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Quorum sensing, or the control of gene expression in response
to cell density, is used by both Gram-negative and Gram-
positive bacteria to regulate a variety of physiological functions.
In all cases, quorum sensing involves the production and
detection of extracellular signalling molecules called
autoinducers. While universal signalling themes exist, variations
in the design of the extracellular signals, the signal detection
apparatuses, and the biochemical mechanisms of signal relay
have allowed quorum sensing systems to be exquisitely
adapted for their varied uses. Recent studies show that
quorum sensing modulates both intra- and inter-species
cell–cell communication, and it plays a major role in enabling
bacteria to architect complex community structures. 
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Introduction
Research in bacterial quorum sensing began with studies of
the density-dependent expression of bioluminescence in
the marine symbiotic bacterium Vibrio fischeri and its free-
living relative Vibrio harveyi [1,2]. Both species produce and
respond to secreted acylated-homoserine lactone (HSL) sig-
nalling molecules called autoinducers that accumulate in
the external environment as the cells grow [3,4]. When the
concentration of autoinducer exceeds a threshold level, a
signal transduction cascade is initiated that leads to the pro-
duction of luciferase. The crucial findings of Engebrecht
and Silverman [5–7] laid the foundation for all subsequent
studies of quorum sensing in Gram-negative bacteria. They
identified, cloned, and analysed the genes encoding the
luciferase enzyme complex and the genes responsible for its
density-dependent regulation from V. fischeri. They showed
that light production in V. fischeri is controlled by two regula-
tory proteins named LuxI and LuxR. LuxI is the
autoinducer synthase that is responsible for the synthesis of
the acyl-HSL autoinducer. LuxR is a transcriptional activa-
tor protein that, when bound to autoinducer, promotes
transcription of the luciferase structural operon luxCDABE
[5–7]. These observations first explained how gene expres-
sion could be coupled to cell-population density.

This review focuses on recent advances in how bacteria
regulate gene expression in response to cell density.

Specifically, this review highlights major differences and
similarities in the mechanisms employed for quorum sens-
ing in Gram-negative and Gram-positive bacteria. Recent
findings that demonstrate how sophisticated signalling
networks are employed in these cell–cell communication
systems are discussed. 

Gram-negative bacterial communication: the
LuxI/LuxR language
The simple signal-response mechanism described by
Engebrecht and Silverman has now been shown to be
employed by over 30 species of Gram-negative bacteria for
the control of different cell-density-dependent functions
[8,9]. These systems all have in common the use of an
HSL autoinducer whose synthesis is dependent on a luxI
homologue, as well as a luxR homologue encoding a tran-
scriptional activator protein that is responsible for
detection of the cognate HSL and induction of expression
of the appropriate output (Figure 1). 

Recently, it has become clear that additional complexity
exists in many of these LuxI/LuxR systems. For example,
in the opportunistic pathogen Pseudomonas aeruginosa, two
LuxI/R pairs exist (LasI/R, RhlI/R) and function in tandem
to control the expression of virulence factors [10–15]. In
Ralstonia solanacearum, a phytopathogenic bacterium, quo-
rum sensing controls the production of virulence factors
including plant cell-wall-degrading enzymes. Expression of
the R. solanacearum LuxI/LuxR-like autoinduction system
(SolI/SolR) is regulated by a LysR-like transcriptional reg-
ulator called PhcA that responds to 3-hydroxy-palmitic acid
methyl ester. The SolI/SolR system is also controlled by
RpoS, the stationary phase sigma factor [16,17,18•]. In
Agrobacterium tumefaciens, the plant pathogen responsible
for crown gall tumours, quorum-sensing outputs are respon-
sive to both bacterial and host signals. In this system, plant
opine hormones interact with either the bacterial protein
OccR or AccR to regulate the expression of the luxR homo-
logue traR [19,20•,21]. Many other examples exist in which
the backbone of the quorum sensing mechanism is a
LuxI/LuxR signal-response circuit, upon which further lev-
els of regulation have been layered [22–24]. Note that
density-dependent gene regulation is important for the
control of sporulation in the Gram-negative bacterium
Myxococcus xanthus. This system is quite different from HSL
quorum sensing, and beyond the scope of this review. It is
addressed in detail elsewhere [25,26]. 

