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Foreword 

I have been lucky enough to run across four Great Learnings in my life, the 
third of which was dynamic modeling. Maybe I should go through these 
Learnings chronologically, putting modeling into what I think of as its place. 

The first Great Learning for me was about nature. I absorbed it as a child 
simply from being outdoors. I flopped down on my back in my suburban 
back yard and watched the trees, the clouds, the constellations, the Northern 
Lights. Soon I was riding my bike to nearby forest preserves and learning 
about wildflowers and birds and bugs. I was stunned by the beauty, the di
versity, the complexity. Why such a variable world? I wondered. Why so 
many kinds of life? How do they work? How do they fit together? 

Those questions led to the second Great Learning, the world of science. 
In high school, college, and graduate school I soaked up all the science I 
could get-chemistry, physics, biology. I loved the careful logic of it all, the 
precise definitions, the critical thinking. Science answered few of my ques
tions about the world-in many ways it just deepened the mysteries. But it 
taught me rules for thinking, for assembling evidence, for separating as
sumptions from conclusions, and for questioning assumptions. These rules 
will always be a part of me, though I haven't practiced research science for 
25 years now. 

The third Great Learning came when I started worrying about not only 
nature, but about how nature interacts with human society, human popula
tion growth, human economic aspirations. My questions were getting even 
more complicated! I was in real trouble! Fortunately, my new set of con
cerns led me to the systems folks, the dynamic modelers who were using 
computers to try to encompass greater complexities than could ever be 
held all together at one time by the unaided human mind. 

Here was another careful, critical way of thinking, but instead of taking 
things apart, as science did, it put things back together and looked at them 
as wholes. It forced me to make new and important distinctions. A stock is 
different from a flow, and that difference is especially important over time. 
Flows can be turned on and off quickly, but stocks take awhile to fill up or 
empty out. 

v 



vi Foreword 

An information flow is different from the flow of a real, physical sub
stance, such as the flow of water through a watershed, or the flow of traffic 
along a highway, or the flow of mail through the postal system. Again the 
difference has to do with time. Information can move almost instantly, it 
can be in several places at once, it can disappear into nowhere. A real 
physical flow must be conserved, it comes from somewhere and goes to 
somewhere else, and it takes a characteristic amount of time to do it. 

You might think basic systems rules like these are obvious, but it still 
comes as a shock to people to discover that the stuff they buy actually 
comes from somewhere (such as a forest or a mine) and that when they 
throw it away, it goes somewhere. It may come as even more of a shock to 
learn how long it spends in that place to which it is thrown. And maybe the 
biggest shock is the way what we throw out, and what we do in many 
other ways, can feed back over time (another primary systems principle) 
and re-enter our lives. 

Like my direct experience of nature, like my training in science, my work 
with dynamic modeling has stuck in my head. It affects all my thinking, 
especially my sense of timing. I have a healthy respect now for the way 
things that grow exponentially (from populations to epidemics to rumors) 
can get very big very suddenly. I have a feel for the way oscillating things 
(from pendulums to predator-prey systems to economies) can turn around 
and go the other direction. I even have some dawning inSight into my orig
inal questions about why nature is so variable and diverse, how natural sys
tems work, and what might happen as the human economy grows expo
nentially into them. 

These, and more, are the kinds of insights you can get from this book. 
You will be amazed at the doors of understanding they will open. I wish for 
you the same excitement and joy that learning about dynamiC systems in
stilled in me. 

r haven't yet mentioned my fourth Great Learning, which, like the others, 
followed naturally from the learnings before. It had to do with ethics, mo
rality, goodness. Most people wouldn't think that a progression of ques
tions that began with nature and then led to science and then to complex 
systems would end up with questions about virtue. But for me it did. As I 
saw how systems work, and how they break down, I began to feel a sense 
of responsibility for them. I got more and more committed to making them 
work. For everyone. For human society and for nature. For the present and 
the future. Again, fortunately, there were people who had thought deeply 
about these things and who could help me learn. 

r don't know whether your own path will follow mine. Maybe one can 
learn about the ever-changing, equilibrating, oscillating, evolving, orderly
and-yet-chaotic complexity of the world without taking a stand for that 
world. Or maybe not. r just thought r had better warn you. 

Donella H. Meadows 



Series Preface 

The world consists of many complex systems, ranging from our own bodies 
to ecosystems to economic systems. Despite their diversity, complex sys
tems have many structural and functional features in common that can be 
effectively modeled using powerful, user-friendly software. As a result, vir
tually anyone can explore the nature of complex systems and their dynam
ical behavior under a range of assumptions and conditions. This ability to 
model dynamic systems is already having a powerful influence on teaching 
and studying complexity. 

The books in this series will promote this revolution in "systems think
ing" by integrating skills of numeracy and techniques of dynamic modeling 
into a variety of disciplines. The unifying theme across the series will be the 
power and simplicity of the model-building process, and all books are de
signed to engage readers in developing their own models for exploration of 
the dynamics of systems that are of interest to them. 

Modeling Dynamic Systems does not endorse any particular modeling 
paradigm or software. Rather, the volumes in the series will emphasize 
simplicity of learning, expressive power, and the speed of execution as 
priorities that will facilitate deeper system understanding. 

Matthias Ruth and Bruce Hannon 
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Preface to the Second Edition 

Since the publication of its first edition, Dynamic Modeling has nationally 
and internationally found widespread use across academic disciplines, 
adoption as a coursebook and a guide for practitioners. A modeling com
munity is rapidly developing around Dynamic Modeling and the Modeling 
Dynamic Systems book series that it spawned. 

The second edition answers to the calls from the modeling community 
for more examples from theory and applications in the many areas that 
have been covered by the first edition. For example, we have expanded 
our treatment of population cohort models and included a detailed applica
tion to the dynamics of the US population. We enriched our discussion of 
positive feedbacks with a model of various fixed points. We enlarged our 
section on genetics and provided more applications to the modeling of dis
eases. The economics part of the book for the first time presents models 
from game theory and of market dynamics that result from the combined 
effects of inventory changes and producer expectations. The set of engi
neering models of gravity and acceleration include examples of mechanical 
amplifiers that are illustrated by the workings of a playground swing. 

In addition to these expansions, many chapters have been revised and 
updated to make use of the new features that STELLA ® provides for model 
development. All models and a run-time version of the software are in
cluded with this book on a CD ROM that is compatible across Macintosh 
and Windows platforms. 

More than before, we are stressing the need to learn and apply concepts 
and tools developed in one area of inquiry to other areas with the purpose 
of generating new insights, streamlining the problem-solving process and 
fostering creative thinking and modeling. But as before, we see dynamic 
modeling as both a skill and art that can be readily acquired to solve the 
many problems laid out inside the book and outside. 

Bruce Hannon and Matthias Ruth 
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Preface to the First Edition 

Modeling of dynamic systems on the computer has become a real possi
bility for the typical college student. Until now, students needed significant 
preparation in mathematics and computer programming to prepare such 
models. It is possible that because of this hurdle, many thought little of the 
utility and wisdom of preparing and manipulating computer modes of dy
namic events in the world around them. Without such models we were 
often left to manipulate real systems in order to understand the relation
ships of cause and effect. One could, if necessary, just change things a little 
(e.g., introduce a little pesticide, CO2, etc. into the environment) and ob
serve the effects. If no significant adverse effects are noted (in a "reasona
ble" time), one is free to increase the level of the system change. This is an 
exceedingly common paradigm. It is an elaboration of the wayan auto me
chanic repairs an engine, a kind of trial and error method. But social and 
ecological systems are not auto engines. Errors in tampering with these sys
tems can have substantial costs, both in the short and long terms. In spite of 
the growing evidence, the trial and error approach remains the meter of the 
day. We trust that, just like the auto mechanic, we will be clever (or "rich") 
enough to clear up the problems created by the introduced change. Hand
eye tinkering is the American way. We let our tendency toward optimism 
mask the incurred problems. 

However, the level of intervention in social and ecological systems has 
become so great that the adverse effects are beginning to seem unstemma
ble. As our optimism about repair begins to crumble, we take on the atti
tude of patience toward the inevitable-unassignable cancer risk, global 
warming, fossil fuel depletion-the list is long. At the same time as we be
come increasingly pessimistic about our ability to successfully influence 
cause and effect relationships we are increasingly aware of the complexity 
that underlies the multitude of possible interrelationships among the com
ponents of the system we intend to influence. Science, often perceived as 
the bearer of truth, led us to identify ever more specific issues surrounding 
ever smaller parts of the system. Yet, we need to understand the inter
actions of many or all of these parts Simultaneously in order to guide our 

xi 
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actions. As a result, we are often overwhelmed by details, frequently failing 
to see the forest for the trees. 

There is something useful that we can do to turn from this path. We can 
experiment using computer models. We can use these to give us predic
tions of the short-and long-term future outcomes of proposed actions. The 
consequences of the discovery of adverse systemic effects on the computer 
are no more than a ruffled pride. The potential for change of such discov
eries should rival that of our famous technological inventions. 

Computer modeling has been with us for nearly 40 years. Were it not for 
the possibility of wrestling the power of modeling from the domain of the 
academic, corporate or government expert, we would not be very enthusi
astic about modeling. Fortunately, the personal computer and programs 
such as the one on which this book is based are increaSingly available. 
These two innovations, software and hardware available to a large number 
of individuals, mean that almost anyone can now begin to model real world 
phenomena on their own, in terms that are easily explainable to others. 
They can use these skills to explain the inscrutable and to challenge the ex 
cathedra. 

This democratization of modeling the real world indicates that we are on 
the verge of a revolution in education and thought. For centuries we have 
taught people how to read and write in ways that are understandable to 
large groups of people. Via this standardization and the subsequent devel
opment of these skills we were able to develop verbal descriptions for 
others of dynamic phenomena in the way that we saw them in our minds
the literate description of a mental dynamic simulation. People possess dif
ferent mental models of the same phenomenon and there understandably 
ensues a clash of views. Just why people have differing mental models in 
such cases is not as important as our attempts to rationalize the broad use 
of one mental model instead of another. 

Long ago, the use of numbers began to augment the arguments over vari
ous mental models. For several centuries we have developed numerate 
skills in our students to let them set priorities on the assumptions in the 
competing mental models. This seems like an attempt to rationalize the se
lection process and the widespread importance attached to skills in numer
acy and it is, at least in part, an attempt to bring many minds to the chal
lenge of selecting the most appropriate mental model of the way the world 
works. 

The ecologist Garrett Hardin and the physicist Heinz Pagels have noted 
that an understanding of system function, as a specific skill, needs to be 
and can become a third integral part of general education, alongside lit
eracy and numeracy. It requires the recognition (easily demonstrable with 
exceedingly simple computer models) and admission that the human mind 
is not capable of solving very complex dynamic models by itself. Just as we 
need help in seeing bacteria and distant stars, we need help in solving 
complex dynamic models. We do solve the crucial dynamic modeling prob-
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lem of ducking stones thrown at us or of safely crossing busy streets. We 
learned to solve these problems by being shown the logical outcome of 
mistakes or through survivable accidents of judgement. We experiment 
with the real world as children and get hit by hurled stones and/or we let 
adults play out their mental model of the consequences for us and we be
lieve them. These actions are the result of experimental and predictive 
models and they begin to occur at an early age. In the complex social and 
ecological world, however, we cannot rely on the completely mental model 
for individual or especially for group action, and often we cannot afford to 
experiment with the system in which we live. We have got to learn to sim
ulate, to experiment and to predict with complex models. Computers are 
the only tool for such a purpose. 

