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Abstract-Based on the microscale temperature, the effective thermal conductivity in the principal direction 
of an anisotropic porous medium is evaluated. A correlation of the effective thermal conductivity then is 
employed to predict the volume-averaged temperature of a two-dimensional nonhomogeneous anisotropic 
porous medium. Through the example, the present model is found to possess an excellent performance 
even when the principal direction of the anisotropic medium is not parallel to the physical coordinates. 
The results also reveal that using the classic mixing rule could lead to a significant error when the thermal 
conductivity ratio of the solid and fluid is large. The present numerical procedure is believed to he able to 
determine the effective thermal conductivity for most porous media as long as their microstructure is 

regular and known. 0 1997 Elsevier Science Ltd. 

INTRODUCTION 

Numerous systems in industry and in nature can be 
modelled as anisotropic porous media. Fibrous 
materials, nuclear reactor cores, stratified rocks, tube 
bundles, mushy zone of a solidifying alloy are some 
of the examples. In the previous investigations dealing 
with anisotropic porous media [l-3], however, the 
anisotropy of the thermal conductivity is commonly 
neglected due to the use of mixing rule. This could 
give rise to a significant error for the temperature and 
heat transfer as remarked by Ni and Beckermann [4]. 

In their study, McKibbin and Tyvand [5] modelled 
a stratified system as a homogeneous anisotropic 
porous medium. The system of coordinates (x, y) was 
defined such that k, = 0, while the effective thermal 
conductivities parallel (k,,) and normal (k,,,) to the 
layers were simply estimated by the theory of parallel 
and series thermal resistance. Numerical results of 
thermal convection and critical Rayleigh number were 
obtained. However, their correctness and accuracy 
were not verified, 

The purpose of the present study is to develop a 
modelling for the effective thermal conductivity of a 
nonhomogeneous anisotropic porous medium. The 
modelling will be employed to predict the volume- 
averaged temperature of a two-dimensional non- 
homogeneous anisotropic porous medium. The per- 
formances of the present model are then examined by 
comparing the predicted temperature with the avail- 
able ‘exact solution’. 

A MODEL FOR EFFECTIVE THERMAL 
CONDUCTIVITY 

Consider a periodically wedge-shaped solid in a 
two-dimensional enclosure filled with a fluid as shown 

in Fig. 1 (a). Dimension of the wedges is illustrated in 
Fig. 1 (b). The width of each wedge p is assumed very 
small as compared to that of the enclosure (i.e. p << w). 
Let the uniform temperatures To and T, be main- 
tained on the top and the bottom surfaces of the 
enclosure, while both vertical surfaces are insulated. 
The thermal conductivities of the solid and fluid are, 
respectively, k, and k(. 

Due to symmetric&y, only a half wedge 
(0 < x < p/2) is needed to solve for the temperature 
distribution. The heat conduction equation thus is 
expressible as 

ae(o, 4/x = 0, Wl, 4/x = 0 

ecr, 0) = 0, qr, 2) = 1 (1) 

in a domain as shown in Fig. l(c), where the dimen- 
sionless variables are defined by 

0 = (T- T,)/(To - T,), 5 = 2x/p, v = y/a 

u = a/p, p = b/p, y = c/a, I = L/a 

K = 1 for fluid, K = k,/k, = d for solid. (2) 

It appears that the system of equations (1) deals with 
a thermal conductivity jump from 0 to unity across a 
solid-fluid interface of irregular shape. Such a prob- 
lem can be easily solved by using the weighting func- 
tion scheme [6, 71 along with the SIS solver [8]. The 
numerical procedure should be iterated until the tem- 
perature converges within a prescribed tolerance. 
After the solution converges, the average heat flux is 
evaluated from 
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NOMENCLATURE 

