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Abstract

The parametrized time-discrete dynamics of two recurrently coupled chaotic neurons is investigated. Basic dynamical
features of this system are demonstrated for symmetric couplings of identical neurons. Periodic as well as chaotic orbits
constrained to a manifold/ of synchronized states are observed. Parameter domains for locally stable synchronization
manifoldsM are determined by numerical simulations. In addition to the synchronized dynamics there often co-exist periodic,
guasiperiodic and even chaotic attractors representing different kinds of non-synchronous coherent dynamics. Simulation
results for selected sets of parameters are presented, and synchronization conditions for systems with non-identical neurons
are derived. Also these more general systems inherit the above-mentioned dynamical properties. ©1999 Elsevier Science B.V.
All rights reserved.
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1. Introduction

In many recent articles the feasibility of synchronizing chaotic systems has been investigated experimentally as
well as theoretically [1-11]. Interest in the construction of chaotic synchronized dynamical systems has aroused
mainly because of its potential for application in secure communication [12—-16]. Most of the work therefore
investigates the coupling of time-continuous systems like Lorenz or Réssler systems, or like Chua’s circuit. But
time-discrete systems are also considered [17]. Synchronization in coupled systems can be achieved in different
ways: by one-way couplings as introduced in [7], or by recurrent couplings, where each of the systems affects the
other [3]. In this paper we discuss the discrete-time dynamics of two one-dimensional chaotic systems coupled
recurrently. The corresponding maps are considered to represent a simple model of formal neurons [18].

We will use the term ‘synchronization’ in the sensecoimplete synchronizatioof chaotic systems, i.e. we
consider systems, the states of which can coincide, while the dynamics in time remains chaotic [19]. We may
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also discern between global and local synchronization. Global synchronization means, that for almost all initial
conditions orbits of the systems will synchronize. By local synchronization we refer to locally stable synchronized

states, i.e. small perturbations will not desynchronize the systems. We will also make use of the concept of a
synchronization manifold [3] to which a synchronized dynamics is constrained.

Besides the discussion of synchronized chaos in the context of technical applications, selective synchronization
of neural activity in biological brains was often suggested to be a fundamental temporal mechanism for binding
spatially distributed features into coherent objects (cf. among many others [20—-22]). Motivated by these biological
findings synchronization of chaos has been studied in computer simulations for networks with spiking neurons,
and in large networks of Hindmarsh—Rose neurons [23-25]. With respect to discrete-time dynamics conditions
for synchronized chaos were discussed also for large networks consisting of coupled pools of analog neurons
[26].

On this background we were interested in the discrete dynamics of two coupled chaotic neuromodules that exhibit
complete synchronization. Simulation results for synchronization and other coherent states in coupled chaotic
modules of two coupled chaotic standard analog neurons were presented in [27]. But here we show that already
for a system composed of two interacting chaotic neurons — i.e. standard neurons with a damping term [18] — we
observe global as well as local synchronization of chaotic dynamics. Interesting parameters are the stationary inputs
to neurons as well as the strength of the recurrent couplings. The corresponding dynamics is analyzed in Section
3 for the case of symmetrically coupled identical neurons. Numerical simulations reveal that for large parameter
domains various non-synchronous periodic, quasiperiodic or even chaotic attractors may co-exist with synchronized
dynamics. Orbits in the synchronization manifold may be locally stable or unstable. The instability of synchronized
chaotic orbits is signaled by two positive Lyapunov exponents indicating hyperchaos [28,29]. Hyperchaos as a
signal for the transition from synchronized to non-synchronized states in the chaotic regime was also observed in
[17].

Most of these dynamical phenomena are also found for the more general case of recurrently coupled non-identical
chaotic neurons. Conditions on the coupling strength are derived for the existence of synchronized dynamics in this
case, and in Section 4 corresponding simulation results are shortly discussed.

2. Two coupled chaotic neurons

The simplest example of two coupled neuromodules is the case where each module consists only of one single
neuron. The parametrized discrete activity dynamics of a single chaotic neuron is given by the one-dimensional map
(1), which is bimodal for a large class of parameter values, and thus has parameter domains where chaotic attractors
exist [18]. Therefore, synchronized chaotic dynamics for specific recurrent couplings of two ‘chaotic’ neurons, A
and B say, has to be expected. This is the situation we analyze in the following.

