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ABSTRACT 

An artificial neural network (ANN) approach for tackling the inverse heat 
conduction problems was explored - specifically for the determination of 
surface heat transfer coeflcient at the liquid-solid interface using the tempera- 
ture profile information within the solid. Although the concept is quite generic, 
the specific cases considered have a particular relevance to food process 
engineering applications. The concept was tested with two geometric shapes: a 
sphere and a finite cylinder, the former representing the simplest geometry and 
the latter representing a cross product of an infinite cylinder and an infinite 
plate. In developing the ANN model, two approaches were used. In the first one, 
the ANN model was trained to predict the surface convective heat transfer 
function, Biot number (Bi) from the slope coeflcient (m) of temperature ratio 
curve under varying boundaly conditions. i'2e associated mean relative 
prediction errors were as high as 5.5% with a standard deviation of 8%. In the 
second ANN approach, m was related to tan-' (Bi) which signijicantly improved 
the model's predictive performance. The second ANN model could be used with 
Biot numbers up to 100 with a mean error less than I .  5 % for either of the two 
geometries. Heat transfer coeficients evaluated using the developed ANN model 
were in agreement (< 3 % error) with those calculated using conventional 
numerical/analytical techniques under a range of experimental conditions. 
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INTRODUCTION 

Inverse heat conduction problems (IHCP) are encountered when the heat 
transfer coefficient, heat flux or temperature histories are to be determined at 
the surface based on the measured temperature history at one or more internal 
locations. In general, the direct problem determines the solution in the whole 
domain for known conditions at the boundary while the inverse problem deals 
with the opposite, i.e., the determination of boundary conditions based on 
known conditions within the domain. Experimentalists involved in estimating the 
heat flux histories at the surface of a heated body generally need to rely on 
IHCP. One of the main difficulties in solving the inverse heat conduction 
problems is their ill-posed nature. Hence, they are sensitive to measurement 
errors. Quite often, the heated surfaces are not suitable for fixing sensors or for 
making accurate measurements, and temperatures are measured at one or more 
internal locations. In such cases, temperature measurements suffer from damping 
and lagging effects also (Beck er al. 1985). One of the main tasks in developing 
an algorithm for the IHCP is to make the estimated surface quantities insensitive 
to the measurement errors. Several algorithms based on finite difference method 
(Beck and Wolf 1965 and Beck er al. 1981) and finite element method (Bass 
1980) have been developed for solving the IHCP. An excellent treatment of the 
difficulties encountered in inverse heat conduction problems and the methods 
used to solve these problems can be found in Beck et al. (1985). 

Inverse heat conduction problems are encountered in several applications. 
The problem considered is quite generic in terms of evaluation of convective 
surface heat transfer coefficients although this has been focussed on thermal 
processing conditions in this paper. Traditional thermal processing involves 
application of heat to foods, packaged in sealed containers, to destroy a 
designated population of microorganisms of public health concern at every 
location in the food (particles and liquid). Since liquids heat faster than solid 
particles, the central location of the largest solid particle is generally taken as 
the critical location. Under the heating conditions (retorting) designed to deliver 
the desired heat treatment to the critical particle, the bulk of the food at other 
locations in the container are obviously overcooked. Developments in thermal 
processing technology have centered around improving the product quality by 
minimizing the temperature gradients within the can. In one technique, cans 
containing liquid and solid foods are subjected to agitation while they are heated 
in a retort. The mixing of the contents improves the associated heat transfer. In 
continuous flow aseptic processing systems, particulate foods dispersed in a 
carrier liquid are heated in a scrapped surface heat exchanger (SSHE) and then 
made to pass through a set of holding tubes (where particles receive heat from 
the liquid through equilibration) subsequently cooled in another SSHE and finally 
packaged under aseptic conditions into presterilized containers. Modeling of 
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time-temperature history in foods undergoing thermal processing requires data 
on the associated fluid-to-particle heat transfer coefficient. In aseptic processing, 
heat transfer is influenced by the fluid viscosity and flow rate as well as the tube 
flow conditions. In order to evaluate the heat transfer coefficient, the tempera- 
ture history is measured inside a solid particle at a specified location and the 
heat transfer coefficient at the surface is estimated by solving an inverse heat 
conduction problem. This is done by computing the temperature history at a 
specified location based on an assumed heat transfer coefficient by solving the 
governing heat conduction equation (direct problem) and comparing it with the 
measured temperature history. The heat transfer coefficient is then altered 
sequentially in the appropriate direction until the computed and the experimental 
temperature histories match within the desired level of accuracy (Sablani 1996). 
This procedure is iterative and is subjected to some of the inherent disadvantages 
described earlier. 

