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A quantitative description of water flow and solute
transport in the unsaturated zone of the soil is required
to predict the impact of human influences on the environ-
ment. This paper starts with the basic concepts of the
mathematical descriptions of transport processes in ho-
mogeneous media. However, water flow and solute trans-
port in natural soils are significantly influenced by the
occurrence of (1) macropores and structured elements
(micro-heterogeneity), (2) spatial variability of soil prop-
erties (macro-heterogeneity) or (3) a combination of (1)
and (2). In these cases, the classical representations of
water flow and solute transport are not adequate. The
paper presents an overview of some recent modelling
concepts dealing with water flow and solute transport in
heterogeneous media. For each model, we first introduce
the underlying physical concept, and then translate the
concept into a mathematical model. Each model is illus-
trated for a specific water flow and solute transport
problem. Finally, some applications of the models are
discussed. At this moment, it is difficult to specify which
model should be used to solve a particular problem since
no extensive validation of the models has been per-
formed. Additional research is required to develop accu-
rate and rapid measurement techniques for the necessary
input parameters. To be useful in real environmental
problems, modelling concepts for micro- and macro-het-
erogeneity should be coupled in one overall mathemat-
ical framework. ( 1998 Silsoe Research Institute
Presented at AgEng 96, Madrid, Spain, 23—26 September 1996
ening key-note lecture of the third meeting of the EurAgEng Special

erest Group on Soil and Water chaired by Professor Daniele De
achien, 24 September 1996).
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1. Introduction

This paper is primarily devoted to a discussion of
various issues related to the modelling of water flow and
the transport of solutes in the unsaturated zone. The
unsaturated zone is the region through which chemicals
must pass to reach the saturated zone. The various pro-
cesses occurring within this region, therefore, play a ma-
jor role in determining both the quality and quantity of
water recharging into the saturated zone. After a brief
description of the classical approach for simulating water
flow and solute transport in porous media, the paper
highlights some of the problems associated with the clas-
sical approach. The simplified representation of the flow
(by means of the Richards’) and transport (convection—
dispersion, CDE) equations is not able to describe flow
and transport in heterogeneous soils. Two types of soil
heterogeneity which require different modelling ap-
proaches are distinguished: micro- and macro-heterogen-
eity. Micro-heterogeneity refers to the heterogeneity at
the pore scale due to the presence of macropores which
form a separate pore network and macro-heterogeneity
refers to the spatial variability of macroscopic soil prop-
erties which define flow and transport at a macroscopic
scale. The effect of both types of heterogeneity on water
flow and solute transport is well documented in the
paper. The paper also contains a comprehensive dis-
cussion of alternative modelling approaches, which make
it possible to describe more accurately the flow and trans-
port processes in heterogeneous soils, at local and field
scale. They vary from the dual (multi)-porosity models, the
stream tube models and the stochastic-continuum models.
With respect to the stochastic approach, in the discussion,
special emphasis is given to the characterization of spatial
1 ( 1998 Silsoe Research Institute
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variability and the prediction of effective parameters. As
heterogeneity increases, modelling approaches evolve
from a purely deterministic description to a stochastic
analysis.

Notation

a fitting parameter
a perturbation of a in Gardner equation

[Eqn (22)]
a* characteristic length of porous media
a
r

scaling factor of scaled medium
a
w

distance from centre of a fictitious matrix
block to the fracture boundary [L]

b fitting parameter
fY multivariate probability density function

of random variable Y
h perturbation of t
h lag distance [L]
l* correlation length [L]
m shape parameter in van Genuchten

equation [Eqn (3)]
n shape parameter in van Genuchten

equation [Eqn (3)]
q water flux vector [L/T]
t time [T]
v average particle velocity [L/T]
v velocity vector [L/T]

w
i

weighting factor of ith subsystem in multi-
model porosity models

x vector with spatial coordinates
y perturbation of lnK

s
y vector with realizations of random

variables
z depth [L]

z (x) realization of random space function
A expected value of a in Gardner equation

[Eqn (22)]
C solute concentration [M/L3]

C
0

concentration of leaching solution [M/L3]
D dispersion tensor [L2/T]

D
eff

effective dispersion [L2/T]
E spatial domainLR3

E[ ) ] expectation operator
H mean pressure head (expected value of t)
I unity matrix

K conductivity tensor [L/T]
K

a
conductivity of exchange term in dual-
porosity model [L/T]

K
eff

effective hydraulic conductivity [L/T]
K

r
relative hydraulic conductivity

K
s

saturated hydraulic conductivity [L/T]
K*(h) reference hydraulic conductivity
N number of subsystems in multi-modal

porosity models
S
e

effective saturation
S
ei

effective saturation of ith subsystem in
multi-model porosity models

S
hh

spectrum of h fluctuations
¹ output variable of a simulation model

Var time variance of a solute breakthrough
curve [¹2]

½ expected value of lnK
s

Y vector of random variables
Z(x) random space function

a shape parameter in van Genuchten equa-
tion [Eqn (3)] [L~1]

a parameter in Gardner equation [Eqn (22)]
[L~1]

a
s

first-order diffusive transfer coefficient
[T~1]

a
w

first-order advective transfer coefficient
[L/T]

b shape factor in dual porosity model
c
w

empirical coefficient in dual-porosity
model

d
ij

Kronecker delta
e(x) stochastic variability of a Random Space

Function [RSF]
h volumetric water content [L3/L3]
h
i

volumetric water content in pore region
i (dual-porosity models)

h
r

residual water content
h
s

saturated water content
j
L

longitudinal dispersivity [L]
j
T

transverse dispersivity [L]
k (x) deterministic variability of a RSF

m coordinates of travel path of solute
particle

o
vivj

the spatial (cross) correlogram between
the ith and jth component of the velocity
vector

p2
Xij

The ijth entry of &
X

p2
vivj

the ijth entry of the velocity covariance
matrix

q tortuosity factor
t pressure head [L]

t*(h) reference pressure head [L]
t

f
pressure head in macropore domain [L]

t
m

pressure head in matrix domain [L]
!
s

solute interaction term (dual-porosity
models) [M/T]

!
8

water interaction term (dual-porosity
models) [1/T]

&
X

covariance matrix of the particle locations
' hydraulic head [L]
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2. Classical approach to model water flow and solute
transport in porous media

2.1. ¼ater flow

To describe water flow processes in a porous medium,
the continuum approach is used to derive the water flow
equations. The properties of the porous medium as well
as the dynamic and kinematic variables of the fluid are
averaged over a representative elementary volume,
REV.1 The REV must be large enough so that the aver-
ages, when assigned to the centroid of the REV, are
continuous functions in space, but small enough so that
macroscopic properties or variables relevant for the
description of the flow process are obtained. Since the
macroscopic variables and properties are continuous
functions in space, differentials are defined and partial
differential equations based on mass, momentum and
energy conservation can be used to describe water flow in
a porous medium.

Assuming laminar flow and neglecting the inertial
terms of the momentum conservation equation, the mac-
roscopic water flux is linearly related to the hydraulic
head gradient and the Darcy flow equation is obtained:

q"!K )+ (' ) (1)

where q is the water flux vector, K the conductivity tensor
and ' the hydraulic head. In rigid unsaturated soils, the
hydraulic head consists of the elevation head, z, and the
pressure head, t, which results from capillary forces and
is negative. Based on mass conservation, the Richards’
flow equation is obtained:2

Lh(t)

Lt
"+ ) (K (t)+ (t#z)) (2)

where h is the volumetric water content. The water reten-
tion characteristic, h (t), and the conductivity character-
istic, K(t), are soil (layer)-dependent hydraulic properties
that have to be determined in order to model water flow
by means of the Richards’ equation. These characteristics
can be determined from direct measurements of both
h and t, and K and t. Alternatively, using inverse optim-
ization techniques, h (t) and K (t) characteristics can be
found by fitting the solution of the Richards’ flow equa-
tion to observed variables (q, h or t) in controlled flow
experiments.

