 m withqx ¼ 0 m2/s. At the upstream
boundary, a discharge of 10 m2/s is specified at timet ¼ 0þ.
The flow depth at the upstream boundary is computed from
theC¹ characteristic. At the downstream end, no boundary
conditions are specified and the flow variables are kept at
their initial values.

The gate opening was simulated with a grid spacing of
Dx¼ 4 m until the wave reached the downstream boundary.
The captured shock front at two time levels (100þ Dt s and
200 þ Dt s) is plotted in Fig. 6 along with the analytical
solution. The predicted values of the celerity and the height
of the wave front are in close agreement with the analytical
solution with no visible oscillations evident near the shock
front.

3.2 Modeling an oscillatory wave

This numerical test is concerned with the modeling of free
oscillation in a horizontal frictionless rectangular channel
that has an open boundary at the inlet and a closed boundary
at the outlet. When it was first introduced into the field of

computational hydraulics, Garcia and Kahawita10 first
performed this test, which is considered to be an extreme
challenge for numerical models,19 using the MacCormack
scheme. Numerically, this test is accomplished by specify-
ing an initial depth (h0 ¼ 10 m) and zero velocity (qx ¼

0 m2/s) throughout the channel. Then a disturbance is
created at the upstream boundary by suddenly increasing
the depth (ht ¼ 10.1 m at t ¼ 0þ), which is then held
constant for all times. At the downstream end, a zero
discharge is specified for all time, replicating a closed
boundary. The other flow variables at the upstream and
downstream boundary are computed from theC¹ and Cþ

characteristic curves, respectively.
These specified boundary conditions generate a traveling

wave whose wave height is constantly changingh0 between
6 0.2 as it reflects at the downstream boundary. The ability
of the ENO scheme to capture this oscillatory wave nature is

Fig. 3. Transient profiles for sudden closing of a gate (— computed,A analytical solution1).

Fig. 4. Error distribution for various grid sizes.
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presented in Fig. 7, which shows the time evolution of depth
at the downstream boundary. A numerical scheme is con-
sidered satisfactory if it can reproduce the celerity and the
time period accurately. The plot indicates that the computed
depth, which is a step function of time with period equal to
2000 s, is in close agreement to the analytical solution. No
significant amounts of dissipation or oscillations are
observed, even for larger time periods, indicating
the reliability of the present algorithm. To further show
the robustness of the algorithm, the transient discharge (q)
at the upstream boundary is plotted in Fig. 8.

3.3 Dam-break problem

Studying the movement of flood waves resulting from a
sudden collapse of a dam has drawn significant attention
of many numerical investigators. Depending on the flow
conditions downstream, both dry-bed and wet-bed flow con-
ditions have been studied.3,8,18Until now, all the numerical
models based on differencing techniques have used the
central schemes, which includes both explicit and implicit
formulations. To facilitate a comparison of the latest results
reported in the literature, the present model has been run for
the test conditions of Rahman and Chaudhry.21

As pointed out earlier, standard finite difference schemes
have a poor shock-capturing ability. While the first-order
accurate schemes smear the shock front, the second- and
higher-order schemes produce dispersive errors in the

vicinity of the discontinuity. A satisfactory simulation
would involve smoothing these oscillations, which in general
means the introduction of some type of artificial viscosity.

In addition to the above limitation of the central schemes,
there are other limitations regarding the poor resolution in
capturing the shock front (i.e., the shock front often spreads
over several grid nodes). Numerical strategies are needed to
obtain a high-resolution shock front. To this end, Rahman
and Chaudhry20,21 employed the use of a dynamic grid
adaptation technique. Using the explicit MacCormack
scheme, they solved the flow equations in conjunction
with an extra grid equation in an uncoupled manner. The
grid spacing between the nodes near the shock front is
decreased in an interactive manner, so as to reduce the pos-
sible smearing. The underlying assumption being that a
large uniform grid spacing results in the smearing of the
shock, and small uniform grid spacing is computationally
uneconomical. The spurious oscillations produced by the
MacCormack scheme were smoothed using the procedure
outlined in Jamesonet al.16

The present ENO formulation contains high-resolution
shock-capturing ability as a characteristic feature. No addi-
tional numerical mechanism needs to be coupled, to the
basic procedure for achieving monotonous results. Specifi-
cally, the application of any additional smoothing can be
avoided.