; 
height of the wedges [ml, Fig. 1 (b) B dimensionless quantity, b/p 
width of the wedge base [ml, Fig. 1 (b) y dimensionless quantity, c/a 

c thickness of solid region [ml, Ax, Ay grid size 
Fig. l(b) & fraction of fluid 

f a function defined in equation (9) e dimensionless temperature, 
k thermal conductivity w m-’ K-l] (T- T,)I(T,- T,) 
k eff effective thermal conductivity e average temperature, equation (6) 

w m-’ K -‘I K dimensionless thermal conductivity, 
L height of the sample [ml, Fig. 1 (b) klk/ 
W n parameters for correlation (9) 1 dimensionless quantity, L/a 
P period of the wedges [m] (5, ~7) dimensionless coordinates 
Q total heat flux in a half wedge thermal conductivity ratio, k,/k( 

0,<x~p/2[w1 ; inclination angle of the wedges, 
9 dimensionless heat flux defined in Fig. 5. 

equation (3) 
T temperature distribution [K] Subscript 
T,,T,, constant temperatures [K], Fig. l(a) 1,2 principal axes of the wedges, Fig. 5 
W width of the sample [ml, Fig. l(a) i,.i quantity at the grid point (xi, y,) 
(x, y) physical coordinates [ml. L fluid 

S solid 
Greek symbols xx* xy, yx, yy index of tensor for anisotropic 

a aspect ratio, a/p thermal conductivity. 

2Qa s 1 as 
ic--dc (3) 

K,~ for the anisotropic porous medium depicted in Fig. 
‘=pk,(T,,-Tm) = - ,, all 1 (a), one evaluates the average temperature 8 from 

s 

I 
where Q is the total heat flux in the half wedge &I) = @(5> rl) d5 (6) 
(0 < x <p/2). In the present computation, the 0 
numerical result of q was found independent of q. 
This is evidence for the correctness of the numerical such that the effective thermal conductivity can be 

procedure. determined from the volume-averaged Fourier law 

Figure 2 reveals the numerical result of isotherms 
for the case (a, /I, y, 1, a) = (3,0.8,0.25,1.5,100). For 
convenience, the fraction of fluid E(V) is provided on 
the right-hand ordinate. Note that the isotherm shown 
in Fig. 2 is the temperature result on a microscale for 
the heat transfer problem described in Fig. l(a). In 
many practical applications, however, there is no need 
to examine the temperature distribution on micro- 
scale. Under such a situation, the two-phase region in 
Fig. l(a) can be simply treated as a porous medium 
with an effective thermal conductivity kef. 

Conventionally, the classic mixing rule [9] : 

keE = Ek/ + (1 - E)k, (4) 

de 

q = -“““drl. 

Results of the average temperature e(q) and the effec- 
tive thermal conductivity K,% are illustrated in Fig. 3. 
The effective thermal conductivity from the mixing 
rule (5) is also plotted in Fig. 3 for comparison. 

It is undoubted that based on the IC,~ value from 
equation (7) the same result of 0 as defined in equation 
(6) can be regenerated by solving the heat conduction 
equation 

= 0, 0(O) = 0, e(n) = 1 (8) 

or without recourse to the system of equations (1). Such 

Kern = kJk, = &+a(1 -E) = u+(l -cJ)& (5) a particular IC,~ was found always less than the con- 
ventional linear function (mixing rule) as observable 

is adopted to estimate the effective thermal con- from Fig. 3. Nevertheless, it equals to k, in the pure 
ductivity of a porous medium. Unfortunately, the solid region (E = 0), while becomes k, in the pure fluid 
mixing rule could give rise to a considerable error region (E = 1) as does the mixing rule. 
especially when Q >> 1. To properly define the value of Figure 4(a) shows the effect of the aspect ratio a 
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Fig. 1. (a) Microstructure; (b) dimension ; and (c) computational domain of a nonhomogeneous porous 
medium. 

on the function K&) while the parameter fi and the 
conductivity ratio u are maintained at constant. Simi- 
larly, Figs. 4(b) and (c) depict, respectively, the effects 
of CI and fl on the function K&E), while other par- 
ameters are constant. It is observable from Fig. 4 that 
the mixing rule provides a good approximation for 
IC,~ when the aspect ratio of the wedges CI is sufhciently 
large (CI > 6) and/or there is no significant con- 
ductivity jump (a z 1). However, the mixing rule 
could give rise to a considerable error at large thermal 
conductivity jump (a B 1) specially at small M and 
large /3. 

