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Abstract

The parametrized time-discrete dynamics of two recurrently coupled chaotic neurons is investigated. Basic dynamical
features of this system are demonstrated for symmetric couplings of identical neurons. Periodic as well as chaotic orbits
constrained to a manifoldM of synchronized states are observed. Parameter domains for locally stable synchronization
manifoldsM are determined by numerical simulations. In addition to the synchronized dynamics there often co-exist periodic,
quasiperiodic and even chaotic attractors representing different kinds of non-synchronous coherent dynamics. Simulation
results for selected sets of parameters are presented, and synchronization conditions for systems with non-identical neurons
are derived. Also these more general systems inherit the above-mentioned dynamical properties. ©1999 Elsevier Science B.V.
All rights reserved.

MSC:92B20; 34C35; 58F13; 58F14

Keywords:Neural networks; Neurodynamics; Synchronized chaos

1. Introduction

In many recent articles the feasibility of synchronizing chaotic systems has been investigated experimentally as
well as theoretically [1–11]. Interest in the construction of chaotic synchronized dynamical systems has aroused
mainly because of its potential for application in secure communication [12–16]. Most of the work therefore
investigates the coupling of time-continuous systems like Lorenz or Rössler systems, or like Chua’s circuit. But
time-discrete systems are also considered [17]. Synchronization in coupled systems can be achieved in different
ways: by one-way couplings as introduced in [7], or by recurrent couplings, where each of the systems affects the
other [3]. In this paper we discuss the discrete-time dynamics of two one-dimensional chaotic systems coupled
recurrently. The corresponding maps are considered to represent a simple model of formal neurons [18].

We will use the term ‘synchronization’ in the sense ofcomplete synchronizationof chaotic systems, i.e. we
consider systems, the states of which can coincide, while the dynamics in time remains chaotic [19]. We may
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also discern between global and local synchronization. Global synchronization means, that for almost all initial
conditions orbits of the systems will synchronize. By local synchronization we refer to locally stable synchronized
states, i.e. small perturbations will not desynchronize the systems. We will also make use of the concept of a
synchronization manifold [3] to which a synchronized dynamics is constrained.

Besides the discussion of synchronized chaos in the context of technical applications, selective synchronization
of neural activity in biological brains was often suggested to be a fundamental temporal mechanism for binding
spatially distributed features into coherent objects (cf. among many others [20–22]). Motivated by these biological
findings synchronization of chaos has been studied in computer simulations for networks with spiking neurons,
and in large networks of Hindmarsh–Rose neurons [23–25]. With respect to discrete-time dynamics conditions
for synchronized chaos were discussed also for large networks consisting of coupled pools of analog neurons
[26].

On this background we were interested in the discrete dynamics of two coupled chaotic neuromodules that exhibit
complete synchronization. Simulation results for synchronization and other coherent states in coupled chaotic
modules of two coupled chaotic standard analog neurons were presented in [27]. But here we show that already
for a system composed of two interacting chaotic neurons – i.e. standard neurons with a damping term [18] – we
observe global as well as local synchronization of chaotic dynamics. Interesting parameters are the stationary inputs
to neurons as well as the strength of the recurrent couplings. The corresponding dynamics is analyzed in Section
3 for the case of symmetrically coupled identical neurons. Numerical simulations reveal that for large parameter
domains various non-synchronous periodic, quasiperiodic or even chaotic attractors may co-exist with synchronized
dynamics. Orbits in the synchronization manifold may be locally stable or unstable. The instability of synchronized
chaotic orbits is signaled by two positive Lyapunov exponents indicating hyperchaos [28,29]. Hyperchaos as a
signal for the transition from synchronized to non-synchronized states in the chaotic regime was also observed in
[17].

Most of these dynamical phenomena are also found for the more general case of recurrently coupled non-identical
chaotic neurons. Conditions on the coupling strength are derived for the existence of synchronized dynamics in this
case, and in Section 4 corresponding simulation results are shortly discussed.

2. Two coupled chaotic neurons

The simplest example of two coupled neuromodules is the case where each module consists only of one single
neuron. The parametrized discrete activity dynamics of a single chaotic neuron is given by the one-dimensional map
(1), which is bimodal for a large class of parameter values, and thus has parameter domains where chaotic attractors
exist [18]. Therefore, synchronized chaotic dynamics for specific recurrent couplings of two ‘chaotic’ neurons, A
and B say, has to be expected. This is the situation we analyze in the following.

