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Abstract—This paper shows the results of flow visualization and residence time distribution
experiments in a Taylor—Poiseuille vortex flow apparatus. It is the first of a series that starts
with the identification of flow patterns inside the device and goes up to the assessment of its
performance as an enzymatic reactor. Our approach is to study in depth one single geometric
configuration (radius ratio g"0.677 and aspect ratio !"18.30), adequate for use as a hetero-
geneous reactor and/or adsorption system in bio-processes, rather than spanning a range of
geometries and proposing empirical expressions for mass transport coefficients. The range of
rotations and axial flow rates used here correspond to low/moderate rotational Reynolds
numbers (Reh from 130 to 615, with 1.6(Reh/Reh,c(7.7) and low axial ones (Re

!9
from 0.172

to 1.067). An unusual behavior of the system was noted in this operational region: the vortex
drift velocities are less than one, and decrease continuously with increasing rotations, until a full
stop. Except for Reh close to the critical value, the downstream displacement of vortices is
slower than the mean axial velocity. The implications of this fact on the reactor performance are
discussed. ( 1998 Elsevier Science Ltd. All rights reserved.

Keywords: Vortex flow reactor; Taylor-Poiseuille flow; dispersion; mixing characteristics; flow
patterns; residence time distribution.

1. INTRODUCTION

The objective of this communication is to outline
some unusual characteristics of the Taylor—Poiseuille
flow inside an apparatus that has geometric charac-
teristics adequate for bio-process applications, as
a heterogeneous bio-reactor or adsorption device.

The interest in using secondary vortex flow struc-
tures to improve the performance of chemical and
biochemical reactors (usually known as vortex flow
reactors, VFRs) has been periodically reported by
several authors since the work of Kataoka et al.
(1975). Figure 1 shows a schematic representation of
a VFR.

For a heterogeneous solid—liquid system (for in-
stance, a reactor with enzyme immobilized in gel
beads) the VFR has the additional advantage of pos-
sessing one extra variable of operation: the rotation of

sCorresponding author. E-mail: drcg@power.ufscar.br.

the inner cylinder. It may be used to keep the particles
in suspension for low axial flows—an otherwise diffi-
cult task in conventional fluidized-bed reactors. On
the other hand, the agitation promoted by the inner
cylinder is less aggressive than that one obtained with
conventional stirrers, an important feature when sen-
sitive particles, cells or large molecules are present in
the medium.

From an operational point of view, the VFR should
run, generally speaking, in a range of rotations where
inter-vortex mixing is low. In this way, the VFR
performance would get closer to a plug-flow reactor.
From this point of view, the presence of wavy vortices
(Coles, 1965) should be avoided, since waviness en-
hances inter-vortex mixing (see, for instance, the simu-
lations reported by Ashwin et al., 1995).

Many applied works in the field make the assump-
tion that axial displacement of the vortices occurs in
a stack form, with a drift velocity, »

d
"ratio between

the speed of the vortex center and the mean fluid axial
velocity, close to unity. This flow pattern is named
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Fig. 1. Vortex flow reactor.

progressive Taylor vortices (PTV), and is one among
the many possible stable states for this system (see, for
instance, Lueptow et al., 1992).

To simplify the flow pattern in a reactor in order to
make the problem tractable is in the core of the
chemical reaction engineering methodology. Never-
theless, the simple model should capture the main
features of the flow if it is to be used in at least
moderate extrapolations. For a VFR running in the
PTV region, one of the important flow characteristics
of the system is the relative speed of the vortices, the
drift velocity »

d
. If the hypothesis that »

d
is close (or

slightly greater than) unity is not correct for some
combination of geometric factors, rotation and axial
flow, a keystone of the classical simplified models for
this situation may be affected.

The intent of this series of papers is to contribute to
a deeper understanding of the behavior of VFR sys-
tems in the operational region of low axial flow,
adequate for many bio-process applications. The
usual chemical reaction engineering approach is ap-
plied here: first, identifying the main characteristics of
the flow with the help of tracer experiments. Then,
building-up a simplified model, able to simulate the
reactor operation. Finally, validating the model
against actual reaction data, after a careful assessment
of the intrinsic and inherent kinetics and of the extra-

and intra-particle mass transfer resistance. During
these experiments an unexpected, stable and repro-
ducible, flow pattern appeared which, to the best of
our knowledge, has not been previously reported in
the literature. Basically, the drift velocities measured
in our apparatus are significantly less than one, and
decrease with increasing rotation until the vortices
stop moving downstream.

The experiments are conducted in an equipment
with radius ratio (g"R

i
/R

o
) equal to 0.677 and aspect

ratio (!"¸/d) equal to 18.30. This geometry is
chosen mainly for convenience, regarding our inten-
tion of using suspended particles in the gap, and to
prevent the appearance of wavy vortices (Coles, 1965,
refers that for g(0.714 no wavy vortices are ob-
served, for a system without axial flow).

In order to obtain reasonable conversions within
the VFR, residence times between 30 and 120 min are
used, leading to low axial Reynolds numbers
(Re

!9
"º

!9
.d/l, between 0.172 and 1.067). Rotation

rates are low, to avoid shear-mediated damage to the
enzyme used in the reaction experiments. The rota-
tional Reynolds numbers (Reh"u .R

i
. d/l) range

spanned by the experiments goes from 130 to 615. It
should be noted that the non-dimensional Taylor (¹a)
number is more frequently used to describe rotation
effects on this system. That is probably because it
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appears naturally when the Navier—Stokes equations
are put in dimensionless form. But that same reason is
responsible for a number of different definitions for
¹a, depending on the way each author formalizes the
problem. For our purposes, this point is not relevant,
and Reh replaces the Taylor number, without any loss
of information.

Different inlet/outlet combinations are tested here
to check the role of boundary conditions, but the
main features of the flow are insensitive to these alter-
ations. Different working fluids and tracers are used,
and visualization experiments with suspended par-
ticles are also performed. All the experiments indicate
the same flow pattern.

This paper presents these experimental results and
discusses the implications of this behavior in the reac-
tor performance. These results are placed in context
through some relevant background information on
Couette—Taylor and Couette—Taylor—Poiseuille
(CTP) flows.