One of the most popular analytical functions for h (t) is
the one proposed by van Genuchten3 and is given as

S
e
"

1

(1#(at)n)m
(3)

where S
e
"(h!h

r
)/ (h

s
!h

r
) is the effective saturation, h

s
and h

r
are the saturated and residual water content,
respectively, and a, n and m are shape parameters. If
m"1!1/n, then the hydraulic conductivity model of
Mualem4 can be written in terms of the parameters of
Eqn. (3). The relative hydraulic conductivity, K

r
(t)"

K(t)/K
s

with K
s

the saturated hydraulic conductivity,
becomes

K
r
(t)"

(1!(at)n~1 (1#(at)n)m)2

(1#(at)n )mq
(4)

with the same parameters as described above and q,
a parameter describing the tortuosity (mostly choosen as
0)54). Figure 1a shows the water retention characteristic
together with its first derivative, the pore-size distribu-
tion, of a homogeneous sandy loam soil. The pore-size
distribution expresses the fraction of pore space that
drains at a given pressure head. Figure 1b shows the
unsaturated hydraulic conductivity for the same soil.
These properties will be used to model water flow and
solute transport in a homogeneous soil profile. Examples
are given in Figs 1c and d and will be discussed below.
Combinations of the retention curve with other conduct-
ivity models such as those of Gardner,5 Gilham et al.6

and Brooks and Corey7 can be used as well.
To model the field-scale water balance, the one-dimen-

sional formulation of the Richards’ equation, assuming
horizontally uniform soil layers and predominantly verti-
cal water flow, is solved numerically by various computer
codes, e.g. WAVE.8 Figure 1c shows the infiltration of
water into a soil profile after 0)1 d with the following
initial and boundary conditions:

t"!500 cm, 0(z(!100 cm at t"0 (5a)

t"0 cm, z"0 cm at t'0 (5b)

q"!K(t), z"!100 cm at t'0 (5c)

where z is the depth coordinate. The hydraulic properties
of this soil are shown in Figs 1 and b. The top 18 cm is
saturated with water after 0)1 d of ponding (Fig. 1c ) and
a small transition zone, where the water content is larger
than the initial water content but smaller than the
saturated water content, is observed between a depth of
18—30 cm.

2.2. Solute transport

The transport of solutes into a porous medium is
quantified by two variables, i.e. (1) the average solute
particle velocity, and (2) the solute dispersion. The aver-
age solute particle velocity defines the centroid of the
solute plume at a given time or the average arrival time of
solutes at a given depth. For a homogeneous porous
medium, steady-state water flow and an inert solute, the



Fig. 1. Hydraulic properties of a homogeneous soil: (a) h(t) and pore-size distribution with a"0)0109 cm~1 and n"1)288; (b) K
r
(t)

for parameters given in (a) and q"0)5; (c) water content profile after time 0)1 d for boundary and initial conditions given by Eqns
(5a)—(5c) using WAVE;8 (d) solute distribution at time 12)5 d after solute application under steady-state flow conditions (q"2)8 cm/d)

for boundary and initial conditions given by Eqns (8a)—(8c) using WAVE8
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average solute particle velocity equals q/h. The solute
dispersion quantifies the dispersion of the solute plume
around the centroid at a certain time or the dispersion of
the solute breakthrough around the average arrival time
at a certain depth. In porous media, solute dispersion is
caused by two mechanisms: (1) molecular diffusion and
(2) hydrodynamic dispersion. Hydrodynamic dispersion
is explained by the tortuous nature of the convective
stream lines resulting from microscopic fluctuations of
the advection velocity. When the scale of the macro-
scopic transport process is much larger than the scale of
the microscopic velocity fluctuations, the effect of these
fluctuations on the macroscopic solute transport can be
modelled as a Fickian, gradient-type process, similar to
molecular diffusion.9 Using the continuum approach, the
macroscopic solute mass conservation equation is, for
non-adsorbing and non-degradable solutes, written as

h
LC

Lt
#hv )+C!+ ) (hD )+C)"0 (6)
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where C is the solute concentration, v("q/h) the velocity
vector, and D the dispersion tensor. Equation (6) is the
general form of the convection—dispersion equation. Ac-
cording to Bear,1 the dispersion tensor is defined as

D
ij
"j

T
Dv D d

ij
#(j

L
!j

T
)
v
i
v
j

Dv D
#q(h)D

m
d
ij

(7)

where j
L

and j
T

are the longitudinal and transverse
dispersivity, d

ij
the Kronecker delta, q(h) the tortuosity

factor which depends on the water content10 and D
m

the molecular diffusion coefficient. j
L
, j

T
and q(h) are

soil-specific parameters that have to be determined ex-
perimentally from tracer experiments.

As an example, solute movement under a steady-state
water flux of 2)8 cm/d was modelled. The initial and
boundary conditions for the solute transport problem are

C"0, 0(z(!200 cm at t"0 (8a)

C!

D

v

LC

Lz
"50 g/l at 0(t(0)02 d (8b)

C!

D

v

LC

Lz
"0 g/l at t'0)02d (8c)

In Fig. 1d, the concentration profile is shown at 12)5d
after solute application for a soil having the hydraulic
properties displayed in Figs 1a and b, and a dispersivity
of j

L
"1 cm. For one-dimensional transport, Eqn (7)

simplifies to a linear relation between D and v :

D"j
L
v#q (h)D

m
(9)

This linear relation was evident from various leaching
experiments under saturated conditions in repacked
sands.11 Using an interacting flow region model, Skopp
and Gardner12 demonstrated that the linear relation be-
tween D and v is valid only if (1) the variance of the
microscopic velocity fluctuations relative to the average
pore water velocity does not change with increasing flow
rate and (2) the mixing of solutes between zones with
different velocities is proportional to the flow rate which
means that mixing occurs due to horizontal advection of
solutes. Although the linear relation between D and v is
always used for modelling solute transport under transi-
ent conditions in unsaturated soils, leaching experiments
in unsaturated highly structured soils revealed that j

T
increased drastically with increasing flow rate.13,14

3. Problems with the classical approach to model water
flow and solute transport in heterogeneous soils

3.1. Micro-heterogeneity due to macropores and soil
structure

Before illustrating the effect of macropores on water
and solute transport, it is important to mention that an
unequivocal definition of macroporosity does not exist, in
part because there are several forming processes resulting
in macropores of different size, shape and continuity, and
in part because the soil material (texture) has an impact
(what can be seen as macropores in a fine textured clay
soil, can just be a part of the bulk soil volume in a coarse
textured sandy soil). A detailed discussion on the types of
macropores and their hydrodynamic behaviour is how-
ever beyond the scope of this article, but can be found in
Refs 15—17. A theoretical but workable definition,
amongst many other definitions, could be the following:
‘‘macropores are that part of the soil volume, except stones
and biological species, constituting an obvious deviation
from the normal packing of primary soil particles and,
consequentely, water flow and solute transport processes
cannot be described with the classical approach’’.

3.1.1. Illustration of the effect of macropores and soil
structure on water flow

In the absence of a continuous macropore network,
water flow in a homogeneous, non-macroporous soil
obeys the classical water flow theory based on the
Buckingham—Darcy law. However, when macropores are
present this theory may not adequately describe the in-
filtration and redistribution of water as shown by Mal-
lants et al.18 Although these macropores may comprise
only a small fraction of the total soil volume, they can
have a profound effect on the rate of infiltration and
redistribution of water under certain conditions depend-
ing on the amount of water supply to the soil surface, the
initial moisture content of the soil matrix and the micro-
relief of the surface. This behaviour is described several
times in literature as ‘‘channelling flow’’, ‘‘preferential
flow’’, ‘‘short-circuiting’’ or ‘‘bypass flow’’ (Refs 19—21, 15
and 16 amongst many others).