It is interesting to note from Figs. 3 and 4 that the 
function K&E) seems independent of both 1 and y, and 
receives little influence also when a parabolic profile is 
used instead of the wedge-shaped solid-fluid interface. 

For convenience, the effective thermal conductivity 
K,~(E, 0, c(, /I) is correlated by 

IC,~~ = 1+ (0 - I)(1 - E).f(E, Q, % 8) 

f(E,o,%p) =(1+mf-’ 

m = (2/c(+3/a2)/I(1 +6/3)Qna)’ 

x (2.522 x 10m3 -8.957 x 10m4(ln0) 

+9.714x 10-s(lna)2) 

n =(20-29/x+ 15/a2)(40+3fl 

- 13/12)(0.0095+0.001666(lna)) (9) 

for the range of 0 < E < 1, i < e < 1000, 012 1, 
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Fig. 2. Isotherms with increment A0 = 0.01 (for 0 d 0 < 0.10) and A0 = 0.10 (for 0.10 6 B < 1.00) for 
the problem defined in Fig. 1, 

0.2 < /3 < 1. The maximum error of the correlation NONHOMOGENEOUS ANISOTROPY OF A 
(9) is less than 5%. Note that the special case POROUS MEDIUM 
f(c, 0, a, j?) = 1 corresponds to the classic mixing rule. 

Implementation of the effective thermal con- 
ductivity formulated previously will be demonstrated 
in this section through a two-dimensional heat con- 
duction problem dealing with a nonhomogeneous 
anisotropic porous medium. Figure 5 illustrates a 
wedged-shaped solid in a square enclosure (0 f x < 1, 
0 < y < 1) filled with a fluid. The conductivity ratio 
is Q = 100. The geometric parameters of the wedges 
are 1 < c( < 9 and fi = 1 with an inclination of 
4 = 45”. Width of the wedges is assumed very small 
(JJ << 1). The same boundary conditions as in Fig. 
l(a) are assumed to impose on the surfaces of the 
enclosure. 

To determine the ‘microscale’ temperature, a two- 
- 0.6 & dimensional heat conduction equation was solved on a 

45”-inclined Cartesian grid system covering the entire 
enclosure. The grid size employed in the numerical 
procedure (Ax = Ay = 0.0141421) was found 
adequate for the present problem. Based on the result 
of the ‘microscale’ temperature 13, a locally averaged 
temperature was computed from 

(10) 

0.0 0.5 1.0 
where the notation (ij) denotes the location of a grid 

e ..* 
point in the two-dimensional Cartesian grid system. 
For convenience, this locally averaged temperature 8,,j 

Fig. 3. The averaged temperature 8(q) and effective thermal will be referred to as the ‘exact solution’ in this section. 
conductivity K.&) for Fig. 1. As in the previous section, the problem shown in 
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e=o 
Fig. 5. Test problem dealing with a nonhomogeneous aniso- 

tropic porous medium. 

Fig. 5 involves a pure solid, a nonhomogeneous aniso- 
tropic porous medium and a pure fluid. For an aniso- 
tropic porous medium, the heat conduction equation 
can be written as [lo] 

and 

Kx, = 61 + %)/2+ (KI --x2) cos(26)/2 

KYY = (KI + K,)/2 - (K, - K2) COS(24)/2 

GY = KY” = (K, - K2) sin(24)/2 (1 lb) 

where K, and K* are the effective thermal conductivity 
on the principal axes of the wedges (see Fig. 5). Obvi- 
ously, equations (11) would reduce to 

;(K;)+;(K$)=O (12) 

for isotropic media (K~ = K* = K), and thus apply also 
to both pure solid and pure fluid regions. 