2. BACKGROUND

2.1. ¹he classical ¹aylor problem: no axial flow
The secondary flow that appears above a critical

rotation in the gap between an inner rotating and an
outer cylinder (rotating or stationary) is probably one
of the most widely studied phenomena in the field of
fluid dynamics, ever since the remarkable work of
Taylor (1923). This author discards the non-linear
terms of the Navier—Stokes equations and solves these
equations for the disturbances of the basic (Couette)
flow using Bessel—Fourier series. In this way, it was
possible to anticipate the critical rotation for the onset
of instability, therefore extending Rayleigh’s (1916)
stability analysis of rotational flows to viscous incom-
pressible fluids. The same paper shows experimental
results in striking agreement with the theoretical pre-
dictions: above a critical rotation of the inner cylinder,
counter-rotating toroidal vortices (now known as
Taylor vortices) appear, superimposed to the main
Couette flow. Furthermore, the actual size of the vor-
tices agrees with theory. Chandrasekhar (1961) pro-
vides an excellent formalization of the linear approach
for this problem.

Despite the number of published works in the liter-
ature, the understanding of the inherent complexities
of this system is far from complete. Some topics still
open to further study include: pattern selection among
multiple solutions (for a theoretical non-linear ap-
proach of this subject see Chossat and Iooss, 1992),
secondary instabilities (distinct modes of azimuthal
wavy vortices, see the classical papers of Coles, 1964;
Davey et al., 1968), and transition to turbulence (Bar-
cilon et al., 1979; Koschmieder, 1979; Lathrop et al.,
1992; Wei et al., 1992).

Many different stable states are visualized and
mapped by Andereck et al. (1986), for a wide range of
rotational Reynolds numbers in systems without axial
flow. DiPrima and Swinney (1985) and Korschmieder
(1993) present extensive reviews on closed Couette—

Taylor systems. Tagg (1992) shows a list of around
1500 references concerning Taylor flow. Esser and
Grossman (1996) have recently presented a simple
analytical expression that accurately approximates
the stability boundary in closed systems.

While Taylor’s linear approach provides fairly
good predictions of the onset of the vortices for cylin-
ders of infinite length, it is inadequate when applied to
supercritical flow, since the linear approximation in-
correctly forecasts an exponential growth of the vor-
tex size after the onset of the secondary Taylor flow.
In the supercritical region, even for laminar flow, the
non-linear terms of the Navier—Stokes equations
should be considered. It is possible to solve these
equations numerically; different techniques have been
presented for this purpose [see, for instance, Marcus
(1984a, b) for an interesting approach using a spectral
method adequate also for non-axisymmetric prob-
lems like wavy vortices].

Alternatively, one may resort to the weakly non-
linear theory, which decouples time and spatial de-
pendence in the solution for the velocities (the so-
called shape assumption). The ordinary-differential
equation that describes the time- dependence of the
amplitudes of the disturbances of the velocity field is
called the Ginzburg—Landau equation, and its para-
meters are related to the eigenvalues of the infinite
series solution for the velocity profile (see Davey,
1962; DiPrima and Swinney, 1985).

2.2. Couette—¹aylor—Poiseuille flow
The superposition of an axial Poiseuille annular

flow to the Couette—Taylor system increases the com-
plexity of the problem: several different spatiotem-
poral stable states may appear in the Couette—
Taylor—Poiseuille (CTP) flow. Chandrasekhar (1961)
predicts, based on the linear theory, that the axial flow
would have a stabilizing effect, delaying the formation
of the vortices up to higher rotations. This fact is
experimentally observed by Snyder (1962) for axial
Reynolds numbers up to 100, in an apparatus with
radius ratio (g) equal to 0.95. This author also
confirms the linear theory prediction of a drift velo-
city (»

d
) close to 1.2. Nevertheless, for higher Re

!9
(above 6000), the instability of the axial Poiseuille
flow becomes dominant, and an increase in Re

!9
would destabilize the flow in this region (Takeuchi
and Jankovski, 1981; Ng and Turner, 1982; Stuart,
1986).

In a series of papers, Gu and Fahidy (1985a, b,
1986) report results of visualization experiments with
injection of dye, for a wide range of rotational Reh and
Re

!9
, and different geometric factors, ! and g. They

identify several flow regimes: propagating Taylor vor-
tices, inclined propagating vortices, wavy and
modulated wavy propagating vortices. Takeuchi and
Jankovski (1981) had already observed the first two
regimes. Lueptow et al. (1992) used particles in visual-
ization experiments and perform a spectral analysis of
reflected laser light, with an apparatus having
g"0.848 and !"41. Their range of measurements is
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0—37 for Re
!9

and 0—2900 for Reh. In this region
they observe seven different regimes with propagat-
ing Taylor vortices, from a total of 12 regimes,
ranging from spiral flow to laminar Couette—
Poiseuille flow.

Tsameret and Steinberg (1994a) study the onset of
the instability for the low Re

!9
region (0—4) with

g"0.707 and 0.770, !"54 and 48, using a laser-
Doppler anemometer. They observe that propagating
Taylor vortices may occur either in an absolutely
unstable region, where the disturbance can propagate
upstream, or in a convectively unstable mode, where
the disturbance is ‘washed out’ of the system. In any
case, the axial flow rate and boundary conditions
exclusively define the amplitude of the vortices. The
same authors afterwards expand their Re

!9
range up

to 15, and observe the onset of other stable states,
stationary spirals and moving spirals (Tsameret and
Steinberg, 1994b).

It may be interesting for our purpose here to briefly
illustrate how a spectral analysis of the solution for
the velocity disturbances permits the prediction of the
drift velocity »

d
. This approach uses a series solution

for the disturbances, with the following formulation:

v@
j
"f (r@ )ei(kz@#mh )#(p!iu)t@

#c.c. (1)

Here, v@
j

is the disturbance from the basic flow
for the component j of the velocity field: v@

j
"

v
j
!v

j, C06%55%
!v

j,P0*4%6*--%
[following Chandrasekhar

(1961), the basic stable flow is a linear combination of
rotational Couette flow and annular, axial, Poiseiulle
flow]. In (1), the independent variables are dimension-
less (usually, r@"r/d; z@"z/d; t@"tl/d2). The mode
k is the wave number in the axial direction (k"2n/j,
where j" height of a pair of counter-rotating vor-
tices), m is associated with the number of waves in the
tangential direction, p is the exponential growth rate
of the perturbation, and u is the oscillation frequency
of the solution.

