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Abstract-h view of the practical and fundamental importance to heat and mass transfer, we present a 
two-equation turbulence model for incompressible flow within a fluid saturated and rigid porous medium. 
The derivation consists of time-averaging the genera1 (macroscopic) transport equations and closing the 
model with the classical eddy diffusivity concept and the Kolmogorov-Prandtl relation. The transport 
equations for the turbulence kinetic energy (K) and its dissipation rate (E) are attained from the general 
momentum equations. Analysis of the K--E equations proves that for a small permeability medium, small 
enough to minimize the form drag (Forchheimer term), the effect of a porous matrix is to damp turbulence, 
as physically expected. For the large permeability case the analysis is inconclusive as the Forchheimer term 
contribution can be to enhance or to damp turbulence. In addition, the model demonstrates that the 
only possible solution for steady unidirectional flow is zero macroscopic turbulence kinetic energy. The 
implications of this conclusion are far reaching. Among them, this conclusion supports the hypothesis of 
having microscopic turbulence, known to exist at high speed flow, damped by the volume averaging 
process. Therefore, turbulence models derived directly from the genera1 (macroscopic) equations will 
inevitably fail to characterize accurately turbulence induced by the porous matrix in a microscopic sense. 

c 1997 Elsevier Science Ltd. 

INTRODUCTION 

Turbulence in porous media is a controversial issue. 

As most porous materials considered in traditional 
engineering applications present very small pores and 

small permeabilities and the fluid speed is relatively 

small, the predominant regime is the laminar flow 
regime. However, high speed fluid flow through 
porous media (high Reynolds number) can lead to 
turbulent flow within the pores. Dybbs and Edwards 
[I] and Macdonald er al. [2] have detected exper- 
imentally turbulent characteristics for flow in a porous 
medium, that is, highly unsteady chaotic flow within 
the pores and constant friction coefficient with the 
increase of Reynolds number, at Reynolds numbers 
(based on the average pore dimension and the average 
pore velocity) larger than 300 and 1000, respectively. 

Obviously the representative dimension of the 
largest flow eddy in a porous medium is limited by 
the pore dimension, commonly much smaller than the 
macroscopic dimension of the system. This is only one 
of several characteristics that distinguish turbulence 
in porous media from turbulence in a clear (of solid 
porous obstruction) flow. 

Another fundamental characteristic of turbulent 
flow in porous media is the distinction between micro- 
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scopic and macroscopic turbulence. The only exper- 
imental evidence of turbulence in a three-dimensional 
porous medium is of microscopic turbulence, that is, 
turbulence detected by point-wise probes placed 
within the pores of the medium. There has been no 
attempt to volume-average the local signals within a 
representative volume to obtain the signature of the 
macroscopic turbulence. It is possible that when aver- 
aging a very large number of local (random) signals 
within a representative elementary volume, the micro- 
scopic turbulence be smoothed out. Therefore, tur- 
bulent flow at a macroscopic level might not endure. 
This is another polemical concept of turbulent flow 
through porous media [3] in need of consideration. 

The research attention given to turbulence in 
porous media is almost nonexistent. The lack of pub- 
lications in this area is evidenced by the number of 
related citations found in two recent monographs of 
convection in porous media (Kaviany [4] and Nield 
and Bejan [5]). Bear [6], offered a brief discussion on 
turbulence, inertia forces and separation. We noticed 
with interest his assertion that “most experiments indi- 
cate that actual turbulence occurs at Re values at least 
one order of magnitude higher than the Re at which 
deviation from Darcy’s law is observed” and that 
“ the deviation from Darcy’s law [due to inertial 
forces]. .cannot be attributed to turbulence”. This 
seems to invalidate the model hypothesis of Masuoka 

3013 



3014 B. V. ANTOHE and J. L. LAGE 

NOMENCLATURE 

c specific heat at constant pressure (b porosity 
[J kg-’ K ‘1 li turbulence kinetic energy. equation 

(‘b Forchheimer inertia coefficient, (14) [m’ sm2] 
equation (2) i volumetric specific heat, equation ( 13) 

(‘,i dimensionless coefficient, equation I’ dynamic viscosity [kg m ’ s ‘1 
(14) ,i effective viscosity [kg m ’ s ‘1 

L’,” dimensionless coefficient, equation 1’ kinematic viscosity [m’ s- ‘1 

(27) “I turbulence (eddy) viscosity. equation 

.:, fz, /;yZ ~~iZtZZ?ZZi~! t s 
(14) [m’ XC’] 

I’,* turbulence (eddy) viscosity, equation 
J viscosity ratio (27) [m’ sag ‘1 
K permeability [ml] /’ density [kg m ‘1 
k thermal conductivity [W m ’ Km’] II temperature fluctuation [K] 