The discrete activity dynamics of a single chaotic neuron A is given by

a(t + 1) = θA + γ Aa(t) + wAσ(a(t)), a ∈ R, 0 ≤ γ < 1, (1)

and for unit B with activityb correspondingly. Hereγ A denotes the damping term,wA the self-coupling of neuron
A; θA := (θA

0 + IA) describes the sum of a fixed bias termθA
0 of A and its stationary external inputIA. The output

oA = σ(a) is given by the sigmoidal transfer function

σ(a) := 1

1 + e−a
. (2)

By ρA := (γ A , θA , wA) we denote the set of parameters for the single unit dynamics.
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If we couple the neurons by connectionswAB andwBA, respectively, and denote the set of parameters for the
coupled system byρ := (ρA , ρB, wAB, wBA) the corresponding dynamicsFρ : R2 → R

2 reads

a(t + 1) = θA + γ Aa(t) + wAσ(a(t)) + wABσ(b(t)),

b(t + 1) = θB + γ Bb(t) + wBσ(b(t)) + wBAσ(a(t)). (3)

In the following we are interested especially in the process ofcomplete synchronizationof neurons, which in this
case means that there exists a subsetD ⊂ R2n such that(a0, b0) ∈ D implies

lim
t→∞|a(t; a0) − b(t; b0)| = 0,

where(a(t; a0), b(t; b0)) denotes the orbit underFρ through the initial condition(a0, b0). The synchronization is
calledglobal if D ≡ R2, andlocal if D ⊂ R2 is a proper subset. Thus, asynchronized state sof the coupled system
is defined bys := a = b. Correspondingly, a statês satisfyingŝ = a = −b is calledanti-synchronized. Here, the
synchronization manifoldM := {(s, s) ∈ R2|s = a = b} of synchronized states corresponds to a one-dimensional
hyperplaneM ∼= R ⊂ R2. We introduce coordinates parallel and orthogonal to the synchronization manifoldM

[3] as follows:

ξ := 1√
2
(a + b), η := 1√

2
(a − b). (4)

But settinga − b = 0 we can immediately read from Eq.(3) the following

Lemma 1. Let the parameter setsρA , ρB of the unitsA andB satisfy

γ = γ A = γ B, θ = θA = θB, (wA − wBA) = (wB − wAB). (5)

Then every orbit of̃Fρ through a synchronized states ∈ M is constrained toM for all times.

Especially, Lemma 1 applies to the case of identical neurons with symmetric couplings, i.e.

γ = γ A = γ B, θ = θA = θB, w = wA = wB, wcoup = wBA = wAB . (6)

We will consider the special parameter setting (6) first.

3. Coupling two identical neurons

Let ρ = (γ, θ, w, wcoup) denote a parameter set ((6)) of two coupled identical neurons. We will fix the damping
termγ = 0.6 and the self-connectionw = −16.0 so that the chaotic domain for the single neuron can be reached
[18]. Changing now to(ξ, η)-coordinates given by (4) and setting

w+ := (w + wcoup), w− := (w − wcoup), (7)

we obtain the dynamics̃Fρ of two coupled identical neurons as

ξ(t + 1) = γ ξ(t) +
√

2θ + w+
√

2
G+(ξ(t), η(t)),

η(t + 1) = γ η(t) + w−
√

2
G−(ξ(t), η(t)), (8)
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where the functionsG+, G− : R2 → R are defined by

G+(ξ, η) := σ

(
1√
2
(ξ + η)

)
+ σ

(
1√
2
(ξ − η)

)
,

G−(ξ, η) := σ

(
1√
2
(ξ + η)

)
− σ

(
1√
2
(ξ − η)

)
. (9)

According to Lemma 1 every orbit of̃Fρ through a synchronized state(ξ, 0) ∈ M is constrained toM for all
times. Withs := 1/

√
2ξ , the corresponding synchronized one-dimensional dynamicsFs

ρ in M is described by the
equation

s(t + 1) = θ + γ s(t) + w+σ(s(t)). (10)