The discrete activity dynamics of a single chaotic neuron A is given by

at +1) =0 +yPa@) +who (@), acR, 0<y <1, (1)

and for unit B with activityb correspondingly. Herg” denotes the damping term? the self-coupling of neuron
A; 02 := (6§ + I™) describes the sum of a fixed bias teffhof A and its stationary external inpéf. The output
o™ = o (a) is given by the sigmoidal transfer function

1

o(a) = Tree

)

By p” = (y*,0”, w?) we denote the set of parameters for the single unit dynamics.
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If we couple the neurons by connectiond® andwP?, respectively, and denote the set of parameters for the
coupled system by := (p”, pB, w”B, wBA) the corresponding dynamids, : R2 — R2 reads

a(t +1) = 60" +yPa@) + wo(a(r)) + wBe (b)),
bt +1) =08 +yBb(t) + wBo (b)) + wPo (a(1)). ©)

In the following we are interested especially in the procesoaiplete synchronizatiasf neurons, which in this
case means that there exists a sutiset R?* such thai(ag, bg) € D implies

lim |a(t; ag) — b(¢; bo)| = 0,
11— o0

where(a(t; ag), b(t; bo)) denotes the orbit unddr, through the initial conditior{ao, bo). The synchronization is
calledglobalif D = R?, andlocalif D c R? is a proper subset. Thussgnchronized stateaf the coupled system

is defined by := a = b. Correspondingly, a statesatisfyings = a = —b is calledanti-synchronizedHere, the
synchronization manifold/ := {(s, s) € R%|s = a = b} of synchronized states corresponds to a one-dimensional
hyperplaneM = R c R?. We introduce coordinates parallel and orthogonal to the synchronization mamifold
[3] as follows:

1 1
V2 V2

But settinga — b = 0 we can immediately read from Eq.(3) the following

E:=—(a+b), n:=—@@-D>b). 4)

Lemma 1. Let the parameter sejs®, pB of the unitsA andB satisfy
y=yA=yB 0=0~=068 (wh—uwP) = @WB —uw"B). (5)
Then every orbit oﬁp through a synchronized states M is constrained taVf for all times
Especially, Lemma 1 applies to the case of identical neurons with symmetric couplings, i.e.
y:yAzyB, 9=9A=95, waAsz’ wcoupszAzwAB. (6)

We will consider the special parameter setting (6) first.

3. Coupling two identical neurons

Letp = (y, 0, w, w®UP) denote a parameter set ((6)) of two coupled identical neurons. We will fix the damping
termy = 0.6 and the self-connection = —16.0 so that the chaotic domain for the single neuron can be reached
[18]. Changing now t@¢, n)-coordinates given by (4) and setting

w = w4+ w®P), w = (w— woP), )
we obtain the dynamicé“p of two coupled identical neurons as

wT

fzcﬁ(s(t), n()),

E(t+1) = yE() +vV20 +

w™

ﬁG_(S(t), (), (8)

nt+1 =yn®+
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where the function&*, G~ : R2 — R are defined by

tEm =0 (= Lo
GrEmi=o(-%E+n)+o(-5E-n).

V2 V2
G (. 1=0<%2($+n))—0(%2(§—n)>- C)

According to Lemma 1 every orbit cﬁp through a synchronized statg, 0) € M is constrained ta/ for all
times. Withs := 1/+/2¢, the corresponding synchronized one-dimensional dynafijjds M is described by the
equation

s+ =0+ys@t) +who(s@®)). (10)

Thus, the synchronized dynami¢¥ comprises the whole spectrum of dynamical behavior of a single isolated
chaotic neuron [18] with self-connectian™; i.e. it may have fixed point attractors as well as periodic or chaotic
ones. Although the persistence of synchronized dynamics for identical neurons is guaranteed by condition (6), it is
not at all clear that the synchronization manifaéidis itself asymptotically stable with respect to the dynanﬁgs
Thus, anﬁp-invariant setd C M may be an attractor for the synchronized dynanfi¢sut not for the dynamics
Fp of the coupled system. The simulation results in Section 3.1 will give a first idea about the dynamical complexity
of this ‘trivial’ neural system.

But first let us introduce the point-reflection opera$dracting only on thej-coordinates of the&g, n)-phase
space, i.e.

STE m =& —n).
The functionsG* andG~ defined in (9) have the property

GTS"E.m=G"¢Em, G SEN=-G ¢ .

Thus, the dynamic§, : R? — R? given by Eq. (8) is equivariant under the actiorssf i.e.
Fpg.m) = (ST FpS"(E, ).