P pressure fluctuations [Pa] 0 time-averaged temperature [K] 
P time-averaged pressure [Pa] fJ Schmidt number. 
RC, turbulence Reynolds number 

Q norm of the time-averaged velocity 
vector. equation (5) [m s ‘1 Subscripts 

I time [s] 0 reference 
7-0 reference temperature [K] e effective porous medium (fluid and 
11 fluctuation fluid velocity [m s ~‘1 solid matrix) 
C’ time-averaged fluid velocity [m s ‘1 f fluid 
.Y space coordinate [ml. i. j. 171. I direction of a vector component (i, 

j. V?, I' = 1. 2. 3) 
Greek symbols t turbulence 

I thermal diffusivity. equation (13) 7 temperature 
[m’s ‘1 I: turbulence kinetic energy depletion 

/r isobaric coefficient of thermal Ii turbulence kinetic energy. 
compressibility [K ‘1 

h,, Kronecker delta operator 
c depletion of turbulence kinetic energy. Superscripts 

equation (14) [ml s-‘1 ( 1 time-averaged. 

and Takatsu [7] who assumed the deviation from 
Darcy’s law (or the Forchheimer flow resistance) to 
be caused by turbulence (see also Nield [8]). 

The consideration leading to our decision to 
embark on the pursuit of developing a turbulence 
model for flow in porous media is not only funda- 
mental, but practical as well. In combustion processes, 
for instance, the use of porous inert media leads to a 
reduction in gas temperature and, as a consequence. 
to a reduction of NO, emissions [9]. Evidently, tur- 
bulence affects the transport phenomena and com- 
bustion parameters (flame thickness, gas temperature, 
species concentration distribution, burning speed 
etc.). Using a simplified form of the standard tin: 
model for turbulent flow, Lim and Mathews [lo] 
showed that better agreement between numerical pre- 
dictions and experimental results is obtained when 
accounting for turbulence effects on combustion. We 
note in passing that their turbulence model does not 
consider the additional drag (viscous and form) effects 
imposed by the porous solid matrix to the flow. 

A similar approach was taken recently by Prescott 

and Incropera [I I] for simulating the solidification 
process of a binary metal alloy. Turbulence within the 
mushy (porous) zone can play a significant role in 
this thermal process. Their proposed XX model for 
simulating the momentum transport within the mushy 
zone was obtained by adding a sink term in the li 
equation of turbulent clear flow. This sink term arti- 
ficially damps turbulence in the mushy zone. Although 
showing good agreement with their experimental 
results, their turbulence model is of limited use, as 
indicated by Lage [l2], because it does not take into 
consideration buoyancy and other drag effects 
imposed by the porous region. 

Another important practical phenomenon, of natu- 
ral origin, is the contaminant transport by air flow 
(wind) through forests and crops. This kind of flow is 
generally modeled as flow through porous media. The 
geometric dimensions and fluid speed are such that 
turbulence can be achieved. Wang and Takle [ 131 pre- 
sented a turbulence model for boundary layer flow 
near porous obstacles. They stated that “time aver- 
aging followed by spatial averaging implies that 
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obstacle elements interact only with time-averaged 
flow. turbulence energy-cascade process is pre- 
cluded under these assumptions”. This is a very impor- 
tant statement as it discourages the derivation of a 
turbulence model for flow in a porous medium by 
applying the volume averaging technique to a stan- 
dard (closed) time-averaged clear flow turbulence 
model. 

Rudraiah studied the turbulent natural convection 
in porous media using a Darcy-Lapwood model, that 
is, a Darcy momentum equation extended by the 
inclusion of the convective acceleration term (Rud- 
rdiah [14] and Rudraiah et al. [15]). Although the 
inclusion of the full convective acceleration term is 
still a controversial topic (Nield [16, 171 and Vafai 
and Kim [18]), the absence of the Forchheimer term 
when modeling high speed How in porous media is 
difficult to justify. 

Gratton et al. [ 191 presented a randomly varying 
morphology-based turbulence model obtained by the 
hierarchical modeling methodology and an advanced 
averaging technique developed by the same authors. 
Subsequently, Travkin and Catton [20] introduced a 
two-temperature heat and momentum transport 
model in which the morphology of the medium plays a 
fundamental role. Their momentum transport model 
does not include the convective inertia term. More- 
over, for irregular media morphology, several com- 
plications arise with the inclusion of morphology- 
specific differential and integral terms in the average 
transport equations. 

A model derived by Lee and Howell [21] is appar- 
ently the most elaborated version of a general (porous 
medium) turbulence transport equation. Their model 
was derived by including a turbulence eddy diffusivity 
in the viscous diffusion term of the general momentum 
equation. They did not time-average the general 
momentum equation and, therefore, their model neg- 
lects an additional contribution of the Reynolds 
stresses. Furthermore, the absolute value of the vel- 
ocity vector appearing in the Forchheimer term is 
treated as turbulence independent, an approximation 
that simplifies the derivation of the K and E equations 
tremendously. 