The system is stable if p(0 for all the (infinite)
modes of the disturbance represented by eq. (1). The
marginal (or neutral) stability boundary of the system
corresponds to p"0, and is the limit for the onset of
the instability. The system boundary conditions, to-
gether with the imposition of non-trivial solutions for
v@, will lead to an eigenvalue problem that, once sol-
ved, gives the values of p and u. The CTP problem
will have an oscillatory solution, since the toroidal (or
spiral) vortices are expected to travel downstream. In
this case, the imaginary part u will be non-zero for
p"0 (on the onset of instability). For the pure
Couette—Taylor problem, without axial flow, both
p and u are equal to zero.

If the flow is axisymmetric (without waviness or
spirals), m"0 and »

d
"u/(kRe

!9
). Ng and Turner

(1982) determine the critical modes k, m, p and u in
a wide range of Re

!9
(0—6000). In both cases, they

obtain »
d

essentially equal to 1.17, when Re
!9
(10

(g"0.95, for axisymmetric disturbances, and
g"0.77, for non-axisymmetric ones).

Recktenwald et al. (1993) solve the Ginzburg-
Landau (GL) equation for the CTP flow with Re

!9
up

to 20 and g from 0.1 to 0.975 and predict the critical
Reh (Reh,c) for the onset of instability. They present
relationships for the critical values (at the onset of the
instability) of k and u. Using these values, their com-
puted »

d
would range from approximately 1.27—1.17,

for small values of Re
!9

and 0.1(g(0.975.
Büchel et al. (1996) compare the Navier—Stokes

(solved with a time-dependent finite-differences algo-
rithm) and the Ginzbunrg—Landau predictions for the
absolutely unstable regime with Re

!9
(4, and notice

that the structure of the propagating vortices is inde-
pendent of the parameters history and system initial
conditions.

One is led to conclude from the observations
made before, that there are a variety of possible
stable states, even if the analysis is restricted to PTV
flows. The axial flux seems to stabilize the system to
a certain degree, inhibiting some bifurcations that are
present in the closed Taylor device (mainly with
respect to multiplicity of vortex wavelengths). Never-
theless, the unfolding of different patterns is still
considerable.

2.3. ¹he applied approach: vortex flow reactors
When one is concerned with simulating chemical

and biochemical processes, which usually include
mass transfer resistance and complex kinetics, not all
the theoretical background can be used, or else the
mathematical model would not be feasible to applica-
tions such as reactor design/scale-up and process op-
timization and control. It is necessary to rely on
a simplified flow model, and on empirical equations
for the mass transfer coefficients (which nevertheless
must be consistent with the assumptions of the
model).

Some attempts have been made towards using the-
oretical velocity profiles, derived from the linear or
weakly non-linear theory, in the mathematical
modeling of VFRs. The trade-off in this approach is
that its limits of applicability are essentially narrow.
Kataoka (1975) follows the approach of Stuart (1958)
and Davey (1962) to derive the equilibrium amplitude
of the vortex velocities and from them, calculate heat
transfer coefficients to the cylinder walls. Cohen and
Maron (1991) use the same approach to generate
velocity profiles, and then solve mass balances for
a generic consecutive reaction scheme, neglecting in-
ter-vortex mass transport. Both works (Kataoka,
1975; Cohen and Maron, 1991) actually resort to
solutions for the velocity field inside a closed Taylor
system (without axial flow), and make the ‘stack of
vortices’ assumption (»

d
"1) in order to describe the

axial movement.
Haim and Pismen (1994) use a linear simplification

of the Navier—Stokes equations for the complete CTP
problem to model a photochemical reactor. Different-
ly from other works, the authors do not simplify the
flow pattern to a stack of vortices, but take in account
a ‘slalom’ by-pass around them. Nevertheless, the
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linear theory cannot predict amplitudes and drift vel-
ocities of the vortices; the authors present a series of
sensitivity tests, assuming »

d
"1.17 and using the

vortex amplitude as a parameter.
VFR experimental results with the presence of a re-

action are less abundant in the literature. Two recent
examples can be cited: Sczechowski et al. (1995), for
a photocatalysis reactor and Kataoka et al. (1995) for
a polymerization reactor.

On the other hand, several works present VFR
mass transfer experiments. For the sake of concise-
ness, only the main aspects of the problem are sum-
marized here. Kataoka’s group (see, for instance,
Kataoka and Takigawa, 1981; Ohmura et al., 1997)
use the stack assumption (»

d
"1.0) and adopt a well-

mixed two-vortices set as the basic model cell. The
basis for that assumption is that the slow inflow
inter-vortex boundary (where the radial component of
the velocity is directed towards the inner cylinder)
offers significant resistance to mass transfer, while the
fast outflow boundary is not a considerable barrier.
Kataoka and Takigawa (1981), present an expression
for the inter-(pair of)-vortices mass transfer coefficient,
as a function of Re

!9
and of the molecular diffusivity.

Legrand and Coeuret (1986) also use the ‘stack of
vortices’ general approach, but stress that the intra-
vortex tangential dispersion is low in the laminar
region (see also Legrand et al., 1983; Legrand and
Coeuret, 1987).

Pudjiono et al. (1992), Pudjiono and Tavare (1993)
and Moore and Cooney (1995) apply the classical
axial dispersion model to this problem, covering
a broad range of Reh and Re

!9
. In this approach, the

detailed vortex structure is not important. Tam and
Swinney (1987) use the same model, but restricted to
the turbulent region.

If one admits that an adequate reactor feed may
solve, at least to a first approximation, the contradic-
tion between the well-mixed vortex models and the
ones that stress the importance of tangential disper-
sion, all the previous works would have a common
feature. That is: a one-parameter mass transport
model would essentially suffice to describe the system.