Thus, the synchronized dynamicsF s
ρ comprises the whole spectrum of dynamical behavior of a single isolated

chaotic neuron [18] with self-connectionw+; i.e. it may have fixed point attractors as well as periodic or chaotic
ones. Although the persistence of synchronized dynamics for identical neurons is guaranteed by condition (6), it is
not at all clear that the synchronization manifoldM is itself asymptotically stable with respect to the dynamicsF̃ρ .
Thus, anF̃ρ-invariant setA ⊂ M may be an attractor for the synchronized dynamicsFs

ρ but not for the dynamics

F̃ρ of the coupled system. The simulation results in Section 3.1 will give a first idea about the dynamical complexity
of this ‘trivial’ neural system.

But first let us introduce the point-reflection operatorSSSη acting only on theη-coordinates of the(ξ, η)-phase
space, i.e.

SSSη(ξ, η) = (ξ, −η).

The functionsG+ andG− defined in (9) have the property

G+SSSη(ξ, η) = G+(ξ, η), G−SSSη(ξ, η) = −G−(ξ, η).

Thus, the dynamics̃Fρ : R2 → R
2 given by Eq. (8) is equivariant under the action ofSSSη; i.e.

F̃ρ(ξ, η) = (SSSη)−1 F̃ρSSS
η(ξ, η).

As a consequence of this equivariance property we obtain the following:

Lemma 2. Let F̃ρ denote the dynamics(8) of two coupled identical neurons, and letF
p
ρ denote itsp-fold iterate.

For a point(ξ, η) ∈ R2 we then have

(ξ, η) = F̃ p
ρ (ξ, η) ⇔ (ξ, −η) = F̃ p

ρ (ξ, −η).

The fact that with(ξ, η) also (ξ, −η) must be ap-periodic point does of coursenot include that both points
belong to the samep-periodic orbit. An example can be found forρ = (0.6, 3.75, −16.0, 2.0), where two period-7
attractors are interwoven. As a trivial consequence of Lemma 2 we have

Corollary 1. LetF̃ρ denote the dynamics of two coupled identical neurons. If (ξ, η) and(ξ, −η) belong to the same
period-p orbit of F̃ρ thenp = 2q, and(ξ, −η) = F̃

q
ρ (ξ, η).

For the description of attractors observed for the dynamics of coupled chaotic neurons we will use the following
definition: a quasiperiodic or chaotic attractor is calledp-cyclicif it hasp connected components which are permuted
cyclically by the mapF̃ρ . Every component of ap-cyclic attractor is an attractor of̃Fp

ρ .
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To discuss the qualitative aspects of the dynamicsF̃ρ for the identical coupled chaotic neurons we make use of
the following Lyapunov exponents. Exponents(λ1, λ2) are derived from the linearization ofFρ (3); i.e. from

DFρ(a(t), b(t)) =
(

γ + wσ ′(a(t)) wcoupσ ′(b(t))

wcoupσ ′(a(t)) γ + wσ ′(b(t))

)
. (11)

For the synchronized dynamics thesynchronization exponentλs and thetransversal exponentλ⊥ are derived from
the linearization ofF̃ρ (8) around synchronized statess(t) = 1√

2
ξ(t). With

DF̃ρ(s) =
(

εs(s) 0
0 ε⊥(s)

)
:=

(
γ + w+σ ′(s) 0

0 γ + w−σ ′(s)

)
(12)

we have

λs = lim
n→∞

1

n

n∑
t=1

ln |εs(s(t))|, λ⊥ = lim
n→∞

1

n

n∑
t=1

ln |ε⊥(s(t))|. (13)

3.1. Results from numerical simulations

To get an idea about what kind of synchronized dynamics does exist for coupled neurons and for what parameter
values it is locally stable or unstable we discuss results presented in Figs. 1 and 2. In Fig. 1 the Lyapunov exponents
λs andλ⊥ are displayed in dependence of the coupling strengthwcoup for γ = 0.6, w = −16, andθ = 4.0. The
corresponding bifurcation diagram for the synchronized dynamicsF s

ρ given by Eq. (10) is also shown. We observe
a standard period-doubling route to chaos, and for a large domain of coupling strengths, i.e.−5.74 < wcoup < 1.89,
there exist chaotic orbits in the synchronization manifoldM.