Our purpose is to present the main steps towards 
the derivation of a macroscopic turbulence K-E model 
for incompressible flow in porous media. The tur- 
bulence model is derived by time-averaging the gen- 
eral equations for porous media with all terms : time 
acceleration, convective inertia, pressure gradient, 
Darcy, Forchheimer and Brinkman. This endeavor is 
important because it provides: (1) the correct K--E 
formulation, consistent with the general equations ; 
(2) a mathematical model for simulating macroscopic 
turbulence in complex geometries ; and (3) the means 
to verify the ability of a macroscopic general model 
to represent the turbulence phenomena known to exist 
at the microscopic level. 

Although compressible flow is of scientific and prac- 
tical interest, our decision to consider the flow as 

incompressible is justified : including compressibility 
effects at this stage would complicate the modeling 
considerably and obscure some important physical 
aspects easily observed with the simplified model. 
Moreover, there are several applications in which 
compressibility effects are negligible (low Mach num- 
ber in the case of gas flow and incompressible fluid in 
the case of liquid flow) and yet turbulence plays a 
fundamental role in the process (e.g. combustion, Lim 
and Mathews [lo], liquid heat exchangers, Joshi and 
Webb [22]). 

DERIVING THE TIME-AVERAGED EQUATIONS 

It is universally accepted that, for turbulence in a 
clear flow, the Navier-Stokes equations are valid. The 
only difficulty in solving them for situations that 
involve turbulence is the necessity of a very large num- 
ber of grid points, required by the presence of a large 
range of scales. Time averaging procedures [23] offer 
means to model the phenomenon with equations that 
can be solved numerically in a more economical way 
(less CPU time). 

Harlow and Nakayama [24] seem to have been the 
first to propose a two equation (K-C) turbulence 
model. Hanjalib and Launder [25] found a rep- 
resentation of Reynolds stresses in terms of eddy vis- 
cosity for the ti--E turbulence model. A few years later 
a more general representation was proposed by Laun- 
der et al. [26]. Many other models were developed, 
but the ti--I: model is still commonly used because of 
its low computational effort requirement. 

For deriving a X-E turbulence model for flow in 
a fluid saturated porous medium, we start from the 
general flow equations that include the time accel- 
eration term, the convective inertia term, the pressure 
gradient term, the Darcy (microscopic viscous drag) 
term, the Forchheimer (microscopic form drag) term, 
the Brinkman (viscous diffusion) term and the Bous- 
sinesq-Oberbeck (buoyancy) term. Assuming a rigid, 
isotropic and fixed porous matrix and a constant 
properties newtonian fluid, the mass, momentum and 
energy conservation equations [27], written for con- 
venience in tensor notation, are : 
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= k ‘&+“’ (3) 
‘,,’ I 

where pr is the fluid density, C$ is the porosity of the 
matrix, K is the permeability of the matrix, c,. is the 
Forchheimer coefficient, v is the fluid kinematic 
viscosity, /J’ is the isobaric coefficient of volumetric 
thermal expansion, c is the specific heat and k, is 
the effective thermal conductivity of the medium. The 
viscosity ratio J = p/p for most applications can be 
assumed to be equal to one, although it was indicated 
recently by Givler and Altobelli [28] that its value 
can deviate substantially from one for high porosity 
media. 

In the above equations each of the variables (vel- 
ocity components, pressure and temperature) is writ- 
ten as a sum of the time-averaged (U,, P, 0) and 
fluctuating values (u,,p, 0). The acceleration of gravity 
vector is assumed to be aligned with the direction of 
the third axis, x3. Viscous dissipation and pres- 
sure work done on the fluid are ignored and the 
Boussinesq_-Oberbeck approximation is invoked. 

In order to facilitate the time averaging process of 
the momentum equation. the Forchheimer term is 
expanded as follows : 

uu 
[(u,+u,)(U,+u,)]“‘(U,+u,) = QU,+Qu,+ TL~, 

(4) 

where 

Q = tU,U,) ’ (5) 

In equation (4) only the linear terms of the expansion 
are kept. The (small) second and higher order terms 
are dropped. 

The time-averaged version of equations (l)-(3) is 
obtained by using the averaging procedures found, 
for instance, in Tennekes and Lumley [29]. After sub- 
stitution of (4) into (2), the time-averaged equations 
become 

$+“,g= _L!p 3’ 

I prax, + vJ&z$ - 2 (up,) , , ax, 

Employing the eddy diffusivity concept, we obtain 
a formula for the Reynolds stresses 

(9) 

The turbulence fluctuations are in general noniso- 
tropic, but for simplicity their nonisotropy is neglec- 
ted. Therefore. here we have considered a scalar eddy 
viscosity v,. 