Desmet et al. (1996a, b) present another point of
view: the vortices would not be well mixed, especially
in the laminar region. They disregard differences be-
tween inflow and outflow boundaries (so their basic
cell is a single vortex) and model the intra-vortex
dispersion using two concentric well-mixed zones. In
this way, their model has, in the laminar region, two
parameters: the inter- and intra-vortex mass transfer
coefficients. Changing the point of injection of tracer,
they show experimental evidence in support of the
two-zone model: injections close to the outer cylinder
wall would quickly by-pass the vortices, since the
inter-vortex mass transfer coefficient would be higher
than the intra-vortex one for low rotations. In two
subsequent papers (Desmet et al., 1997a,b) improve-
ments in the experimental set-up allow the authors to
analyze transient effects and to model inter- and
intra-vortices dispersion. Nevertheless, all their ex-

periments are performed in a closed system (without
axial flow). Their insight on the vortex structure
shows that slow intra-vortex mixing may increase the
effect of tracer injection conditions on the system
response, during residence time distribution (RTD)
experiments. But in order to quantitatively apply
their mass transfer expressions to the simulation of
the VFR, it is necessary to rely on the ‘stack of
vortices’ approach. More recently, Campero and
Vigil (1997) use the same approach and propose
a three-parameter model, to take in account non-ideal
mixing in the inner vortex region of Desmet et al.
(1996a, b).

It should be noted that extrapolation of quantitat-
ive results from an apparatus without axial flow to
a continuous VFR must be made carefully. For in-
stance, the simulations made by Haim and Pismen
(1995) and Lueptow and Hajiloo (1995) clearly show
the possible existence of a by-pass convective flow
around the vortices. And the experimental results
presented in this work contradict the ‘stack assump-
tion’ for the reactor geometry and the range of rota-
tions and axial flows studied here.

3. EXPERIMENTAL

Dimensions and geometric characteristics of the
system used in this work are constrained by the de-
mands of its application as a heterogeneous enzymatic
reactor. In some flow visualization and tracer injec-
tion experiments, a jacketed reactor is used, but most
of the results shown are obtained at room temper-
ature (22$1°C) with the experimental set-up depic-
ted in Fig. 2. The external stationary cylinder is made
of acrylic, and the inner (rotational) one of polypropy-
lene. A stainless-steel shaft is positioned throughout
the inner cylinder, to increase the system inertia and
reduce wobbling. Rotation is provided by a magnetic
drive, adapted from Membrex (Fairfield, NJ) Bench-
mark filtration equipment, controlled by an Electro-
Craft E625-M unit and measured with a Metron
tachometer.

The apparatus design is determined by one impor-
tant restriction that arises when it is used as a hetero-
geneous VFR: shear-sensitive particles should suffer
a minimum damage in long-run experiments. One of

Fig. 2. Experimental set-up.
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the important causes of particle destruction may be
the friction between moving and stationary parts of
the equipment (seals and bearings). To check this
point out, several long-run tests (from 4 h to 2 days,
with rotations from 200 to 2000 rpm) were made, with
particles that present regular, spherical shape. Using
Sephacryl S-1000 (/

!7
"50 km) and Streamline (base

matrix, /
!7
"150 km), from Pharmacia, a range of

particle relative densities from 1.05 to 1.30 could be
covered. After each run, particle integrity was as-
sessed, with the aid of an optical microscope. After
a series of tests with different configurations, one is
selected as the less aggressive for the particles: the
bottom bearing of the inner cylinder is eliminated,
keeping it in balance, within a distance of about 1 mm
from the bottom wall. The outlet is positioned at the
outer cylinder wall, below the top of the apparatus
(see Fig. 2). In this way, fluid and particles have no
contact with moving seals. It should be stressed that
the rotation of the top and bottom vortices always
impels the particles towards the seals. If the end walls
of the device are stationary, the adjacent vortex layer
moves towards the inner cylinder, dragging the par-
ticles to the friction zone (the seal between the inner
cylinder and the stationary wall). If a moving wall is
used, attached to the inner cylinder, the particles will
be dragged towards the outer wall, and against the
seal. This behavior of the boundary vortices was ob-
served in our device, and agrees with the literature
(Koschmieder, 1993).

A drawback of this design is that the absence of the
bottom bearing slightly increases the internal cylinder
wobbling. Nevertheless, at least for the rotation rates
used in this study (15—400 rpm), this movement is not
excessive, and the high reproducibility of the experi-
ments (made with two different sets of cylinders) indi-
cates that the results are consistent.

The VFR uses two different outlets: one at the side
of the external cylinder (/+2 mm); in this case, com-
pressed air keeps the fluid level constant for different
axial flow rates. Alternatively, the fluid exits through
an orifice (/+3 mm) at the top of the device (the
usual Membrex retentate exit). Two different inlets are
tested: a lateral orifice on the wall of the outer cylinder
(/+2 mm), and a tube reaching the middle of the
annular gap (/+1.5 mm). Dimensions and opera-
tional conditions are described in Table 1. The vortex
flow apparatus has g"0.677 and !"18.30.

Different working fluids are employed in the experi-
ments: water (distilled, deionized), glycerol—water
mixtures up to 4.2 M in glycerol (k"3.00]
10~3 kg/m s at 22°C), glucose—water and fructose—
water solutions (ranging from 0.5 M to 5 M; a 2 M
glucose/water solution presents k"2.82]10~3

kg/m s). The experimental set-up spans the range of
dimensionless numbers: Re

!9
0.172—1.067 and Reh

130—615.
In residence time distribution (RTD) experiments,

outlet tracer concentrations are measured with a
continuous flow UV detector using a 280 nm filter
(Pharmacia). The output signal (mV) is sent to a PC

