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The flow of granular material, like sand, presents many intriguing effects in particular when 

it is shaken, poured or sheared. Here, the granular medium is modelled by a packing of 

elastic spheres and simulated via molecular dynamics. Dissipation of energy and shear friction 

at collisions are included. The onset of fluidization can be determined and is in good 

agreement with experiments. On a vibrating plate we observe the formation of convection 

cells due to walls or amplitude modulations. Density and velocity profiles on conveyor belts 

are measured and the influence of an obstacle discussed. We mention various types of 

rheology for flow down an inclined chute or through a pipe and outflowing containers. We 

also briefly sketch a thermodynamic formalism for granular material. 

One encounters a rich variety of astonishing, scarcely understood phenom- 
ena when granular materials like sand or powder move [1,2]. Examples are the 
so-called “Brazil nut” segregation [3-51, heap formation under vibration [6-S], 
density waves emitted from outlets [9] and l/f noise in the power spectra of 
local forces [lo]. All these effects seem to eventually originate in the ability of 
granular materials to form a hybrid state between a fluid and a solid: When the 
density exceeds a certain value, the critical dilatancy [11,12], it is resistant to 
shear, like solids, while below this density it will “fluidify”. This fluidified state 
can be rather complex, specially in the presence of density fluctuations and 
density gradients. 

In order to formalize and quantify the complicated rheology of granular 
media various attempts have been made. Continuum equations of motion [13], 
a cellular automaton [14] and a random walk approach [15] have been 
proposed. But most of the above mentioned effects have so far not been 
satisfactorily explained by these techniques. This is because much basic under- 
standing of the relevant mechanisms is still lacking-even for the concept of 
fluidization various definitions are possible [ 161. 

Particularly suited to study this fluidization is an experiment where sand is 
put on a loudspeaker or on a vibrating table [6-817,181. Under gravity the 
sand jumps up and down and although kinetic energy is strongly dissipated, 
collisions among the grains reduce its density thereby allowing it to flow 
(“fluidization”). Under certain circumstances flow between top and bottom can 
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occur in the form of convection cells as has been observed experimentally in 
the case of inhomogeneities in the amplitude of the vibration [19]. Also within 
the heaps [6-S] convection occurs and might even be the motor for the heap 
formation. When the vibration of the plate also has a horizontal component the 
material will flow in one direction, a technique often used in powder transport. 

I will discuss in the following molecular dynamics (MD) simulations of 
inelastic particles with an additional shear friction in two dimensional systems 
performed with J. Gallas and S. Sokolowski. We present data for the onset of 
fluidization [16] and give evidence for the occurrence of convection cells due to 
inhomogeneities in the vibration amplitude or due to walls, an effect that has 
also been observed recently [20,21]. We also report on measurements of the 
velocity and density profiles of powder transported on a vibrating belt [22]. In 
fact, MD simulations [23,24] have already been applied to granular media to 
model segregation [5], outflow from a hopper [25,26], shear flow [27] and flow 
down an inclined chute [28]. 

We consider a system of N spherical particles of equal density and with 
diameters d chosen randomly from a homogeneous distribution of width w 
around d, = 1 mm. These particles are placed into a container of width L that 
is open on the top and has either periodic boundary conditions or fixed walls in 
the horizontal direction. When two particles i and j overlap (i.e. when their 
distance is smaller than the sum of their radia) three forces act on particle i: (i) 
an elastic restoration force, 

ff> = YWZi[lrijl - $(d, + dj)] f$ 7 (14 

where Y is the Young modulus (normalized by the mass), mi 0~ df the mass of 
particle i and rji points from particle i to j; (ii) a dissipation due to the 
inelasticity of the collision, 

f g, = - ymi(uij - rij) ‘ii 
Irij12 ’ 

(lb) 

where y is a phenomenological dissipation coefficient and uij = ui - uj the 
relative velocity; (iii) a shear friction force that mimics to some degree the 
effect of solid friction. 