The objective of the present study was to devise a noniterative method, 
using ANN, to solve the IHCP for estimating the fluid-to-particle heat transfer 
coefficient from the temperature profile information gathered at an internal 
location in the solid body. As a first step, a spherical geometry was used. 
Subsequently, the procedure was extended to the more common cylindrical 
geometry of finite length which was a cross between an infinite plate and an 
infinite cylindrical configurations. 

ARTIFICIAL NEURAL NETWORK 

Artificial neural network (ANN) is a computational structure inspired by 
biological neural systems. An ANN consists of very simple and highly 
interconnected processors called neurons. These processors are analogous to 
biological neurons in the human brain. The neurons are connected to each other 
by weighted links over which signals can pass. Each neuron receives multiple 
inputs from other neurons in proportion to their connection weights and 
generates a single output which may be propagated to several other neurons. The 
function of the neuron is shown schematically in Fig. 1. The inputs (Xj) into a 
neuron are multiplied by their corresponding connection weights (W,), summed 
together and a bias (b) is added to the sum. This sum is transformed through a 
transfer function (f) to produce a single output (P) which may be passed on to 
other neurons. Sigmoidal, hyperbolic tangent, linear threshold or Gaussian 
functions are the commonly used transfer functions. The function of a neuron 
can be mathematicalIy expressed as: 

N 
P = f ( c  WiXi+b) 

i=l 
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FIG. 1 .  SCHEMATICS OF A SINGLE NEURON 

A multi-layer artificial neural network is shown in Fig. 2. Each layer will 
have several neurons. The layers are classified into input, hidden and output 
layers. The neurons in the input layer receive signal input from the user. These 
signals are carried to the first hidden layer through the connections. The signals 
are transmitted this way to the output layers which produce the network output. 
The number of neurons in the input and output layers correspond to the number 
of input and output variables. The number of hidden layers and the number of 
neurons in each hidden layer can be varied. Neural networks can have various 
structures depending on the way in which the neurons are interconnected and on 
the flow of information though the network. One of the commonly used ANN 
structures is the feed-forward structure. In this structure, the connections are 
linked from the input layer to the output layer. In their book on “Neural 
Network Computing”, Bharath and Drosen (1994) have given a comprehensive 
description of the structure and function of ANN. 

The development of ANN model involves a training phase. In this phase, 
the network parameters such as connection weights and bias are adjusted such 
that, for the given input dataset the neural network-predicted output dataset 
matches with the desired output dataset. At the beginning of the training phase, 
the network weights and bias are initialized arbitrarily. For the given set of 
inputs to the network, the response of each neuron in the output layer is then 
calculated and compared with the corresponding desired output response. The 
errors associated with the output response are computed and transmitted to the 
previous layers. The weights are adjusted so as to reduce these errors in each 
neuron from the output to the input layer. Such a method of adjusting the 
connection weights is called a back-propagation algorithm. This procedure is 
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repeated over the entire training set for a specified number of times (training 

Our- 1 

Out-2 

Out-3 

I lnpur Layer Hidden layen Outpur Layer 

FIG. 2. SCHEMATICS OF A MULTILAYER ANN MODEL 

In recent years, artificial neural network (ANN) models have attracted 
researchers in many engineering disciplines. ANNs, developed basically with the 
intention of mimicking the ability of the human brain in recognizing the pattern, 
distinguishing the shapes etc., have found useful applications in many areas. 
Schreck et al. (1995) used ANN models to predict the unsteady separated flow 
field on a wing. Dissanayake and Pan-Thien (1994) developed a method to solve 
the partial differential equations using neural network concept. Singh ef al. 
(1994) used artificial neural network to model the entire flow field around an 
automobile. 