Table 1. Vortex flow reactor dimensions and operational
conditions

Dimensions: Operational conditions:
Inner cylinder radius
1.71]10~2 m

Inner cylinder rotation rate,
0—21 s~1

Outer cylinder inner wall
radius, 2.53]10~2 m

Axial flow rate,
0—1.4]10~7 m3/s

Total height, 1.73]10~1 m Reh range, 130—615
Wet region height,
1.49]10~1 m

Re
!9

range, 0.172—1.067

computer, using a Paragon data acquisition/control
system (Intec Controls Corp.), and a paper backup
chart is made in a x-time register. A chromatography
syringe is used for tracer injections, through orifices
3.16 and 9.04 cm distant from the top level of the fluid
inside the apparatus (see Fig. 2). Alternatively, a four-
way chromatography valve is used for this purpose. In
both cases, the injected volume is 160 kl. Two tracers
with very different molecular sizes are employed,
to verify if diffusion affects the RTD. Alizarin
red S, Eastman Org., molecular weight 326
(D

M
"7.5]10~10 m2/s at 22°C, infinite dilution in

water), and blue dextran, Sigma, average molecular
weight 2]106 (D

M
"8.0]10~12 m2/s at 22°C, infi-

nite dilution in water). To obtain a linear response
from the UV detector, the concentration of tracer in
the injection sample is fixed at 2 g/l (alizarin red) and
5 g/l (blue dextran). The outlet tubing inner diameter
is +1 mm, and less than 30 mm long; the exit hold-
up volume is less than 0.02% of the VFR annular
volume.

Visualization experiments are made with a 0.5%
(v/v) suspension of Kalliroscope AQ-1000, Kalliro-
scope Corp. Other particles are also tested: beads of
Sephacryl S-300, Pharmacia; and Maxazyme, Gist—
Brocade, gel particles with immobilized glucoiso-
merase previously ground and sieved (/

!7
"250 km).

The last one is the catalyst that will be employed in
reaction experiments. A Cole—Parmer peristaltic
pump provides the axial flow.

Either for the visualization with particles or in
tracer experiments, it is possible to visually follow the
displacement of the vortices. The position of the vor-
tex boundaries is measured with a caliper, and their
velocities calculated after plotting their axial position
versus time.

4. RESULTS AND DISCUSSION

RTD experiments start with a careful injection of
different tracers through the external cylinder wall.
Since it is not possible to know the vortex position
beforehand, different regions are reached by chance:
the center of a vortex (with an outflow or an inflow
upper boundary), or the by-pass region between suc-
cessive vortices. The acrylic cylinder allows a clear
visualization of the tracer progression and by chang-
ing the needle position it is possible to inject close to
the walls or in the middle of the gap. A series of
replicates is made for each operational condition.
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Fig. 3. VFR residence time distributions for different rotation rates of the inner cylinder. Fluid: glycer-
ol/water solution, 4.2 M glycerol, k"3.0]10~3 kg/(m s). Tracer. blue dextran, D

M
"3.0]10~12 m2/s.

Axial flow rate: 7.67]10~8 m3/s. ¹"22°C.

Figure 3 depicts a typical set of results for a series of
injections in the vortex center.

These profiles are obtained using a side outlet and
with injections through point I1 (see Fig. 2). The inlet
flow comes through the wall of the external cylinder.

A qualitative analysis of these responses indicates
that the reactor changes from an almost plug-flow
behavior at 2.72 s~1 (26 rpm) to a characteristically
high-dispersion, well-mixed reactor profile at 7.85 s~1

(75 rpm). All the discontinuities in the slope of the
curves that appear below 5.64 s~1 are due to the
collapse of the vortices at the top of the apparatus,
which generate end effects that are registered by the
UV unit. There is a shift of the peak correspondent to
the vortex labeled by the tracer: it leaves the reactor at
higher times for increasing rotations. At 5.97 s~1 this
peak is detected after +7000 s, and above this point
the response curve becomes smooth. Runs up to
18,000 s confirm the absence of any sharp peak (see
Fig. 3, for 7.85 s~1).

Figure 4 shows more clearly the responses corre-
sponding to 2.72 and 7.85 s~1 for the same experi-
ment, illustrating two extreme behaviors.

The intervals between valleys in the 2.72 s~1 curve
correspond to the time spanned between collapses of
successive vortices. When the vortices are moving,
they collapse periodically at the top of the VFR.
Visual observations indicate that the penultimate vor-
tex gradually shrinks down to a critical size. It col-
lapses at this point, mixing its contents with the two
contiguous (upper and lower) vortices. Figure 5 illus-
trates these phenomena.

If a vortex that has received an injection of tracer
has an upper boundary directed inwards there is a de-
lay in its collapse. On the opposite, if this vortex
presents an outflow upper boundary, it is less stable,
and a sudden collapse occurs, instead of a gradual
shrinking (see Fig. 5). The spike pattern of some of the
RTD curves is due to this shrinking-collapse-dilution
end effect. The sharp edges of the spikes correspond to
the collapse of the penultimate vortex. Figure 6 shows
how the RTD curve reflects these end effects.

Both curves in Fig. 6 are remarkably reproducible.
They depict the difference between slow inflow and
fast outflow vortex boundaries. These results are
for a side outlet reactor configuration: inflow bound-
aries are more stable, delaying the top vortices’
collapse until the penultimate vortex has its size
considerably reduced. The higher radial momentum
associated to the outflow boundary, on its turn, is
responsible for a rapid disruption of the vortex
structure when it approaches the exit, resulting in the
sharp slope apparent in the figure. A simplified model
of the flow through the VFR must consider these
phenomena and filter their interference on the mass
transfer parameters fitting procedure. Figure 7 com-
pares RTD curves for two different VFR outlet con-
figurations, and again the influence of end effects is
clear.

It can be seen in Fig. 7 that the periodicity of the
collapse of the vortices does not change when the top
boundary condition is altered from a side outlet, per-
pendicular to the cylinder wall, to a top outlet, per-
pendicular to the liquid level.
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Fig. 4. VFR residence time distributions. Fluid: glycerol/water solution, 4.2 M glycerol,
k"3.0]10~3 kg/(m.s). Tracer: blue dextran, D

M
"3.0]10~12 m2/s. Axial flow rate: 7.67]10~8 m3/s.

¹"22°C.