f ge,, = - yzi(Uij - tij) -k 
Irij12 ’ 

where 7, is the shear friction coefficient and tij = (-ri., rz) is the vector ri, 

rotated by 90”. As compared to other modelizations of the forces acting 

(14 
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between grains [5,25,27,29,30] our equations (1) are simpler since we neglect 

Coulomb friction and the rotation of particles. In fact, solid friction should be 
proportional to the normal force but the term of eq. (lc) is always needed to 
halt the tangential relative motion [29]. We did these simplifications on purpose 
in order to have less, in our opinion unimportant, fit parameters. In fact, under 
realistic deviations from the spherical shape of the particles rotations are 
strongly suppressed. 

When a particle collides with a wall the same forces act as if it would have 
encountered another particle of diameter d, at the collision point. Two forces 
act on the system, on one hand gravitation g = -10 m/s* pulls each particle 
down, on the other hand the bottom of the container is subjected to a vibrating 
motion described by 

z,(t) = A(x) sin(2+) , (2) 

where f is the frequency and A the amplitude. In some applications we will 
consider an explicit spatial modulation of A of the form 

A(x) = A,[1 - B cos(2~xll)]. (3) 

For vibrating conveyor belts this plate undergoes harmonic oscillations in both 
horizontal (x) and vertical (z) directions according to 

x(t) = A, sin(2nft) and z(t) = A, sin(2@) , (4) 

where f is the frequency and A, and A, are x and z amplitudes, respectively. 
The corresponding angle of the composed oscillation is CY = arctan(A,lA,). 

Two initial positions of the particles are considered: they are either placed 
regularly on the bottom of the container or put at random positions inside a 
space several times as high as the dense packing. The initial velocities are 
either zero or randomly chosen. After that the particles are allowed to fall 
freely under gravity and relax for a time that corresponds to ten or twenty 
cycles of the vibration. The displacements, velocities and energies are then 
measured by averaging over up to 200 cycles. We use a fifth order predictor- 
corrector MD with (2-6) X lo3 iteration steps per cycle which vectorizes on the 
Cray-YMP, running at about 10 ps per particle-update for N = 200. 

A recent paper [17] reported experimental observations of a “fluidized” state 
in a 2D vertical packing of steel spheres submitted to vertical vibrations. They 
shake periodically (at f = 20 Hz) 300 steel beads inside a trapezoidal cell with 
side walls tilted by 30” with respect to the vertical axis. Positions and velocities 
of the particles were obtained by photographing the system periodically and 
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then averaging over 15 snapshots taken at a given constant phase 40. Velocities 
were obtained from averages over a time interval Q- around the phase cp. From a 
plot of the density of particles they argued fluidization to occur in the upper 
region of the packing. They found a curious effect: the mean density was found 
not to depend on the phase of the vibration, implying the appearance of a 
steady state preserving the density profile at all times, independent of the up 
and down collective motion. We wanted to reproduce numerically the phenom- 
ena observed in ref. [17] and to quantify the concept of fluidization. 

With J. Gallas and S. Sokolowski we did simulations [16] of precisely the 
same geometry and number of particles as in the experiment. Fig. 1 shows local 
densities along the z-axis, evaluated at different phases as described in the 
experimental paper: (a) is the experiment [17] and (b) our simulation. Our 
curves were obtained by averaging the local density over the 15 ms following 
each phase cp and over 30 shaking cycles after discarding 30 “transient” cycles. 
As can be seen from this figure, our model correctly reproduces the experimen- 

height (mm) 
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Fig. 1. Local density, normalized by the solid density, as a function of the height .z for different 

phases of the vibration for A = 2.5, f = 20 Hz averaged over 30 shaking cycles after having 

discarded 30 cycles in order to reach steady state; (a) experiment of ref. [17] and (b) our 
simulation. 
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tal behaviour of the beads, producing the same smoothly varying density 

profile as function of the height z. 
To check whether the present model is at all able to display a transition from 

a solid- to a fluid-like state we varied both frequency f and amplitude A of the 
oscillations. We recorded the trajectory of a selected “tracer” particle, and 
monitored its motion as time evolved. In the solid-like case the tracer particle 
remains confined to a very small region while in the fluid-like case the 
trajectory seems to explore the entire box. It is important to note that both 
situations can occur for the same value of Af2 which means that Af 2 is not a 
good scaling variable even close to the onset of fluidization. 