Now comes a new generation of personal computers with their easy-to
learn format and the software STELLA ® with its iconographic programming 
style. STELLA and the personal computer are slowly changing the way in 
which we think. They do enable each of us to wrest out the mental model 
we have of a particular phenomenon, to augment it, elaborate it and then 
to do something we cannot otherwise do, to run it, to let it yield the inevi
table dynamic consequences hidden in the structure of the model. STELLA 
and the Macintosh, as well as the new, easy-to-use, Windows-based per
sonal computers, are not the ultimate mechanisms in this process of mind 
extension. They are just the first and their presence and relative ease of use 
makes clear the path to freer and more powerful intellectual inquiry and 
challenge by every student. 

These are the arguments for this book on dynamic modeling. We con
sider such modeling as the most important task before us. To help students 
learn to extend the reach of their minds in this unfamiliar yet very powerful 
way is the most important thing we can do. 

Bruce Hannon and Matthias Ruth 
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Introduction



1

Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.
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4 1. Modeling Dynamic Systems

~

Real Events

,

Conclusions and Abstract Version
Predictions of Real Events

Model

FIGURE 1.1

events and the processes that brought these events about. Key elements of
processes and observations can be identified to form an abstract version of
real events . Particularly, we may want to identify variables that describe
these events , and outline the relationship among variables , thereby estab
lishing the structure of the model. Based on the performance and the re
sults of operating or "running" the model , we can draw conclusions and
provide predictions about events yet to be experienced or observed. These
conclusions and predictions, in turn , can be compared with real events and
may lead to the falsification of a model , its acceptance, or more likely, its
revision . When crossing the busy street, we make an estimate of the width
of the street, the number and speed of the approaching cars, and our own
speed. We may abstract away from extraneous details such as the color of
the cars or the species of birds in the trees on the other side of the street.
Once we made our observations or estimates , and our abstractions, we re
late the various pieces of information to each other-we develop a model.
Before we cross the street we "execute" our model in our mind, consider
the outcome, and then decide whether we have a fair chance of arriving
unharmed on the other side . If we do , we likely use this model again . If we
don 't, but are lucky enough, we revise the model and use that revised ver
sion for our next decision. Perhaps the birds in the trees on the other side
of the street are vultures and we should have used that information as a
sign that this is a particularly dangerous spot to cross. We should have been
more precise in the estimate of the speed of the cars or the width of the
street.

Modeling is a never-ending process-we build, revise, compare, and
change models . With each cycle, our understanding of the reality improves .

Two general types of models can be distinguished. The first type is mod
els that represent a particular phenomenon at a point of time. For example,
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a map of the United States depicts the location and size of a city or the rate
of infection with a particular disease, each in a given year. Other models
describe and analyze the very processes by which a particular phenome
non is created. We may develop a mathematical model describing the
change in the rate of migration to or from a city, or the change in the rate
of the spreading of a disease. Similarly, we may develop a model that cap
tures the change of these rates over time. The latter type of models are dy
namic models that attempt to capture and represent the change in real or
simulated time.

An understanding of the dynamics and changing interrelationships of sys
tems, such as social, biological, and physical systems, is of particular impor
tance in a world in which we face increasing complexity . In a variety of
disciplines, scientists ask questions that involve complex and changing inter
relationships among systems. What are the impacts of a vaccination program
on the rate of infection in a population? How does the profit-maximizing rate
of oil exploration in the lower 48 United States change with a change in the
interest rate? What are the time paths of toxins carried in a river and how do
these toxins affect the local wildlife? All good modeling processes begin (and
end) with a good set of questions. These questions keep the modeler focused
and away from the miasma of random exploration.

Models help us understand the dynamics of real-world processes by
mimicking with the computer the actual but simplified forces that are as
sumed to result in a system's behavior. For example, it may be assumed
that the number of people migrating from one country to another is directly
proportional to the population living in each country and decreases the
farther these countries are apart. In a simple version of this migration
model, we may abstract away from a variety of factors that impede or stim
ulate migration , besides those directly related to the different population
sizes and distance. Such an abstraction may leave us with a sufficiently
good predictor of the known migration rates, or it may not. If it does not,
we reexamine the abstractions, reduce the assumptions, and retest the
model for its new predictions.

It is an elementary preprinciple in modeling that one should keep the
simulation simple, even simpler than one knows the cause and effect rela
tionship to be, and only grudgingly complexify the model when it does not
produce the real effects. After all, it is not the goal to develop models that
capture all facets of real-life systems . Such models are useless because they
are as complicated as the systems we wanted to understand in the first
place .

Computer models are causal in the sense that they are built by using gen
eral rules that describe how each element in a system will respond to the
changes of other elements. In the migration example above, the number of
migrants was assumed to be proportional to the size of the population in
each country. With migration, these population sizes change over time,
thereby leading to new levels of migration over time.
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When a model is simulated with a computer, each element of the model
is specified by initial conditions and the computer works out the system's
responses according to the specified relations among elements. These in
itial conditions may be based on actual measurement, such as the size of a
population in a city or the number of people affected with a disease , or es
timates, such as estimates for the contact rate of infected people with unin
fected ones. The estimates, in turn, may be based on empirical information
or are just reasonable guesses by the modeler and are used to illustrate the
particular processes, rather than provide exact empirical information .

Models help us in the organization of our thoughts, data gathering, and
evaluation of our knowledge about the mechanisms that lead to the sys
tem's change. For example:

One can create a computer model of a forest ecosystem , consisting of a group of as
sumptions and information in the form of computer language commands and
numbers. By operating the model the computer faithfully and faultlessly dem
onstrates the implications of our assumptions and information. It forces us to see
the implications , true or false, wise or foolish, of the assumptions we have made . It
is not so much that we want to believe everything that the computer tells us, but
that we want a tool to confront us with the implications of what we think we know .'

Some of the elements that make up the system for which a model is
being developed are referred to as state variables . State variables mayor
may not be conserved. Each conserved state variable represents an accu
mulation or stock of materials or information. Typical conserved state vari
ables are population, resource endowments, inventories, and heat energy.
Nonconserved state variables are pure indicators of some aspects of the
system's condition. Typical nonconserved state variables are price and tem
perature. System elements that represent the action or change in a state var
iable are called flows or control variables. As a model is run over time, con
trol variables update the state variables at the end of each time step.
Examples for control variables are the number of births per period, a vari
able that changes the state variable "population," or the number of barrels
of crude oil extracted changing the state variable "reserves."

Typically, components of the system that is being modeled interact with
each other. Such interactions of system components are present in the form
of feedback processes. Feedback processes are said to occur if changes in
a system component initiate changes in other components that, in turn, af
fect the component that originally stimulated the change. Negative feed
back exists if the change in a component leads to a response in other com
ponents that counteracts the original change. For example, the increase in
the density of a prey species leads to an increase in predator density that,
in turn, reduces prey density . Analogously, positive feedback is present if

3I3otkin, D. 1977. Life and Death in a Forest: The Computer as an Aid to Under
standing, in: C. Hall and J. Day (eds .) Ecosystem Modeling in Theory and Practice:
An Introduction with Case Studies, John Wiley and Sons, New York, p. 217.
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the change in a system component leads to changes in other components
that then strengthen the original process. For example, if the valve of a
boiler is defective it may not open properly when the pressure of steam in
side the boiler increases. If with increasing pressure the valve gets stuck
more tightly, pressure will increase even further, thereby restricting further
the opening of the valve. The result may be that the boiler ultimately ex
plodes. Positive feedback, when uncontrolled, results in "explosive" dy
namics. The defunct boiler is an apt example, and so is the case of popul a
tion "explosion."

Negative feedback processes tend to counteract any disturbance and lead
systems toward steady state. One possible steady state for interacting pred
ator and prey populations would be that the size of each population sta
bilizes in the long run . Such stabilizing dynamics are in contrast to the pos
itive feedb ack processes that tend to amplify any disturbance , leading
systems away from equilibria.

Typically, systems exhibit both positive and negative feedback processes
that have different and varying strengths. Variation in feedback processes
can be brought about by nonlinear relationships. Such nonlinear relation
ships are present if a control variable does not depend on other variables in
a linear fashion but changes , for example, with the square root of some
other variable. As a result of nonlinear feedback processes, systems may
exhibit complex dynamic behavior.

Once a stimulus on a system occurs, the response of the system may not
be instantaneous. Rather, there may be a time lag between the stimulus and
the response. In some cases, the length of the time lag is rather we ll
known. For example, a power outage during winter in the American North
east is typically followed by an increase in the number of births 9 months
later. How the power outage translates into demand for classrooms or
schoo l buildings 6 years later when the children are of schoo l age , is less
obvious and depends on a large numb er of other factors, such as migration
behavior of families, availability of teachers, and availability of public
funds.

People often lack an understanding of time-lagged system behavior and
they have a chronic inability to control such behavior both with regard to
the systems that humans create and with regard to natural systems. The less
well entrenched these systems are and the shorter they have been operat
ing, the easier and less expensive it is to change them. Changing the power
supply for a new resident ial development can be relatively straightforward,
but changing a country's dependency on petroleum resources is extremely
difficult-it involves changes to the entire infrastructure that supports our
current lifestyles, ranging from petroleum refineries and power generation
to automobile manufacturing and public transportation . Phasing out chloro
fluorocarbons required an understanding of their effect on stratospheric
ozone depletion as well as the time lags associated with their release and
their damage on the environment. Understanding and managing carbon
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flows through the fossil-fuel-based economy and the global ecosystem re
quires an understanding of multiple , interdependent, time-lagged systems.
Yet, by the time ignorance of environmental impacts has been reduced, it is
often too expensive and too difficult to influence system behavior.

Systems modelers pay special attention to nonlinearities and time lags in
their models. Throughout their lifetime they try to sharpen their perception
of nonlinearities and other systems features, and they improve their skills in
modeling them . The eloquence of their models inspires other modelers and
opens their eyes to see the world in a new way.

1.2 Dynamic Modeling as a Skill and Art

The intricacies of many real-world systems overwhelm the ability of hu
mans to adequately understand these systems. Our mental models are often
inadequate to provide a comprehensive perspective on the many inter
related aspects of systems and to anticipate their behavior. This is why we
need to develop formal models, and why we need to develop skills to play
out the assumptions of our formal models-we need help in handling un
certainty, feedbacks, and lags.

Many of the decisions that society faces also require that its members are
effective in sharing their information and knowledge with each other-that
they communicate their assumptions about system behavior and that they
identify the likely system responses under alternative assumptions. One ap
proach to societal decision making would be to identify a group of experts
and ask them for advise. This is typically done in management decision
making where consultants are brought in to find solutions for problems,
and in policy decision making where studies are commissioned to chart the
likely behavior of a social, economic, technological, or environmental sys
tem. In either case, it is the experts who define the problem such that it can
be addressed with their problem-solving expertise. Once they have nailed
the problem down, they provide advice on how to address it.