For comparison to published results, the test problem
illustrated in Fig. 9 is simulated. With the initial depths of
h0 ¼ 10 m upstream andh0 ¼ 6 m downstream of the dam
specified, the dam is removed at timet ¼ 0þ. The transient
flow profiles for t ¼ 60 s after the release are plotted in
Fig. 10. The corresponding plot as obtained by Rahman
and Chaudhry21 is shown in Fig. 11, which includes results
from several methods, including their adaptive grid techni-
que. A comparison of Figs 10 and 11 indicates that even
though a uniform grid spacing is used in this work, the
results are in good agreement with the analytical solution

Fig. 6. Transient profiles for sudden opening of a gate (— computed,A analytical solution).

Fig. 5. Definition sketch for sudden opening of a gate.
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and are similar to the other numerical results. In addition,
for comparison to Rahman and Chaudhry, our grid spacing
(Dx ¼ 25 m) is equal to their initial uniform spacing. The
point we want to stress is the simplicity of the present
formulation. Without introducing artificial viscosity or sol-
ving extra grid equations, we are able to obtain reasonable
results with state-of-the-art methods. Additional compari-
sons with the MacCormack scheme coupled with grid
adaptation and artificial viscosity, are presented in the
next section.

3.4 Simulation of hydraulic jump

The capacity of the model to simulate mixed flow conditions
can be best tested in simulating a hydraulic jump, which is a
challenging problem because of its complex nature. The
hydraulic jump is formed whenever flow transitions from
supercritical to subcritical. Given its wide importance in

open channel hydraulics, a proper simulation involves a
satisfactory prediction of the location and height of the jump.

The present numerical model has been run to represent
the experimental data of Gharangik and Chaudhry.11 As
reported, the test flume is 14 m long and 0.46 m wide. By
suitably controlling the depth at the downstream end, the
jump was allowed to form in the first 3 m of the glassed
flume. The Manning’s roughness coefficient varied between
0.008 to 0.011, depending on the depth. The experiments
were conducted for Froude numbers varying from 2.3 to 7.0.
To conserve space and without loss of generality, the results
for two Froude numbers are presented. The flow variables
for these Froude numbers are summarized in Table 1. Those
interested in additional experimental information are
referred to the original reference.11

Though various techniques have been proposed to
improve the shock-capturing ability of the standard methods
and tested for different flow cases,14,17 their capacity to

Fig. 8. Transient discharge of oscillatory wave at upstream boundary (— computed,A analytical solution).

Fig. 7. Profile of oscillatory wave at downstream boundary (— computed,A analytical solution).
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simulate hydraulic jump have not been investigated.
Regardless of historical precedence, the hydraulic jump
has significant practical importance in hydraulics, not to
mention its a challenging problem. On the numerical
front, St. Venant equations have been widely used for simu-
lating the phenomenon, with both Finite Difference and
Finite Element techniques. The underlying assumption in
the derivation of the St. Venant equations is the hydrostatic
pressure distribution. As pointed out by Witham24 and
Basco,2 this assumption may not be valid for rapidly varying
flows, a characteristic of the hydraulic jump. To correct this
inconsistency, they corrected the pressure term by adding
the Boussinesq term, which accounts for the sharp stream-
line curvature. Gharangik and Chaudhry,11 Rahman and
Chaudhry20 and Basco2 have numerically solved the result-
ing flow equations, often referred to as the one-dimensional
Boussinesq equations, by using a FD discretization for the
spatial flux terms.