Let us next consider the case of a spatial modulation in the amplitude of the 
vibration, i.e. B # 0 in eq. (3), using periodic boundary conditions [20]. In fig. 
2 we see the displacements of the particles after 15 cycles for B = 0.5. Clearly 
the particles flow upwards in the center where the amplitude of the vibrations 
is larger and form two convection cells. If the dissipation coefficient y is 
increased by a factor of ten the convection is completely suppressed while it is 
quite insensitive to yS, even if yS = 0. The elastic modulus also has only a very 
weak influence as long as it remains larger than lo3 (in units of d,). The initial 
condition plays no noticeable effect showing that convection is no transient 
effect. The polydispersity w of the particles only slightly distorts the shape of 
the convection cells. 

The strength of the convection was measured quantitatively by recording the 
average vertical components of the velocities of the particles in the center and 
at the edges. These quantities have also been measured experimentally by 
Ritkai [19]. The strongest convection for the aforementioned parameters is 

Fig. 2. Displacement of the particles after 15 cycles for f = 70 Hz using 200 particles in a box with 

periodic boundary conditions of size L/d,, = 20 with A, = l.Sd,, B = 0.5, w = 0, Y = 5000/d,,, 

y = 2og, -)J$ = 2OOgif. 
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obtained around 60 Hz and it increases dramatically with the amplitude A, as 
was also seen in the experiment [19]. This resonance seems to be the driving 
force of the convective motion. 

A completely different type of convection can be caused by the existence of 
fixed vertical walls without any modulation of the amplitude [20], i.e. for 
B = 0. One sees in fig. 3a for ‘y, = 0 convection cells where the motion of the 
particles at the wall is upward. On the other hand, when 7, # 0 there is at each 
wall a very strong downward drag giving rise to a convection in the opposite 
sense as seen in fig. 3b. The two convection cells remain attached to the walls 
showing that the walls are at the origin of these cells. One also recognizes a 
slight heap formation close to the wall, which might be a first sign of the 
famous sand heaps discovered by Faraday [6-81. 

Let us analyse the origin of the convection due to fixed vertical walls. In the 
case of no shear friction the vertical walls do not transfer any vibrating motion 
of the container but represent only a steric hindrance to the flow. In this case, 
the following scenario applies: When, after levitating from the plate, the 
packing falls back on the bottom of the container only the horizontal compo- 
nent of the velocities of the particles arriving first will survive collisions with 
the downwards vertical motion of the rest of the packing that follows behind. 
So flow parallel to the bottom plate will spontaneously appear and is reinforced 
at each cycle. This parallel flow will only survive in regions where it is coherent 
and the size of these regions will grow due to the reinforcement. When one of 
these regions collides with a vertical wall the flow must go upwards since it 
cannot go anywhere else. This explains not only the orientation of the 
convection but also why the convection cells are attached to the walls as seen in 
fig. 3a. The driving force for these cells are therefore the horizontal flows along 
the bottom plate. 

When shear friction with the wall is present a different mechanism sets in: 
While the particles are pushed up and start to levitate, the packing is still quite 
compressed and so a strong pressure is exerted on the walls giving rise to a 
strong shear friction while the relative motion of the particles with respect to 
the walls is upward. When afterwards the particles fall back and have down- 
ward relative motion with respect to the wall the packing is much looser and 
the shear friction much less efficient. Therefore the upward motion of the 
particles with respect to the wall is slowed down stronger, resulting in a net 
drag down along the wall. If “/, is strong enough this effect can overcome the 
effect described in the above paragraph and the convection can reverse its 
orientation (fig. 3b.) 