A clear example showing the impact of macropores on
water flow is presented in Fig. 2 which displays the
results of a field experiment Nine time-domain reflec-
tometry probes (TDR probes) were installed under the
soil surface (Fig. 2a) in a grid of 3]3 to measure local
moisture contents (Fig. 2b). Three different doses of
a 0)1% concentrated methylene blue (MB) dye solution22

and one dose of a 0)5% concentrated acid red I (ARI) dye
solution23 were uniformly applied to the soil surface as
four dirac input pulse functions during the experiment
(Fig. 2b ).24 After the infiltration of the dye solutions, the
soil was sectioned at seven depths to visualize staining
patterns indicating preferential flow paths of water.
(Figure 2c shows three horizontal sections at the inser-
tion depths of the TDR probes, i.e. at a depth of 25, 41
and 55 cm.) It is clear from Fig. 2b that the TDR probes 3,
6 and 9 show a profound increase of moisture content
indicating macropore flow through surface-vented and
continuous macropores. This is in agreement with Fig. 2c



Fig. 2. Experimental arrangement (a) and results (b and c) from an infiltration experiment with dye solutions in the field. (b) shows the
increase in water content detected by the TDR probes after application of a series of dye solutions in four steps (1"10 mm of MB*,
2"15 mm of MB*, 3"20 mm of MB* and 4"30 mm ARI**) and (c) displays the horizontal staining patterns of methylene blue at the
insertion depth of these probes, together with the measurement area of these probes (open bars). * MB"0)1% concentrated methylene

blue dye solution; ARI**"0)5% concentrated acid red I dye solution

236 J. FEYEN ET AL.
where it can be seen that most of the staining patterns
(especially at the first two insertion depths) are present
around these probes. The increase of moisture content
detected by TDR probe 8 indicates redistribution of
water from macropores to the matrix, when these macro-
pores end at greater depth in the profile (also called
‘‘internal catchment’’ by Bouma17), since the TDR probes
located above TDR probe 8 (2 and 5) detect no or only
a small increase of moisture content. This is in agreement
with the location of a large red-staining pattern on the
right-hand side bottom corner of the field plot at 55 cm
depth (not shown here).



Fig. 3. Three-dimensional surface rendered image of a macropore network after scanning a 15 cm long, 10 cm internal diameter soil
core with a medical CT scanner25
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Another example clearly showing the influence of mac-
ropores on water flow is presented in Fig. 3. This figure
shows a three-dimensional surface-rendered macropore
network (with a continuous macropore from top to bot-
tom) achieved from scanning a soil core (10 cm i.d., 15 cm
long) with a medical CT scanner and a depth increment
of 1 mm.25 This kind of information, which can hardly be
achieved from dye or impregnation experiments, enables
us to explain the very high saturated conductivity
(478 cm/d) measured on this soil core. Moreover, this
kind of data should provide additional information for
input (structure parameters) in existing water and solute
transport models.

3.1.2. Illustration of the effect of macropores and soil
structure on solute transport

The effect of macropores on solute transport can be
illustrated by solute breakthrough curves.16,17 Relative
solute concentrations, C/C

0
with C

0
the concentration of

the leaching solution, which was measured in the effluent
during steady-state and transient flow leaching experi-
ments in a 1 m long undisturbed macroporous loam soil
column are shown26 in Figs 4 and 5. For the transient
flow leaching experiment, a certain amount of solution
with concentration C

0
(8)3 cm infiltration depth) was

added daily over a small time period (3 h), whereas for the
steady-state flow experiment, the same amount of solu-
tion was applied daily, but a constant flow rate was
maintained at the top of the soil column. The relative
concentrations shown for the transient leaching experi-
ment in Fig. 4 represent concentrations measured in the
effluent which was collected over a 1d period, whereas
relative concentrations measured in the effluent which
was collected over a shorter time period are shown in
Fig. 5. Since the flow rate during the solute application
was much higher, by a factor of eight, for the transient
than for steady-state flow leaching experiments, flow and
transport through macropores occurred during the tran-
sient flow experiment, whereas flow occurred mainly
through the matrix during the steady-state experiment.



Fig. 4. Outflow solute concentrations for steady-state and non-
steady-state flow conditions from a 1 m long undisturbed soil
column. Solute concentration for the non-steady-state flow experi-
ment was measured in the effluent that was collected over a 1 d
period (period of the solute application): z transient flow, mac-
ropores activated; —— steady-state flow, macropores not ac-

tivated

Fig. 5. Outflow solute concentrations for non-steady-state flow
condition from a 1 m long undisturbed soil column. Solute concen-
trations were measured in the effluent collected over smaller time
periods than the time period of the solute application. The lower
figure is an enlargement of the upper figure over a period of 2 d
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These figures clearly demonstrate how macropore flow
influences solute transport and results in a different sol-
ute transport behaviour than the classical convective—
dispersive transport. A typical breakthrough curve (BTC)
when macropore flow occurs, is characterized by a rapid
increase of solute concentration and a long tailing
(Fig. 4 ). When the solution of the convection—dispersion
equation is fitted to such breakthrough curves, the fitted
average particle velocity, v, is higher than q/h, the ex-
pected average particle velocity for the case of piston
flow.27,28 This higher particle velocity is explained by
solutes that are convected in macropores and ‘‘bypass’’
the soil water in the matrix. Bypass flow depends largely
on the flow rate since macropores are only ‘‘activated’’
when the inflow rate exceeds the infiltration rate of the
soil matrix. Therefore, the water application regime may
largely influence the amount of ‘‘bypass’’ flow in struc-
tured soils which tends to be larger for intermittent than
for continuous water application.29

Another important characteristic of solute transport
processes in structured soils is the large increase of solute
dispersion with increasing flow rate since more macro-
pores are activated and the variability of the solute
particle velocity increases drastically (Fig. 4). As a conse-
quence, the linear relation between v and D is not applic-
able for structured soils. The following relation between
v and D was found to be more appropriate:30

D"avb (10)

with b'1, and a, b being fitting parameters.
Finally, the lack of mixing of fast moving solutes (in the
macropores) with slowly moving solutes (in the soil
matrix) results in an apparent increase of D with depth
when D is fitted to BTCs observed at different depths in
the soil profile.14 This lack of mixing is also evident from
the non-monotonic behaviour of the outflow solute
concentrations during the non-steady flow leaching ex-
periment (Fig. 5 ). The decrease of effluent concentration
after the tracer application stopped, indicates that mac-
ropore and matrix solution did not mix completely. At
the end of an infiltration drainage cycle, when the macro-
pores drained nearly completely, the concentration in the
effluent represents mainly the concentration of the solu-
tion in the soil matrix. If the solutions in the macropore



Fig. 6. Water content distribution during an in situ drainage
experiment in an initially saturated sandy-loam macroporous soil

after 0)5 d
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and matrix regions did mix completely, the concentration
in the effluent at the end of the infiltration drainage cycle
would be equal to the effluent concentration at the times
when macropore flow occurs.

Since the classical CDE equation and the linear rela-
tion between D and the flow rate, v, do not account for (1)
‘‘bypass’’ flow and incomplete mixing of macropore and
matrix soil solution and (2) the large increase of solute
dispersion with increasing flow rate and depth in macro-
porous soils, solutes may reach a certain depth much
faster than that predicted by the classical CDE equation.

3.2. Macro-heterogeneity due to spatial variability of
macroscopic soil properties

One of the main applications of physically based water
flow and solute transport models is the simulation of
field-scale solute transport in the unsaturated zone. In
general, the parameters necessary to solve the transport
equations are determined in the laboratory, the so-called
local-scale parameters. If no macropores are present, the
Richards’ equation and the CDE can be applied to model
flow and transport at the measurement scale. However,
extrapolating these local-scale parameters to predict
field-scale-related problems is difficult due to the spatial
and temporal variability of macroscopic soil properties
which determine the local-scale parameters.

Field-scale tracer experiments have demonstrated that
water and solute flow paths and distribution patterns are
extremely complex and irregular in a soil profile, such as
horizontal redistribution of solutes,31 preferential move-
ment through macropores32 or fingered flow,33 amongst
others. Figure 6 illustrates the water distribution after
0)5d drainage of an initially saturated macroporous
sandy-loam soil at Bekkevoort, Belgium. In the same soil,
local solute concentrations were measured using hori-
zontally installed TDR probes at five depths and at 24
locations at each depth.34 Four BTCs at each depth are
shown in Fig. 7 to illustrate the spatial variability of
solute transport, using Cl~ as a tracer.

Near the soil surface, most variability is found in
different peak concentrations, whereas deeper in the soil,
BTCs differ in both the arrival time of the peak concen-
tration and the solute dispersion.

The variability of transport processes is caused by the
spatial variation of soil properties in natural fields (e.g.
see Ref. 35 for a review). A clear indication of the variabil-
ity are the distinct soil layers in a soil profile which may
have different transport properties, e.g. hydraulic proper-
ties36–38 with depth. The effect of soil layering on solute
transport was experimentally demonstrated by Ellsworth
et al.,39 van Weesenbeeck and Kachanoski40 and Feyen
et al.41 Large-scale variation in the horizontal direction,
e.g. two distinct soil types within a single field or a trend
along a slope, also exists. This kind of variation will be
referred to as deterministic large-scale variability.