As a consequence of this equivariance property we obtain the following:

Lemma 2. Let F, denote the dynamig8) of two coupled identical neurons, and [Ef denote itsp-fold iterate
For a point (&, ) € R? we then have

Em=FEn & (E-n=FE-n.

The fact that with(g, ) also (&, —n) must be ap-periodic point does of courseot include that both points
belong to the samg-periodic orbit. An example can be found for= (0.6, 3.75, —16.0, 2.0), where two period-7
attractors are interwoven. As a trivial consequence of Lemma 2 we have

Corollary 1. Let Fp denote the dynamics of two coupled identical neurting, n) and(&, —n) belong to the same
period-p orbit of F, thenp = 2¢, and (¢, —n) = F{ (&, n).

For the description of attractors observed for the dynamics of coupled chaotic neurons we will use the following
definition: a quasiperiodic or chaotic attractor is caffedyclicif it has p connected components which are permuted
cyclically by the mapf*p. Every component of @-cyclic attractor is an attractor @t} .
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To discuss the qualitative aspects of the dynarﬁl,psﬁor the identical coupled chaotic neurons we make use of
the following Lyapunov exponents. Expones, A») are derived from the linearization &f, (3); i.e. from

/ coup,,./
DF,(a(1), b(1)) = (V +wo'(at))  w® e’ (b(1)) )

WO (a (1)) y + wo' (b(D)) (1)

For the synchronized dynamics tegnchronization exponent and thetransversal exponent- are derived from
the linearization off“p (8) around synchronized stateg) = \ifzg(t). With

- [ €5) 0 [y +wta'(s) 0
DFp(s) = ( 0 el(s)> o < 0 y + w—o’(s)> (12)
we have
A = lim 1Zln 5 (s())], ALt = lim }Zln let(s(1))]. (13)
n—-oon ri n—oon i

3.1. Results from numerical simulations

To get an idea about what kind of synchronized dynamics does exist for coupled neurons and for what parameter
values it is locally stable or unstable we discuss results presented in Figs. 1 and 2. In Fig. 1 the Lyapunov exponents
A% anda' are displayed in dependence of the coupling streng®Pfor y = 0.6, w = —16, andd = 4.0. The
corresponding bifurcation diagram for the synchronized dynaiijagiven by Eq. (10) is also shown. We observe
a standard period-doubling route to chaos, and for a large domain of coupling strengts ide< w®UP < 1.89,
there exist chaotic orbits in the synchronization manifefid

Furthermore, forw®'P < 0 there is a domain where both Lyapunov exponefts.- are positive. This hyper-
chaotic domain signals of course the instability of synchronized states. Reading from the data underlying Fig. 1
hyperchaos appears in the interve8.51 < w®UP < 0; i.e. for couplings from this interval there exist no locally
stable synchronized chaotic orbits. In fact, as is shown in Fig. 4 f8{° = —3, the attractors of the coupled system
are not constrained to the synchronization manifdldBut there is also a coupling domairb. 74 < w®YP < —351
where we have a (locally) stable synchronized chaotic dynamics; i.e. whered andr’ < 0. In general, these
chaotic attractors constrained M co-exist with other periodic or quasiperiodic attractors arranged symmetrically
aroundM. An example of this dynamic configuration is presented in Fig. 3 where a synchronized chaotic attractor
co-exists with a period-2 and a period-4 attractor. Outside the intergal6 < w®UP < —5.74 we find only
globally stable synchronized periodic and chaotic attractorsuffo? < —22.6 the synchronization manifolay
becomes unstable again and the dynamic situation is characterized by two or more (chaotic) attractors again arrange
symmetrically toM.

Also for positive couplings hyperchaos is observed. This is the case, for instance, in the interw&P8° < 0.90.

But here the transversal exponertis larger then the synchronization exponghtAgain, there is no locally stable
synchronized dynamics for these valuesu$fUP. Typically, there exists a local hyperchaotic attractor traversing
the unstable synchronization manifald; Fig. 7 shows a characteristic situation. Again, these chaotic attractors
often co-exist with periodic, quasiperiodic or other chaotic attractors. PoxOw®°UP we observe intervals, i.e.
1.03 < w®UP < 1.89 and 266 < w®'P < 4.29, wherert > 0 althoughA* < 0. This indicates the instability

of the synchronization manifolgf and of the periodic orbits constrained to it. Fig. 8 displays the situation shortly
after the synchronized period-4 orbit became locally stable. P& 4 w®UP < 6.24 a locally stable synchronized
period-2 attractor co-exists with an anti-synchronized one. The latter survives in the int@dval P < 13.37
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Fig. 1. Bifurcation diagram for the synchronized dynamsi@g with respect to parametar®®?; other parameters age= 0.6, w = —16, and
6 = 4. Below synchronizatiom() and transversah(-) Lyapunov exponents are plotted for the sanf8“P-interval. A positiver* indicates a
synchronized chaotic attractor, a positie indicates an unstable synchronization manifid

as a global attractor (unstahi#!) ‘jumping’ to a synchronized global fixed point attractor after crossing a hysteresis
interval 1291 < w®°"P < 13.37.