If you ask different groups of experts, they may look at the problem dif
ferently and they may come up with different solutions. After all, disagree
ment among narrowly chosen perspectives on a complex system is a likely
result of complexity itself. But once the experts disagree, the question
What should I do?changes into the question Which advisorshould I believe?
and this new question is often as difficult to answer as the first one .

Of course , one could always add layers to this process-such as have an
advisory staff help with decision making or with the selection of advisors .
Obviously that would not resolve your problem, but rather move it to a dif
ferent level in the decision-making hierarchy .

The advice on which experts base their judgment is typically derived
from models of the respective system. Consultants develop databases and
simulation tools to help managers make decisions . In some cases, these
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models have not been developed from scratch by the people who use
them, but simply modified or combined to provide an answe r to a specific
question. Noticing their reliance on models, you may therefore be tempted
not to ask experts for the answe rs that they generate with their models, but
instead to ask them to give you their model s so you can form your own
opinions.

Expert systems, simulation games, and learning laboratories are three ex
amples of model environments produced by consultants and scientists to
provide decision makers with an ability to play out the consequences of al
ternative actions in what-if scenarios. Although these dec ision support tools
are a step forward in empowering decision makers, they still are based on
the understanding that an outside expert brings to the problem, rather than
on the knowledge of the people directly involved . The question What
should I do?now changes to What does the model do?The problem is then
not whether to believe the experts' answers, but whether to believe the as
sumptions they put into their models. And obviously, we all can find fault
with some assumption, and therefore disregard a model's validity.

Another strategy is to go all the way and develop computer models your
self to address the specific problems that you face. The usual response by
decision makers is that problem-specific model development in-house
would be too costly and time consuming, and that there is no guarantee
that at the end the model would be a better decision sup po rt tool than one
develop ed by outside expe rts. But that does not need to be so . Today there
are powerful methods and tools of computer modeling available that
enab le virtually anyone to develop dynamic models of complex systems, to
effectively communicate different assumptions among the various stake
holde rs-such as the decision makers, the scientists and other experts, and
the public. You will learn these methods and tools as you work through
this book. And you should use them to develop models with those who
have a problem to resolve. Work with them, help them identify the que s
tions to be answered by the modeling process, help them arrive at an
agreea ble solution and finally, help them formulate new questions abo ut
their system. In this way you will learn a lot from others, and you will help
people become modelers, rather than skeptical users of model s developed
for them-models whose construction is a mystery to them and models
they do not fully understand or believe in. The very nature of this book and
the books of the Dynamic Modeling Series is to help you in learning how
to translate your mental models into rigorou sly based computer ones and
how to engage yourself and others in a continuous learning process.

Besides helping people to handle uncertainty, feedbacks, lags, and group
decision making, the development of formal and computer models pro
vides authentic tasks that are intellectually challenging and rewarding.
Through exchange of models among modelers, the learning process turns
into a cognitive apprenticeship in which all members of the modeling
group can learn from each other.
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Computer modeling becomes "dynamic" not only when feedback pro
cesses among system components are captured through time, but when
model development is based on the dynamic exchange of data and infor
mation among a group of model developers and users. It is the pluralism in
perspectives that helps iden tify key features and behaviors of complex sys
tems. That pluralism is also an important ingredient for the usefulness of
models in generating new knowledge and in providing decision support.
Pluralism in perspectives is typically not promoted or maintained to derive
the solutions that outside experts bring to a problem.

The process and product of dynamic modeling can help highlight gaps in
an organization's or a society 's understanding of its processes, and it helps
identify the most important parameters in a system. As models are devel
oped, they provide a record of the existing understanding. When the mod
els are run, they reveal "normal" system behavior if no interference into the
system takes place , and they may reveal emergent properties of the system.
We may see smooth dynamics, or perhaps erratic transitions from one type
of dynamics to another. Such knowledge is useful in helping us make deci
sions. If, for example, the system exhibits dynamics such as the solid line in
Figure 1.2, an interference into that system with the intent to smooth out
the rapid transitions may actually exacerbate the dynamics leading to the
more pronounced up-and-down turns of the dotted line. Knowing what is
"normal" for a system may help you maintain your calm and may even
mean that you leave the system alone-after all, you know it will soon
come back from its extreme behavior. If, however, the erratic changes in a
system's dynamics are deemed unacceptable, we can use the model to play
out alternative what-if scenarios in order to find those controls that smooth
out the peaks.
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Perhaps there is one set of controls that makes the model behave more
erratically and another set that makes it behave more smoothly. Playing
with the controls in the model is easier , and the consequences of it are typi
cally less costly, than playing with the controls in a real systems. This is
why we train pilots on flight simulators . But we have not done this yet for
people who make decisions about the course of ecological, social, and eco
nomic systems.

The fact that the model may be sensitive to one set of assumptions rather
than another also can be exploited for data collection purposes. If there is
some set of assumptions to which the dynamics are very sensitive , we may
want to collect more information on that part of the model that uses the re
spective assumptions. If the model does not respond much if one part of it
uses different assumptions, then we may not want to spend our time and
effort refining that part further. Unfortunately, a lot of data get regularly col
lected before we know whether we actually need them. Some data are very
costly to collect and ultimately get used in models, but a good guess could
have sometimes done equally well.

The model facilitates not only insight into but also communication of
likely system behavior by generating quantitative results. Learning and
communication are also facilitated through the structure of the model itself:
while the art of Dynamic Modeling requires that one is skillfully identifying
system components and their interactions, the technique of Dynamic Mod
eling requires a master plan for the development of the model 's structure
not the details, but the layout of model components. With increasing expe
rience in building models for a wide variety of problems, similarities among
systems structure may become apparent to the modelers. The more inter
disciplinary the modeling approach, the more likely it is that knowledge
from different disciplines is brought to bear on the development of the
master plan according to which a model is designed.

For example, very successful models of the spread of a disease have
been developed by using analogies from chemistry. In a chemical reaction,
two reactants may react with each other to form a product. Similarly, the in
dividuals in a population carrying a disease "react" with individuals who
are susceptible to the disease and generate a "product"- sick individuals.
The principles that can be used to model and understand chemical reac
tions can, by analogy, be used to understand the spread of a disease. Effec
tively using analogies can significantly reduce the effort that is necessary to
develop models.

Throughout this book we encounter a variety of nonlinear, time-lagged
feedback processes that give rise to complex system behavior. Such
processes can be found in a large range of systems. The variety of models
of this book naturally span only a small range-but the insights on which
these models are based can (and should!) be used to inform the devel
opment of models for systems that we do not cover here . The models of
this book provide a basis for the formation of analogies.
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Formation of analogies is one way of dealing with complexity. A great
many new insights are generated by learning something from the structure
or behavior of one system, which is well understood, about another system,
of which we have less knowledge. The formation of analogies forces us to
choose different systems perspectives. We identify the structure of one
problem and compare it with the structure of another problem. We note
their similarities and their differences . We lay open the assumptions that
make the analogy work, and we contrast the insights we generate about
one system with the findings about the processes that govern another sys
tem. The similarities between the systems generate one set of insights,
while the dissimilarities prompt the adoption of a different, but comple
mentary perspective, and help place bounds on complexity.

Analogy is different from identity in that there may be identical features
but different substructures. The art of analogy is to realize what abstractions
are important-which substructures may safely be disregarded-to answer
particular questions. The creation of knowledge through analogy , however,
is not solely based on abstraction and the subsequent recognition of sim
ilarities. Rather, true knowledge comes from the recognition of the dissim
ilarities, alongside the similarities.

It is the intention of this book to show you how to model , not just how
to use models . In the following section we introduce to you the computer
language that we'll use throughout the book, and that will be immensely
helpful to foster our understanding of dynamic systems and develop our
skills of analogy formation . We close this chapter with a discussion of the
structure of the model-building process and an identification of a set of
easy-to-follow modeling steps. These steps are not sacred ; they are in
tended as a guide to get you started in the process.

1.3 Modeling in STELLA

STELLA® was chosen for this book as the computer language with which
we model dynamic systems because it is a very powerful, yet easy-to-learn
tool. The software provides also an "Authoring" feature that enables you to
develop models for use by others who are uninterested in, or ignorant of,
the underlying details of the model. However, since model development
and understanding are the purpose of this book, we do not discuss the Au
thoring feature here .

The basics of the STELLA programming language are outlined briefly in
the next section. In order to easily follow that introduction, install STELLA
on your disk. The installation procedure is explained in the Appendix.
Then open the STELLA program by double-clicking on the STELLA program
icon on your disk.

STELLA is a commercially available graphical simulation program de
veloped by High Performance Systems. Run-time versions of STELLA for
Macintosh and Windows are enclosed with this book including the models
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FIGURE 1.3

developed here. Note that the run-time version alows you to open existing
models, to modify them, to build your own models, but not to save
changes or new models. To order a full version of the software, contact
High Performance Systems, Inc.

As an introduction to the basic elements and the process of the modeling
with STELLA, we provide here the stepwise development of a basic model
on the growth of a population. This construction employs all of the four
graphical "tools" needed for programming in STELLA. A Quick Help Guide
to the workings of the software is provided in the Appendix. When you
open the software, you will see the symbols (or building block objects) for
stocks , flows, converters, and connectors (or information arrows) that make
up a STELLA model (Fig. 1.3).

If a globe appears on the lefthand side of the screen, click on the globe
to switch to modeling mode (Fig. 1.4). In this mode you can specify the in
itial conditions and functional relationships of your model.

Let's begin with the first tool , a stock , representing, for example, the
number of people living on an island of 1 square kilometer. Just click on
the rectangle, move it to the center of the diagram page and click again
with the mouse. Then type in the name "POPULATION." What you should
get is shown in Figure 1.5.

In STELLA, this type of stock is called a "Reservoir," which is true if we
are dealing with conserved quantities. But the appropriate name is "state
variable, " indicating and recording at least one of the states or conditions of
our system. A state variable is used in the program to make all the other
calculations in the model. More about that later. Just note for now that this
stock represents the number of people in the population on the island . But
also note that, since the area of the island is 1 (square kilometer), the value
of the population, to be changed and stored in the computer every little DT
of time throughout the running of the model, is also the density of the
population. Population is a stock, something containable and conserved in

FIGURE 1.4



14 1. Modeling Dynamic Systems

POPULATION

FIGURE 1.5

the "reservoir" sense, and density is not a stock, density is not conserved.
Yet, both variables are state variables. Thus, due to our choice of area in
this model, population and density are representable by the same rectangle.

Note the question mark in the rectangle. STELLA is saying that you must
provide an initial or starting value for all state variables . If we double-click
on the rectangle, a dialog box appears, a typical event in the use of STELLA.
STELLA is requesting the initial value . You can specify an initial value of
your choice, e.g. 10, using the keyboard or the mouse and the dialogue
keypad. Click OK, close the dialogue box, and you should have lost the
question mark .