A similar equation is introduced for the second- 
order correlation between the turbulent fluctuations 
of velocity and temperature, using the turbulent ther- 
mal diffusivity (c+ = rt/ar) [30] 

(70 
u,H = -c(rp. 

?s, (10) 

With equations (9) and (10) into equations (7) and 
(8) and after some manipulation, the average momen- 
tum and energy equations become 

;;! + u,z = _ ,tg 

+Z$+r++!$i] 

^ 

where 

3. _ (PC)C k, 

(PC), %“=(pc),. (13) 

The turbulent viscosity, v,, which appears in the 
previous equations is found from a dimensional analy- 
sis process [3 l] and the Kolmogorov-Prandtl relation 
[32, 331, as a function of the turbulence kinetic energy. 
K and its rate of dissipation, E, respectively, 

l?u, clu, 
t;=r-p 

a.& ox, (14) 

Further on we derive the average equations for ti 
(turbulence kinetic energy) and for c (decay rate of 
turbulence kinetic energy). Before doing so, we point 
out that the scale of the decay rate of turbulence 
kinetic energy, E, can be obtained by considering the 
eddy length scale of turbulent flow (Bejan [34], p. 
272). As the largest eddy within the porous matrix is 
constrained by the pore size, d, the E scale becomes 

2 
--k’ 

J 1 

%2 

3 

d (15) 

where [(2/3)~]” represents the scale of the fluctuating 
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velocity u,. Equation (15) can be used in place of the 
E function of equation (14) when estimates of E and v, 
are desired. 

DERIVING THE K AND E EQUATIONS 

The first step in deriving these equations is to find 
the momentum fluctuating equation by subtracting 
the average equation (11) from (2) 

(16) 

Multiplying equation (16) by u,, doing the sum- 
mation in i and averaging it in time, produces the 
following equation in K 

g + “,E = - L 
[ 
~pu,+f(u;u;)u 

a-x, Pf 
I 

/ 1 

-au, 2 - 

-u,u, --+vJ ,,= +B%g ax, I I 

V c 
-2&rc-~#?~ 

K K” (17) 

Using the assumption that the turbulent transport 
processes are parallel with the molecular ones and the 
time and length scales for turbulence are much smaller 
than the ones for the main flow, the turbulence term 
in the right side of equation (17) is modeled with the 
gradient transport hypothesis [25] 

(18) 

Using equations (9) and (18) in (17), the final K 

equation is obtained as 

Notice the last two terms of equation (19). These 
are the contributions of the Darcy and Forchheimer 
terms, respectively, to the equation. The Darcy con- 
tribution, -(2qhvc)/K, is always negative and pro- 
portional to K. Therefore, this term enhances the 
depletion of turbulence kinetic energy within the med- 
ium for any value of K # 0 and it increases with an 
increase in K or a decrease in the permeability K. The 
same can be said of the first part of the Forchheimer 

contribution. We cannot be definite about the second 
part of the Forchheimer contribution because the vel- 
ocity components and their derivatives can be either 
positive or negative, in general. 

The equation for the dissipation rate of turbulence 
kinetic energy E is obtained by differentiating equation 
(16) with respect to x,, multiplying the result by v 
(&,/ax,) and averaging it in time. An intermediate 
result is 

3.5 
,+U,g=vJ 

8& 

I axj ax, 

2 

au a=u -zvu 22 
1 ax, ax, ax, 

_2v au, au; au, 
ax, ax, ax, 

(204 

(2Oc) 

(204 

CW 

c--ml 

@Oh) 

(20i) 

The term (20b), which represents the turbulent 
diffusion of E, is modeled from the gradient transport 
hypothesis as 

(21) 

The destruction term (20~) is determined by the 
length and time scales only (or any linear independent 
combination of these two scales ; here the independent 
combinations are K and E). Using a simple dimensional 
analysis we can conclude that 

(2Oc) = CC2 ; 

The production terms (20d), (20e) and (2Of) were 
modeled by Hanjalic and Launder [25] based on the 
physics of turbulence : the production of dissipation 
can be approximated in terms of u~u,, E and the mean 
rate of strain. The same result was derived using the 
coordinate invariance and dimensional analysis 
methods [35]. Using the same modeling one obtains 
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(20d) + (20e) + (200 = c,, ; %:~(~+f$)- 
Using equations (20)-(30) the final E equation is 

obtained as 

(23) 

A similar approach is used for the buoyancy term - 
(2Og), taken to be a function of u,O, c and ti. which 
leads to 

In the c equation the set that corresponds 
Forchheimer contribution (20h) needs also 
modeled in terms of average quantities. 
differentiation and some manipulation we get 

(20h) = -2v@$ Q; 

I/, I/, L;u, i;u, 
+Q c’s, c’u, 

to the 
to be 
After 

_ 
(25a) 