Soil properties exhibit, in addition to the deterministic,
also stochastic small-scale variability around the mean
behaviour of the properties in all directions. This small-
scale variability is widely recognized, especially for the
hydraulic properties (e.g. Refs 42—45). It is shown in theor-
etical studies that the heterogeneity of the hydraulic prop-
erties affects the transport processes at the field scale.46–49

Both the deterministic and the stochastic variability of
soil properties cause the scale dependency of transport
parameters. This means that transport parameters are
dependent on the scale or volume over which transport
processes — water flow or solute transport — are averaged.
A typical example of the scale dependency is the increase
in the dispersion coefficient for increasing volumes of
averaging BTCs. This can be explained in the following
way. Local-scale BTCs may differ significantly in their
shape, as shown in Fig. 7. Averaging these local-scale
BTCs results in mean BTCs with an enlarged spread
compared with the spreading in the local BTCs. This is
illustrated in Fig. 8 using the approach of van Weesen-
beeck and Kachanosiki50 for a loamy soil. At a depth of
90 cm local-scale BTCs were measured at 24 locations.
The spatial scale (X-axis) indicates the distance over
which local-scale BTCs are averaged, e.g. all local BTCs
located within a distance of 4m are averaged and the
obtained averaged BTC corresponds with the spatial
scale of 4 m. The spreading of the averaged BTC is
expressed as the time variance of the BTC, Var [¹2].
Since several averaged BTCs are available at most spatial
scales, the average of the time variances, E[var], is given
on the ½-axis. The spreading of the BTC increases
sharply between spatial scales of 0 and 1)5m and 3 and



Fig. 7. Variability of solute BTCs of Cl~ at five different depths as measured during steady-state water flow (q"2)8 cm d) in aoamy
macroporous soil: —— maximum concentration; — — — — — minimum concentration; - - - - - - earliest arrival; . . . . . . . . . latest

arrival

Fig. 8. Solute travel time variances E[Var], as a function of
spatial scale of in situ steady-state conservative solute transport in

a loamy macroporous soil
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4)5m. Thus, the solute spreading is increased due to the
local-scale variability in solute breakthrough (between
0 and 1)5m). The smooth and relatively negligible in-
crease beween 1)5 and 3m indicates that most of the
local-scale variability is captured within approximately
2m. However, a second significant increase in solute
spreading is observed if the scale is extended. This may
indicate a shift in local-scale soil properties at a spatial
scale of 3 m and larger.

4. Alternative modelling approaches

In the remainder of the paper, we describe models
dealing with either micro- or macro-heterogeneity. The
modelling concept for each type of heterogeneity will be
introduced and defined in mathematical formulations.
To illustrate the idea of the model concept, the necessary
input parameters are shown in an equivalent way as
those required for the classical approach (Figs 1a and b).
Subsequently, water flow and solute transport simula-
tions for the initial and boundary conditions defined in
Eqns (5a)—(5c) and (8a)—(8c), respectively, using the alter-
native approaches are compared with the simulations of
the classical approach (Figs 1c and d ). Finally, we discuss
some applications and performance of the models using
laboratory and field data.

4.1. Dual-porosity models for ‘‘micro-heterogeneous soils’’

The Richards’ equation is commonly used to describe
water flow in homogeneous soils. However, when macro-
pores are present, the one-domain approach is no longer
a reliable modelling approach because two flow types can
occur in one medium. Therefore, the two-domain con-
cept or double-, dual-, bi (multi) modal-porosity models,
with macropores as a second domain next to the less
permeable micropore region, are nowadays widely accep-
ted for modelling water flow and solute transport in
micro-heterogeneous soils. Both regions are treated as
continua, and the continuum approach is used to estab-
lish the flow and transport equations in each region. The
equations for the separate pore regions are coupled by
means of an exchange term accounting for the mass
transfer of water and solutes between both regions.
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4.1.1. Dual-porosity models for water flow
When the soil is (nearly) saturated, vertical water flow

will be dominated by the flow in the macropores. These
pores drain at low suctions so that a rapid decline of
moisture content and especially of hydraulic conductivity
Fig. 9. Hydraulic properties of a heterogeneous, macroporous s
a
1
"0)2 cm~1, n

1
"2)5, w

2
"0)95, a

2
"0)0109 m~1 and n

2
"1

K
s,1

"981 cm/d, K
s,2

"1 cm/d and K
s,exchange

"0)01 cm/d (with su
(c) water content profile after 0)1 and 0)3 d for boundary and initial
distribution at 0)1 and 12)5 d after solute application under stea

conditions given by Eqns (8a
occurs with only small suction increments near satura-
tion (Figs 9a and b ). Therefore, it is difficult to obtain
detailed data of hydraulic conductivity near saturation.

Some techniques providing data on the K(t) relation-
ship near saturation (e.g. infiltrometers51 and crust
oil (a) bimodal h(t) and pore-size distribution with w
1
"0)05,

)288; (b) bimodal K
r
(t) for parameters given in (a), q"0)5,

bscript 1"macropore domain and subscript 2"matrix domain);
conditions given by Eqns (5a)—(5c) using DUALP—1D61; (d) solute
dy-state flow conditions (q"2)8 cm/d) for boundary and initial
)—(8c) using DUALP—1D61
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method52) have some major drawbacks. Most of these
techniques are labour-intensive and measurements can
only be done over a small range of pressure heads
(0(t(!30 cm). Therefore, the use of indirect
methods where K(t) or K(h ) is estimated from more
easily measured soil properties, such as the moisture
retention curve (and the derived pore-size distribution),
has become more and more common.53

However, to obtain absolute conductivity values, the
conductivity curve must be scaled with a ‘‘matching’’
value. According to van Genuchten and Nielsen,54

Mualem55 and Nielsen and Luckner,56 it is advisable to
take another point rather than the saturated hydraulic
conductivity as a matching point because the large pores
which have only slight relation to the rest of the pore-size
distribution, govern the shape of the conductivity curve
close to saturation (Fig. 9b ). If an unsaturated hydraulic
conductivity value is used as a matching factor, the
estimates of conductivity near saturation may be largely
underestimated by Mualem’s conductivity model when
macropores are present.

This problem arises because (1) the unimodal van
Genuchten3 retention curve is not flexible enough to
describe h (t) data near saturation when macropores are
present and (2) the Mualem conductivity model postu-
lates that pores with a specific size or diameter are ran-
domly connected with other pores. The latter assumption
is clearly not met when larger pores form an independent
macropore network. Therefore, a new approach has been
introduced to fit the retention curve by double- or bi-
modal-porosity models, which are constructed by a lin-
ear superposition of subcurves of the van Genuchten3

type:57–59
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where S
e

is the effective saturation of the total system,
N the number of subsystems that form the total pore-size
distribution (indicated by ‘‘macropore’’ and ‘‘matrix’’
in Fig. 9a), w

i
a weighting factor (+w

i
"1) and a

i
, n

i
and m

i
the shape parameters for each subsystem [see

Eqn (3)].
Due to the increased number of coefficients, the model

is able to fit more accurately the h(t) data near satura-
tion. When the pore system is however not distinctly
bimodal, the parameters of these curves cannot be con-
sidered as having a physical meaning but are rather
shape coefficients.59,60 The relative hydraulic conductiv-
ity function is computed based on the multi-modal rep-
resentation of the retention function:
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derived from [1/(1#(a
i
t )ni )]mi by the Mualem

model equation (Eqn (4); see Figs 9a and b].
Gerke and van Genuchten61 developed an one-dimen-

sional simulation model which describes water flow in
both the macropore and the matrix domain with the
Richards’ equation. Transfer of water between the two
regions is simulated by means of a pressure-gradient-
driven first-order rate equation:
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where b is a factor depending on the geometry of the
aggregates, a

w
represents the distance from the centre of

a fictitious matrix block to the fracture boundary, c
w

is an
empirical coefficient, K

a
the hydraulic conductivity of the

exchange term and t
f

and t
m

the pressure heads in the
macropore (and matrix domain resp.). Figure 9c shows
the results of water infiltration after 0)1 and 0)3 d in a soil
with hydraulic properties shown in Figs 9a and b and
under the initial and boundary conditions given by Eqns
(5a)—(5c). In comparison with the classical approach,
water infiltrates deeper in the soil profile due to the
higher conductivity through the macropores (Fig. 9b ).
However, since the matrix conductivity is lower, the
matrix is not saturated except close to the surface and the
transition zone is much more dispersed as compared with
Fig. 1c.