The next question is: What controls the addition (or subtraction) of
people from the island? Let's assume, for simplicity only , that the people on
this island are born adult and that they never die. Later we will develop
more realistic models. Here, we have only "BIRTHS" and that is the name
we give to the "Control Variable." We use the second tool-called the
"Flow"-to represent such control of the states . Just click on the second
symbol, then click (about 2 inches left of the stock) and drag the arrow to
the "POPULATION" until the state variable box becomes spotted, and re
lease. You should get the picture shown in Figure 1.6.

In this simple model , the arrow only points into the stock, indicating an
inflow . If and when necessary, the arrow can be selected to point both
ways . Just double-click on the circle attached to the flow symbol and
choose "Biflow." In our case, however, BIRTHS should only be going into
the POPULATION. The control variable BIRTHS is a uniflow, say "new
people per year. "

Next we need to know how it is that these people reproduce. Not the
real details of course-we only need to know how to represent with a sat-

POPULATION

BIRTHS

FIGURE 1.6
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isfactory accuracy the flow of new people per year. One way to do that is
to look up birth rates in the Census statistics. There we might find that
number given as, let's say, 3 new people per 100 existing people in the
population per year . This number can be represented as a "Translation Var
iable" or "Convertor" (a lone circle) from the STELLA tool bar . Our BIRTH
RATE is not yet a variable-that comes later. The same process of clicking
and dragging with which you got the rectangle will get you the circle; just
open it and ente r the number 0.03 (3/100) in the indicated space. Note the
impressive list of "built-in" functions to choose from for more complex
models , down the side of the dialogue box .

The last tool is the "Information Arrow" (or "Connector"). This arrow
conveys the information from a circle or rectangle , information about the
state, control , or transformation variable, to a circle, to a control or trans
forming variable . In this case, we want to convey the information about the
BIRTH RATE to BIRTHS and we want to convey information about the level
of POPULATION to the variable BIRTHS. Two arrows must be added and
now the diagram looks like Figure 1.7.

The last modeling step is to specify BIRTHS. Open it and note the list of
required inputs . Naturally-because of the information arrows-these re
quired inputs are BIRTH RATE and POPULATION. Recall the meaning and
the units of these two variables: BIRTHS must equal BIRTH RATE*POPULA
TION. By clicking on these variables and the * sign, we have the needed
relationship and the variable can be closed, completing the model for a
moment.

The next item on our agenda is to set the size of the time step , DT, over
which stocks should be updated and the length of the simulation run . Let's
arbitrarily choose DT = 1 year and the length of time as 100 years.

In order to display the results of your model , click on the icon that rep
resents a graph and move it to the diagram. Similarly, you can plot the
model results in a table by choosing the icon that represents a table. The
STELLA icons for graphs and tables are shown, respectively, in Figure 1.8.

POPULATION

O:=~'-----
BIRTHS

BIRTH RATE

FIGURE 1.7
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FIGURE 1.8

Upon selection, the graph pad opens automatically (or can be opened by
double-clicking on it), and shows you the list of stocks , flows, and parame
ters of your model. Each of these can be plotted. Select POPULATION to be
plotted, add it with the » arrow to the list of selected items, set the scale
from 0 to 200 and check OK. Stop for a moment and ask yourself: What is
the likely result of your model? Now RUN the model by choosing RUN in
the pull-down menu. The result is shown in Figure 1.9.

The graph shows exponential growth-just as we should have expected.
And you should always say what you think the model should produce be
fore you run it. This sort of speculation builds your intuition about system
behavior and it helps you correct programming errors . When things go dif
ferently from your anticipation, something is wrong and it is up to you to
explain it.

What is going on here? How does STELLA do this? It is really very sim
ple . At the beginning of each DT, say at the initial period (@time=O),
STELLA looks at all the circles for the necessary calculations. Ultimately ,
the calculations will probably be based on the value of the state variables.
Only the variable BIRTHS depends on the state variable POPULATION. So,
to get the current value of BIRTHS, STELLA multiplies 0.03 times the value
of POPULATION(@time=O) or 10 (which are known thanks to the infor-

I: POPULATION
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100 .00
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Time
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FIGURE 1.9
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mation arrows) to get 0.3. Then STELLA adds the current BIRTHS calcula
tion to the POPULATION(@time=O) to get an updated value for the POPU
LATION(@time=l) of 10.3. Forget the fractional people problem-there
are easy ways to interpret or handle this. For the next DT, from time = 1
to time = 2, the entire process is repeated, and so on , to the end of the
specified time.

You should see the special role of the state variable here : it is the only in
formation that the computer uses to carry from the end of one DT to the
beginning of the next. This is why we like to call it the variable that rep
resents the condition of the system.

This model is so simple that we could have solved it by analytical or sym
bolic techniques with pencil and paper. It is a linear model and it is unreal
istic. To add one more dimension of realism and to show some of the flex
ibility of STELLA, let's incorporate a feedback linkage from the population
to the birth rate . First, an information arrow is needed to connect POPULA
TION with BIRTH RATE. Once this connection is made (Figure 1.10), a
question mark appears in the symbol for BIRTH RATE because the original
specification is no longer correct but requires POPULATION as an input.

Now open the BIRTH RATE and click on the required input POPULA
TION. We can specify the relationship between BIRTH RATE and POPULA
TION in mathematical form or just make an educated guess about their re
lationship. Such an educated guess between variables may be represented
by drawing a graph that reflects the anticipated value of one variable (here
BIRTH RATE) that corresponds to the value assumed by another variable
(here POPULATION). This feature is called a "Graphical Function ."

Click on "Become Graph" to specify the relationship between BIRTH
RATE and POPULATION in a graphical form, set the limits on the popula
tion at 2 and 200 and set the corresponding limits on the BIRTH RATE at 0
and 0.06 to represent a change of the birth rate when POPULATION is be
tween 0 and 200 . We are just making these numbers up, of course. Finally,

POPULATION

BIRTH RATE

FIGURE 1.10
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use the mouse arrow to "draw" a curve from the maximum birth rate and
population of 2, to the point of zero birth rate and a population of 200.

Imagine that we had three observed points from various sources: these
two and one somewhere in the middle . So we have sketched in a curve that
goes through all three points and assumed that a gradual transition existed
at all the other points (Fig. 1.11). Such a sketch is good enough given the
state of our knowledge. OK this graph.

You are ready to run the model again but first guess the general shape of
the graph for POPULATION through time. First of all it should in general,
rise. Secondly, it should rise fast at first since the initial population is only
10 and the initial birth rate is therefore very high, and rise slowly later. Fi
nally, the population should level off at 200 since that is the level when the
density would become so great that all birthing stops . RUN and you will see
that we are right (Fig. 1.12).

There is clearly no analytic solution to this problem. It has been solved
by the only available technique, namely a numerical solution method. We
should continue to investigate how sensitive the answer is to changes in the
graph and to variations in the size of DT. The time step doesn't have to be
1 year . In general, the smaller the DT, the more accurate the numerical
methods of updating the state variables , and thus, the more accurate the an
swer. Keep making DT smaller until you see that the change in the critical
variable is within the measuring tolerances.

In general, keep your models simple, especially at first. Compare your re
sults with measured values where at all possible. Only complicate your
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model when it does not produce results that predict the available experi
mental data within a sufficient level of accuracy .

As your model becomes increasingly complicated, you should attempt to
maintain a structure in the STELLA diagram that clearly conveys interdepen
dencies of the model parts. After all, its visually oriented approach to mod
eling makes STELLA such a powerful tool. Move model parts with the "Hand"
symbol around in the diagram or change the color of icons with the "Paint
Brush" (Fig. 1.13). Just click on these symbols to activate them. Use the "Dy
namite" to bomb away unnecessary parts of the model (see Fig. 1.13).

Once the model becomes larger and contains an increasing number of
modules, or submodels, you may want to prevent some of these parts from
changing. Click on the "Sector" symbol-the symbol on the left in Figure
1.14-and drag it over that part of the model you want to isolate . If you
then go to the Run pull-down menu you will see that you can now run sec
tors individually or all of them together. Execution of the individual sectors
does not alter the values of the variables in other sectors .

Annotate the model to remind yourself and others of the assumptions for
your model and its submodels. To do so, click on the "Text" symbol , iden
tified by the letter "A," drag it into the diagram, and type in your text.

FIGURE 1.13
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FIGURE 1.14

These tools prove very helpful when you develop increasingly compli
cated models and when you want to share your models and model results
with others . We encourage you to make extensive use of these tools pro
vided by STELLA. You may also want to explore features in the STELLA
software that we have not mentioned in the text, but are still useful when
building STELLA models. These features include Drill Down (visual hierar
chy), Space Compression, High-Level Mapping Layer, as well as a number
of Authoring features. A brief overview of STELLA features is found in the
Appendix.

STELLA has excellent sensitivity analysis procedures. You should always
exercise your model thoroughly, checking your intuition against the results.
Run the model to extremes by changing the initial conditions, for example.
Soon you will want to try a formal sensitivity analysis.

Before you move on to "experiment" with the systems described in the fol
lowing chapters you should sufficiently familiarize yourself with the basics of
the STELLA software. Make sure you can select, initialize, and connect the
various icons of that graphical programming language. In the remainder of
this book we will explore with you the use of these icons, or tools, for the
modeling of the dynamics of a variety of systems. Additional information on
the use of STELLA is provided in the Appendix . The models are also enclosed
on the CD ROM that accompanies this book. To open these models, start
STELLA, then close the blank model that STELLA provides for you-simply
go to the "File" pull-down menu and select "Close Model"-then open a
model of your choice through the "File" menu "Open Model."

POPULATION DYNAMICS

POPULATION(t) = POPULATION(t - dt) + (BIRTHS) * dt

INIT POPULATION = 10

INFLOWS:

BIRTHS = POPULATION*BIRTH_RATE

BIRTH_RATE = GRAPH({.03} POPULATION)

(2.00, 0 .06) , (21.8, 0.0576), (41.6, 0.0546), (61.4,

0 .0507). (81.2, 0 .0465), (101 , 0.0414), (121, 0.0354),

(141, 0 .0291). (160, 0.021), (180, 0 .0117). (200, 0.00)
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1.4 Principles of Modeling

Though our title of this section, Principles of Modeling, may seem some
what ostentatious, we think we have learned something general about the
modeling process after many years of trying. So here is our set of 10 steps
for the modeling process. We expect you to come back to this list once in
a while as you proceed in your modeling efforts, and to challenge and re
fine these principles of modeling.

1. Define the problem and the goals of the model. Frame the questions
you want to answer with the model. If the problem is a very large one,
define subsystems of it and goals for the modeling of these subsystems.
Think now: Is my model to be descriptive or predictive?

2. Designate the state variables . (These variables will indicate the status of
the systern.) Keep it simple . Purposely avoid complexity in the begin
ning . Note the units of the state variables .

3. Select the control variables , the flow controls into and out of the state
variables . (The control variables are calculated from the state variables
in order to update them at the end of each time step .) Note to yourself
which state variables are donors and which are recipients with regard
to each of the control variables . Also, note the units of the control vari
ables . Keep it simple at the start. Try to capture only the essential fea
tures . Put in one type of control as a representative of a class of similar
controls. Add the others in step 10.

4. Select the parameters for the control variables . Note the units of these
parameters and control variables . Ask yourself: Of what are these con
trols and their parameters a function?