Wb) 
_ 

For (25b), an expression analogous with (Y) IS 
proposed : 

(25c) 

(25d) 

,<\\ 

Notice in equation (31) that the Darcy contri- 

Because of the damping effect of the porous matrix. 
flow with low turbulence Reynolds number 

bution, - (2@c)jK always negative and linearly pro- 

Rr, = ~~ti’/t: might be the norm and not the exception. 

portional to i:, leads to a decrease in the depletion 

According to Jones and Launder [36] and Launder 

of turbulence kinetic energy. Again, the Forchheimer 

and Sharma [37] new terms have to be added in the JC 
and r-: equations to extend the model to low Reynolds 

contribution might be to increase or decrease C, 

number values. These terms resolve also the problem 

depending upon the sign of the velocity components 

of boundary conditions for c:. which further on will 

and their derivatives. 

denote only the isotropic part of the dissipation rate 
(c is set to zero at the solid walls). 

Al, ?u, 
--v ( ?’ u / I 

?x, 3x, ” ?.Y, 2x, iis, 

where 

I’ ,* = Cl,. ff (27) 

The term (25~) can be written as 

(25~) = ;g$(II.,. = ;gg (28) 
, , 

and (25d) becomes : 
_ _-_ 

The K and r. equations with the new terms included 
are, respectively. 

By using the Reynolds stresses equation (9). the pre- 
vious expression becomes : 
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-;vv,* a3u, 
ax, ax, ax, 

+ a'u, 
ax, ax, ax, 

+ 2vv, 
a2u, azu, 

ax, ax, 3.x” ax, (33) 

It is worth mentioning that the added term in the E 
equation (last term of equation (33)) was presented in 
a wrong form in Jones and Launder [36] and corrected 
later on by Launder and Sharma [37]. 

The precise evaluation of coefficients f,, fi and f, 
(defined next in equation (35)) of equation (33) 
requires comparison with experimental results. In a 
first approximation they can be assumed to have 
values close to the values for clear flow at low tur- 
bulence Reynolds number (Re, approaching zero) as 
the variations of these coefficients at low Reynolds 
numbers are small. Therefore, we suggest for pre- 
liminary tests 

,f; = 1.0 ,f2 = 0.7 and f, = 0.08. (34) 

Here,f, is the correction coefficient for the turbulent 
viscosity equation (14) : 

K2 
vt =J;c,y. (35) 

The present model assumes no influence of Re, on v,.. 
The final proposed model is composed of several 

time- and space-averaged equations : (6) continuity ; 
(11) momentum ; (12) energy ; (32) kinetic turbulence ; 
(33) dissipation turbulence ; (35) eddy viscosity; and 
(27) v,. equation. Notice that the resulting turbulence 
porous-model reduces to the well known K--E model 
of clear (of solid matrix) turbulent flow when the 
permeability of the porous medium tends to infinity. 

FULLY DEVELOPED FLOW 

Experimental data of flow in porous media are not 
very numerous and usually they apply to a particular 
fully developed flow. In order to facilitate the com- 
parison between the proposed model and exper- 
imental results, we consider a particularization of the 
general equations (6), (1 I), (32), (33) and (35). In it, 
we assume fully developed flow aligned with x,. This 
assumption leads to U2 = U, = 0 (velocity along x, 
direction only) and aP/ax, = aP/dx, = 0 (pressure 
function of x, coordinate only). 

Under these assumptions the simplified balancing 
equations, neglecting buoyancy, become : 

au, -=o 
ax, 

+v~[(Ey+(y] 
-J+;K- $!+,K 

-&[($y+(g+(g) 
a& ,+u,$& , [(vJ+$t] 

+ &iivJ+ :)&I 

+&[(vJ+$E] 

a3 u, +v,* __ ( ax, ax: 
+ a3u, a3u, -+ axu, 

ax, ax: 
-++ 1 ax: ax: 

(37) 

(38) 

(39) 

(40) 

+2w[(~)‘+(53+2(p$J]. (41) 

Further simplification can be made by assuming 
that the temporal derivatives of the time-averaged 
quantities are zero, that x2 and xj derivatives of the 
time-averaged velocity component U, are negligible, 
that U, is positive and that E is function of x, only. 
These assumptions are reasonable when considering 
steady turbulent flow through a bounded porous 
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medium. Using these assumptions, and dropping the 
subscript ‘l’, equations (36)-(41) are transformed 
into : 

(43) 

Equation (42) is the simplified momentum equation 
(37) in the X, direction, equation (43) is the simplified 
turbulence kinetic energy equation (40) and finally, 
equation (44) is the simplified R equation (41). Observe 
that equations (38) and (39) are used to simplify equa- 
tion (40). 