Other approaches whereby water flow in the macro-
pore region is described as a channelling flow62,63 or
a gravity-driven flow64 can also be used to simulate
preferential flow of water in micro-heterogeneous soils.

4.1.2. Dual-porosity models for solute transport
In a dual-porosity model, convective—dispersive solute

transport takes place in both the macro- and micro-pore
regions. Solute exchange between both regions is caused
by interregion molecular diffusion and advection. The
transport equations are given as65,61
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with h
i
the volumetric water content in pore region i,

relative to the total soil volume. The set of CDE equa-
tions describing solute transport in both the regions is
coupled by the interaction term !

s
. The first and second
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terms of !
s
account for, respectively, the advective and

dispersive exchange of solutes between both regions. The
first-order advective transfer coefficient, a

w
, depends on

(1) the hydraulic conductivity of the interface between
both regions, and (2) the size and shape of the matrix
blocks according to Eqn (13b).66 The first-order diffusive
transfer coefficient, a

s
, depends on (1) the effective mo-

lecular diffusion in the matrix blocks, and (2) the size and
shape of the matrix blocks.67 Simulated concentration
profiles in a dual-porosity medium after 0)1 and 12)5 d of
application are given for illustration in Fig. 9d. It is
evident from Fig. 9d that the dual-porosity model pre-
dicts a very fast solute movement in the macropore
region and that solutes in the macropore region ‘‘bypass’’
the matrix. However, the solute movement through the
matrix is slower than that in the classical approach
(Fig. 1d ) due to the lower hydraulic conductivity in the
matrix.

When coupled with a dual-porosity water flow model,
this model can predict preferential solute transport in
macroporous soils under non-steady flow conditions (e.g.
Refs 64 and 68). An advantage of coupling the dual-
porosity water flow equations with the dual-porosity
solute transport equations is that critical parameters of
the latter equations such as h

i
and v

i
are output variables

of the former equations.

4.2. Stream tube and stochastic-continuum models for
‘‘macro-heterogeneous soils’’

Since solute transport in a heterogeneous three-dimen-
sional variably saturated porous medium cannot be
simulated using parameters determined at the local scale,
several conceptual models have been developed to pre-
dict the field-scale solute transport in ‘‘macro-heterogen-
eous soils’’. The different approaches can be subdivided
in two main classes: a deterministic approach and a
stochastic approach. In the deterministic approach, either
the heterogeneity of the soil is ignored and the heterogen-
ous medium is represented as an equivalent homogene-
ous one, or an exact picture of the observed heterogeneity
for a particular site is generated. Since effective para-
meters for description of field-scale processes cannot
be derived simply from taking the arithmetic averages of
parameters that describe local-scale processes (e.g.
Ref. 69), the former approach requires scale-up tech-
niques that relate local-scale parameters to field-scale
parameters taking into account the stochastic properties
of the local-scale parameters. The other approach, the
exact representation of the field-scale variability, requires
a large amount of data that cannot be obtained.70

In contrast to the deterministic approach, stochastic
models account explicitly for the variability of the soil
properties which are viewed as random variables. Due to
the stochastic nature of the soil properties, i.e. input
parameters of transport models, the output variables of
interest (e.g. drainage, pesticide leaching to groundwater)
are also random variables. Two steps are involved in the
stochastic approach: (1) the statistical characterization of
the soil properties or input variables, and (2) the deriva-
tion of the statistical properties of the output variables
from the statistical properties of the input variables.

4.2.1. Characterization of spatial variability
As mentioned above, macroscopic soil properties show

a deterministic variability, k (x) ("the vector of the deter-
ministic components of all soil properties of interest at
location x), and a small-scale stochastic variability, e(x)
("the vector of the stochastic components of all soil
properties of interest at location, x) (Fig. 10). The
stochastic component vector e (x) is described by a ran-
dom space function, Z(x), (RSF) which determines the
means, variances, covariances of the stochastic compo-
nents and the covariances between stochastic compo-
nents at different locations. The latter covariances define
the spatial structure of the small-scale stochastic hetero-
geneity. For a detailed description of the theory of RSFs,
the reader is referred to Refs 71 and 72.

To reduce the number of probability density functions
(p.d.f.) that are required to define the RSF, it is in general
assumed that the stochastic components are second-
order stationary: (1) the expected value or the mean of
e(x) is constant in the field, and (2) the covariances
between e(x

1
) and e(x

2
) are only a function of the dis-

tance between the two locations h"x
1
!x

2
and not of

the location in the field. In other words, for each separ-
ation vector h, only one p.d.f. is used to define the
covariances of all pairs [e(x

1
), e (x

2
)] with x

1
!x

2
"h.

Also the number of input parameters, i.e. the elements
of the vector e(x) can be reduced drastically if the concept
of scaling is used to describe the spatial variability of the
soil hydraulic properties. The concept of scaling also
simplifies the models discussed in the next sections with
respect to their analytical development and/or to the
computational effort. A first attempt was made by Miller
and Miller,73 who derived the relation between the pres-
sure head (or hydraulic conductivity) of a particular
medium with the pressure head (or hydraulic conductiv-
ity) of a reference medium assuming that both media
have identical internal geometries and porosities. Such
so-called Miller-similar media differ only in their charac-
teristic length, a*. These relations, derived from physical
laws of surface water tension, are given by
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Fig. 10. Deterministic variability, k(x), and small-scale stochastic variability, e(x), of a random space function, Z(x)
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where the subscripts m and r indicate the reference and
the scaled medium, respectively. The scaling factor a

r
is defined as a*

r
/a*

m
. The derivation of scale factors based

on physical laws is sometimes referred as dimensional
analysis.74

However, to make the scaling concept more applic-
able, scale factors are obtained by relating the soil hy-
draulic function at different locations to an average soil
hydraulic function, the so-called functional normaliz-
ation.74 Instead of assuming a strict Miller-similar me-
dium, it is sufficient to assume functional similarity.75 In
fact, only the linear component of the spatial variability
of the hydraulic functions is described by scaling fac-
tors,76 e.g. the a and K

s
parameters in Eqns (3) and (4).

This means that scaling can only be applied as long as the
non-linearity has only a small contribution to the total
variability, e.g. the variability of n is low [Eqns (3) and
(4)]. This means that the spatial variability of the hydrau-
lic properties can be represented by linear translations of
the reference functions t* (h) or K* (h):

t (h,x)"a
1
(x)t*(h) (17)

K (h,x)"a
2
(x)K* (h) (18)

with a*
i

a scaling factor which characterizes the stochas-
tic nature of the hydraulic properties and x a vector
containing the spatial coordinates. In Fig. 11, h (t) before
and after scaling are shown.38 The scale factors were
lognormal distributed as was also observed in the studies
of Warrick et al.,77 Hopmans78 and Mallants et al.,37

amongst others.
Figure 12a displays the bivariate p.d.f. of a

1
and a

2
. To

fully characterize the RSFs of the scaling factor, the
covariance function is estimated (Fig. 12b ).

4.2.2. Prediction of effective parameters using stream tube
models

In this approach, the soil is conceptualized as a collec-
tion of stream tubes. Within each stream tube, water flow
and solute transport are described with a certain trans-
port model. There is no exchange of water and solutes
between the stream tubes. The parameters determining
the water flow and solute transport are viewed to be
deterministic within a stream tube but vary between the
stream tubes. In stream tube models, the spatial structure
of the heterogeneity of soil properties or input para-
meters is not considered. The heterogeneity is represent-
ed by a single p.d.f. which determines the mean, variance
and covariances of the input parameters which are ob-
served at the same location.

One of the first stream tube models (STM) developed
to describe the conservative solute transport was the
so-called Bresler-Dagan model (BD model)79,80 Solute
particles are transported only by convection, thus ne-
glecting the pore-scale dispersion. The solute particle
velocity in a single stream tube is thus identical to the
steady-state water flow in that stream tube. The water
flow velocity in a stream tube is a function of the constant



Fig. 11. Unscaled (left) and scaled (right) h(t) data from a sandy-loam macroporous soil together with the fitted van Genuchten
function. The ratio of the minimum mean-squared error after scaling to the mean-squared error before scaling was 0)87738
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water recharge, q, at the soil surface (which is uniform
over the domain) and the hydraulic properties of the
stream tube. Since the hydraulic properties are random
between the stream tubes, the solute particle velocities
are also random.