5. Examine the resulting model for possible violations of physical, eco
nomic, etc. laws, for example, the conservation of mass, energy, and
momentum; any continuity requirements. Also, check for consistency
of units. Look for the possibilities of division by zero, negative volumes
or prices , etc. Use conditional statements if necessary to avoid these
violations .

6. To see how the model is going to work, choose some time horizon
over which you intend to examine the dynamic behavior of the model ,
the length of each time interval for which state variables are being up
dated, and the numerical computation procedure by which flows are
calculated. (For example, choose in the STELLA program Time Step =
1, time length = 24.) Set up a graph and guess the variation of the state
variable curves before running the model.

7. Run the model. See if the graph of these variables passes a "sanity test."
Choose alternative lengths of each time interval for which state vari
ables are updated. Choose alternative integration techniques. (For ex
ample, reduce in STELLA the time interval DT by half and simulate the
mode again to see if the results are the same.)
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8. Vary the parameters to their reasonable extremes and see if the results
in the graph still make sense. Revise the model to repair errors and
anomalies.

9. Compare the results with experimental data . This may mean shutting
off parts of your model to mimic a lab experiment, for example.

10. Revise the parameters, perhaps even the model , to reflect greater com
plexity and to meet exceptions to the experimental results, repeating
steps 1 to 10. Frame a new set of interesting questions.

Don 't worry about applying all of these steps in this order as you de
velop your models and improve your modeling skills. However, check
back to this list now and then to see how useful, inclusive, and reasonable
these steps are.

Remember that modeling has three possible general uses : first, you can
experiment with models . A good model of a system enables Yf)U to change
its components and see how these changes affect the rest of the system.
Second, a good model enables prediction of the future course of a dynamic
system. Third, a good model stimulates further questions about the system
behavior and the applicability of the principles that are discovered in the
modeling process to other systems.

The models developed in this book are all built with the graphical pro
gramming language STELLA. In contrast to the majority of computer lan
guages available today, STELLA enables you to spend the majority of your
time and effort on understanding and investigating the features of a dy
namic system, rather than writing a program that must follow some compli
cated, unintuitive syntax. Eventually, any modeling enterprise may become
so large that the program STELLA is too cumbersome. For example, in spa
tial ecological modeling we use STELLA to capture the expertise of a vari
ety of life science professionals. We then electronically translate that ge
neric model into C+ or FORTRAN and apply it to a series of connected
cells, for example as many as 120,000 in a model of the sage grouse." The
next step is to electronically initialize these now-cellularized models with a
specific Geographic Information System and run the results on a large par
allel processing computer or a large network of paralleled workstations. In
this way, the knowledge-capturing features of STELLA can be seamlessly
connected to the world 's most powerful computers.

The cellular approach to building dynamic spatial models with STELLA
and running those models on ever more powerful computers is receiving
increasing attention in landscape ecology and environmental management.
An alternative, but closely related approach has been chosen by Ruth and
Pieper" in their model of the spatial dynamics of sea level rise. Their model

4Westervelt, J. and B. Hannon. 1993. A Large-Scale, Dynamic Spatial Model of the
Sage Grouse in a Desert Steppe Ecosystem , Mimeo , Department of Geography, Uni
versity of Illinois, Urbana, Illinois.
5Ruth, M. and F. Pieper. 1994. Modeling Spatial Dynamics of Sea Level Rise in a
Coastal Area, System Dynamics Review, Vol. 10, p. 389.
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consists of a relatively small set of interconnected cells, describing the
physical processes of erosion and sediment transport. Each cell of the
model is initialized with site-specific data. These cells are then moved
across the landscape to create a mosaic of the entire area to be covered by
the model. In its use of an iconographic programming language, its visual
elements for data representation, and its representation of system dynamics,
the model is closely related to pictorial simulation models'' and cellular au
tomata models .' The approach is flexible, computationally efficient, and
typically does not require parallel-processing capabilities. Though slightly
awkward, it is also possible to use STELLA to carry out object-oriented
modeling.

In the next chapter we begin with identifying features of dynamic mod
els that are repeated throughout this book and fundamental to many dy
namic processes. Then, we turn our attention to the particulars of models
for chemical , genetic, ecological, economic, and engineering processes. As
we develop these models , we introduce the general principles that underlie
the respective disciplines, enabling you to pursue the investigation of these
systems further , and to ask and answer questions of your own about the
dynamics of increasingly complex real-world phenomena.

6Camara, A.S., F.e. Ferreira, ].E. Fialho, and E. Nobre . 1991. Pictorial Simulation Ap
plied to Water Quality Modeling, Water Science and Technology, Vol. 24, pp. 275-281.
"Toffoli, T. and N. Margolus. 1987. Cellular Automata: A New Environment/orMod
eling, MIT Press , Cambridge, MA.
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Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.
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POPULATION is measured in numbers of individuals. NET IMMIGRATION
is measured in numbers of people per time period. The units of IMMIGRA
TION FACTOR are here equal to those of NET IMMIGRATION. At this point
we do not concern ourselves with the origin of the immigrants . Rather, the
immigrants just appear, and we model this appearance as a flow that origi
nates in a "cloud" and feeds into the stock of POPULATION.

The flow of NET IMMIGRATION is modeled as a function of the variable
IMMIGRATION FACTOR, which is, in tum , a function of TIME. TIME is a
built-in functio n of STELLA and is just the current time period. Open IMMI
GRATION FACTOR and either type in TIME as the "right-hand side of the
equation" or selec t TIME from the list of built-in functions . We used the
graphical relationship in Figure 2.2 to specify the change in NET IMMIGRA
TION with TIME.

The way in which the immigration factor depends on the time period is
specified in a grap hical relationship. Alternatively, we may have chosen an
explicit mathematical relationship. In this model , the immigration factor as
sumes a value of zero in time period zero and reaches the value of 1.6 in
time period 100. Consequently, net immigration increases steadily, and
population increases at an increasing rate.

Running the STIMULUS-RESPONSE model over 100 periods with an in
itial population of 10 yields the levels of population over time that are
shown in Figure 2.3.
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Before we move on to introduce other model forms, let us verify that the
units in which the parameters and variables are measured are compatible
with each other. Checking the consistency of the units is a very important
step in model building and application. For a summary of the variables and
constants in our model see Table 2.1.

Given these units , we can check their consistency by "calculating" the
units of the population stock derived from the reproductive rule

POPULATION(t) = POPULATION(t - dt) + (NET IMMIGRATION) • dt (2)

with

NET IMMIGRATION = IMMIGRATION FACTOR (3)

If we disregard for the moment the time indices and substitute in this rule
the units in which the variables and parameters are measured we get

NUMBER OF INDIVIDUALS = NUMBER OF INDIVIDUALS
+ NUMBER OF INDIVIDUALS PER TIME PERIOD • Time Period

= NUMBER OF INDIVIDUALS (4)

Since "Time Period" is equal to DT, "Time Period" cancels out and the units
of our model "sum up" correctly.

TABLE 2.1
Variable Units

POPULATION
NET IMMIGRATION
IMMIGRATION FACTOR

Number of Individuals
Number of Individuals per Time Period
Number of Individuals per Time Period
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STIMULUS-RESPONSE MODEL

POPULATION(t ) = POPULATI ON(t - dt) + (NET_ IMMI GRATION)

* dt
INIT POPULATION 10 {I nd i v i dua l s }
INFLOWS :
NET_ IMMI GRATI ON IMMIGRATION_FACTOR {Individuals per
Time Period}

IMMIGRATION_FACTOR = GRAPH (TIME)
(0.00,0.00), (8.33,0.2) , (16.7,0.344), (25 .0,0.48),
(33.3,0.656), (41.7,0 .864), (50.0,1.01), (58 .3 ,

1.12), (66 .7,1. 23), (75.0,1.33), (83.3,1.42), (91.7,
1.52), (100, 1.58)

2.2 Self-Referencing Model

The second form is the SELF-REFERENCING model, where, for exampl e,
the population level is influential in forming its own growth rate. In this
case , the population levels off at a maximum. This maximum is predeter
mined, yet the path along which it is approached or reached is determined
by the processes occurring in the system. The self-referencing process may
or may not have an implicit limit. Here the specific limit is the net birth rate
of zero when the population has reached a certain level. We might think of
this limit as a "goal" of the population but nothing in the model explicitly
requires that it will be reached . In this particular form of the model, the net
birth rate is set at zero when the population reaches 100. The model will
show that the population approaches 100 but never quite gets there. Sup
pose that the NET BIRTH RATE had a small positive value at the point
where the population is at a level of 100. The population would continue
to rise at this rate indefinitely. The model is still of the SELF-REFERENCING
form.

The SELF-REFERENCING model is shown in Figure 2.4. The inflow into
the POPULATION stock, NET BIRTHS, depends now explicitly on the level
of the population a time step earlier: this year's popul ation is equal to last
year's population plus the births that occur this year minus the deaths of
this year . NET BIRTHS is measured in numbers of individuals per time pe
riod . The net effect of births and deaths for the population is taken together
by multiplying a NET BIRTH RATE by the population.
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NET BIRTHS = NET BIRTH RATE' POPULATION (5)

The units of NET BIRTH RATE are l/number of individuals in the popula
tion/time period.

As in the previous model, we do not concern ourselves with the origin or
destination of the people who are borne or die, and we model their ap
pearance and disappearance jointly, for the case of a positive net birth rate,
as a flow that originates from a "cloud."

The NET BIRTH RATE in our model is not a fixed number but depends,
in turn, on the population. As in the previous chapter, this dependence is
specified, for simplicity, graphically . Alternatively, anthropologists may
have told us the statistical relationship between NET BIRTH RATE and
POPULATION in functional form. We could have then expressed the influ
ence of the population size on the magnitude of NET BIRTH RATE by this
function instead of the graph. The graphically expressed relationship be
tween NET BIRTH RATE and POPULATION is shown in Figure 2.5.

The resulting population dynamics are shown in Figure 2.6. The popula
tion levels off over time since NET BIRTH RATE becomes zero as POPULA
TION reaches 100.

Before you move on with this model, make sure you know the units of
each parameter and variable of the model. Verify that the units are compat
ible. Use the method applied in the previous section to check for the com
patibility of the units .