Let us next discuss the behaviour of vibrating conveyor belts [22], i.e. 
granular material under harmonic vibrations having a given angle with respect 
to the direction of gravity as described in eq. (4). Vibrating conveyor belts as a 
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(4 

Fig. 3. Displacements after 10 cycles in a system with fixed vertical walls for B = 0, w = 0.5, 

Y = 5000/d,, f= 20 Hz, averaged over 10 cycles. (a) y = 8Og, N =400, L = 40d,, A,, = 3.0d,,, 

y, = 0; (b) N = 600, L = 44d,, A, = 1.25d,, ‘y, = 1OOg. The colours code the quadrant into which 
the particles move (green: left-up, blue: left-down, in (a) purple in (b) orange: right-down, red: 

right-up). 
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means of transportation are very typical for granular media, since neither solids 
nor fluids can be moved on them and are used for instance in the pharmaceuti- 
cal industry to transport pills [31]. 

We measured density and velocity profiles as a function of height z in the 
steady state. Close to the belt the local density is very small, then it has a 
maximum and at large heights it falls off. Only at low frequency the local 
density shows a plateau extending up to larger z values. When the frequency 
increases, the maximum of the local density decreases and the density profile 
smears out. The tail at large heights indicates the existence of particles in a 
gas-like state above the free surface of the packing. The density profile is 
rather independent of the angle of vibrations, which means that the vertical 
component of the vibration determines almost completely the vertical density 
of the beads. When the friction coefficients decrease, the system becomes more 
gas-like. Only very close to the belt the profiles seem independent of the 
friction. The velocity profiles exhibit a well-developed plateau, showing that 
almost all particles move at the same speed. Obviously, the velocity increases 
with increasing frequency and decreasing angle of vibrations and for -y, = 0 the 
velocity is zero. For y, 3 50g the velocity profile depends only very weakly on 
the shear friction coefficient. 

Let us consider the trajectories of the particles during one cycle of shaking. 
When the frequency is low enough all the beads move synchronously along 
elliptic trajectories. The tilting angle of these ellipses increases with the angle 
of vibrations. For smaller shear friction coefficients y, the tilting angle tends to 
rri2, provided the vibration frequency is low enough. When the beads start to 
flow, the character of their trajectories changes: at not too high frequencies 
they move along sinusoidal curves as shown in fig. 4a. With increasing 
frequency, the trajectories become flatter and at the highest frequencies we 
observe a nearly horizontal flow (see fig. 4b). A decrease of the vibration angle 
makes the horizontal motion more pronounced. A similar effect occurs when 
the friction coefficients are increased. For vanishing shear friction y, the beads 
move essentially vertically. 

Next we checked how a circular obstacle inserted into the system influences 
the flow. To this end, a fixed circular body was inserted at x1 = L/2, z1 = A *. 
The diameter of the obstacle was varied from d, = O.ld, to d, = 2.5d,. The 
parameters characterizing the interactions of the obstacle with the particles 
were the same as in the case of particle-particle interactions. Note that due to 
the periodic boundary conditions, the obstacle is repeated along the belt. Even 
the presence of a rather small obstacle rapidly slows down the flow. In fig. 5 we 
see the trajectories of the particles for an obstacle of d, = 1.5d,. Figs. 4 and 5 
have the same parameters so that without the obstacle fig. 5a would look like 
fig. 4a and fig. 5b like fig. 4b. Clearly the presence of the obstacle changes the 
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(a) 

271 

Fig. 4. Trajectories of the particles in steady state during a single cycle. The position of each 

particle is plotted after every 50 time-steps. The plots were obtained for A, = d,, (Y =-n/4, 
y = y, = 5Og, and (a) f = 20 Hz and (b) f = 80 Hz. 

trajectories of all the particles considerably. So, we cannot treat the obstacle as 
only locally influencing the flow, because the stiff repulsion between particles 
generates long-range correlations. 