If K(t) is described with a parametric function, the
water velocity can be expressed as a function of these
parameters. In the BD model, the only random parameter
taken into account is K

s
and its variability is described

with a lognormal-distributed scale factor. Consequently,
the solute distribution in a heterogeneous field is described
as a function of the p.d.f. of the scaling factor a

2
.

More generally, the first moment of the output vari-
able of interest, ¹ (z, t), is
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where S¹ (z, t)T is the first moment of ¹ (z, t), fY (y) is the
multivariate p.d.f. of the input variables and ¹ (z, t Dy) is
the value of the output variable for the specific input
variables y. Similarly the variance of the output variable
is given as
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If the transport process is simple, it can be solved analyti-
cally, whereas for complex transient transport processes,
¹ (z, t Dy) should be solved using a numerical simulation
model. In Fig. 13a ten realizations of K

s
are shown. Each

realization represents a stream tube, each with a different
value for the K

s
. These sream tubes were used as input in

a numerical simulation model to calculate the infiltration
in a soil under ponding conditions (Fig. 13b) and steady-
state solute transport (Fig. 13c ) subjected to the initial
and boundary conditions given by Eqns (5a)—(5c) and
(8a)—(8c), respectively.

A typical characteristic of a STM is that dispersion
of a solute plume or of a field-scale-averaged BTC,
D
eff

, predicted by a STM increases linearly with
the travel depth of the solute plume. This is in line
with the behaviour of D

eff
with increasing plume

travel distance observed in several lysimeters (e.g.
see Refs 81, 82 and 14) and field experiments (e.g. see
Refs 83, 84 and 34).

We will discuss some examples of the STM. Figure 14
shows the observed field-scale BTCs obtained from
a steady-state in situ solute transport experiment in
a loamy soil. The full lines represent the CDE [Eqn (6)]
which is fitted to the field-scale-averaged BTC. The CDE
parameters obtained from this fit represent ‘‘effective’’
parameters, v

eff
and D

eff
. Note that D

eff
increases with

increasing depth. In addition, the field-scale BTC pre-
dicted by Eqn (19)84,85 based on the p.d.f. of the local-
scale solute transport parameters v and D which are
derived from CDE fits to local BTCs, is shown. In this
particular case, the field-scale BTC, up scaled from local-
scale BTC using a STM, matched the observed field-scale
BTC perfectly.



Fig. 12. (a) Bivariate normal distribution of ln(a
1

) and ln (a
2

)
with mean"0 for a

1
and a

2
, and variance 0)668 and 3)67 for

a
1

and a
1

, respectively; (b) semi variogram for ln(a
2

) with correla-
tion length, l"10 cm and sill"3)67
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Mallants et al.18 determined the multivariate p.d.f. of
the parameters of Eqns (3) and (4). Field-scale drainage of
a macroporous, initially saturated soil was simulated in
the STM framework by numerically solving the
Richards’ equation [Eqn (2)]. Compared with observed
field-scale drainage, both the mean and the variability of
the drainage were underestimated. The main reason was
the inappropriate description of the hydraulic properties
for this macroporous soil. Mallants et al.60 found that
a multi-modal model for h (t) [Eqn (11)] improved the
description of h (t) significantly. In addition, the dual-
porosity model discussed in Section 4.1.1 may describe
better the water flow process in a macroporous soil.

The main purpose of the STM approach is to model
solute transport at the field-scale using the p.d.f. of local-
scale hydraulic parameters (BD model86 ). Under
saturated flow conditions, when water is ponded on the
soil surface, the STM predicts variable water fluxes in
different stream tubes due to variations in K. For such
a condition, field-scale solute transport can accurately be
predicted using a STM.29 For unsaturated flow condi-
tions, the infiltration rate at the soil surface is nearly
uniform and differences in solute velocity between differ-
ent stream tubes are only explained by different water
contents in the stream tubes. However, the observed
coefficient of variation of h is considerably smaller than
the coefficient of variation of v35 and a STM underesti-
mates the field-scale solute dispersion for these condi-
tions (e.g. Refs 40 and 34). To derive the variability of the
solute velocity under unsaturated flow conditions from
the heterogeneity of the hydraulic properties, horizontal
water and solute redistribution must be accounted for.
Therefore, a two- or three-dimensional description of
water flow and solute transport is required which implies
that the spatial structure of the soil heterogeneity has to
be characterized.

4.2.3. ¹he stochastic-continuum approach
By the stochastic-continuum approach, the flow and

transport processes in a heterogeneous medium are
modelled by the same continuum equations that are used
in a homogeneous medium. The parameters of the flow
and transport equations, and as a direct consequence
also the variables, are stochastic functions in space or
RSFs which represent the spatial heterogeneity of these
parameters and variables. In order to apply the con-
tinuum equations, the scale of the heterogeneities of the
hydraulic parameters should be much larger than the
scale of the REV, the elementary soil volume over which
the flow variables are averaged so as to obtain continu-
ously varying variables in space.87 The objective of the
stochastic-continuum approach is to derive, from the
stochastic properties (i.e. mean, variance and spatial cor-
relation structure), of the water flow and solute transport
parameters: (1) the stochastic properties of flow and
transport variables (i.e. pressure head, water content,
water flux, solute concentration, solute flux), and (2)
‘‘effective’’ flow and transport parameters which are con-
stant in space and predict mean water flow and solute
transport variables.

Two methodologies are followed to pursue these ob-
jectives. In the Monte-Carlo approach, heterogeneous
fields, which are realizations of the RSF defining the flow
and transport parameters in space, are generated using
a random-field generator. In an alternative approach,
analytical methods are used to solve the stochastic flow
and transport equations.

4.2.3.1. Monte-Carlo analysis. A Monte-Carlo analysis
involves two major steps: (1) the generation of a hetero-
geneous soil having the desired statistical properties and
(2) the numerical solution of the flow and transport



Fig. 13. (a) Ten stream tubes with different values of a
2

resulting from 10 realizations of a
2

(Fig. 12a) from the bivariate normal
distribution; (b) water content profile after 0)1 d for boundary and initial conditions given by Eqns (5a)—(5c) using a STM;79,80 (c) solute
distribution at 12)5 d after solute application under steady-state flow conditions (q"2)8 cm/d) for boundary and initial conditions given

by Eqns (8a)—(8c) using a STM79,80
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equations in this generated soil. These steps can be re-
peated several times but, when relatively large heterogen-
eous fields, covering several correlation lengths of the
fluctuations of the hydraulic properties, are generated,
ergodicity can be invoked and the statistical properties
of flow and transport variables can be derived from
their spatial distribution in one realization of a random
field.



Fig. 14. Field-scale BTCs measured in situ during steady-state flow (q"1)5 cm/d) in a loamy soil together with fitted macroscopic CDE
(full line), effective parameters of the macroscopic CDE, and predictions of field-scale BTCs using the STM of Toride and
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Several methods exist to generate heterogeneous fields.
A very computationally efficient method is the turning-
bands method.88 By this method, one-dimensional ran-
dom line processes are generated which are subsequently
projected to the multidimensional field. In another spec-
tral method, randomization is done in the spectral do-
main based on the power and cross-spectral density
structure of the random field.89 The inverse Fourier
transform of the random field in the spectral domain
yields the random field in the spatial domain. An
example of a heterogeneous field of K is given in Fig. 15a.
The statistical information required is the mean, the
variance and the correlation scale obtained from the
covariance function (Fig. 12b).

To solve the Richards’ equation numerically, finite-
element and finite-difference schemes are used (e.g.
SWMS—2D90 ). Since the hydraulic properties are inter-
polated or averaged between the computation nodes, the
grid of computation nodes should be sufficiently small to
avoid averaging out of the small-scale fluctuations of
hydraulic properties. A minimal number of five nodes per
correlation length of the soil hydraulic properties is sug-
gested.91 The solute transport equation can be solved
numerically in two different ways: (1) using particle-
tracking methods, and (2) using finite-element or finite-
difference schemes. In the particle-tracking method, the
continuous movement of the particles is discretized in
time. Solute plumes or BTCs are obtained by recording
the movement of large sets of particles. For each succes-
sive time step, the particle displacement is calculated
based on its velocity during that time step. To account
for local-scale dispersion, a random, zero-mean displace-
ment is added to the advective displacement at each time
step. The variance of the random displacement depends
on the local-scale dispersion. The velocities at successive
time steps can be derived from the spatial covariance of
the velocity and from the velocities at previous time
steps which condition the particle velocities at later time
steps.92 When local velocities are obtained after solving
the flow equation, these velocities can be used directly in
the particle-tracking procedure.93,94

To solve the transport equation using finite-element or
finite-difference schemes, sufficiently small time and
space increments should be used to avoid oscillatory
behaviour of the numerical solution. The higher the ad-
vective solute flux as compared with the dispersive solute
flux, the smaller the grid size and the time steps should be
chosen to avoid numerical oscillations.95,96,90 Especially
when water flow is very heterogeneous resulting in high
water fluxes at certain locations, finite-element or finite-
difference schemes require a large computational effort.