Look again at the model we actually have here. Note well that if the NET
BIRTH RATE graph were a straight line between the present end points , the
resulting population grows according to the formal term "logistic." The dif
ferential equation formed is nonlinear and it has an analytic solution. Most
nonlinear differential equations are not solvable analytically, so our model
is a rare case . If, however, the net birth rate is dependent on the population
in a nonlinear way, Le., the NET BIRTH RATE line is curved in some way,
the resulting differential equation has no analytic solution.
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The very existence of the logistic definition reflects our past struggle be
tween models with ana lytic solutions and reality-in-modeling. Frequently, a
logistic relationship among system components is postulated in order to
make the analytical problem solvable. With the advent of computers and
numerical solution techniques and such programs as STELLA, we need to
worry less about analytic tractability and more about modeling reality.
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SELF-REFERENCING MODEL

POPULATION(t) = POPULATION(t - dt) + (NET_BIRTH) * dt

INIT POPULATION = 10 {Number of Individuals}

INFLOWS:
NET_BIRTH = NET_BIRTH_RATE*POPULATION {Number of

Individuals per Time Period}

NET_BIRTH_RATE = GRAPH (POPULATION)

(0.00, 0.0597), (8 .33, 0 .0558), (16.7, 0.0519), (25.0,

0.0453), (33.3,0.0405), (41.7,0.0345), (50.0,

0.0288), (58.3,0.0249), (66.7,0.0204), (75.0,

0.0165), (83.3,0.0114), (91.7,0.0051), (100,0.00)

2.3 Goal-Seeking Model

The third basic model form is called GOAL SEEKING. A target population is
the goal and the difference between the current population and the target
drives the population toward the target. Unlike in the previous models, the
process that underlies the GOAL SEEKING model is one of explicitly seek
ing the target. There are many examples of this kind of process. The decay
of a radioactive source (the target is zero radiation), the cooling of a hot
brick (the target is the ambient temperature), and the diffusion of a con
centrated gas (the target is the room concentration, which is increasing as
the gas escapes from the original container).

The GOAL SEEKING model is shown in Figure 2.7. Here , the flow of NET
BIRTHS depends not only on the stock of the population but also on the
exogenously defined TARGET POPULATION:

NET BIRTHS = NET BIRTH RATE
• (TARGET POPULATION - POPULATION) (6)

POPULATION

TARGET POPULATION

FIGURE 2.7
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Here we arbitrarily set the exogenous population target to 100 and our
starting population equal to 10. Consequently, the flow NET BIRTHS is pos
itive at the outset of the model run, and remains positive as long as the
population size lies below the target. As the population grows , the differ
ence to the target vanishes and approaches zero . Subsequent increases in
population size become ever smaller, leading to a population that ap
proaches 100 individuals .

Again, note the units in which the variables and parameters of the
model may be recorded and make sure that these units are compatible
with each other. Once you checked for the compatibility of the units,
make an educated guess of the model behavior. The population dynamics
for our parameters and initial conditions set in the goal seeking model are
plotted in Figure 2.8.
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GOAL-SEEKING MODEL

POPULATION(t) = POPULATION(t - dt) + (NET_BIRTHS) * dt

INIT POPULATION = 10 {Number of Individuals}

LINFLOWS:
NET_BIRTHS = NET_BIRTH_RATE*(TARGET_POPULATION 

POPULATION) {Number of Individuals per Time Period}

NET_BIRTH_RATE = .03 {Net Addition of Individuals per

100 Individuals in Population per Time Period}

TARGET_POPULATION = 100 {Number of Individuals}
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2.4 Goal-Setting Model

The most sop histicated form of the basic models is called the GOAL SET
TING model. Here the POPULATION state variable is involved in setting
the population density, along with external forces . In this model, these ex
ternal forces are affecting the area that is inhabitable by the population.
Thus, together with the state variable POPULATION, these externa l forces
determine the population density. That density is, in turn, controlling the
target population : an increase in the population leads to an increase in the
population density, and consequently, to a lower net birth rate such that a
steady population size might be achieved in the long-run.

The population density is calculated simply as the ratio of the number of
individua ls per area

POPULATION DENSITY = POPULATION!VARIABLE AREA (7)

and the relationship between density and the VARIABLE TARGET POPU
LATION is graphically specified as in Figure 2.9.

We now use the VARIABLE POPULATION TARGET to calculate the NET
BIRTHS as we have done similarly in the previous section of this chapter:

NET BIRTHS = NET BIRTH RATE
• (VARIABLE TARGET POPULATION - POPULATION) (8)
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We further assume that exte rnal forces affect the size of the area that can
be inhabited, thereby influencing the population density and, thus, the
level for a steady population size (the target) tha t may be achieved. The
change in area over time is graphically defined as in Figure 2.10. The re
sulting model is shown in Figure 2.11, and its dynamics are depicted in Fig
ure 2.12.
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FIGURE 2.11
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You should be able to find these basic forms of STIMULUS-RESPONSE,
SELF-REFERENCING, GOAL SEEKING, and GOAL SEmNG in many differ
ent types of systems. For example, the plight of the manufacturer of a
widget may depend on a goal that is set endogenously rather than exoge
nously. To maximize profits, this person uses a given price for widgets
taken from the marketplace. This price and the profit-maximizing proce
dure combine to yield an optimal size for the producer's company. But sup
pose foreign competition is affecting the price in unpredictable ways. Then
our producer must continually adjust the price in the model to account for
the price variation. In this case , the goal is profit (the most possible) but the
price enters directly into the profit calculation. Other examples are pro
vided in the following section.

GOAL-SETTING MODEL

POPULATION(t} = POPULATI ON{t - dt) + (NET_BIRTHS) * dt

INIT POPULATION = 1 0 {Number of Individuals}

INFLOWS:

NET_BIRTHS =
NET_ BI RTH_RATE * {VARIABLE_TARGET_POPULATION 

POPULATION} {Numb e r o f Individuals per Time Period}
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NET_BIRTH_RATE = . 03 {Net Addition to, or Subtraction

of, Individuals per 100 Individuals in the Population

per Time Period}

POPULATION_DENSITY = POPULATION/VARIABLE_AREA

{Individuals per Square Kilometer}

VARIABLE_AREA = GRAPH (TIME)

(0.00,42.8), (8.33,43.1) , (16.7,43.5), (25.0,44.4),

(33.3, 45.5), (41. 7, 46.7), (50.0, 48 .1), (58 .3, 49 .9),

(66.7,51.7), (75.0,53 .3), (83.3,55 .5) , (91.7,58.0),

(100, 60 .0)

VARIABLE_TARGET_POPULATION = GRAPH (POPULATION_DENSITY)

(0.00, 99.5), (0.833, 96 .5), (1.67, 93 .5), (2 .50,

90 .0) , (3 .33,86 .5) , (4 .17,82 .0), (5 .00,77 .5), (5 .83,

68.5) , (6.67 ,59.0), (7 .50,50 .0), (8.33,37 .0), (9.17 ,

21.0) , (10 .0 , 0 .00)

2.5 Examples

2.5.1 Exponential Decay of a Stock

Assume that there is a stock of some substance that decays over time. The
rate of decay is proportional to the remaining concentration. The propor
tionality factor is a physical constant that is characteristic for that particular
substance. How would we model the process of decay in order to find the
time period at which the concentration falls below a certain level?

This is one of the Simplest models that we can build in STELLA. It con
sists of a stock that is named CONCENTRATION. With time, the concentra
tion is depleted at a DECAY RATE. The decay rate is proportional to the level
of the concentration. The constant of proportionality is called the DECAY
CONSTANT. The DECAY RATE is calculated by multiplying the CONCEN
TRATION and the DECAY CONSTANT:

DECAY RATE = DECAY CONSTANT"CONCENTRATION (9)

We arbitrarily set the initial concentration to 100 and the decay rate to
.1733. The corresponding model is shown in Figure 2.13.

Before you run the model, note the units of the decay rate, deca y con
stant , and concentration. Make sure that these units are compatible with
each other. Also, guess the dynamic path of CONCENTRATION.

The result is shown in the graph of Figure 2.14-an exponential decay
toward zero from the original concentration. We can now find on our graph
the time period at which the concentration falls below a certain level. For
example, after 4 hours , the concentration is less than 50%.

This model is of the simple self-referencing type discussed above. It is as
though the concentration is the driving force. Does the concentration ever
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CONCENTRATION

DECAY CONSTANT

FIGURE 2.13

reach zero? It is like Zeno 's paradox, or the frog that jumps half the remain
ing distance out of a well with each jump, or the movement of a chemical
across an osmotic membrane. With each time period we get slightly closer
but the amount by which we approach zero concentration decreases also.

Redraw the flow of this model so that it adds , rather than subtracts, from
the stock, and then run the model again after rescaling. In the case of an in
flow, the model yields some form of attractor, whose force of attraction is
proportional to its size, very similar to compounded interest on an initial in
vestment. We will discuss this interpretation of the reverse of diffusion in a
later chapter.

Change the time step and run the model again. Do so by running the
model first at a DT = 1, then at DT = 0.5, DT = 0.25, DT = 0.125. You
should always explore the sensitivity of the model to changes in the time
step, since we are using numerical approximation techniques to solve for
the dynamics of the system. When changing the DT for a successive run,
follow the rule

24.0018.0012.00
Hours

6.00

~I
-\

\ -.
r"1,

~
1

1
0.00

0.00

50.00

I: CONCENTRATION
100.00

FIGURE 2.14
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DT 5 DTo1d
new 2 (0)

Keep on reducing the DT until the results of your simulation do not change
significantly. You recognize that the speed of calculation is reduced with

EXPONENTIAL DECAY

CONCENTRATION(t) = CONCENTRATION(t - dt) + (
DECAY_RATE) * dt

INIT CONCENTRATION = 100 {micro curies}

OUTFLOWS:

DECAY_RATE = DECAY_CONSTANT*CONCENTRATION {Rule: the

decay rate of the initial concentration is linearly

proportional to the concentration level.}

DECAY_CONSTANT = .1733{1 /days}

smaller DT. Thus, you may not want to start out with a very small DT
but try to find the one that is just small enough for the purposes of your
model in the sense that further decreases in DT do not alter the results
significantly.

2.5.2 Newtonian Cooling

This model presents a slight complexification of the problem outlined in
the previous example. The system for which the model is designed consists
of some object of a particular temperature surrounded by a cooler environ
ment of ambient temperature. Let us assume that this environment is large
in comparison to the object and that the ambient temperature is not in
creased to a measurable extent as the object cools. The object 's tempera
ture is determined by the difference between the temperature of the object
and that of the surrounding environment. The ambient temperature be
comes the target final temperature of the object.

In order to model the cooling process we must answer the following two
questions: What is the state variable (stock) of this system? How is the state
variable affected by other components of the system? The state variable is
the temperature of the object that is above the environmental or ambient
temperature. We represent this state variable by a stock. The scale for the
temperature does not matter. Scale differences are compensated for in the
size of the decay constant, which we call COOLING CONSTANT in this
model.
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TEMPERATURE

COOLING CONSTANT AMBIENT TEMPERATURE

FIGURE 2.15

For simplicity, the ambient temperature is set constant-it does not
change as the object cools . The cooling rate of the object then is

COOLING RATE = COOLING CONSTANT
• (TEMPERATURE - AMBIENT TEMPERATURE) (11)

The STELLA diagram is shown in Figure 2.15. The model is of the simple
goal seeking type . Its behavior is shown in Figure 2.16.

The resulting graph is similar to the exponential decay of the first exam
ple, except that the target is not zero here. Try to build a model in which a
cool object is heated. You can easily develop such a model by reversing the
direction of the flow pipe.

Also, try to change the time step of the model simulation. How fast can
you run the model and not sacrifice the level of your desired accuracy? As
we discussed above, the rule is that you keep cutting the time step in half

I : TEMPERAT RE

40.00

20.00

1
1

------

100.0075.0050.00
Time

25.00
o.oo -+------~----__.-----..,.-----...,

0.00

FIGURE 2.16
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as long as the level of desired accuracy is maintained. Another way to in
crease the accuracy of the solution is to change the solution technique to
Runge-Kutta 2 or 4 (second or fourth order) . Order refers to the number of
subdivisions on the time step over which approximations of the variable
are made. These last two techniques have certain limits as we shall see
later.