Furthermore, forwcoup < 0 there is a domain where both Lyapunov exponentsλs, λ⊥ are positive. This hyper-
chaotic domain signals of course the instability of synchronized states. Reading from the data underlying Fig. 1
hyperchaos appears in the interval−3.51 < wcoup < 0; i.e. for couplings from this interval there exist no locally
stable synchronized chaotic orbits. In fact, as is shown in Fig. 4 forwcoup = −3, the attractors of the coupled system
are not constrained to the synchronization manifoldM. But there is also a coupling domain−5.74 < wcoup < −3.51
where we have a (locally) stable synchronized chaotic dynamics; i.e. whereλs > 0 andλ⊥ < 0. In general, these
chaotic attractors constrained toM co-exist with other periodic or quasiperiodic attractors arranged symmetrically
aroundM. An example of this dynamic configuration is presented in Fig. 3 where a synchronized chaotic attractor
co-exists with a period-2 and a period-4 attractor. Outside the interval−22.6 < wcoup < −5.74 we find only
globally stable synchronized periodic and chaotic attractors. Forwcoup < −22.6 the synchronization manifoldM
becomes unstable again and the dynamic situation is characterized by two or more (chaotic) attractors again arrange
symmetrically toM.

Also for positive couplings hyperchaos is observed. This is the case, for instance, in the interval 0< wcoup < 0.90.
But here the transversal exponentλ⊥ is larger then the synchronization exponentλs . Again, there is no locally stable
synchronized dynamics for these values ofwcoup. Typically, there exists a local hyperchaotic attractor traversing
the unstable synchronization manifoldM; Fig. 7 shows a characteristic situation. Again, these chaotic attractors
often co-exist with periodic, quasiperiodic or other chaotic attractors. For 0.9 < wcoup we observe intervals, i.e.
1.03 < wcoup < 1.89 and 2.66 < wcoup < 4.29, whereλ⊥ > 0 althoughλs < 0. This indicates the instability
of the synchronization manifoldM and of the periodic orbits constrained to it. Fig. 8 displays the situation shortly
after the synchronized period-4 orbit became locally stable. For 4.29 < wcoup < 6.24 a locally stable synchronized
period-2 attractor co-exists with an anti-synchronized one. The latter survives in the interval 6.24 < wcoup < 13.37
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Fig. 1. Bifurcation diagram for the synchronized dynamicss(t) with respect to parameterwcoup; other parameters areγ = 0.6, w = −16, and
θ = 4. Below synchronization (λs ) and transversal (λ⊥) Lyapunov exponents are plotted for the samewcoup-interval. A positiveλs indicates a
synchronized chaotic attractor, a positiveλ⊥ indicates an unstable synchronization manifoldM.

as a global attractor (unstableM!) ‘jumping’ to a synchronized global fixed point attractor after crossing a hysteresis
interval 12.91 < wcoup < 13.37.

Fig. 2 displays the bifurcation diagram for the synchronized dynamicss(t) with respect to the parameterθ ; fixed
parameters areγ = 0.6, w = −16, andwcoup = −3.0. The synchronized dynamics again follows period doubling
bifurcations to chaos. For the sameθ -range the Lyapunov exponentsλs andλ⊥ are displayed in Fig. 2. The data
underlying this figure reveal that synchronized chaotic orbits (λs > 0) exist in the interval 2.33 < θ < 5.8. Included
in this interval is a hyperchaoticθ -domain where in addition toλs > 0 also the transversal exponentλ⊥ is positive;
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Fig. 2. Bifurcation diagram for the synchronized dynamicss(t) with respect to parameterθ ; other parameters areγ = 0.6, w = −16, and
wcoup = −3.0. Below synchronization (λs ) and transversal (λ⊥) Lyapunov exponents are plotted for the sameθ -interval. A positiveλs indicates
a synchronized chaotic attractor, a positiveλ⊥ indicates an unstable synchronization manifoldM.

this interval is given by 2.74 < θ < 5.05. Forθ outside of this interval the synchronization manifoldM together
with the periodic orbits constrained toM will be (locally) stable.