3.4.1 Initial and boundary conditions
In the simulation of the hydraulic jump, initially the flow is
assumed to be supercritical throughout the channel. Starting
with the specified initial conditions at the upstream end
(Table 1), the flow parameters at the other nodes are
obtained by integrating the gradually varied flow equation.6

As the flow is supercritical at the upstream end, it can be
shown using the method of characteristics that the boundary

conditions for all flow variables must be specified at the
upstream boundary. Hence, the flow depth and discharge
at upstream boundary are held constant for the entire simu-
lation, equal to the initial values. At the downstream end, a
constant flow depth is specified only, again based on the
method of characteristics. This specified depth is held
constant for all time periods. The other flow variable (dis-
charge) is computed from theCþ (positive) characteristic of
eqn (1) (Chaudhry6).

Since the focus is the steady-state solution, a false
transient approach was used. In this approach, the steady-
state solution is obtained by using time as the iteration
parameter. Starting from the initial conditions (t ¼ 0), the
solution progresses in time until reaching a steady-state
convergence. Coupled with the boundary conditions, the
numerical approach outlined above can be used for comput-
ing the unknowns at all the interior grid nodes.

3.4.2 Results and discussion
It was shown for several traditional test problems involving
shocks that the ENO scheme presented here gives reason-
able results when compared to analytical solutions and cur-
rent state-of-the-art numerical procedures. In obtaining
these results, this approach overcomes the traditional pro-
blems of either diffusing the wave front (1st order methods)
or causing spurious oscillations at the shock front (2nd order
methods) without using artificial viscosity or grid adapta-
tion. After the method’s robustness was shown for simple
problems, the more difficult hydraulic jump is investigated.

The ENO method is applied to the two different Froude
Number cases. Figs 12 and 13 show the stationary hydraulic
jump profiles for Froude numbers of 4.23 and 6.65, respec-
tively, along with the experimental results. The method
captures the jump without oscillation at the shock front,
independent of the Froude number. It appears the method
slightly disperses the jump. However, Figs 14 and 15 show

Fig. 10. Transient flow profile for dam break (— computed, - - - analytical solution).

Fig. 9. Definition sketch for dam break problem on a wet bed.
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that the crispness of the front is slightly improved by redu-
cing the grid spacing from 0.28 m to 0.14 m. While the
resolution of the shock front in the central schemes drama-
tically improves as the grid spacing is reduced, Figs 14 and
15 indicate that doubling the grid spacing has little effect on
the shock resolution of this ENO method. The shock front
continues to form primarily between the two adjacent grid
nodes. Though the results are not included, the present
trends are also evident for simulated flows with other
Froude numbers (F r ¼ 2.3, 5.74 and 7.00).

The derivation of eqn (1) involves the assumption of a
hydrostatic pressure distribution. For flows with low Froude
numbers (weak hydraulic jumps), this assumption is valid,
and the solution obtained by using any shock-capturing
numerical techniques is satisfactory. However, for flows
with high Froude numbers this assumption may not be
valid, and hence the Boussinesq equation, which takes

into account the non-hydrostatic pressure distribution, is
more appropriate. As we make the case for using eqn (1)
in the present investigation of hydraulic jumps, others have
studied the error associated with the hydrostatic assumption.
Both Rahman and Chaudhry20 and Gharangik and
Chaudhry11 conducted an order-of-magnitude analysis of
the Boussinesq pressure term. They concluded that in
stationary jumps, its contribution is very small near the
jump and negligible at regions away from it. Based on
their observations, the MacCormack scheme was used in
their computations. However, in order to improve the shock
resolving capacity of the MacCormack scheme while smooth-
ing the solution, Rahman and Chaudhry20 implemented a grid
adaptation technique. Their analysis for higher Froude num-
bers indicates that as long as the scheme has a high-resolution
shock-capturing ability, the equations with or without the
Boussinesq term yield similar results.