Can you construct a two-stage reduction in the temperature where the
first body rejects its heat to a second body, which in turn rejects it to the en
vironment? Assume the two bodies are the same size and material. What
adjustments of the model are necessary to reflect temperature changes in
the environment? How do these changes in the environment's temperature
affect the final temperature of the object? What will happen, when the
environmental temperature fluctuates over time due to some natural
processes (e .g. the diurnal or seasonal warming and cooling of the sur
roundings)?

NEWTONIAN COOLING

TEMPERATURE(t) = TEMPERATURE(t - dt) +
(- COOLING_RATE) * dt

INIT TEMPERATURE = 37 {Initial temperature of a body

in degrees centigrade cooling to the surrounding

temperature of the environment: 10 Degrees C}

OUTFLOWS:
COOLING_RATE = COOLING_CONSTANT*(TEMPERATURE

AMBIENT_TEMPERATURE)

{Newton's law of cooling: the rate of change of a body

is linearly proportional to the temperature difference}

AMBIENT_TEMPERATURE = 10 {Degrees C}

COOLING_CONSTANT = .06 {l/Time Period}
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Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.

3
B. Hannon et al., Dynamic Modeling
© Springer Science+Business Media New York 2001
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much of what happens in the entire model. As before, we introduce a state
variable called POPULATION that is controlled by a flow into POPULA
TION. We call this flow controller BIRlHS. The stuff from which people are
actually made, all that carbon, hydrogen, and nitrogen , are in such great
supply that we need not worry about depleting them. So they come from
the external environment, from the "cloud," that marks the system boundary.
At this time we do not worry about the fact that people are not born fully
adu lt; we leave the concept of age cohorts to a later model. The specifica
tion for the flow of BIRlHS is given as

BIRlHS = BIRTH RATE' POPULATION (1)

The flow control takes its signals from several places . One of them is the
BIRlH RATE variable. The units of this variable are important, and the
lesson of checking units in these models cannot be overstressed. The units
are "new persons born per person already in the population, per year." Here
we have decided to make this birth rate a function of the population density.
Our little island will someday be quite crowded and it surely occurs to even
the most virile that a suspension of the birth rate is needed. Let's assume that
our anthropologists have found that under such conditions, the maximum
population will be 200; the people will stop reproducing when their island
population reaches 200. The anthropologists further tell us that when space
is absolutely no problem, the birth rate is 0.1. The relationship between birth
rate and population size is shown in Figure 3.1.
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FIGURE 3.1
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For simplicity, we may define or normalize the size of the island as 1.0.
Since the island area is one, the population and the density are the same
just the units are different. Such an assumption keeps the model simpler in
form than it should be in reality.

We specified birth rates at various population densities as a graph. We
did not know more about the reproductive habits of these people so we
have sketched in the data between these two given points . This is not an
unusual case. Sometimes we have some data and the rest of it must be rea
soned. STELLA contains a sensitivity analysis procedure and we can see
how sensitive our results of an ultimate population level will be to different
interpretations of the intermediate forms of this graph. We will do that later.

The flow control needs the BIRTH RATE information but as it is a rate
"per person," the controller also needs to know the current level of the
POPULATION. Arrows, the tools that carry the information in the direction
of the arrowheads, must convey the information on the birth rate and the
population to the controller. Once we make the connections between
population, births, and birth rate, our model looks like Figure 3.2.

We are now ready to test our model. But first we must guess the form of
our results . What will the population dynamics reveal? First we can guess
that the population will reach a steady level of 200. If the population is to
become steady, it will not do so suddenly. Rather, the population growth
will slow gradually toward zero as it approaches the 200-person level. Yet,
with an initial population of only 10, the initial growth rate will be very
high. We expect a Sigmoidal curve, approaching 200 after a long passage of
time.

Set the DT for 1 (year) and the upper bound on the time at 160 years. Se
lect a graph and then select the POPULATION variable. Run this model and
see what you get. The results of the assumptions above lead to the dynam
ics in Figure 3.3. We do get what we reasoned the answer to be .

Redraw the BIRTH RATE curve into a convex form and note the different
results. The intermediate results are sensitive to the shape of this curve. In
order to develop a reliable model of the population dynamics of our island
population, we therefore need to better know the values of the birth rate at
different population levels. We send our anthropologists back to the library
for more research.

FIGURE 3.2
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If you are using the Macintosh version of STELLA you can have your an
thropologists provide you with a data set relating birth rates to various
population sizes. This data set can be made available to us in a separate
file, created, for example, with some spreadsheet software that enables data
sets to be "published," Le., put in a format that can be recognized by other
software. Let us assume that the data set consists of a column with birth
rates for 21 different population sizes. With the Macintosh computer we can
directly read this data set into the STELLA program for the simple agrarian
society. Double-click on the translation variable BIRTH RATE. Then click
on "Output" at the upper right-hand corner in the dialog box of the graph.
Next choose "Subscribe To" in the "Edit" pull-down menu. A new dialog
box appears that requires you to select a data set (or "edition") to which
STELLA should subscribe. Choose "Birth Rate Publisher" as the data set of
your choice-this is the one provided by our anthropologists and it comes
with the disk for this book. The data set we are using here is, of course,
made up . Scroll along the new graph that has been created using the data
set from "Birth Rate Publisher" to see how birth rates change with increas
ing population sizes . Now click on OK and rerun the model. Figure 3.4
shows what you should get.

In STELLA we can subscribe to data sets in order to specify graphs, as we
have done in this chapter, or to specify flows, translation variables, or in
itialize stocks. In each case, we can subscribe to editions that contain
numbers only-graphics or equations are not permissible. For the specifi
cation of graphs and flows the editio ns to which we subscribe must be in
the form of a single column . Translation variables and reservoi rs, in con
trast, require only a single initial value . Conveyors or queues-we will dis-
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cuss them in Chapters 17 and 35-require initial values that are separated
by commas.

If the edition you are subscribing to in your model does not conform
with the requirements for the specification of your STELLA model, STELLA
will let you know in a dialog box once you attempted to subscribe to an
edition and clicked on OK. To fix the problem, choose "Subscription Op
tions . .." from the "Edit" menu, click on "Cancel Subscriber," and then
click OK.

With STELLA we can not only subscribe to editions published by other
software, we can also publish our own results in editions that are then
saved on disk. These editions may then be used as inputs into other pro
grams. Each table created in STELLA can be a publisher of only one edition.
If you wish to publish separate editions of your data, you need to plot this
data in separate tables . To learn how to publish an edition, create, for ex
ample, a table for the model above and plot in this table POPULATION.
Run the model, then click on the heading POPULATION in the table so that
the whole column is highlighted (or highlight several columns if you have
plotted them in the table and wish to publish them). Next go to the "Edit"
menu and select "Create Publisher," give your edition a name and click on
"Publish." This edition will be saved on your disk if and when you save
your model.'

While the model of the agrarian society developed above is overly sim
plified, we have solved a nonlinear differential equation. This nonlinear

IOf course, saving your model is not possible with the run-time version of STELLA.
Nevertheless, you can access your edition within STELLA as long as the model with
which you created the edition remains open.
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differential equation is analytically intractable and can be solved only
numerically .

What is the very first step that you would take to increase the reality of
this population model? Why not consider how the people leave the island?
Since the climate here is idyllic, no one wants to leave . But people do leave
through death of course. The death process is nearly a mirror of the birth
process and is uninstructive to add alone. In the next problem, we add the
food cache and tie food availability to the death rate.

SIMPLE AGRARIAN SOCIETY

POPULATION(t) = POPULATION(t - dt) + (BIRTHS) * dt

INIT POPULATION = 10 {Individuals}

INFLOWS:

BIRTHS = BIRTH_RATE*POPULATION {Addition of

Individuals per Time Period}

BIRTH_RATE = GRAPH (POPULATION)

(2.00, 0.0995), (21.8, 0.0975), (41.6, 0.091), (61.4,

0.0855) , (81.2, 0.083), (101, 0 .075), (121, 0.062),

(141, 0 .053), (160, 0 .035), (180, 0.015), (200, 0.00)

3.2. Impacts of Per Capita Food Consumption
on Population Growth

Here we have added the flow control DEATHS, which leads to a cloud
(another system boundary) since we don 't care in this model to remember
the number of deads . Deaths are controlled by the DEATH RATE, a graph
ical function as before except that now the death rate is controlled by the
amount of food consumed per head, EAT PER HEAD (Fig. 3.5). This vari
able , in tum, is a function of the available FOOD PER CAPITA, the ratio of
the remaining FOOD (initially 100 units) to the current population (Fig. 3.6).
The idea here is that the leaders of our little community will begin to ration
the food according to an agreed-upon rule when the food supply gets low.

Finally, we realize that the state variable FOOD must decline as food is
eaten. The amount eaten per person times the number of people gives the
rate EAT, which is the flow control for FOOD consumed:

EAT = EAT PER HEAD * POPULATION (2)

The resulting STELLA model is shown in Figure 3.7.
Build and run the model and form a graph, as before, for the state vari

ables POPULATION and FOOD. But first, guess the graphical form for this
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EATPER HEAD

FIGURE 3.7

population as our more complex model utters its revelations of the future .
Will the ultimate population be 200 or 0 or something in between? Re
member, we have only a limited supply of food . The food variable should
monotonically decline since there is no replenishment process. If we are
running the model long enough we will see the end of our people! But not
before they rise to a great peak (less than 200 of course). Compare your
model output with ours, which is shown in Figure 3.8.

Try changing the shape of the EAT PER HEAD graph to represent differ
ent scarcity control strategies. Suppose a very democratic regime was in

i
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control and whatever was left is shared equally . Try to model that case.
Suppose, on the other hand, that the community leaders are weak and let a
few strong members hoard food while others starve. How would a model
for this situation appear? Should the birth rate be linked somehow to the re
maining food in an attempt to avoid the sharp collapse? Would the per cap
ita consumption be bette r represented as a delayed function of the avail
able food per capita? Try these mode extensions and try introducing a
2-year lag in the consumption response.

In reality, these people are hunter-gathers and as such they could live
from the natural larder with more or less a steady population . They would
be in tune with nature, and they would have occasional times of drought or
flood . Their population may fluctuate somewhat during these times and we
will suppose that during one such time, this particular community opted for
agriculture . This is the subject of the next part of our model for the devel
oping society.