There are several food processing areas in which ANN models have been 
used successfully. Examples include applications in sensory analyses and quality 
control (Park ef al. 1994; Sayeed ef al. 1995; Tomlins and Gay 1994), 
classifications (Ding and Gunashekaran 1994), drying applications 
(Balasubramanian et al. 1996), heat transfer (Sablani 1996; Sablani ef al. 1996, 
1997), psychrometry (Sreekanth ef al. 1998) etc. The key feature of the ANN 
which has attracted researchers is its ability to learn and generalize the 
relationship between complex datasets. 
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METHODOLOGY 

Development of an ANN model involves two basic steps, training and 
testing. Good quality data are needed for both purposes. Although the same data 
set can be used for both training and testing, it is preferable to have two 
different datasets. Data were generated using numerical simulation for both 
training and testing. Finally verification was done using data from published 
literature. The following general procedure was used for developing the ANN 
model : 

The first step was to assume/select a known value of heat transfer 
coefficient at the surface of the solid which together with assumed 
temperature of the fluid and thermo-physical properties of the solid defined 
the boundary conditions for the conduction heat transfer problem involving 
convection at the surface. 

The next step was to solve the governing equations for the appropriate 
geometry and obtain the temperature history at a specified location inside 
the body. Any appropriate method could be used for this purpose 
depending on the complexity of the model (i.e. analytical, numerical or 
experimental). The method used for this purpose has no specific bearing 
on the final result, as long as the data generated are accurate. In this paper, 
numerical simulations were used. 

This procedure was repeated for several values of the heat transfer 
coefficient, and thus, a set of data was developed consisting of several 
values of heat transfer coefficient (hence, Biot numbers, Bi) and the 
corresponding temperature profiles. The developed data were used for 
creating data subsets for both training and testing of the ANN model. 

ANN models were then trained and tested with the information about each 
temperature profile as input and the corresponding heat transfer coefficient 
(or Biot number) as the output. 

The trained ANN models could then be used to predict the heat transfer 
coefficient based on the measured temperature history for the solid particle. 

Finite Difference Formulation 

In order to generate the training and testing dataset, the heat conduction 
equation was solved using a finite difference method. Two geometries were 
considered in the present study: sphere and a finite cylinder, the former 
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representing a simple case and the latter a more complicated one. Thermo-physi- 
cal properties of the material were assumed to be constant. The heat conduction 
equation in non-dimensional form was written as, 

The equation for a sphere can be obtained by setting j = 0 and m = 2, and for 
a finite cylinder by setting j = 1 and m = 1. The initial and boundary 
conditions were: 

e = O a t t = l f o r a l l R a n d X  (34  

a0 - = 0 at R = 0, t > 0 and for all X 
aR 

a0 - = B i . B a t R =  l , t > O a n d f o r a l l X  
aR 

( 3 4  ae 
ax - = Bi * 8 at X = 0 and X=L, t > 0 and for all R 

(34  ae 
ax - = 0 at X=L/2 for all R 

Circumferential variations in the temperature were ignored; hence, the 
problem was essentially one-dimensional in the case of sphere and two-dimen- 
sional in the case of finite cylinder. The above equations were solved using 
Crank-Nicholson scheme. The spatial derivatives were evaluated using a second 
order accurate difference scheme. Details of the numerical algorithm are given 
in Sablani (1996) and Sablani and Ramaswamy (1995). Solutions were generated 
using uniformly spaced grids in the radial and axial directions (for the finite 
cylinder). Grid refinement study was made to determine the sensitivity of the 
results to the number of grid points. The final results were generated using the 
grid with 20 nodal points in both directions, since no significant differences in 
the center point temperature responses were noted beyond this level. 
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Training / Testing Dataset 

Data used for training and testing the ANN model were generated using the 
finite difference program. The Biot numbers were varied from 0.005 to 100. 
The increments to Bi increased with increasing Bi. The finite difference program 
was run for each of these Bi and the center point temperature profile was 
obtained. Since the nondimensionalized temperature varied linearly with the 
Fourier number when plotted in the semi-log scale, the temperature profile could 
be characterized by two parameters: slope and the intercept values of this curve. 
The slope was denoted by m and the intercept by C. The above two parameters 
were obtained from the calculated temperature profiles for each Bi and used for 
training and testing. 