It should be noted here that the conventional mixing 
rule (5) deals with only the porosity E of the porous 
medium. The anisotropy of the porous matrix, 
however, is ignored (K, = ~~~ = 0). This could lead 
to a significant error. To clarify this point, let 

K, = K2 = cT+(l-fJ)& (13) 

and solve equations (11) along with the associated 
boundary conditions 

afqo,yyax = 0, aqi,yyax = 0 

0(x,0) = 0, 6(x, 1) = 1 (14) 
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Fig. 6. Significant error due to the use of mixing rule. 

on a convectional Cartesian grid system of 26 x 26 
grid points. The result of isotherms as well as the 
‘exact solution’ is plotted in Fig. 6 for comparison. 
As expected, the isotherms of the ‘exact solution’ are 
essentially parallel to the principal axis of the wedges 
in the two-phase region. The predicted temperature 
from the conventional mixing rule, however, turns 
clockwise by about 30”. This evidences that ignoring 
the anisotropy of an anisotropic porous matrix could 
lead to a significant error. 

In the present study, the correlation (9) proposed 
in the previous section is employed to estimate the 
effective thermal conductivity K, in the direction par- 
allel to the axes of the wedges, while the theory of 
series thermal resistance for composite wall is used to 
model the transverse conductivity K* (see Fig. 5) i.e. 

l--E -I ( > 0 
lc2 = ;+, 

= 1+(a-l)&’ (15) 

The result of isotherms is presented in Fig. 7 that 
shows a satisfactory agreement between the present 
result and the ‘exact solution.’ Finally, let K, be simply 
modelled with the theory of parallel thermal resistance 

K, =&+6(1-&E)= 0+(1-C)& (16) 

instead of the correlation (9), while K> is estimated 
from equation (15). The resulting isotherms are shown 
and compared with the ‘exact solution’ in Fig. 8. 

It should be noted here that the parallel resistance 
theory (16) is identical to the mixing rule (5). Hence, 
equation (16) is not expected to give good approxi- 
mation for K, unless c( > 6 and o z 1 as does the 
mixing rule (see Fig. 4). This might account for the 
considerable error when equations (16) and (15) are 
employed to approximate the principal thermal con- 
ductivities (K,, K~) as observable from Fig. 8, especially 
in the pure fluid region. 
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Fig. 7. Performance of the present model based on equations 
(9) and (15). 
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Fig. 8. Performance of the present model based on equatik 
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As a final note, it is mentioned that instead of 
directly evaluating the effective thermal conductivity, 
considerable efforts have been undertaken to find the 
upper and lower bounds of the effective thermal con- 
ductivity for random heterogeneous media [ 11, 121. 
However, the microstructure of a porous medium 
could have a strong influence on its effective thermal 
conductivity, especially when the thermal conductivity 
ratio is large (0 >> 1). As a result, the bound width 
for the effective thermal conductivity of a random 
heterogeneous medium could be very large [ 121. For- 
tunately, the present numerical procedure provides a 
simple and efficient methodology to determine the 
effective thermal conductivity for most porous media 
as long as their microstructure is regular and known. 
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CONCLUSION 

A microscale temperature dealing with a non- 
homogeneous anisotropic porous medium is com- 
puted in the present investigation. Based on such a 
microscale temperature, the effective thermal con- 
ductivity in the principal direction of the anisotropic 
medium is evaluated. A correlation with good accu- 
racy is then obtained for the effective thermal con- 
ductivity. Finally, the present model as well as the 
conventional mixing rule is applied on a two-dimen- 
sional heat conduction problem dealing with a non- 
homogeneous anisotropic medium. Through the 
example, the conventional mixing rule is found to 
produce a local average temperature at a completely 
unacceptable level, while the present model shows an 
excellent performance even when the principal direc- 
tion is not parallel to the physical coordinates. For 
most porous media, the present numerical procedure 
is able to compute the effective thermal conductivity 
as long as the microstructure is regular and known. 
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