It is worth noting that the new momentum equation 
(42) is the macroscopic Forchheimer-extended Darcy 
equation modified for unidirectional turbulent flow 

The turbulence effect is revealed by the last term of 
equation (45), that is, the longitudinal variation of 
turbulence kinetic energy. Consider a situation in 
which the initial flow is slow enough to be laminar 
within the porous medium. The fluid speed is then 
increased in discrete increments and let stabilize. From 
a macroscopic point-of-view, one would expect the 
last term of equation (45) to be positive when con- 
sidering the transition from laminar to turbulence 
regime in a low porosity medium (a medium consisting 
mainly of interconnected conduits) because, at the 
same fluid speed, the turbulent regime should yield 
higher pressure drop than the laminar regime (we 
conceive that one can have both regimes at the same 
speed). In this case, the turbulence kinetic energy (and 
the pressure gradient) would increase continuously 
along the flow direction until a certain constant lim- 
iting value is achieved at a certain x location. 

In the same experiment, a lower pressure drop (than 
the laminar flow case) can be achieved when con- 
sidering a very high porosity medium, one in which 
the solid matrix would act similarly to isolated solid 
obstacles (e.g. spheres positioned in a lattice far apart 
from each other). In this case the last term of equation 
(45) would be negative and the pressure drop would 
decrease continuously in x until a limiting value is 
achieved beyond which K would no longer change. 

These two conceptual experiments are important to 
realize that K must be bounded by a certain limiting 

value so that the pressure gradient is also bounded. 
With this in mind, we went further on and analyzed 
equations (43) and (44), in which V, was substituted 
by ~,,K’/c, to determine what value K should tend to. 
When K is constant, equation (43). rewritten as 

implies that i: must be constant also. When ti and E 
values do not change in s anymore, equation (44) 
reduces to 

indicating that E must be zero. From equation (46). ti 
must be zero also. Then, the only equilibrium solution 
is the trivial solution (K, t.) = (0,O). Hence, a constant 
level of macroscopic turbulence kinetic energy differ- 
ent than zero is unlikely to persist in fully developed 
unidirectional flow through a porous medium. This 
conclusion, born out of our turbulence model, con- 
firms Nield’s [ 161 prediction “. that true turbulence, 
in which there is a cascade of energy from large eddies 
to smaller eddies, does not occur on a macroscopic 
scale in a dense porous medium” and also the state- 
ment by Nield and Bejan [5] that “_ .it does not make 
sense to talk about turbulence on a macroscopic scale 
in a natural porous medium because one cannot have 
unimpeded eddies of arbitrary size”. 

Notice that when dropping the porous medium con- 
tributions to equations (46) and (47), an equilibrium 
solution with c = 0 and any K is possible. Therefore, 
it is the porous medium drag effect that leads to the 
zero K solution. For a medium of low porosity, the 
turbulence pressure gradient is expected to be higher 
than the laminar equivalent and so K will not decrease 
with X. Since K is nonnegative and K = 0 is the only 
equilibrium value of K, this implies that K increases 
without limit as .Y increases if K is initially nonzero. 
but this is not physically realistic. It follows that, in 
this case, the only valid solution to equations (46) and 
(47) is one where ti is zero for all values of s. If a 
high porosity medium is considered, the s derivative 
restriction is lifted (ti can increase or decrease with s). 
Nevertheless the pressure gradient must be bounded 
also in this case and the system will inevitably tend 
to K = 0, that is, the macroscopic turbulence kinetic 
energy is damped out no matter the situation. 

Therefore, the only possibility of turbulence affect- 
ing the macroscopic pressure drop within a porous 
medium is when the flow does not satisfy the fully 
developed assumptions invoked previously. This effect 
can be to increase or to decrease the macroscopic 
pressure drop compared to the laminar case. This is 
most likely to occur near the interface region (entrance 
and exit) between the porous medium and the clear 
flow. Within the entrance interface region, for exam- 
ple, where the flow from the clear fluid region must 
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accommodate (develop) to the porous medium pres- 
ence, the fully developed assumptions do not hold. 

It is interesting to contrast the previous conclusions 
with existing ideas of turbulence in porous media. 
Published work by Fand et a/. [38] and Kececioglu 
and Jiang [39] indicates that by increasing the fluid 
speed the flow evolves from the Forchheimer regime 
to a regime referred to by them as the turbulent regime. 
The measurements made by Fand et al. [38] and by 
Kececioglu and Jiang [39] are macroscopic pressure 
measurements, that is, measurements not made at the 
pore level. Therefore, it would have been impossible 
for them to detect microscopic effects (in a single 
pore). 