The optimal ANN configuration was selected from amongst various ANN 
configurations based on their predictive performance. Several error parameters 
(MAE - mean absolute error; STD, - standard deviation in absolute errors; 
MRE - mean relative error; STD, - standard deviation in relative errors) were 
used in order to compare performances of the various ANN configurations: 

STD, = Standard deviation of I(Yi-Di)( (4b) 

In the above equations Yi is the neural network output for a given input and Di 
is the desired output for the same input. In addition to this, the R2 value of the 
regression between the neural network output and the desired output was also 
used for comparison. 
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RESULTS AND DISCUSSION 

In the present work, a finite difference program was used for the purpose 
of generating data. Alternatively, depending on the specific cases considered, 
one could generate data using analytical solutions in the form of infinite series 
(Carslaw and Jaeger 1959). The present work represents the first stage of a 
more comprehensive work involving situations where no analytical solutions are 
available. To have a common platform covering all these situations, a finite 
difference simulation was preferred to the analytical solution. The numerical 
algorithm was first validated against analytical solutions. The temperature 
profiles generated at the center of the particle for Bi = 0.5 and 5 using the finite 
difference code are shown in Fig. 3 along with those calculated from the 
analytical solutions (Carslaw and Jaeger 1959). The figure shows excellent 
comparison between the two. The calculated time (Fourier number) required to 
cool the particle center to a temperature ratio of 0.1 at different values of Bi 
obtained from the finite difference program was within 1 % of the value from the 
analytical solution which validates the performance of finite difference program. 

1 

0 .- * z 
E 
E 

t a 
0)  
Q 

k- 

0.1 
0 0.5 1 1.5 2 

Fourier Number 

FIG. 3. TEMPERATURE PROFILE FOR Bi = 0.5 AND 5 

Spherical Geometry 

The slope m and the intercept constant C of the temperature profile are 
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functions of only Biot number, when the fluid temperature remains constant. 
Hence Bi can be expressed as a function of either the slope or the intercept. In 
order to determine Bi, one of the two parameters was sufficient. In the present 
work, slope of the temperature profile was used for developing the ANN model 
because it is independent of location. In the ANN configurations considered, the 
input layer had one neuron corresponding to the slope of the temperature profile, 
the output layer had one neuron representing the Biot number in some form. A 
hyperbolic tangent function (default) was used as the transfer function in all the 
cases. Several configurations were tried to optimize the number of training 
cycles, the number of hidden layers and the number of neurons in each hidden 
layer. 

Two different approaches were used in developing the ANN models. In the 
first approach (ANN model l),  the input neuron represented the slope (m) and 
the output neuron represented the Biot number (Bi). When the entire Biot 
number range was used for developing a single model, the performance of the 
model was not very satisfactory. Figure 4 shows a plot of the desired and 
predicted Biot numbers. Especially the prediction of higher Bi was not very 
good. The relative errors for the best ANN model (6 neurons in 2 hidden layers) 
was 5.4% and the standard deviation of the relative error was 8 % which is quite 
high. The maximum relative error was 41.8% which was far from satisfactory. 
However, when the Biot numbers were split into two different ranges (1 to 25 
and 25 to 100) and two independent models were developed, a marked 
improvement in the results was observed. Figure 5a and Fig. 5b show the results 
of the developed models. Clearly, Fig. 5a and Fig. 5b show a large improve- 
ment over Fig. 4. For the best ANN configurations in these two cases, the 
maximum relative errors were 7.7% and 2.9%, respectively, and the mean 
relative errors were 1.61% and 0.84%. Although, the neural network model 
predicted the Biot number reasonably well when the two models covering 
smaller Biot number ranges were independently considered, the results are not 
fully useful, particularly for inverse heat conduction problems. In IHCP, Biot 
number is the parameter to be determined and hence is not previously known. 

Generally, ANN models do not require any prior knowledge of the 
relationship between the input and the output which they are trying to relate. 
However, if some knowledge about the relationship is available, it could be used 
in the ANN model to get better performances. Some idea about the relationship 
between the Biot number and the slope can be obtained from the plot of Bi vs 
m (Fig. 6). In this figure m is scaled between 0 to a/2. Also shown in the figure 
is the plot of tan (m) which indicates that Bi varies in a crude manner similar 
to tan (m). In the second approach, this information was fed while developing 
the second ANN model. In this ANN model 2, the input neuron represented the 
slope m and the output neuron represented tan-' (Bi). 
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Errors associated with different configurations for the ANN model 2 are 
shown in Table 1. The best ANN configuration was that of a single hidden layer 
with 4 neurons. The mean relative errors were less than 1.5%. It should be 
noted that, in this case, the complete range of Biot numbers (0.005 to 100) was 
used for training and testing. For this configuration, Fig. 7 shows the plot of 
predicted vs desired Biot numbers demonstrating an excellent agreement between 
the two. In addition to providing an ANN model which works over a broad 
range of Bi, these results demonstrate that the choice of input or output 
parameters has a major impact on the performance of the ANN model and a 
prior knowledge of the relationship (even if it is crude) can be utilized to 
improve the performance of the ANN models. 