Fig. 2 displays the bifurcation diagram for the synchronized dynangi¢svith respect to the parameterfixed
parameters arg = 0.6, w = —16, andw®"P = —3.0. The synchronized dynamics again follows period doubling
bifurcations to chaos. For the sameange the Lyapunov exponerits and A+ are displayed in Fig. 2. The data
underlying this figure reveal that synchronized chaotic orhits{ 0) exist in the interval 33 < 6 < 5.8. Included
in this interval is a hyperchaoti-domain where in addition to* > 0 also the transversal exponertt is positive;
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Fig. 2. Bifurcation diagram for the synchronized dynami¢9 with respect to parameté#r, other parameters ane = 0.6, w = —16, and
w®UP = —3.0. Below synchronizatiori) and transversah(") Lyapunov exponents are plotted for the safviaterval. A positiver* indicates
a synchronized chaotic attractor, a positiveindicates an unstable synchronization maniftdd

this interval is given by 74 < 6 < 5.05. Forf outside of this interval the synchronization manifaltitogether
with the periodic orbits constrained 8 will be (locally) stable.

From the Figs. 1 and 2 we can deduce that for inhibitory couplin®P < 0 and positive synchronization
exponentst® > 0 we havert < 1. From the defining equations (13) this can be seen as follows: With
w®UP < O for the eigenvalues’ ande! we have

lw| + W L
- < €(s) <, —

7 7 <€J'(S)<]/, s € R.
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Fig. 3. A period-2 (white crosses) and a period-4 attractor (black dots) co-existing with a chaotic attractor in the stable synchro-
nization manifold M together with their basins of attraction (white: chaotic, black: period-2, and gray: period-4 attractor). Parameters:
y =06,0 =48, w=—16.0, w"P = -40.

Because’(0) = 0.25, the left-hand side of the inequalities correspond t0) ande* (0). Therefore, stategr) on
a synchronized chaotic orbit{ > 0) must visit the vicinity of the origin very often; i.e. for these statégs)| > 1,
or, deduced from the above inequalities(s) < —1. But we have:'(s) = €*(s) + 2Jw®Po’(s) < ¥ < 1 so
that|et(s)| < |€*(s)| for statess satisfyingo’(s) < (1+ y)/|lw™|. But we then have: if* > 0 thena’ < A5. A
corresponding argument holds for excitatory coupling8“? > 0: if A+ > 0 thenr® < AL,

Finally we want to point out that outside the synchronization maniééldie can observe bifurcation sequences
to chaos which do not follow the usual period-doubling route. Reading in the direction of decr@asihugs, here
chaos appears after a transition from period-4 attractors to quasiperiodic attractors to chaotic ones to hyperchaotic
ones. This type of sequence can be observed, for instance, for parametd$, w = —16, w®P= —2.0in the
interval 42 < 6 < 4.7. The whole scenario resembles the one callebtic contact bifurcatiofCCB) in [30].
SinceM is unstable in this region, these 4-cyclic attractors are symmetiif. to

With respect to the dynamicEP given by Eq. (3), in the following we will describe the dynamical situation
displayed in Figs. 3—8. They correspond to the six parameter sets listed in Table 1.

Corresponding to Lemma 2, fan we observe one period-2 and one period-4 attractor arranged symmetrically
around the synchronization manifall. They co-exist with a chaotic attractaf (= 0.35, - = —0.07) constrained
to M. Herea < 0 indicates that the synchronization maniféltis stable (compare Fig. 3 and Table 1).

For p2 we observe one period-2, one period-6 and one 4-cyclic quasiperiodic attractor lying outside the synchro-
nization manifoldV/. But there is also a chaotic orlgitconstrained to the synchronization maniféfd compare Fig.

4 and Table 1)M is unstable in this case as can be read from Lyapunov expokieat®.36 andi = 0.05 which
are both positive (compare Table 1). Nevertheless, the 6rBigrves as a chaotic attractor for the corresponding
synchronized dynamicB; constrained ta/.