From the Figs. 1 and 2 we can deduce that for inhibitory couplingswcoup < 0 and positive synchronization
exponentsλs > 0 we haveλ⊥ < λs . From the defining equations (13) this can be seen as follows: Withw <

wcoup < 0 for the eigenvaluesεs andε⊥ we have

γ − |w| + |wcoup|
4

< εs(s) < γ, γ − |w| − |wcoup|
4

< ε⊥(s) < γ, s ∈ R.
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Fig. 3. A period-2 (white crosses) and a period-4 attractor (black dots) co-existing with a chaotic attractor in the stable synchro-
nization manifoldM together with their basins of attraction (white: chaotic, black: period-2, and gray: period-4 attractor). Parameters:
γ = 0.6, θ = 4.8, w = −16.0, wcoup = −4.0.

Becauseσ ′(0) = 0.25, the left-hand side of the inequalities correspond toεs(0) andε⊥(0). Therefore, statess(t) on
a synchronized chaotic orbit (λs > 0) must visit the vicinity of the origin very often; i.e. for these states|εs(s)| > 1,
or, deduced from the above inequalities,εs(s) < −1. But we haveε⊥(s) = εs(s) + 2|wcoup|σ ′(s) < γ < 1 so
that |ε⊥(s)| < |εs(s)| for statess satisfyingσ ′(s) < (1 + γ )/|w+|. But we then have: ifλs > 0 thenλ⊥ < λs . A
corresponding argument holds for excitatory couplingswcoup > 0: if λ⊥ > 0 thenλs < λ⊥.

Finally we want to point out that outside the synchronization manifoldM we can observe bifurcation sequences
to chaos which do not follow the usual period-doubling route. Reading in the direction of decreasingθ -values, here
chaos appears after a transition from period-4 attractors to quasiperiodic attractors to chaotic ones to hyperchaotic
ones. This type of sequence can be observed, for instance, for parametersγ = 0.6, w = −16, wcoup = −2.0 in the
interval 4.2 < θ < 4.7. The whole scenario resembles the one calledchaotic contact bifurcation(CCB) in [30].
SinceM is unstable in this region, these 4-cyclic attractors are symmetric toM.

With respect to the dynamics̃Fρ given by Eq. (3), in the following we will describe the dynamical situation
displayed in Figs. 3–8. They correspond to the six parameter sets listed in Table 1.

Corresponding to Lemma 2, forρ1 we observe one period-2 and one period-4 attractor arranged symmetrically
around the synchronization manifoldM. They co-exist with a chaotic attractor (λs = 0.35, λ⊥ = −0.07) constrained
to M. Hereλ⊥ < 0 indicates that the synchronization manifoldM is stable (compare Fig. 3 and Table 1).

Forρ2 we observe one period-2, one period-6 and one 4-cyclic quasiperiodic attractor lying outside the synchro-
nization manifoldM. But there is also a chaotic orbitC constrained to the synchronization manifoldM (compare Fig.
4 and Table 1).M is unstable in this case as can be read from Lyapunov exponentsλs = 0.36 andλ⊥ = 0.05 which
are both positive (compare Table 1). Nevertheless, the orbitC serves as a chaotic attractor for the corresponding
synchronized dynamicsF s

ρ constrained toM.
The synchronization manifoldM is unstable also for the parameter setρ3 (compare Fig. 5 and Table 1). It contains

again a chaotic orbitC (λs = 0.32, λ⊥ = 0.008), which is of course unstable with respectFρ , but serves as a chaotic
attractor for the corresponding synchronized dynamicsF s

ρ . OutsideM we find a period-4 attractor and a second
(2-cyclic) chaotic attractor both arranged symmetrically aroundM.
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Fig. 4. A period-2 (white crosses), a period-6 (black dots) and 4-cyclic quasiperiodic attractor co-existing with a chaotic orbit in the
unstable manifoldM together with their basins of attraction (white: period-6, black: period-2, and gray: quasiperiodic). Parameters:
γ = 0.6; θ = 4.0; w = −16.0; wcoup = −3.0.

Fig. 5. A period-4 (black dots) and a 2-cyclic chaotic attractor co-existing with a chaotic orbit in the unstable manifoldM together with their
basins of attraction (white: chaotic, and gray: period-4 attractor. Parameters:γ = 0.6; θ = 4.47; w = −16.0; wcoup = −3.0.