TABLE 1. 
PREDICTION ERRORS ASSOCIATED WITH DIFFERENT ANN CONFIGURATIONS 

Comparison with Literature Data. Once the slope coefficient of 
logarithmic temperature ratio versus time is known, the developed ANN model 
can be used to predict the Biot number. In the determination of the heat transfer 
coefficient, the solid temperature history is measured at some specific location 
during the experiment as a function of time from which the slope m can be 
obtained. Using m as the input, the ANN model can be used to predict tan" 
(Bi), and since Bi = (ha/k), the associated heat transfer coefficient can easily 
be calculated. Zareifard and Ramaswamy (1997) investigated the effect of 
various system and product parameters on heat transfer coefficient to the 
spherical Nylon particles in continuous flow situations. The ANN model 2 
developed in this study was used to predict the h value and compared against the 
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FIG. 7. DESIRED VERSUS PREDICTED Bi WITH ANN MODEL 2 

reported experimental values. Table 2 shows the radius, experimental Bi and the 
estimated heat transfer coefficient (h) of the spherical particles reported in 
Zareifard and Ramaswamy (1997) along with the Biot numbers and h predicted 
from the ANN model. For all the cases, the predicted values were very close 
to the reported experimental values (error < 3%). The experimental range 
covered Biot numbers from about 10-30 and heat transfer coefficient from 
450-1350 W/mT. Additional data from Ramaswamy et al. (1996) covered even 
a lower range of Biot numbers (8-15) with h varying from 250-500 WIm’C in 
which, again, the estimated errors were less than 3 % . 

Finite Cylinder 

For the spherical geometry considered in the above case, it may be argued 
that there is no distinct advantage of using ANN model. Analytical solutions for 
the temperature history could easily be obtained using the first term of the 
infinite series (Carslaw and Jaeger 1959). Using these solutions, one can easily 
solve the inverse problem in a straight forward manner i.e. the Bi can be readily 
calculated once the slope of the temperature profile is known (provided the Fo 
is greater than 0.2). The case of spherical geometry was considered, only as a 
first step because of its simplicity, to demonstrate the concept. The ANN 
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modeling can be really advantageous for more complicated problems in which 
either the inverse problem is iterative or there is no closed form solution 
available for the temperature history. One such example is the case of a finite 
cylinder. Although, in this case closed form solutions could be obtained as a 
product of solutions in the infinite cylinder and infinite slab, the inverse problem 
is not straight forward as in the case of sphere. This case was chosen as the next 
step. 

TABLE 2. 
VERIFICATION OF THE ANN MODEL WITH EXPERIMENTAL RESULTS 

Product Description and 
Heating Conditions 

Experimental 
Biot No. h 

w/m2c 

Zareifard and Ramaswamy (1997) 
Spherical Nylon particles a (nun) 9.5 3 1.9 1240 
heated in water and sucrose 9.5 35.3 1370 
solutions 9.5 21.9 850 

9.5 27.3 1069 
9.5 21.6 840 
9.5 24.5 950 
9.5 17.0 660 
9.5 14.9 5 60 
9.5 13.6 530 
9.5 11.8 460 

Ramaswamy et al. (1996) 
Spherical Teflon particles a (nun)9.5 15.6 475 

9.5 12.9 395 
9.5 9.83 300 
9.5 8.20 249 

Teflon cylinders heated a/L = 0.48 8.78 268 
in CMC sol. at different 0.37 8.58 262 
temperatures and 0.49 5.57 129 
flow rates 0.63 4.53 105 

0.37 16.3 496 
0.37 12.0 365 
0.31 24.4 893 

Awuah et al. (1993) 
Potato cylinders aL= 0.29 8.00 456 
heated in CMC 0.29 3.48 199 
solution 0.29 2.50 143 

Carrot cylinders a/L= 0.29 9.75 556 
Heated in CMC 0.29 4.08 233 
solution 0.29 3.01 172 

ANN predicted 
Biot No. h 

W/mZC 

33.5 1300 
36.7 1420 
21.2 833 
27.0 1050 
21.2 822 
24.7 958 
16.2 630 
14.6 548 
13.3 525 
11.7 455 