Using similar techniques but including the Coulomb (dynamic) friction and 
rotations of particles as in ref. [5] new simulations were made recently for the 
flow out of a hopper [25], flow down an inclined chute [28] and flow through a 
pipe [32]. Because of the lack of static friction the simulations of the hopper 
have not reproduced the observed density waves [9] but nevertheless they find 
the existence of a minimal outlet diameter due to some kind of arching which is 
larger for equal sized particles than for randomly distributed radia. The 
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M \ 

Fig. 5. Trajectories of the particles flowing in the presence of an obstacle for A, = d,, (Y = 7r/4, 
y = y = 50g. In (a) the frequency was 20Hz, whereas in (b) 80Hz. The obstacle of diameter I 
d,ld, = 1.5 is given by the full circle. 

simulations down an inclined plane very accurately reproduce the various types 
of flow and the dependence of the velocity profile on the smoothness of the 
plane as they were observed in recent experiments [33]. Flow through a vertical 
pipe with rough walls [32] was found to generate density waves. Their 
appearance and speed strongly depends on small details of the initial positions 
of the grains. The similarity to the experimental situation was illustrated in a 
movie. Including also the static friction into the simulation as in ref. [29], heaps 
and avalanches were obtained and various characteristic angles (repose, mini- 
mal stability, tilting) were measured [30]. 
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Subjected to an external force granular materials locally perform rather 
statistical motions due to the random nature of the size and shape of grains and 
their contacts. For example, on the loudspeaker the individual grains chaotical- 
ly jump up and down forming a gas-like cloud of colliding particles. Also inside 

a shear-cell [12,27,34] or flowing down an inclined chute [13,28,33] in addition 
to a laminar flow with a well-defined (average) velocity profile, one has 
Brownian-like motion of the particles perpendicular to the flow direction. 

The above observations have inspired several authors to use thermodynamic 
concepts to describe granular media. On one hand a “granular temperature” 
T,, has been defined [1,27,35,36] as Tgr = (u’) - (u)*, i.e. proportional to the 
kinetic energy surplus with respect to the global motion. This definition is only 
thermodynamically justified if an equipartition theorem exists which is not the 
case for granular particles since they dissipate energy at collisions. On the 
other hand, Edwards and collaborators [37] have put forward another idea: 
Based on the important observation that granular materials do not conserve 
energy they proposed to consider the volume V to replace the internal energy 
in the usual thermodynamic formalism and define a temperature-like quantity 
X = dV/dS which they called “compactivity”. Although formally intact, this 
formalism is not easy to justify since in many real situations like on the 
vibrating table or on an inclined plane, the volume is not well limited at large 
heights. While Edward’s approach seems intuitively correct for dense packings 
and the definition of T,, reasonable in the limit of strong internal motions or 
weak dissipation, they fail in the corresponding opposite limit. 

Let us present in the following a thermodynamic approach to granular 
materials [38] founded on similar principles as equilibrium thermodynamics 
which incorporates at least partially the intuitive pictures of previous work: We 
shall consider subsystems sufficiently small to have no velocity or density 
gradients and for which the energy flux into them is such that energy 
dissipation is homogeneous. Energy conservation implies that AZ = AEint + AD 
where AD is the energy dissipated in a given time and AZ is the energy that was 
pumped into the system while AD was dissipated in order to maintain a steady 
state. The internal energy Eint is like in traditional thermodynamics the kinetic 
and potential energy of all the degrees of freedom of the grains as elastic 
bodies (translation, rotation, elasticity, etc.). One can now treat the excess 
dissipated energy (A9 = AD - AZ) in a similar way as the heat in usual 
thermodynamics. Since the dissipated energy is proportional to the sum of 
normal forces ff that push the particles together during collision i one can 
express changes in 9 as 69 = @SC where P is an internal pressure acting at 
collisions that we empirically define as @ = p ( f a/Ai) where Ai is the area of 