There exists a global hyperchaotic attractor for parameter setρ4 traversing the unstable synchronization manifold
M. Lyapunov exponents areλs = 0.149, λ⊥ = 0.039 (compare Fig. 6 and Table 1).

Parameter setρ5 (compare Fig. 7 and Table 1) demonstrates the instability of the synchronization manifoldM for
positive couplingswcoup > 0. There is a hyperchaotic attractor traversingM(λs = 0.13, λ⊥ = 0.047). A second
co-existing 2-cyclic chaotic attractor is found outside ofM.

Finally, also for positive couplingswcoup > 0, Fig. 7 shows a synchronized period-4 attractor in the stable
manifoldM together with a co-existing 2-cyclic quasiperiodic and a 4-cyclic chaotic attractor (compare Table 1).
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Fig. 6. A global hyperchaotic attractor traversing the unstable synchronization manifoldM. Parameters:γ = 0.6; θ = 4.0; w = −16.0;
wcoup = −2.0.

Fig. 7. Two co-existing 2-cyclic chaotic attractors (black and gray). The hyperchaotic attractor (black) traverses the unstable synchronization
manifoldM. Parameters:γ = 0.6; θ = 3.675; w = −16.0; wcoup = 2.0.

4. Coupling two non-identical neurons

According to Lemma 1 there exists also a synchronized dynamics for coupled non-identical neurons satisfying
condition (5). For instance, keepingwA andwBA fixed and adjustingwB andwAB such that they satisfy condition (5)
will give again periodic and chaotic dynamics constrained to the synchronization manifoldM as can be demonstrated
by numerical simulations. As observed for the case of identical neurons with symmetric couplings, there are
parameter domains for whichM is locally (or even globally) stable, others where the synchronized dynamics is



246 F. Pasemann / Physica D 128 (1999) 236–249

Fig. 8. A 2-cyclic quasiperiodic and a 4-cyclic chaotic attractor co-existing with a period-4 orbit in the locally stable synchronization manifold
M for parameters:γ = 0.6; θ = 4.0; w = −16.0; wcoup = 2.0.

Table 1
Lyapunov exponents for attractors co-existing in a system of two coupled chaotic neurons with parameter setsρ1–ρ6; compare Figs. 3–8

Attractor Synchronization? Initial condition (a,b) λ1 λ2 λs λ⊥

ρ1 : γ = 0.6, θ = 4.8, w = −16.0, wcoup = −4.0
Period-2 no (−3.7, 0.1) −0.116 −0.116 – –
Period-4 no (−2.804, 0.243) −0.083 −0.402 – –
Chaotic yes (−1.0, −1.0) – – 0.353 −0.074
ρ2 : γ = 0.6, θ = 4.0, w = −16.0, wcoup = −3.0
Period-2 no (−3.808, −0.076) −0.036 −0.036 – –
Period-6 no (−2.804, 0.243) −0.297 −0.297 – –
Quasiperiodic no (−1.263, 1.129) 0.0000 −0.089 – –
Hyperchaotic yes (1.0,1.0) – – 0.363 0.056
ρ3 : γ = 0.6, θ = 4.47, w = −16.0, wcoup = −3.0
Period-4 no (−9.0, −2.75) −0.17 −0.17 – –
Chaotic no (−5.95, −0.25) 0.108 −0.088 – –
Hyperchaotic yes (−1.0, −1.0) – – 0.322 0.008
ρ4 : γ = 0.6, θ = 4.0, w = −16.0, wcoup = −2.0
Hyperchaotic no (−0.1, 0.1) 0.149 0.039 – –
ρ5 : γ = 0.6, θ = 3.675, w = −16.0, wcoup = 2.0
Chaotic no (−2.044, −6.526) 0.119 −0.005 – –
Hyperchaotic no (0.577, −8.691) 0.13 0.047 – –
ρ6 : γ = 0.6, θ = 4.0, w = −16.0, wcoup = 2.0
Period-4 yes (1.537,1.537) – – −1.426 −0.065
Quasi no (0.281, −9.365) 0.000 −0.655 – –
Hyperchaotic no (−6.9, −3.3) 0.084 0.002 – –