The generated heterogeneous field of Fig. 15a is used
as input in a numerical finite-element model
(SWMS—2D90) to simulate water infiltration [initial and



Fig. 15. (a) Random (heterogeneous) field generation of the hydraulic conductivity from the covariance function given in
Fig. 12(b); (b) water content profile after 0)1 d for boundary and initial conditions given by Eqns (5a)—(5c) using SWMS—2D;90 (c) solute
distribution at 12)5 d after solute application under steady-state flow conditions (q"2)8 cm/d) for boundary and initial conditions given

by Eqns (8a)—(8c) using SWMS—2D90
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boundary conditions, Eqns (5a)—(5c), and solute trans-
port (initial and boundary conditions, Eqns (8a)—(8c)]. In
Fig. 15b, we see that the infiltration front varies clearly in
the horizontal direction. The deeper infiltration on the
right-hand side is due to the zone of higher conductivity
values on the right-hand side in the generated hydraulic
conductivity field (Fig. 15a). The solute concentration
profile (Fig. 15c) is very irregular so that when solute
concentrations are averaged along the horizontal direc-
tion, the average concentration profile is much more
dispersed than for the case of solute transport in a homo-
geneous soil using the same local dispersivity (Fig. 1d ).

Monte-Carlo simulations in two-dimensional hetero-
geneous fields are frequentely used with hypothetical
input parameters to investigate the characteristics of sol-
ute transport in physically heterogeneous soil profiles
and to evaluate other model approaches such as STM or
the analytical models discussed in the next section.97–99,48

However, comparison between two-dimensional Monte-
Carlo simulations and field-scale water flow and solute
transport are hard to find in the present literature. The
reason is simply that the necessary input data, that is,
detailed characterization of the spatial variability of the
hydraulic properties and validation data from a detailed
field-scale transport experiment on the same site are rare.
We will discuss shortly two simulation excercises de-
scribed recently in the literature.

Rockhold et al.100 simulated the infiltration of water
and tritium in an initially drained soil profile at the Las
Cruces Trench Site.101. The spatial variability of hydrau-
lic properties was characterized using scaling factors. In
situ measured water contents at the start of the experi-
ment were used to condition the heterogeneous field of
the scaling factors. Instead of generating a random field
using the techniques described above, Rockhold et al.100

interpolated the scaling factors between the conditioned
data. Simulated water and solute profiles matched the
observed profiles quite well without any model calib-
ration. A second example treats the simulation study of
Vanderborght et al.49 based on a steady-state solute
transport experiment in a loam soil.41 Hydraulic proper-
ties were measured on undisturbed soil samples of differ-
ent sizes using different techniques.37 The observed vari-
ance of the scaling factors depended largely on the
measurement method. Consequently, random fields
based on the different techniques showed different de-
grees of variability resulting in different simulated field-
scale BTCs. This sensitivity of the outcome of the simula-
tions with respect to the used measurement technique
means that further evaluation of measurement tech-
niques and simulations is absolutely required.

4.2.3.2. Analytical method
4.2.3.2.1. Water flow. The pertubation-spectrum analy-

sis has been extensively used by various authors to solve
the stochastic water flow equation (e.g. Refs 102—105).
For steady-state conditions, the stochastic water flow
equation is

+ ) (K (x,t(x) )+ (t (x)#z) )"0 (21)

where x is the spatial coordinate and K(x, t (x)) and t(x)
are RSF. To simplify the solution of Eqn (21), the hydrau-
lic conductivity is related to the pressure head by means
of the exponential Gardner5 equation:

K(x, t (x))"K
s
(x) exp (a (x)t (x)) (22)

where K
s

is the saturated hydraulic conductivity and
a a parameter that characterizes the pore size distribu-
tion. Note that t (x) is negative since t(x) represents the
capillary suction heads. Assuming that the local hydrau-
lic conductivity is isotropic, the following equation is
obtained after expanding and dividing Eqn (22) by
K(x, t(x)) (K(x, t (x)) )I"K(x,t(x) ) with I being the
unity matrix):

+2(t)#+ ) ((lnK
s
#at)+ (t ))#

L (lnK
s
#at)

Lz
"0

(23)

Next, ln K
s
, a, and t are expressed in terms of means and

perturbations:

t"H#h, E (t)"H, E (h)"0 (24a)

a"A#a, E (a)"A, E (a)"0 (24b)

lnK
s
"½#y, E (lnK

s
)"½, E (y)"0

(24c)

After substitution of Eqn (24) into Eqn (21) with ½ and
A assumed to be constant, the following relation is ob-
tained after neglecting the products of perturbation
quantities and assuming an average vertical unit hydrau-
lic gradient:104

+2h#A
Lh

Lz
#

Ly

Lz
#H

La

Lz
"0 (25)

It should be noted that the first-order perturbation anal-
ysis is only applicable for soil property variances smaller
than unity. For larger variances, the products of per-
turbation quantities cannot be neglected.

By means of Eqn (25), the pressure head fluctuations, h,
are related to the fluctuations of the hydraulic properties
of the heterogeneous field: a and y. Using Fourier—
Stieltjes representations of the second-order stationary
RSFs which define h, y, and a, in combination with the
spectral representation theorem produces the relation-
ship between the spectra of the fluctuations from which
the spectrum of h fluctuations, S

hh
, is derived. The

Fourier transform of S yields the autocovariance
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function of the head fluctuations. For a deterministic
a and an isotropic field, the variance of the pressure
heads p2 (t), is given as

p2 (t)"
p2 (y) l*2

al* A1!
2 ln(1#al* )

al*
#

1

1#al*B (26)

where l* is the correlation length of y. An analoguous
procedure is followed to derive the stochastic properties
of the water flux fluctuations.

The effective hydraulic conductivity K
eff

is derived
from the ratio of the mean water flow divided by the
hydraulic gradient in the direction of the water
flow.104,105 For a deterministic a, a unit mean vertical
pressure head gradient, and an isotropic field, K

eff
is

given as

K
eff

"exp (½ ) expAaH#

p2 (y)

6 B (27)

In a series of papers, Mantoglou and Gelhar106–108 ex-
panded this approach to transient flow conditions. The
effective conductivities show a large-scale hysteresis, i.e.
dependency of K

eff
on the flow conditions (i.e. drying,

wetting, steady-state) and a large-scale anisotropy de-
pending on the flow condition and the mean hydraulic
head in the soil. Since it was assumed that the local-scale
hydraulic properties are non-hysteretic and isotropic, the
hysteresis and the anisotropy of the effective conductivi-
ties originate from the spatial variability of the local-scale
hydraulic properties. Mantoglou and Gelhar106–108 dis-
cussed in detail these results of the stochastic theory and
confronted them with field and laboratory observations
which indicate a qualitative agreement between the
stochastic theory and the observations. One practical
consequence is that the predicted movement of the soil
moisture plume calculated with effective conductivities of
the stochastic theory will tend to spread out more
laterally and less vertically compared with its predicted
movement if simple averages of local hydraulic para-
meters are used.

Again, confrontation between stochastic simulations
and field observations are rare in the present literature.
Monte-Carlo simulations are sometimes used to validate
the results of the stochastic theory. For example, Pol-
mann et al.109 evaluate the stochastic theory using a de-
tailed numerical simulation of water flow. Tension pro-
files predicted with the stochastic theory were in good
agreement with detailed simulations. Also ohter aspects
of the stochastic theory, variance of tension, hysteresis
and anisotropy of effective conductivities, were con-
firmed by the simulations. However, the statistical para-
meters of local-scale hydraulic properties were exactly
known, whereas, in real field applications, they should be
obtained from a few collected soil samples. Jensen and
Mantoglou110 compared the measured water content and
pressure head under natural boundary conditions with
predictions based on the stochastic theory. Statistical
input parameters were obtained from measured hydrau-
lic properties at soil samples from the same site. Reason-
ably good agreement between predictions and observa-
tions was obtained both for the mean response and the
variance. Although this example illustrates the capacities
of the stochastic theory to predict mean water flow from
mesurements of local-scale hydraulic properties, more
quantitative validation experiments are absolutely
necessary.