Gram-positive bacteria have their
own language
There exist a number of processes in Gram-positive bacte-
ria that are responsive to cell population density. Among
these are competence for DNA uptake in Bacillus subtilis
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and Streptococcus pneumoniae, virulence in Staphylococcus
aureus, conjugation in Enterococcus faecalis and microcin pro-
duction in Lactobacillus sake and Carnobacterium piscicola.
Gram-positive bacteria do not employ HSLs as signals, nor
do they use a LuxI/LuxR signalling circuit. Instead, Gram-
positive bacteria secrete processed peptide signalling
molecules usually via a dedicated ABC (ATP-binding cas-
sette) exporter protein. The peptide signals are recognised
by cognate two-component sensor kinase proteins that
interact with cytoplasmic response regulator proteins. The
mechanism of signal transduction is a phosphorelay cascade
(Figure 2) [27,28]. 

Similar to Gram-negative LuxI/LuxR signalling, Gram-posi-
tive bacteria employ a common signalling substructure, in this
case a two-component circuit, with variations in the type and
complexity of additional regulatory factors. For example, in
B. subtilis, two processed peptide signals enable the bacteria
to choose between competence for DNA uptake and sporu-
lation. The secretion machinery necessary for export of these
two peptides has not been identified. One of the extracellu-
lar peptides, ComX, activates the ComP/ComA
two-component system to allow the transition to the trans-
formable state. The second peptide signal, CSF (competence
and sporulation factor), is imported by an ABC transporter. A
low internal concentration of CSF promotes competence
development, whereas a high internal concentration of CSF
inhibits competence and induces sporulation [29,30•]. In
E. faecalis, several peptide signals are involved in inducing
conjugation between plasmid-containing donor cells and plas-
mid-less recipient cells. Each peptide is encoded by a
different plasmid and specifically promotes the acquisition of
that particular plasmid [31–33]. Finally, in staphylococci the

synthesis of an untranslated RNA molecule called RNA III is
under the control of peptide quorum sensing. The RNA III
molecule is the effector of the system and is responsible for
both positive and negative regulation of a variety of down-
stream targets including genes encoding protein A, coagulase,
enterotoxins and hemolysins [28,34–36]. 

Hybrid languages: the quorum sensing
systems of V. harveyi
The free-living marine luminous bacterium V. harveyi pos-
sesses two autoinducer-response systems that function in
parallel to control the density-dependent expression of the
luciferase structural operon luxCDABE. This complex quo-
rum sensing circuit has features found in both Gram-negative
and Gram-positive bacteria. Like other Gram-negative quo-
rum sensing bacteria, V. harveyi produces and responds to an
acylated-HSL autoinducer. The second V. harveyi autoinduc-
er is of unknown structure, but preliminary evidence
indicates that it is not a HSL [37,38]. Recognition and
response to the two autoinducers occurs via a two-component
signal transduction network reminiscent of quorum sensing
systems in Gram-positive bacteria. The two V. harveyi autoin-
ducers, AI-1 and AI-2, are recognised by cognate sensor
kinase proteins named LuxN and LuxQ, respectively.
Additionally, a periplasmic-binding protein called LuxP is
hypothesised to interact with LuxQ to recognise AI-2 [37,38].
Sensory information from both systems is transduced by
phosphorylation and dephosphorylation to a shared signal
integrator protein called LuxU, which subsequently conveys
the signal to the response regulator protein LuxO (Figure 3)
[39,40,41••,42•]. Interestingly, no LuxI/LuxR homologues
function in the V. harveyi quorum sensing system. Production
of the V. harveyi HSL autoinducer AI-1 is dependent on the

Figure 1

LuxI/LuxR quorum sensing. In most Gram-
negative quorum sensing bacteria, LuxI-like
autoinducer synthases (square) are
responsible for production of specific HSL
autoinducers (triangles). This class of
autoinducer freely diffuses across the
bacterial membrane. Upon reaching a critical
concentration, the autoinducer is bound by its
cognate LuxR-like protein (circle), and
together the LuxR–HSL autoinducer complex
activates transcription of the target gene(s). 
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luxL and luxM genes [37], and AI-2 synthesis is dependent on
the luxS gene [43••]. These genes share no homology to the
luxI family of autoinducer synthases. 