Fig. 5. Schematic representation of the top vortices’ collapse at the reactor outlet. The upper vortex
displays an inflow (stable) lower boundary. Dashed lines represent the by-pass flow.

Several tests are performed to verify the influence of
start-up conditions on the flow pattern. Assays with
sudden start-ups and using ramps for the rotation
rate, with different slopes (in both directions, clock-
wise and counterclockwise), are compared. The re-
sponses, for all cases, are systematically equal. In the
range of variables tested therein, there is no sign of

multiple steady states. Figure 8 is an example of these
results.

Figure 9 consolidates some results for different
tracer-fluid combinations. The (main) peak height is
chosen to identify the transition between a plug-flow
and a well-mixed behavior. Even though a plot of
peak height versus rotation rate, for a fixed axial flow,
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Fig. 6. VFR residence time distributions. Injection at distinct vortices. Glycerol/water, 4.2 M,
k"3.0]10~3 kg/(m s). Tracer: blue dextran, D

M
"3.0]10~12 m2/s. Axial flow rate: 1.67]10~7 m3/s.

Rotation rate: 4.71 s~1. ¹"22°C.

Fig. 7. VFR residence time distributions. Different outlet positions. Glycerol/water, 4.2 M,
k"3.0]10~3 kg/(m s). Tracer: blue dextran, D

M
"3.0]10~12 m2/s. Axial flow rate: 1.67]10~7 m3/s.

Rotation rate: 4.71 s~1. ¹"22°C.

may show a minimum (close to the perfectly mixed
CSTR limit, see Fig. 3), this parameter is still useful to
our present discussion.

All the experimental data show a similar behavior,
with a transition zone between plug-flow and perfect-

ly mixed patterns. For lower feed rates, the axial
dispersion decreases the peak heights (see water/blue
dextran, Re

!9
"0.173 in Fig. 9) but the basic trend is

the same. Figure 10 shows results for different axial
flows, using the same fluid/tracer combination. The
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Fig. 8. VFR residence time distributions. Different start-up conditions. Glycerol/water, 4.2 M,
k"3.0]10~3 kg/(m s). Tracer: blue dextran, D

M
"3.0]10~12 m2/s. Axial flow rate: 7.67]10~8 m3/s,

Steady state rotation rate: 2.56 s~1. ¹"22°C.

Fig. 9. VFR residence time distributions: dimensionless peak heights. ¹"22°C.

region of transition plug-flow/well-mixed-reactor is
not large.

Desmet et al. (1996a, b) also report a sharp
transition in their experiments, justified as a result of
the onset of turbulence. Ohmura et al. (1997), on the

other hand, do not detect any sharp discontinuity in
the axial dispersion coefficient. The experiments of
both groups are made in closed systems, without axial
flow. One point that may arise is if the behavior
described beforehand is due to turbulent effects or to
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Fig. 10. VFR residence time distributions: dimensionless peak heights. Glycerol/water, 4.2 M,
k"3.0]10~3 kg/(m s). Tracer: blue dextran, D

M
"3.0]10~12 m2/s. ¹"22°C.

Fig. 11. VFR axial dispersion coefficients (D
!9

), calculated from the literature. Fluid: water, 22°C.

the starting of wavy vortices. It should be stressed that
in all the runs performed here, a visual observation of
the vortex pattern does not show any sign of waviness.
For tracer experiments as well as for visualization
runs using Kalliroscope and Maxazyme gel particles,
the flow pattern always corresponds to the PTV re-
gime.

To illustrate the role that turbulence can play, some
calculations of the axial dispersion are made using
the expressions of Desmet et al. (1996b) (with
D

!9
"K

*/5%37035%9
. d). The results are compared with

Tam and Swinney’s (1987), (extrapolated in the
laminar region) and Moore and Cooney’s (1995) for
the axial dispersion coefficient (Fig. 11).
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Fig. 12. VFR responses for a pulse of tracer, calculated from the literature. Water, 22°C. Tracer: blue
dextran, D

M
"8.0]10~12 m2/s. Axial flow rate: 4.17]10~8 m3/s. Rotation rate: 3.35 s~1.

The curves in Fig. 11 are for the water/blue dextran
system. The transition to turbulent vortices indicated
in that figure actually corresponds to an average of
the results reported in Di Prima and Swinney’s (1985)
review for an apparatus with g +0.875, without axial
flow. The arrow in Fig. 11, therefore, is a qualitative
indicator of the center of the region where turbulent
noise should begin to be noticed.

For the geometry studied here, nevertheless, the
beginning of turbulence would be at a rotation rate
one order of magnitude greater than the transition
range in Figs 9 and 10. The visualization of tracer
injections also corroborates the conclusion that the
transition occurs in the region of laminar flow. The
dye dispersion is slow, even when the VFR’s RTD has
a smooth shape (see, for instance, the 7.85 s~1 rota-
tion rate curve in Fig. 3). Although the tracer seems to
be well mixed in the vortex when it reaches the reactor
outlet, it takes some minutes before the whole vortex
is homogeneously filled, and it is possible to follow the
streaklines during this period. This qualitative obser-
vations agree with the idea that intra-vortex mixing in
the laminar region is slow (following Legrand, J. and
Coeuret, F., 1986), but also corroborate the con-
clusion that the transition observed here is not due to
turbulence.

In order to verify the role of intra-vortex diffusion,
it is useful to define (following Pudjiono et al., 1992)
the dimensionless quantity q, ratio of the character-
istic time for convection to that for intra-vortex diffu-
sion, q"¸ .D

M
/(º

!9
. d2). For the experimental set-up

used in this work, q ranged between 4]10~5 (blue
dextran/glicerol, º

!9
"1.54]10~4 m/s) and 8]10~2

(alizarin red/water, º
!9
"2.05]10~5 m/s). Therefore,

the region covered by the experiments includes both
strong and weak diffusional effects. Nevertheless, sys-
tem responses are essentially the same in all the ex-
periments, despite of the value of q. It should also be
stressed that the manual injection of tracer permits
a fine control of the distribution of dye along the
azimuthal direction of the vortex. These facts come in
support to the hypothesis that the main character-
istics of the RTD curves are not due to intra-vortex
diffusion.