4.2.3.2.2. Solute transport. The results of the stochastic
water flow equation, i.e. the variance and correlation
scales of the water flux fluctuations, are used to derive
‘‘effective’’ or ‘‘macro’’-dispersion coefficients that de-
scribe the spreading of the solute plume or the BTC in
a heterogeneous soil. Two approaches exist to derive the
field-scale dispersion. In a first approach, the mean trans-
port equation is evaluated by taking the expectation of
the local stochastic transport equation.111,112

In a second approach, solute transport is described as
‘‘dispersion by continuous motions’’.9,113 The displace-
ment covariance tensor of solute particle positions at
a time t or the variance of the solute particle arrival time
at a certain depth z is calculated from the statistics of the
velocity field using a Lagrangian formulation. The loca-
tion of a particle that was added to the soil at location
x
0

and time t
0

at a time t is given as a function of the
velocity that a particle experiences along its travel path
(Langrangian velocity) as

x (t)"P
t

t0

v (m(t), x
0
) dt (28)

where v(m,x
0
) is the particle velocity and m the coordi-

nates of the travel path. When the velocity fluctuations
are stationary, and the local-scale dispersion is neglected,
the covariance matrix of the particle locations, &x(t), can
be written in terms of the spatial correlation of the
velocities approximately as

p2
Xij

(t)"2p2
vivj P

t

t0

(t!t@)o
vivj

(E (v) t@ ) dt@

"

2p2
vivj

E (v)2 P
z(t)

z0

(z(t)!z (t)@ )o
vivj

(z (t)@) dz(t)@ (29)

where z(t) is the mean location of the solute plume at time
t, p2

Xij
(t) the ij entry of &x, p2

vivj
the ij entry of the velocity

covariance matrix, and o
vi vj

(x) the spatial (cross) correlo-
gram between the ith and jth component of the velocity
vector. A similar first-order approximation of the solute
particle travel path is used to derive the variance of solute
particle arrival times at a certain depth from the stochas-
tic properties of the velocity field.114–116,97 Based on
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moment analysis, the ij entries of the effective dispersion
tensor, D

eff
, are related to p2

Xij
(t) as

D
ij
"

1

2

Lp2
Xij

(t)

Lt
(30)

From Eqns (29) and (30) it follows that D
eff

is a function
of (1) time or average travel depth of the solute plume, (2)
the variance of the advection velocity and (3) the spatial
correlation of the velocity fluctuations. Since the statist-
ical properties of the velocity fluctuations can be related
to the statistical properties of the hydraulic parameters,
the effective dispersion coefficient can be derived directly
from the statistical properties of the hydraulic para-
meters. Close to the input surface when the travel depth
of the solute plume is smaller than the correlation length
of ln (K

s
), l*, the longitudinal dispersion (the dispersion

that quantifies the solute spreading in the direction of the
mean solute flow) increases linearly with increasing travel
depth. For saturated flow conditions and an isotropic
random field the longitudinal dispersion is given as

D
eff

(z)+j
L
v# 8

15
p2(y)vz (31)

where v is the average pore water velocity and z the
average travel depth.

When the travel depth is much larger than l*, D
eff

re-
mains constant with depth and is given for saturated flow
conditions and an isotropic random field as

D
eff

(z)+j
L
v#p2 (y)vl* (32)

This indicates that the correlation length of the soil
property fluctuations is a critical parameter which deter-
mines the range of depths for which a stochastic stream
tube model can be used to predict solute transport in
soils. It also determines the critical travel depth below
which solute transport can be described by a macro-
scopic convection—dispersion model with a constant dis-
persion parameter.

Since the variance and correlation length of the velo-
city fluctuations, which determine D

eff
, depend in

a complex manner on (1) the variance, spatial correlation
and intercorrelation of the soil properties and (2) on the
mean water flow rate, water saturation, and pressure
head, D

eff
will also depend on these soil properties and

flow variables. For instance, for steady-state vertical
water flow (unit mean hydraulic head gradient), the lon-
gitudinal dispersivity, j

L
, increases with decreasing water

saturation for soils in which a and ln (K
s
) are not or

negatively correlated.117 When a and ln (K
s
) are posit-

ively correlated, j
L

decreases with decreasing water satu-
ration until a critical saturation degree is reached. Below
this critical saturation degree, j

L
increases with decreas-

ing degree of saturation.117,48
These results are in contradiction to the experi-
mentally observed drastic increase of solute dispersivity
with increasing flow rate or saturation degree in struc-
tured soils. As mentioned above, this increase was ex-
plained by the activation of large pores at higher flow
rates. This opposite behaviour with increasing water flow
or saturation degree of water flow and solute transport
heterogeneity predicted by the stochastic-continuum ap-
proach and by dual-porosity models is explained by the
implicit assumptions made in the stochastic-continuum
approach. First, it is assumed that local-scale transport
can be described by the continuum equations and that
local-scale hydrodynamic dispersivity is independent of
the flow rate. Second, it is assumed that close to satura-
tion, the coefficient of variation of the hydraulic conduct-
ivity is independent of the pressure head which is in
contradiction to the drastic increase of this coefficient of
variation with increasing saturation degree in structured
soils.118

Based on the theoretical analysis of the stochastic
transport equation, it can be concluded that in order to
use a one-dimensional macroscopic or field-scale convec-
tion—dispersion model to model field-scale solute trans-
port, the effective longitudinal dispersivity should be
adjusted with travel depth and water saturation degree
or flow rate. As a result, the classical assumption of
a constant dispersivity which is independent of the travel
depth and flow rate cannot be invoked.

5. Conclusions

Giving the growing concern about the quality of the
environment, many scientists and decision makers are
interested in a quantitative description of the water flow
and the transport of pollutants in the soil. From the
beginning of this century, soil physicists have been trying
to describe water flow and solute transport in porous
media or soils based on physical laws using a mathemat-
ical framework. However, most of their work was re-
stricted to homogeneous soils. Although it provided
many useful insights into the flow and transport phe-
nomena, their solutions may not be adequate for describ-
ing transport processes in natural soils under field condi-
tions. The major problem in many soils is the discrepancy
between the assumption of a homogeneous porous
medium and the observed heterogeneity, both at the
micro- and macro-scale. Micro-heterogeneity, occurring
in structured, cracked or macroporous soils, and
macro-heterogeneity, due to the inherent spatial varia-
bility of soil properties, have a distinct effect on the
water flow and solute transport processes. Solutions
for environmental water flow and solute transport
problems require adapted modelling concepts including
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the specific transport processes occurring in heterogen-
eous fields.

In this paper, we discussed some recent modelling
concepts dealing with the description of water flow and
solute transport in heterogeneous soils. These models are
also based on physical laws and are expressed using the
same mathematical framework as in the classical ap-
proach. However, they are formulated in a way that the
effects of soil heterogeneity are accounted for. Preferen-
tial solute transport through heterogeneous soils is
described using the dual-porosity concept. The macro-
heterogeneity of the soil is represented by a statistical
model of spatial variability. The statistical parameters
are subsequently used to derive the statistical parameters
of the flow and transport variables at the field scale.

However, before the discussed models can be used to
solve some specific environmental or management prob-
lems, they should be validated extensively. This requires
detailed experiments of water flow and solute transport
for different initial and boundary conditions in a range of
different soil types. In addition, research is needed to
optimise measurements techniques which identify the
necessary model parameters.

These models are well described in the present litera-
ture. It is not an overwhelming job to incorporate other
processes such as a reactive solute transport. An impor-
tant extension of the existing models is the combination of
micro- and macro-heterogeneity in one mathematical
framework. Since macropores act as preferential flow
paths, occurrences of macropores at the field scale may
enlarge the risk of leaching of pollutants to the ground-
water. Therefore, a quantitative prediction of solute trans-
port in macroporous (i.e. micro-heterogeneity) soils at field
or regional scales (i.e. macro-heterogeneity) is an impor-
tant matter in dealing with environmental problems.
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