The evidence of turbulent flow presented by Fand 
et al. [38] and Kececioglu and Jiang [39] is not direct, 
but inferred from experimental results presented in 
terms of pressure drop and fluid speed. We notice that 
when plotting their data in terms of pressure gradient 
divided by fluid speed versus fluid speed (e.g. Fig. 5, 
p. 168 of Kececioglu and Jiang [39]), the slope of the 
curve decreases as the regime evolves from Forch- 
heimer to the regime called turbulent. This leads to 
the following conjecture: if one is capable of main- 
taining the laminar regime beyond the transition zone 
(like extending the laminar curve into the turbulence 
regime) the pressure drop of the laminar regime would 
be greater than the pressure drop of the turbulence 
regime, at the same fluid speed. This result, according 
to our model, would be typical of a high porosity 
medium. 

We used our simplified (fully developed) turbulence 
model to simulate the pressure drop versus velocity 
relationship presented by Fand et al. [38] and Kece- 
cioglu and Jiang [39]. Solving numerically equations 
(42))(44), together with equation (14), we observed 
that any combination of positive turbulence kinetic 
energy and depletion levels set at the initial location 
of the porous medium (x = 0) leads to the unrestricted 
growth of K and E with x and the growth of the pressure 
drop. Since this conclusion is physically unrealistic, 
the hypothesis of nonzero IC and E must be incorrect. 
The implication is, therefore, that IC and E must be 
zero. 

The anomaly of pressure variation is most likely to 
be related to their experimental configuration as other 
experimental works (e.g. Dudgeon [40], Lage et al. 
[41]) with high speed incompressible flow through 
porous media indicate a very different behavior, that 
of the pressure gradient relationship with fluid speed 
evolving from a quadratic to a cubic polynomial func- 
tion. This tendency, according to our model, is more 
in line with the expected effect of turbulence in low 
porosity media because it denotes an increase in the 
pressure gradient as the flow evolves from laminar to 
turbulence regime. Notice that Dudgeon [40] referred 
to strong local pressure fluctuation measured at the 
pore level, that is, his macroscopic measurements cor- 
respond to a microscopic turbulent flow regime. 

The transition from quadratic to cubic function, 

detected by Dudgeon [40] and Lage et al. [41] using 
macroscopic measurements, is most likely to be 
related to turbulence at the macroscopic level pro- 
duced near the fluid-porous interface, as the fluid flows 
from the clear region to the porous medium region 
(notice that in both cases the pressure measurements 
are made outside the porous region). As this effect is 
very small (because the transition from quadratic to 
cubic, as shown experimentally, is continuous and 
smooth) there is very little hope that macroscopic 
turbulence persists downstream of the interface, where 
the flow eventually becomes unidirectional and fully 
developed. This aspect supports our previous 
conclusion. 

SUMMARY AND CONCLUSIONS 

It is interesting to compare the K-E turbulence 
model for clear flow (Hanjalic and Launder [25] and 
Speziale [35]) and the general model obtained for 
incompressible flow through a porous medium. We 
can easily notice in equations (1 l), (32) and (33), the 
appearance of new terms as a result of including the 
Darcy and Forchheimer terms in the Navier-Stokes 
equation. 

We can now look at the consequences of adding the 
Darcy and Forchheimer terms. There is one obvious 
feature. The effect of the Darcy term is quite clear. 
The presence on the RHS of equation (32) of a term 
proportional to K and with a negative coefficient is to 
cause an additional decay in K, the turbulence kinetic 
energy. Likewise, the presence of a similar term for E 
on the RHS of equation (33) shows that the rate of 
dissipation of K also will decay with time. It is easy to 
verify that the effect on K is stronger than the effect 
on E. Thus turbulent fluctuations are damped out. 
(Incidentally, this provides further justification for our 
linearization of the Forchheimer term: even if the 
turbulence level is high initially it will tend to decay.) 
The effect of the Forchheimer term need not be similar 
because the drag effect represented by the For- 
chheimer term is of different origin (form drag) 
and the shape of the medium can enhance or damp 
turbulence. 

The energy equation (12) is very similar, the only 
difference being the appearance of the porous medium 
properties instead of the ones for fluid. In addition to 
this the transport of energy by convection is reduced 
by a factor of 4. The constant oT (included in c+) 
should be close to the one determined for the clear 
flow case. Its precise value needs to be determined by 
fine tuning the results of the general model to reliable 
experimental results. 

We point out that, depending on the characteristics 
of the fluid and solid porous medium, and the flow 
speed, two separated energy equations might be 
necessary, one for the fluid and one for the solid. 
Unfortunately, additional work needs to be done for 
obtaining a general and accurate correlation of heat 
transfer coefficient between solid matrix and fluid. 
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Existing equations correlating Nusselt number with 
porosity, Reynolds number and fluid Prandtl number 
are restricted to a very specific medium (spherical 
particles in a packed bed) and limited to low or high 
Reynolds number [42]. Achenbach [43] recently pro- 
posed to combine the asymptotic laminar and tur- 
bulent heat transfer correlations for pebble beds via an 
empirical arrangement factor, a function of porosity. 