contact of collision i and the average is performed over all collisions. We define 
the density p of collisions as the number of collisions per unit volume and unit 
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time. The extensive quantity C has a geometrical interpretation and plays the 
role of a potential. It should in fact be proportional [38] to the overlap volume 
VU, that one has for technical reasons in MD simulations, which can be defined 
more precisely as the sterically excluded volume that would arise if the centers 
of mass of the particles follow the real trajectories but one does not take into 
account the elasto-plastic deformation. The “equilibrium” - which is in fact a 
steady state driven by the energy flux - can be defined as the ensemble 
minimizing C and one can postulate in analogy to the second law of thermo- 
dynamics that C should decrease for any change of state at constant internal 
energy Eint : AC d 0. Physically such a behaviour seems naturally be driven by 
the elastic repulsion between colliding (overlapping) grains. 

As in usual thermodynamics one can now work in different ensembles. 
Naturally one would work at fixed M (granular ensemble) in which a granular 
potential G, can be defined as G, = E,,, + @C and where at constart 63 the 
equilibrium is given by the minimum of G,. The response function K defined as 
K = d9dldp = p aCl@ measures how much more energy can be dissipated if Q 
is increased. It should characterize the “fluidization” transition and from its 
frequency dependence one might identify l/f noise [lo]. On top of the granular 
ensemble one can build up the traditional body of thermodynamics as if the 
grains were a gas of particles interacting elastically. One can fix or free the 
number N of particles, define a “granular” temperature Tp and entropy S or 
impose to the system either an external volume V or an external pressure p. A 
novelty for granular media is that one could also impose an external shear r or 
its conjugate, the dilatancy V, [11,12]. 

By considering a “state” to be given by the positions, orientations, linear 
and angular velocities of the grains as rigid bodies, the entropy is well defined 
as noted already in ref. [18]. A reasonable definition for a “granular” 
temperature T, would then be: T, = (aG,/aS), which is, in fact, similar to the 
one defined previously [1,27,35,36]. Experimentally Q and T, are independent 
control parameters of the system: Tg is essentially driven by the amount AZ of 
energy that is fed into the system per unit time. @ /Tg depends mainly on the 
density of collisions and can therefore increase by fragmenting the grains into 
smaller pieces. (Note that when a given grain is split into eight pieces, the cross 
section of each individual piece decreases by a factor four, SO that @ will 
increase by two.) 

We have described within a thermodynamic formalism the fluctuations 
arising from the constant flux and dissipation of energy that drives a granular 
material’s kinematic behaviour. By separating the dissipative degree’s of 
freedom (friction and plasticity) from the conservative ones (translation, 
rotation, elasticity) we define a “granular ensemble” coupled to a “dissipate 
bath”, which is in fact the one in which experimental and numerical measure- 
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ments are usually performed. We introduce a potential C which physically is 
the contact volume of the collisions. It would be interesting to give also a 
statistical interpretation to C in order to define it as a “dissipative potential” 
[39]. The fluctuating internal energy is replaced by a granular potential G, 
controlled by an intensive variable @, conjugate to C. We proposed in ref. [38] 
various numerical tests for the assumptions that we have made in this theory. 

With a rather simple two-dimensional description of a granular medium as 
an ensemble of inelastic spherical particles with shear friction we have shown 
that many interesting rheological properties can be reproduced. Various types 
of convection can occur on a vibrating plate and density waves appear during 
the flow through a pipe. It is not straightforward to determine the material 
constants corresponding to some parameters of the model, like y and ysy,, and so 
a quantitative comparison with experiments in most cases involves some fit 
parameters. More realistic models including real static and dynamic friction, 
rotations of particles, variations in the particle shapes, etc., increase the 
number of parameters but are needed to establish a closer contact to reality. 
Three-dimensional simulations must also be performed since many phenomena 
seem to be due to steric effects. 

I thank my collaborators J.A.C. Gallas and S. Sokolowski for their patience 
and J. Lee, C. Moukarzel, T. Poschel and G. Ristow for many enlightening 
discussions. 
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