Figure 12 displays the results of a sensitivity analy-
sis using the flow models and mass transfer coeffi-
cients of Desmet et al. (1996b) and Moore and Cooney
(1995). The working fluid is water and the tracer, blue
dextran.

Curves 1—3 in Fig. 12 are obtained using the ap-
proach suggested by Desmet et al. (1996a): mass bal-
ances for the two regions that constitute the vortices
are solved. The stack of vortices translates along the
reactor length, and when a new vortex enter the sys-
tem, the last one disappears. At the reactor exit, the
concentration is taken as the radial average in the last
vortex. The resulting set of ordinary differential equa-
tions is solved using the algorithm DASSL, Brenan et
al. (1989). Curve number 4 (Moore and Cooney, 1995)
is obtained after the solution of the mass balance
equation, considering the axial dispersion term — a
classical two-point boundary value transient problem.
This partial differential equation is solved through the
method of lines: the spatial variable (axial length) is
discretized (using spline orthogonal collocation,
Villadsen and Michelsen, 1978), and the resulting set
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Fig. 13. Downstream vortex displacement for different rotation rates. (a) Axial flow rate: 4.58]10~8 m3/s.
Glycerol/water, 4.2 M, k"3.0]10~3 kg/(m s). Tracer: blue dextran, D

M
"3.0]10~12 m2/s. ¹"22°C.

(b) Axial flow rate: 1.67]10~7 m3/s. Glycerol/water, 4.2 M. Tracer: blue dextran. ¹"22°C. (c) Down-
stream vortex displacement for different rotation rates and injection positions. Axial flow rate:

7.67]10~8 m3/s. Glycerol/water, 4.2 M. Tracer: blue dextran. ¹"22°C.

of ordinary differential equations, having time as inde-
pendent variable, is solved numerically (with the algo-
rithm DASSL). The importance of an adequate flow
model to correctly forecast the behavior of this system
is evident from these results. The fitting to the experi-
mental data could be improved, of course, by chang-
ing model parameters, but the main question is: do the
stack of vortices or the classical axial dispersion mod-

els suffice to capture the main features of the flow, at
least for the situation described in this work?

The cause of the VFR behavior observed here be-
comes clear when drift velocities (»

d
) are computed.

The shift of peaks observed in Fig. 3 is by itself an
indication that increasing rotations delay the vortices
downstream movement; this trend is confirmed by the
data presented in Figs 13a—c.
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Fig. 13. Continued.

The sequence of Figs 13a—c is a typical collection of
empirical results, for one fluid/tracer combination. It
is clear that increasing axial flows tend to bring the
curves for different rotations closer, and, on the other
hand, increasing rotation rates of the inner cylinder
tend to stop the axial displacement of the vortices.
When »

d
P0, all the net axial flow through the VFR

will occur through a by-pass around the Taylor vor-
tices. Figure 13c exemplifies the accuracy of the
measurements, comparing results obtained for differ-
ent points of injection of tracer. End effects are
responsible for a decrease in »

d
when the vortex

approaches the reactor outlet. It is evident from these
results that a strong deviation from a perfectly stacked
flow pattern occurs. Since the observed values of
»

d
are significantly less than unity, global mass con-

servation demands the presence of a by-pass stream.
These by-pass pathlines were depicted schematically
in Fig. 5.

Figure 14 is an example of the tests performed to
check the influence of start-up and boundary condi-
tions. To test the importance of initial conditions,
runs with a sudden start of the inner cylinder are
compared with runs monitored after a slow acceler-
ation of the cylinder (Fig. 14 shows results for an
acceleration equal to 1.75 s~2). The axial displace-
ment of the vortices clearly does not depend on outlet
geometry on start-up rate, at least for the range of
variables studied here.

Two kinds of experiments are performed using par-
ticles: visualization runs, with particles continuously
fed into the VFR, and injection of particles using the
chromatography syringe, following the same proced-
ure as for the tracer injections. The same trend is
observed in all the cases, although a tendency for

sedimentation is more apparent for the Maxazyme
particles, which have higher density. If the inner cylin-
der rotation increases, nevertheless, it is always pos-
sible to drag up the particles. Figure 15 exemplifies
some empirical results.

As mentioned previously, this work does not intend
to fit generalized empirical relations: that would de-
mand testing different geometric parameters (g and !)
in a systematic way. Our approach is rather to use
a VFR conveniently dimensioned for applications in
bio-processes and study its behavior in depth. Never-
theless, it is interesting to consolidate all the results we
have reached in a non-dimensional space. Figure 16
displays these curves, showing the drift velocity »

d
as

a function of Re
!9

and Reh.
The effect of these flow patterns on the reactor

performance will be the result of a trade-off among
different phenomena. Supposing that Re

!9
is fixed,

an increase in rotation will slow the movement of
vortices, and increase the flux through the by-
pass around them. At the same time, the vortex/
by-pass mass transfer will also be enhanced, as
well as the intra-vortex mixing. Reducing the rota-
tion, »

d
approaches unity, the ‘stack of vortices’ hy-

pothesis will be more consistent, bringing the sys-
tem closer to a plug flow, at least with respect to
the vortices displacement. On the other hand,
intra-vortex dispersion will be lower, and the reactor
performance may depend on adequate inlet con-
figurations. If solid particles are present, it will be
necessary to sustain a minimum rotation rate, de-
pending on the particle buoyancy. The net effect
of all these factors on reactant conversion will be
checked in specific experiments, reported in a forth-
coming paper.
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Fig. 14. Effect of start-up and boundary conditions on the vortex drift velocity. Axial flow rate:
1.67]10~7 m3/s. Glycerol/water, 4.2 M, k"3.0]10~3 kg/(m s). Tracer: blue dextran, D

M
"

3.0]10~12 m2/s. ¹"22°C. Inner cylinder steady-state rotation rate: 4.71 s~1.

Fig. 15. Vortex drift velocity: tracer experiment compared with suspended particles. Axial flow rate:
7.94]10~8 m3/s Glycerol/water, 4.2 M, k"3.0]10~3 kg/(m s). Inner cylinder rotation"3.04 s~1.