The synchronization manifolt¥ is unstable also for the parameter ggfcompare Fig. 5 and Table 1). It contains
again a chaotic orbi (»* = 0.32, A1 = 0.008), which is of course unstable with respggt but serves as a chaotic
attractor for the corresponding synchronized dynanfigsOutsideM we find a period-4 attractor and a second
(2-cyclic) chaotic attractor both arranged symmetrically arouhd
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Fig. 4. A period-2 (white crosses), a period-6 (black dots) and 4-cyclic quasiperiodic attractor co-existing with a chaotic orbit in the
unstable manifoldM together with their basins of attraction (white: period-6, black: period-2, and gray: quasiperiodic). Parameters:
y =0.6;0 = 4.0; w = —16.0; w*°"P = -3.0.

Fig. 5. A period-4 (black dots) and a 2-cyclic chaotic attractor co-existing with a chaotic orbit in the unstable maénttmiéther with their
basins of attraction (white: chaotic, and gray: period-4 attractor. Parameter€.6; 0 = 4.47; w = —16.0; w*®P = —3.0.

There exists a global hyperchaotic attractor for parametengetversing the unstable synchronization manifold
M. Lyapunov exponents aseé = 0.149 1+ = 0.039 (compare Fig. 6 and Table 1).

Parameter set; (compare Fig. 7 and Table 1) demonstrates the instability of the synchronization madifotd
positive couplingsw®UP > 0. There is a hyperchaotic attractor traversigr® = 0.13, A+ = 0.047). A second
co-existing 2-cyclic chaotic attractor is found outsideldf

Finally, also for positive couplinga®"P > 0, Fig. 7 shows a synchronized period-4 attractor in the stable
manifold M together with a co-existing 2-cyclic quasiperiodic and a 4-cyclic chaotic attractor (compare Table 1).
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Fig. 6. A global hyperchaotic attractor traversing the unstable synchronization mamfoRarametersy = 0.6;0 = 4.0, w = —16.0;
wUP = —20.
Ady
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Fig. 7. Two co-existing 2-cyclic chaotic attractors (black and gray). The hyperchaotic attractor (black) traverses the unstable synchronization
manifold M. Parametersy = 0.6; § = 3.675 w = —16.0; w®UP = 2.0.

4. Coupling two non-identical neurons

According to Lemma 1 there exists also a synchronized dynamics for coupled non-identical neurons satisfying
condition (5). For instance, keepind* andwB” fixed and adjusting’® andw”® such that they satisfy condition (5)
will give again periodic and chaotic dynamics constrained to the synchronization maviiftdean be demonstrated
by numerical simulations. As observed for the case of identical neurons with symmetric couplings, there are
parameter domains for whicll is locally (or even globally) stable, others where the synchronized dynamics is
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Fig. 8. A 2-cyclic quasiperiodic and a 4-cyclic chaotic attractor co-existing with a period-4 orbit in the locally stable synchronization manifold
M for parametersy = 0.6; 0 = 4.0; w = —16.0; w'P = 2.0.

Table 1

Lyapunov exponents for attractors co-existing in a system of two coupled chaotic neurons with parametepset®empare Figs. 3-8
Attractor Synchronization? Initial condition (a,b) A A2 AS At

p1: y=06,0=48 w=-16.0 w®"P=-40

Period-2 no (-3.7,0.1) —-0.116 —-0.116 - -
Period-4 no (—2.804,0.243 —0.083 —0.402 - -
Chaotic yes (-1.0,-1.0) - - 0.353 —-0.074
p2: y=06,0=4.0 w=-16.0 w®P = -3.0

Period-2 no (—3.808 —0.076) —0.036 —0.036 - -
Period-6 no (—2.804,0.243 -0.297 -0.297 - -
Quasiperiodic no (—1.263 1.129 0.0000 —0.089 - -
Hyperchaotic yes (1.0,12.0) - - 0.363 0.056
p3 . Yy = 0.6,0 =4.47, w = —16.0, wtoUP = _3.0

Period-4 no (=9.0, —2.75) -0.17 -0.17 - -
Chaotic no (—5.95, —0.25) 0.108 —0.088 - -
Hyperchaotic yes (-1.0,-1.0 - - 0.322 0.008
P4 . Yy = 0.6,0 =4.0,w = —16.0, wP=_20