Bacterial Esperanto: the LuxS family
of autoinducers
Highly conserved luxS homologues have now been identi-
fied in both Gram-negative and Gram-positive bacterial
species including Escherichia coli, Salmonella typhimurium,
Salmonella typhi, Salmonella paratyphi, Haemophilus influenzae,
Helicobacter pylori, B. subtilis, Borrelia burgdorferi, Neisseria
meningitidis, Neisseria gonorrhoeae, Yersinia pestis, Campylobacter
jejuni, Vibrio cholerae, Deinococcus radiodurans, Mycobacterium
tuberculosis, E. faecalis, S. pneumoniae, Streptococcus pyogenes,
Streptococcus mutans, Staphylococcus aureus, Clostridium perfrin-
gens, Clostridium difficile, Shewanella putrefaciens, Klebsiella
pneumoniae, and Pasteurella multocida [43••]. Most of the
species of bacteria possessing a luxS gene have been shown
to produce AI-2 activity, and luxS mutants have been con-
structed in V. harveyi, E. coli, S. typhimurium, V. cholerae and
H. pylori. In each case, mutation of luxS eliminated AI-2 pro-
duction ([43••]; BL Bassler, unpublished data). Currently, it
is not known what functions are controlled by this class of
signalling molecule in any bacterium other than V. harveyi,
although there are a number of pieces of circumstantial evi-
dence indicating that pathogenicity is regulated by AI-2 in
E. coli, S. typhimurium, and V. cholerae ([43••,44••,45];
BL Bassler, unpublished data). 

V. harveyi induces lux expression in response to the endoge-
nous production of AI-1 and AI-2, but it also responds to
AI-2 produced by many of the other bacteria that possess a
luxS homologue ([45]; BL Bassler, unpublished data).

These bacteria include both Gram-negative and Gram-
positive species. This result suggests that communication
via an AI-2 signal response system could be a common
mechanism that bacteria employ for inter-species interac-
tion in natural environments [40,43••,46]. The capacity to
respond to both intra- and inter-species signals could allow
V. harveyi to know not only its own cell density, but also its
proportion of the total bacteria in a mixed population.
Furthermore, the ability to distinguish self from others
could allow V. harveyi to differentially control gene expres-
sion dependent upon whether it exists in pure culture or in
consortium. Other species of bacteria that produce an AI-2
activity could have similar capabilities. 

Multilingual bacteria: cell–cell communication
in nature
As noted below, there are several fascinating systems cur-
rently under study in which the use of intra- and
inter-species quorum sensing would be predicted to
greatly enhance a particular bacterium’s chances of sur-
vival, or would allow bacteria to build communities in
which specialisation/division of labour would grant the
entire community some of the properties and benefits that
would otherwise be exclusive to multicellular organisms.

Quorum sensing regulates virulence in many human and
plant pathogens. Presumably, in an attempt to avoid alert-
ing the host’s immune system to their presence, quorum
sensing bacteria delay virulence factor production until cell
number is high enough that secretion of virulence factors
will result in a productive infection [8,10,16,21,28]. For
example, in S. aureus, the Agr quorum sensing system reg-
ulates the production of virulence factors that enhance
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Figure 2

Peptide quorum sensing. In most Gram-
positive quorum sensing bacteria, dedicated
ABC transporters process and export peptide
autoinducers (pheromone). Extracellular
pheromones are recognised by membrane
bound two-component sensor kinase proteins.
The sensors autophosphorylate on a
conserved histidine residue (H), and
subsequently transfer the phosphoryl group to
cognate response regulators. Response
regulators are phosphorylated on conserved
aspartate residues (D). Following
phosphorylation, response regulator proteins
activate/repress transcription of specific
target gene(s). The ABC transporter is
depicted as a protein complex of circles and
ovals in the bacterial membrane. The
precursor peptide and the processed peptide
autoinducer are represented as long and short
chains of circles, respectively. In the figure,
the length of the peptide chains is not meant
to signify any particular number of amino acid
residues. The P in the circle denotes that
phosphorylation is the mechanism of signal
transduction from the sensor kinase to the
response regulator. 
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attachment to host cells, defensive factors to avoid elimina-
tion by the host, and factors that promote bacterial
internalisation and host cell apoptosis [28,47]. Furthermore,
the autoinducers produced by different S. aureus strains
vary. These autoinducers specifically induce Agr-mediated
quorum sensing in the strains that produce them and inhibit
Agr-mediated quorum sensing in S. aureus strains that pro-
duce a different autoinducer [48,49••].