¹"22°C.

5. CONCLUSIONS

After performing a series of tracer injections and
particle-visualization experiments in a Couette—
Taylor—Poiseille apparatus with stationary outer cy-
linder, a flow pattern characterized by drift velocities

less than unity in the low Re
!9

region is identified.
Increasing the rotation rates, it is possible to force the
vortices to a full stop. Up to the best of our know-
ledge, this pattern has not been predicted until now by
theory.
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Fig. 16. Taylor—Couette—Poiseiulle flow: vortex drift velocities for different fluids, as a function of axial and
rotational Reynolds numbers. Error bars illustrate the accuracy of the data for two typical experimental

data sets.

The usual theoretical approach to determine the
modes of the solution for the disturbances starts with
a fully developed, laminar, Couette—Poiseuille basic
flow, and than computes possible bifurcations. To be
consistent with this approach, the drift velocity »

d
has

to be greater than unity in order to reach the absolute-
ly unstable region (where the vortices would fill all the
length of the apparatus). Our experiments point out
a different reality, at least for the reactor configuration
studied here.

These results, besides a purely theoretical interest,
have important consequences in the modeling,
design and optimization of VFRs. The combination
of reactor geometry and flow rates studied here
could be adequate for several distinct applications.
It is important, therefore, to recognize (and to try
to predict) the flow patterns that occur in this situ-
ation. This knowledge is essential to reliably forecast
VFR performances and to have a base to decide on
the convenience of its application in real-life pro-
cesses.
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NOTATION

C tracer concentration, M/l3
C0 mass of tracer injected/reactor volume,

M/l3
d annular gap width ("R

o
!R

i
), l

D
!9

axial dispersion coefficient, l2/T

D
M

tracer molecular diffusion coefficient, l2/T
k axial wave number ("2n/j), l~1

K
*/5%37035%9

inter-vortices mass transfer coefficient, l/T
¸ axial length of the reactor, l
m azimuthal wave number
r radial coordinate, l
r@ dimensionless radial coordinate ("r/d)
R

i
inner (rotatory) cylinder radius, l

R
o

outer (stationary) cylinder radius, l
Reh rotational Reynolds number ("uR

i
d/l)

Reh,c critical rotational Reynolds number for the
onset of Taylor vortices

Re
!9

axial Reynolds number ("º
!9
d/l)

t time, T
t@ dimensionless time ("tl/d2)
º

!9
mean axial velocity, l/T

v
j

j-component of the velocity field, l/T
v@
j

disturbance of the j-component of the velo-
city with respect to the Couette—
Poiseuille flow, l/T

»
d

vortex drift velocity (speed of the vortex
center/º

!9
)

z axial coordinate, l
z@ dimensionless axial coordinate ("z/d)

Greek letters
! aspect ratio, ("¸/d)
f dimensionless distance from the point of

injection (see Fig. 2) C"
(z!z

I
)

¸ D
g radius ratio, ("R

i
/R

o
)

j axial wavelength (height of a pair of vor-
tices), l

l viscosity, M/l T
l kinematic viscosity, l2/T
p growth rate of the disturbance
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q ratio of the characteristic time for convec-
tion to that for intra-vortex diffusion,
("¸D

M
/º

!9
d2), T

q
m

VFR mean residence time ("¸/º
!9
), T

u disturbance oscillation frequency
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dans le Cas de l’Ëcoulement Laminaire Tourbillon-
naire de Couette—Poiseuille. Int. J. Heat Mass
¹ransfer 2, 1075—1085.

Legrand, J. and Coeuret, F. (1986) Circumferential
mixing in one-phase and two-phase Taylor vortex
flows. Chem. Engng Sci. 41, 47—53.

Legrand, J. and Coeuret, F. (1987) Transfert de
Matière Liquide-Paroi et Hydrodynamique de
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Recktenwald, A., Lücke, M. and Müller, H. W. (1993)
Taylor vortex formation in axial through-flow: lin-
ear and weakly nonlinear analysis. Phys. Rev. E 48,
4444—4454.

Sczechowski, J. G, Koval, C. A. and Noble R. D.
(1995) A Taylor vortex reactor for heterogeneous
photocatalysis. Chem. Engng Sci. 50, 3163—3173.

Snyder, H. A. (1962) Experiments on the stability of
spiral flow at low axial Reynolds numbers. Proc.
Roy. Soc. ¸ondon A 265, 198—214.

Stuart, J. T. (1958) On the non-linear mechanics of
hydrodynamic stability. J. Fluid Mech. 4, 1—21.

Stuart, J. T. (1986) Taylor-vortex flow: a dynamical
system. S.I.A.M. Rev. 28, 315—342.

Tagg, R. (1992) A guide to literature related to the
Taylor—Couette problem, In Ordered and ¹urbulent
Patterns in ¹aylor—Couette Flow, eds. C. D. An-
dereck and F. Hayot, p. 303. Plenum Press, New
York.

Takeuchi, D. I. and Jankowski, D. F. (1981) A numer-
ical and experimental investigation of the stability
of spiral poiseuille flow. J. Fluid Mech. 102, 101—
126.

Tam, W. Y. and Swinney, H. L. (1987) Mass transport
in turbulent Couette—Taylor flow. Phys. Rev. A 36,
1374—1381.

Taylor, G. I. (1923) Stability of a viscous liquid con-
tained between two rotating cylinders. Phil. ¹rans.
R. Soc. A 223, 289—343.

Tsameret, A. and Steinberg, V. (1994a) Absolute and
convective instabilities and noise-sustained struc-
tures in the Couette—Taylor system with an axial
flow. Phys. Rev. E 49, 1291—1308.

Tsameret, A. and Steinberg, V. (1994b) Competing
states in a Couette—Taylor system with an axial
flow. Phys. Rev. E 49, 4077—4086.

Villadsen, J. V. and Michelsen, M. L. (1978) Solu-
tion of differential Equation Models by Poly-
nomial Approximation. Prentice-Hall, Englewood
Cliffs, NJ.

Wei, T., Kline, E. M., Lee, S. H.-K. and Woodruff, S.
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