16.0 487 
12.5 383 
9.80 299 
8.53 259 

9.21 28 1 
8.75 267 
5.51 127 
4.60 I07 
'15.8 480 
11.8 3 59 
25.1 918 

8.21 468 
3.32 190 
2.50 143 

9.85 560 
4.07 232 
3.00 171 
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The training data were generated using the finite difference code for several 
a/L ratios (0.1 < a/L < 1.0) of the cylinder and for several Biot numbers in 
the range of 0 to 100. The two ANN models tried for the spherical geometry 
were also tried in this case. Figure 8 shows the result for an a/L ratio of unity 
from the ANN model 1 to which the input was the slope and the output was Biot 
number. As with the case of sphere, the results were not good. In fact, in this 
case the performance was bad almost in the entire Bi range. The mean relative 
error and the standard deviation of the errors were 20% and 32%. Figure 9 
shows similar results from the ANN model 2 trained for predicting tan-'(Bi) 
rather than Bi. There is a marked improvement in the results with the mean 
relative error and their standard deviations of 1.35% and 1.37%, respectively, 
substantially lower as compared to the ANN model 1. The above results were 
obtained with 2 neurons and one hidden layer. As a next step, the a/L ratios of 
the cylinder was also considered as an input so that it can be extended to 
different can sizes used in thermal processing of foods. An ANN model was 
trained with the slope of the temperature profile and a/L ratio as the inputs and 
tan-'(Bi) as the output. This model is very general in nature in the sense that it 
accounts for any finite cylinder with an a/L ratio of unity or lesser. Up to Bi of 
40, the results were very good with the mean relative error and the standard 
deviation being 3.6% and 2.57%, respectively. 

100 

80 

3 60 

z 
5 
P 

40 

20 

0 
0 20 40 60 80 100 

Desired Bi 
FIG. 8. DESIRED VERSUS PREDICTED Bi FOR CYLINDER (ANN MODEL 1 )  
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FIG. 9. DESIRED VERSUS PREDICTED Bi FOR A FINITE CYLINDER USING 
ANN MODEL 2 

Comparison with Literature Data. Literature data were again used to 
compare the model performance. Data were obtained from two sources 
(Ramaswamy et al. 1996, and Awuah el al. 1993) which involved heating of 
cylindrical particles of Teflon and food (potato and carrots), of different length 
to diameter ratios, in water and viscous carboxymethyl cellulose (CMC) 
solutions under tube flow conditions. As before the experimental a/L ratio, Bi, 
h are listed along with the ANN predicted values of Bi and h values. Once 
again, in all these cases, the predicted value was within 3% of the experimental 
value. These results demonstrate that the developed ANN model provides an 
excellent alternative to conventional computation methods for inverse heat 
conduction problems like the one involved with the determination of convective 
surface heat transfer coefficient associated with regularly shaped solids. 

CONCLUSIONS 

ANN models were developed for the determination of heat transfer 
coefficient at the surface of spherical and cylindrical solids using measured 
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temperature profile inside the solid particle. Although emphasized and tested 
with literature data to be applicable for situations involving fluid to particle heat 
transfer as found in food processing applications, the concept is quite generic 
and can work well for most situations involving inverse conduction heat transfer 
and boundary conditions of third kind (convective heat transfer at the surface). 

It should also be noted that the concept of using neural networks for 
inverse problem has been demonstrated using one and two dimensional 
examples. On similar lines it can easily be extended to other geometries. As the 
complexity of the problem increases (when for example, the fluid temperature 
is not constant or thermo-physical properties are functions of temperature etc.) 
different strategies may have to be evolved in defining the input to the ANN 
model. In summary, ANN models could be efficiently used to tackle the IHCP. 
One has to consider the characteristics of the specific case to decide on how to 
implement the ANN model. 

NOMENCLATURE 

a = radius of the sphere or cylinder (m) 
Bi = h a/k = Biot number 
Fo = CY t/a2 = Fourier number 
h = heat transfer coefficient (W/m2-K) 
k = thermal conductivity (W/m-K) 
R = r/a = nondimensional radial coordinate 
t = time (s) 
T 
Ti = initial temperature of the sphere (K) 
T, = temperature of the fluid (K) 
X = x/a = nondimensional axial coordinate 
L = nondimensional length of the cylinder 
a = thermal diffusivity (m2/s) 
19 = (T-Ta)/(T,-Ta) = nondimensional temperature 

= temperature of the solid at any location and time (K) 
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