Hyperchaotic no (-0.1,0.1) 0.149 0.039 - -

p5 . Yy = 0.6,0 = 3.675 w = —16.0, weUP =20

Chaotic no (—2.044, —6.526) 0.119 —0.005 - —
Hyperchaotic no (0.577, —8.691) 0.13 0.047 - -

pe. y=060=40w=-160, w®P =20

Period-4 yes (1.537,1.537) - - —1.426 —0.065
Quasi no (0.281, —9.365 0.000 —0.655 - -
Hyperchaotic no (—6.9, -3.3) 0.084 0.002 - -

unstable. Cyclic attractors not constrainedMonow are of course no longer symmetric M. Fig. 9 displays

a bifurcation sequence for the parametewith w® = p, w

AB

= p — w” 4+ wB and fixed parameterg =

0.6, w” = —16, wBA = —4, and¥ = 3. The whole period-doubling sequence to chaos is contain&f] end the
corresponding synchronized dynamics is apparently globally stable over the pdttlerval. For other values of
6 this is in general not the case.



F. Pasemann/Physica D 128 (1999) 236-249 247

1.0

16 13 10

Fig. 9. Bifurcation diagram for two coupled non-identical neurons satisfying condition (5). Varied with parameter w® = p;
w”B = p — w” + wBA. Fixed parameters age= 0.6; w” = —16; wB = —4 andg = 3.

So far synchronized units had identical bias terms (stationary inguBut, using the symmetrg (—x) =
(1 — o(x)) of the sigmoid (2), it is easy to prove that (anti-) synchronization of chaotic dynamics can also appear

if neurons have different bias terms To give a topologically equivalent dynamics, with respect to coordinate
transformationsa, b) — (a, b) = (—a, b), (a, —b), (—a, —b) bias terms of the units and coupling weights have to

be changed in away described below. Let the parameters of the coupled system of neurons — satisfythe= B
— be given in matrix form as

oA WA wPB
p= <QB wB wBA)'
We then have the following
Lemma 3. Consider two chaotic neurons with= y” = yB. The dynamicg, of the coupled neuron@) with

respect to the parameter set
0 wh whB
p= <9 wB  wBA > :

is topologically equivalent to the dynamigyg, with respect to the parameter sets

(A= —p—uwh DA =uh B = B
PL=\ 5B _p4+wBA B —yB GBA— _yBA )
(A =0+ uwrB A=A AR = _yRB

b2 = 0B = _9g_wB @B =uwB @GBA—_uBA )"
(A =—0— A+ ufB) A=A A = yAB
PE=\ 6B =_9— (wB+wbBh) @wB=uwB BA=BA "

Now, suppose parametegssatisfy condition Eq. (5) of Lemma 1, so that the dynanfigsllows for a synchro-
nized dynamics constrained 8, i.e.w™ := w® — wB = wB — W B andw™® = WA + wWAB = wB + WBA It
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is obvious, that the synchronous dynamigs with respect to parametefg corresponds again to identical neuron
input/bias terms, and it is obtained by the reflectioa= —s of the coordinate inM. On the other hand, with

respect to parameter sgis and 5, the synchronized dynamics in the neily b)-coordinates corresponds to an
anti-synchronized dynamics in the old, ) coordinates. We observe that this kind of dynamics is obtained by
reversing the coupling strength and changing the bias terms (stationary inputs) correspondingly. For these two cases
the bias terms are now no longer identical.

5. Conclusions

In this work, it has been shown that in a system of two coupled formal neurons synchronized periodic and chaotic
orbits can exist. Depending on parameters, synchronized orbits can be globally stable, locally stable, or unstable.
For locally stable synchronized dynamics there do often co-exist periodic, quasiperiodic or even chaotic attractors
which correspond to a non-synchronous (but coherent) dynamics. Thus, whether a system ends up in a synchronous
behavior asymptotically or not depends crucially on the initial conditions, i.e. on the internal state of the system, and
not only on the external inputs. In this sense the reaction to external signals therefore depends also on the history of
the system. This may be related to findings in more biological systems, where there is only a partial synchronization
of neurons, even though they share common connections and a common driving signal [23].

Finally, we want to point out that the special kind of formal neuron used here may serve as a basic elementin larger
arrays of coupled neurons. Like in coupled map lattices [31,32] this type of neural network will show a variety of
different dynamical features like partial synchronization, clustering effects and traveling waves of activity. Analysis
of these phenomena may help to understand comparable features of biological brains or to setup complex systems
with higher information processing capabilities than, for instance, convergent neural networks.
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