Quorum sensing via HSL autoinducer signalling has been
shown to play a critical role in the proper development of
bacterial biofilms [50•,51]. In biofilms, bacteria are organ-
ised into elaborate structures that can be composed of
single or multiple species. Biofilms possess aqueous chan-
nels that promote the flow of nutrients and prevent
desiccation. Bacteria localised to different regions of the
structure display specialised patterns of gene expression
and differentiation. Furthermore, biofilms are highly resis-
tant to antibiotics [52,53]. These features of biofilms
indicate that the bacteria in them have increased their
chances of survival and proliferation by virtue of commu-
nal living (for further details on biofilms see the review by
Pratt and Kolter, this issue, pp 598–603). 

In another example of inter-species communication, quo-
rum sensing regulates the production of the antibiotic
phenazine in the plant pathogen Pseudomonas aureofaciens.
Antibiotic production is controlled not only by the P. aureo-
faciens HSL autoinducer, but also by signals secreted by a
number of other plant-associated bacterial species [54•].
These observations suggest that P. aureofaciens can detect
situations in which intense competition for nutrients exists.

Apparently, P. aureofaciens responds to this circumstance by
producing phenazine to eliminate competitor bacteria. 

In bacterial–eukaryotic interactions in which quorum sens-
ing regulates processes deleterious to the host, one
mechanism of host defence could be the production of
antagonists that interfere with autoinducer reception. One
striking example of this type of host response occurs in the
seaweed Delisea pulchra. This organism produces a number
of halogenated furanones and enones that interfere with
HSL-mediated processes such as swarming in Serratia liq-
uefaciens [55–57]. The structures of these anti-colonisation
factors strongly resemble HSLs. In a recent study, the
D. pulchra furanones have been shown to directly bind to
the HSL-binding site in LuxR and to displace the cognate
HSL autoinducer. Inhibition of quorum sensing was pro-
portional to the ability of a given furanone to compete with
the HSL autoinducer for binding [58••].

Conclusions
Considerable progress has been made this past year in our
understanding of the variety of functions controlled by quo-
rum sensing and the different mechanisms that bacteria use
for counting cell number and modulating gene expression in
response to changes in cell-population density. It is now clear
that quorum sensing regulates bacterial communication in
test tubes and in nature. It is also clear that intra- and inter-
species cell–cell communication occurs and is regulated by
quorum sensing systems. Further, there is mounting data
demonstrating that autoinducer signals elicit specific respons-
es from eukaryotic hosts. Emphasis should be placed on
developing rigorous analyses of how bacteria communicate
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Figure 3

Hybrid quorum sensing in V. harveyi. The two
quorum sensing circuits of V. harveyi are
shown. AI-1 (triangles) is a HSL autoinducer,
and the structure of AI-2 (circles) has not
been determined. Synthesis of AI-1 and AI-2
is dependent on LuxLM and LuxS,
respectively. Following the build-up of a
critical external concentration of the
autoinducers, signalling occurs via a series of
phosphorylation/dephosphorylation reactions.
The AI-1 and AI-2 detectors, LuxN and LuxQ,
respectively, contain both a sensor kinase
domain with a conserved histidine (H1) and
an attached response regulator domain with a
conserved aspartate (D1). Signals from both
sensors are channelled to the shared
integrator protein LuxU, which is
phosphorylated on a histidine residue (H2).
Subsequently, the signal is transduced to a
conserved aspartate residue (D2) on the
response regulator protein LuxO.
LuxO–phosphate controls the expression of
the luciferase structural operon luxCDABE.
The phosphoryl flow in the system is H1 to D1
to H2 to D2. The LuxN and LuxQ sensors also
possess phosphatase activity, which is
responsible for dephosphorylation and
inactivation of LuxO. The P in the circle

denotes that phosphorelay is the mechanism
of signal transduction throughout the entire
circuit. A periplasmic-binding protein called

LuxP is hypothesised to interact with LuxQ to
recognise AI-2 (not shown). 
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within and between species, and on how eukaryotic hosts talk
back. Several model quorum-sensing systems currently offer
the possibility for such studies. Therefore, it is no longer suf-
ficient to identify the next LuxI/LuxR system. The key now
for understanding these complex and fascinating bacterial
languages is to decipher the impact of the words.
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