Referring to the constants,f;,,fi, f;,, L’, ,. c,~, l’,;, c,,, c,. 
rr,’ and o, we can say that they should have values 
close to the ones for clear fluid turbulence as long as 
the medium presents high porosity, but they might be 
function of porosity as well. In the last case for large 
porosities (d, + I corresponds to clear flow) their lim- 
its need to be the corresponding clear flow values. The 
new constant L.;* needs to be determined by matching 
with experimental data. 

The analysis of a simplified turbulence model for 
steady unidirectional fully developed flow indicates 
that macroscopic turbulence can not persist in a 
porous medium once this flow configuration is 
achieved. This is not at all unexpected. Even when 
having turbulence at the pore level, if one measures 
the fluctuations of a flow parameter (e.g. fluid speed) 
at several points within a representative volume (space 
occupied by several pores), the volumetric averaging 
of all these quantities might lead to a smooth macro- 
scopic result. This hypothesis needs to be verified 
experimentally. 

We mention in passing the first attempt to obtain 
macroscopic turbulence quantities from microscopic 
quantities by Kuwahara (>I u/. [44]. Using a Iow-Rey- 
nolds two-equation turbulence model they simulated 
the microscopic flow field within a two-dimensional 
periodic porous medium. Their results show, for 
unidirectional flow, the microscopic turbulence level 
within the pores, Notice also that the macroscopic 
pressure gradient obtained by volume averaging the 
microscopic pressure is very close to the one given 
by the Forchheimer-extended Darcy equation. Our 
present model (equation (45)) would predict the value 
zero for the macroscopic turbulence kinetic energy 
gradient (aligned with the flow direction). This is 
exactly what Kuwahara et al. [44] imposed in their 
simulations : notice that they used periodic boundary 
conditions for microscopic h-, what leads to zero gradi- 
ent for macroscopic ri. 

It is important to point out that time averaging does 
not commute with volume averaging. Therefore. one 
can not use the results of microscopic K and i: pre- 
sented by Kuwahara ef al. [44] to compute the macro- 
scopic turbulence kinetic energy because the micro- 
scopic x represents the local time-averaged turbulence 
intensity. To get the real macroscopic x one has to 
obtain the local values of the fluctuation fluid velocity 
within a representative elementary volume (rev), take 
the volume average of it and then time average the 
result. Notice that the fluctuation fluid velocity can 
take positive or negative values within a rev, in con- 

trast with the positive microscopic ti that is always 
positive. 

Finally. it is convenient to comment on an obser- 
vation made by one of the reviewers that “. the order 
of time averaging and spatial averaging is independent 
of the final form of turbulence model so long as the 
contributions of microscopic eddies to macroscopic 
turbulence held is justifiably modeled in averaging 
(filtering) process”. The observation is pertinent. 
However, the situation is more complex than the sim- 
ple problem of commuting space and time averaging. 
If one can prove that the time-integral commutes with 
the space-integral of the momentum equations, then 
we would agree with the reviewer’s comment. The 
closure problem after each averaging is what creates 
the difficulty in proving that the integrals commute. 
Even if one does not close the problem after each 
averaging. the final model obtained by the sequence 
time- and space-averaging will present different terms 
when compared with the terms obtained by space- 
and time-averaging the equations, so the closure prob- 
lem will be different in each case. Therefore, in prin- 
ciple. the final form of the turbulence model depends 
on the averaging (space and time) order. 

The comment by Wang and Tackle [ 131. quoted in 
the seventh paragraph of the introduction section, 
then holds if the closure model for the Reynolds stress 
does not account for the interaction with the solid 
matrix in a space-averaged sense (this can only happen 
if the closure of the time-averaged equations is post- 
poned for after the space averaging process). If. say, 
the time-averaged equations are closed without regard 
to the solid matrix. then there would be no term in 
the average equations to represent the interactions 
between instantaneous quantities and the solid matrix. 
This lost information can no longer be recovered by 
the space averaging process and turbulence. as caused 
by the solid matrix. is totally precluded from the 
model. 

Our model suffers from similar difficulties. When 
time averaging the balance equations after closing the 
space averaging problem, the model inevitably loses 
the information of how local (in space) quantities 
contribute individually to the time-averaged quan- 
tities. This is in line with the concept of space aver- 
aging and the result does not preclude turbulence 
induced by the porous matrix in a space average sense. 
It does, however. preclude the accurate charac- 
terization of turbulence induced by the porous matrix 
in a microscopic sense. As pointed out in our manu- 
script. this is the main deficiency of a general tur- 
bulence model obtained from the space-averaged 
equations. 
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tion of equation (26), a closure for the Forchheimer con- 
tribution to the t: equation. 

geostatistical porous layer for high permeability media. 
ASME HTD, 1994.41, l-14. 
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