unstable. Cyclic attractors not constrained toM now are of course no longer symmetric toM. Fig. 9 displays
a bifurcation sequence for the parameterp with wB = p, wAB = p − wA + wBA and fixed parametersγ =
0.6, wA = −16, wBA = −4, andθ = 3. The whole period-doubling sequence to chaos is contained inM, and the
corresponding synchronized dynamics is apparently globally stable over the wholep-interval. For other values of
θ this is in general not the case.
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Fig. 9. Bifurcation diagram for two coupled non-identical neurons satisfying condition (5). Varied with parameterp are wB = p;
wAB = p − wA + wBA. Fixed parameters areγ = 0.6; wA = −16; wBA = −4 andθ = 3.

So far synchronized units had identical bias terms (stationary inputs)θ . But, using the symmetryσ(−x) =
(1 − σ(x)) of the sigmoid (2), it is easy to prove that (anti-) synchronization of chaotic dynamics can also appear
if neurons have different bias termsθ . To give a topologically equivalent dynamics, with respect to coordinate
transformations(a, b) → (ã, b̃) = (−a, b), (a, −b), (−a, −b) bias terms of the units and coupling weights have to
be changed in a way described below. Let the parameters of the coupled system of neurons – satisfyingγ = γ A = γ B

– be given in matrix form as

ρ =
(

θA wA wAB

θB wB wBA

)
.

We then have the following

Lemma 3. Consider two chaotic neurons withγ = γ A = γ B. The dynamicsFρ of the coupled neurons(3) with
respect to the parameter set

ρ =
(

θ wA wAB

θ wB wBA

)
.

is topologically equivalent to the dynamicsFρ̃i
with respect to the parameter sets

ρ̃1 =
(

θ̃A = −θ − wA w̃A = wA w̃AB = −wAB

θ̃B = θ + wBA w̃B = wB w̃BA = −wBA

)
,

ρ̃2 =
(

θ̃A = θ + wAB w̃A = wA w̃AB = −wAB

θ̃B = −θ − wB w̃B = wB w̃BA = −wBA

)
,

ρ̃3 =
(

θ̃A = −θ − (wA + wAB) w̃A = wA w̃AB = wAB

θ̃B = −θ − (wB + wBA) w̃B = wB w̃BA = wBA

)
.

Now, suppose parametersρ satisfy condition Eq. (5) of Lemma 1, so that the dynamicsFρ allows for a synchro-
nized dynamics constrained toM, i.e.w− := wA − wBA = wB − wAB andw+ := wA + wAB = wB + wBA. It
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is obvious, that the synchronous dynamicsFρ̃3 with respect to parameters̃ρ3 corresponds again to identical neuron
input/bias terms, and it is obtained by the reflections̃ = −s of the coordinate inM. On the other hand, with
respect to parameter setsρ̃1 and ρ̃2 the synchronized dynamics in the new(ã, b̃)-coordinates corresponds to an
anti-synchronized dynamics in the old(a, b) coordinates. We observe that this kind of dynamics is obtained by
reversing the coupling strength and changing the bias terms (stationary inputs) correspondingly. For these two cases
the bias terms are now no longer identical.

5. Conclusions

In this work, it has been shown that in a system of two coupled formal neurons synchronized periodic and chaotic
orbits can exist. Depending on parameters, synchronized orbits can be globally stable, locally stable, or unstable.
For locally stable synchronized dynamics there do often co-exist periodic, quasiperiodic or even chaotic attractors
which correspond to a non-synchronous (but coherent) dynamics. Thus, whether a system ends up in a synchronous
behavior asymptotically or not depends crucially on the initial conditions, i.e. on the internal state of the system, and
not only on the external inputs. In this sense the reaction to external signals therefore depends also on the history of
the system. This may be related to findings in more biological systems, where there is only a partial synchronization
of neurons, even though they share common connections and a common driving signal [23].

Finally, we want to point out that the special kind of formal neuron used here may serve as a basic element in larger
arrays of coupled neurons. Like in coupled map lattices [31,32] this type of neural network will show a variety of
different dynamical features like partial synchronization, clustering effects and traveling waves of activity. Analysis
of these phenomena may help to understand comparable features of biological brains or to setup complex systems
with higher information processing capabilities than, for instance, convergent neural networks.
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