Fig. 12. Hydraulic jump steady state profiles forF r ¼ 4.23 (— computed,W experimental11).

Fig. 11. Transient flow profiles for dam break as reported in Rahman and Chaudhry.21
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High-resolution shock-capturing ability is an inherent
feature of the ENO schemes. Thus no extra grid equation
needs to be solved for this purpose. Fig. 13 shows that the
inclusion of the Boussinesq terms in the governing equa-
tions is not needed. The results have also been compared
with those of Rahman and Chaudhry,20 who have included
the higher order pressure terms. A comparison with the
experimental values indicates that while the location of the
shock front is predicted accurately, the maximum depth is
slightly underestimated. A possible theoretical explanation for
this is that the schemes based on the ENO formulation have a
reduced order of accuracy at the extreme points. As pointed out
by Shu and Osher,22this may result in the reduction of accuracy
in small regions on either side of the extreme point.

The evolution of the shock at different time periods is
illustrated in Figs 16 and 17 for the two cases (F r ¼ 4.23,

F r ¼ 6.65). The plot indicates that the flow profile travels to
a distance of 1.5 m from the upstream boundary (t < 50 s)
before being pushed back to its stationary location by the
supercritical flow. At no stage of the evolution are oscilla-
tions evident. A grid spacing of 0.28 m was used for
generating the above plots. Finally, a check on the mass
continuity at steady state for the two flow conditions is
summarized in Table 2. The small residual error indicates
that the present formulation conserves mass in its numerical
discretization.

4 CONCLUSIONS

The basic flow equations of one-dimensional open
channel flow have been solved using a high-resolution

Fig. 14. Effect of grid spacing on shock reduction,F r ¼ 4.23 (— Dx ¼ 0.28, - - -Dx ¼ 0.14,W experimental11).

Fig. 13. Hydraulic jump steady state profile forF r ¼ 6.65 (K computed,20 — computed,W experimental11).
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shock-capturing scheme. The method’s performance was
tested on various open channel flow problems. The results
indicate that the method is comparable to current state-of-
the-art methods that use standard techniques coupled with
numerical smoothing techniques. The present scheme has an
inherent high-resolution shock-capturing ability so that no
special numerical smoothing is needed. Furthermore, as
opposed to the Central Finite Difference schemes, the effect
of grid spacing on the shock resolution is minimal.
Extensive tests have been carried out to justify the robust-
ness of the method. The results obtained while simulating
various hydraulic jumps support other’s conclusions that the
contribution of Boussinesq terms (non-hydrostatic pressure)
near the shock is minimum and satisfactory results can be

Fig. 15. Effect of grid spacing on shock reduction,F r ¼ 6.65 (— Dx ¼ 0.28, - - -Dx ¼ 0.14,W experimental11).

Fig. 16. Shock profile forF r ¼ 4.23: – · –t ¼ 10.06 s, · · ·t ¼
25.06 s, - - -t ¼ 50.07 s, —t ¼ 100.02 s (steady-state).

Table 1. Test conditions for hydraulic jump11

Test no. Upstream
depth
(m)

Upstream
velocity

(m/s)

Downstream
depth
(m)

Froude
number

1 0.043 2.737 0.222 4.23
2 0.024 3.255 0.195 6.65

Table 2. Mass residual error for various Froude numbers

Froude number Mass residual error(3 10¹4)

4.23 5.06
6.65 2.54

Fig. 17. Shock profile forF r ¼ 6.65: – · –t ¼ 10.06 s, · · ·t ¼
25.05 s, - - -t ¼ 50.03 s, —t ¼ 75.02 s (steady-state).
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obtained by solving the St. Venant equations with a robust
shock-capturing scheme. A test of the mass residual error at
steady state shows that the present formulation is also
conservative. Thus it is concluded that the present model,
and more generally the high-resolution schemes, can be
reliable and robust tools in predicting the location of
shock fronts in open channels without added diffusion
or spurious oscillations.
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