FOOD CONSUMPTION AND POPULATION GROWTH

FOOD(t) = FOOD(t - dt) + (- EAT) * dt

INIT FOOD = 1000 {Kilograms; reduce to eliminate the

first peak of the population .}

OUTFLOWS:

EAT = EAT_PER_HEAD*POPULATION {Kilograms per Time

Period}

POPULATION(t) = POPULATION(t - dt) + (BIRTHS - DEATHS)
* dt
INIT POPULATION = 10 {Individuals}

INFLOWS:

BIRTHS = BIRTH_RATE*POPULATION {Individuals per Time
Period}

OUTFLOWS :

DEATHS = DEATH_RATE*POPULATION {Individuals per Time

Period}

FOOD_PER_CAPITA = FOOD /POPULATION {Kilograms per

Capita}

BIRTH_RATE = GRAPH (POPULATION)

(0.00 , 0.0995), (20 .0 , 0 .0975) , (40.0, 0 .091), (60.0,

0.0855), (80.0, 0.083), (100 , 0.075), (120, 0.062),

(140 , 0 .053) , (160 , 0.035), (180 , 0.015), (200, 0 .00)

DEATH_RATE = GRAPH (EAT_PER_HEAD)
(0 .00, 0 .197), (0.1, 0 .19), (0.2, 0.184) , (0.3, 0 .173),

(0 .4 , 0.163), (0 .5, 0 .147), (0 .6 , 0.121), (0 .7 , 0 .095) ,

(0 .8,0.061), (0.9 ,0.028), (1.00,0.013)
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EAT_PER_HEAD = GRAPH (FOOD_PER_CAPITA )

(0 .00, 0.00), (1. 00 , 0 . 04), (2 .00, 0 . 155), (3.0 0 ,

0.27), (4. 00, 0.3 85), (5.00, 0 .52 ), (6 .00, 0. 63) ,

(7 .0 0, 0 .72), (8.00 , 0. 82 ), (9.00, 0.92), (10.0, 0.995)

3.3 Adding Agriculture

To add agriculture we must put people to work in the fields. FOOD PRO
DUCTION draws upon the available labor and land in the population . It is
another flow control variable for the state variable FOOD. Let's assume that
half of the people are available for food production. Our problem becomes
one of converting person-years of labor into a rate of food production. We
could just revert to a graph that converts person-hours into a food produc
tion rate . But here we call in eco nomists and their idea of production func
tions. These production functions are mathematical relationships among
the inputs that are used in a production process and outputs- they are the
recipes for the production of a particular good. The total amount of land for
this population is assumed to be fixed and of variable quality. Our group
will no doubt farm the best land first and yet even as they bring more land
into production through the use of more labor, they suffer the diminishing
returns of the increasingly poor land .

In order to arrive at a mathematical description of the relationships
among inputs and outputs, eco nomists look over the historical data of pro
duction sectors in an economy. The economists of our simple society, for
example, may have observed over time different levels of labor input into
the agricultural production process and outputs of food. Based on these
historical records they fit the data to the following kind of function :

FOOD PRODUCTION = A*(LABOR)I\ALPHA (3)

In our case , the economists report values for the parameters A and ALPHA.
The estimates used in our model are A = 5 and ALPHA = 0.3. Additionally,
we assume that half of the population is in the labor force . Thus , LABOR is
taken as POPULATION divided by 2.

It is useful to pause here and consider how ecologists model this type of
phenomenon. In the terms of this model , they would call A the maximum
possible food production rate, the rate under ideal conditions. They would
substitute for LABORI\ALPHA a concave graph whose maximum value was
1 and whose minimum was 0, a graph repre sent ing the "effectiveness" of
labor. Where there are other inputs to producing food , there would be ad
ditional such graphs, each with a maximum effectiveness of 1, each multi
plying A. This is essentially the same approach that we are using here and
that eco nomists commonly use.
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FIGURE 3.9

With each additional feature, the diagram of the model increases in size.
In larger models that have highly interdependent components we need to
make a large number of connections. With an increasing number of con
nections, or information arrows, the readability of the model can be se
riously reduced. You may end up with a model that looks more like a pile
of spaghetti than a computer program. Make use of "Ghosts" of icons to
avoid crossing arrows and increase the transparency of the model structure .
You can create a ghost , for example, of a state variable by first clicking on
the ghost icon (Fig. 3.9) in STELLA's tool bar.

Once you clicked on the ghost icon, move it to the variable that you
want to duplicate. Click on the symbol you want to duplicate. The ghost
icon then changes its appearance into that of the symbol you clicked on.
You can now place this duplicate of the original anywhere in the diagram
and connect it with information arrows to the relevant parts of the model.

In our model, we created a duplicate, or "Ghost," of POPULATION for
the society with agriculture (Fig. 3.10). The ghost always assumes the value
of the original. Be aware that all changes to the variable must be made to
the original, not the ghost. For example, if you wish to model emigration

POPULATION

POPULATION
ALPHA A

FIGURE 3.10
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from our society you must draw an outflow from the original POPULATION
stock, not the ghost. Similarly, information arrows can originate from the
ghosts to connect them to other parts of the model , but it is not possible
that ghosts receive information arrows .

Our model is again ready to run and it is time to stop and guess the form
of the population response. About all that we can say now is that the popu
lation will reach some sort of steady state, commensurate with the rate of
food production, after the effect of the initial food cache is over . We are
hard pressed to know whether the steady state level will be higher than the
previous peak population or lower . Try changing the initial level of the
food cache to make the steady state level the historical high. In this way we
can avoid the trauma of population overshoot and possibly chaos . Try var
ying the amount of the population available as labor to see how sensitive it
is. Can you add food spoilage to the model (say 5% is lost per year)?

The results in Figure 3.11 are plotted for the same graphical relationship
EAT PER HEAD as in the previous model. As the model gets more compli
cated, our ability to correctly guess the form of the answer decreases. Nev
ertheless, we should always try. By trying, we improve our intuition about
such complex behavior. Wrong guesses should always be dissected to find
any flaws in reasoning. Upon more careful thinking you may perhaps find
that your reasoning was correct, and that your model has a flaw. In either
case , making educated guesses can help you significantly improve your un
derstanding and model of a system.

Our model is still incomplete. Surely, our people would want hoes,
planting sticks, and scythes. At first they would make them from scrap ma
terials but before long, they would organize a factory and begin to make
their agricultural implements. This is the subject of the next and final part of
the model of the industrialization of a simple agrarian society.

I : POPULATION
I: 80,00
2: 1200.00

2: FOOD

160.00120.0080.00

2----~__2 --'--_2 _

40,00

0.00
O.OO -l-- - - - --,..--- - - - -r- - - - - T-- - - - ---.

0,00

I:
2:

I : 40.00
2: 600.00

Time

FIGURE 3.11
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ADDING AGRICULTURE

FOOD(t) = FOOD(t - dt) + (FOOD_PRODUCTION - EAT) * dt

INIT FOOD = 1000 {Kilograms; reduce to eliminate the

first peak of the population .}

INFLOWS:

FOOD_PRODUCTION = A*(POPULATION/ 2) AALPHA {Kilograms

per Time Period}

OUTFLOWS :
EAT = EAT_PER_HEAD*POPULATION {Kilograms per Time
Period}

POPULATION(t) POPULATION(t - dt) + (BIRTHS - DEATHS)

* dt
INIT POPULATION = 10 {Individuals}

INFLOWS :

BIRTHS = BIRTH_RATE*POPULATION {Individuals per Time
Period}

OUTFLOWS:

DEATHS = DEATH_RATE*POPULATION {Individuals per Time
Period}

A = 5 {l /Individuals}
ALPHA = . 3

FOOD_PER_CAPITA = FOOD /POPULATION {Kilograms per

Individual}
BIRTH_RATE = GRAPH (POPULATION)
(0.00 , 0.0995), (20.0, 0 .0975), (40 .0, 0.091) , (60.0,

0.0855), (80.0, 0 .083), (100, 0 .075), (120 , 0.062),
(140, 0 .053) , (160, 0 .035), (180, 0 .015), (200, 0 .00)
DEATH_RATE = GRAPH (EAT_PER_HEAD)

(0.00, 0 .197), (0.1, 0.19), (0.2, 0 .184), (0.3, 0 .173) ,
(0.4,0.163), (0.5,0.147), (0.6,0 .121), (0.7,0 .095) ,
(0.8 ,0 .061), (0 .9 ,0.028), (1.00 ,0.013)
EAT_PER_HEAD = GRAPH (FOOD_PER_CAPITA)

(0.00,0 .00), (1.00 ,0 .04) , (2.00,0 .155), (3 .00,

0 .27), (4.00, 0 .385) , (5.00, 0 .52) , (6 .00, 0.63),

(7.00, 0 .72), (8.00, 0.82), (9.00, 0.92), (10 .0, 0.995)

3.4 Adding Industry

To the basic model , we have added agriculture, which absorbs labor and
capital through a production function, and capital production, which ab
sorbs labor and produces implements used in agriculture. Because we have
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both labor and implements contribute to the production process, we need
to replace the production function of the previous section with one that
shows both inputs as having influence on the food output. Our new pro
duction function is

FOOD PRODUCTION = A * (POPULATION/4)/\,3 * IMPLEMENTSI\.6 (4)

and it assumes that one quarter of the population participates in agriculture.
Note this form of converting labor and implements into food . It is again

called a production function . There are many alternative forms of the pro
duction function used in economics, depending on the type of production
process, the historical data, and statistical criteria. For the type of produc
tion function used here , there are restrictions on the exponents. These ex
ponents should sum to less than or equal to 1.

Analogously to the previous section we specify a production function for
the manufacturing of implements as a function of labor only:

MANUFACTURING = B*(POPULATION/4)1\.2 (5)

The labor used in manufacturing is here simply one quarter of the population.
The implements wear out through use and so the number of them even

tually reaches a steady state. The wear and tear is modeled as an outflow
from the stock of implements, very much like we model the death of
people as an outflow from a population stock.

DETERIORATION = .04*IMPLEMENTS (6)

The rate at which implements deteriorate-the "death rate of the stock of
tools"-is for simplicity set constant, but it could depend on the rate of their
use in agriculture. The model could be further elaborated upon by finding
the optimum disposition of labor between direct agriculture and implement
production, where "optimum" is defined as the maximum food production
per capita . Without these refinements, the model looks as in Figure 3.12.

Before you run the model , guess the shape of the FOOD and POPULA
TION stock curves. We cannot overemphasize that this sort of guessing
tends to develop your intuition about the behavior of complex dynamic sys
tems, so it is something that you should always do before running your own
models. The results of our model assumptions are shown in Figure 3.13.

In subsequent runs of the simulation model , use at most one half of the
population for the agricultural and industrial workforce. Find the division of
labor between agriculture and industry that yields the largest steady state
population at a level larger than the initial population. Similarly, try to find
that division of labor that yields a time path for the population that is never
declining and ultimately reaches a steady state .

The model of the simple society is becoming increasingly complicated.
Many feedback processes of various strengths interact and determine the
dynamics of the system. The relative importance or "strength" of these feed
back processes depends to a large degree on the parameter values that we
chose for our model. It is therefore very useful to investigate the sensitivity
of our model result to small changes in the parameter values .
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POPULATION

B

FIGURE 3.12

We can perform such a sensitivity analysis by choosing sensitivity runs, a
convenient method provided by the STELLA software. Go to the "Run" pull
down menu , select "Sensi Specs," and choose the parameter B of our man
ufacturing production function as the one on which we want to perform a
sensitivity analysis. Do three sensitivity runs , changing B between 0.05 and
0.15. Plot the three resulting curves for manufacturing production in the

--- - -2- - - - -2- - - -

3

3: POPULATION

3---- - - 3- - - - - 3-- -

2: IMPLEMENTS

I : 500.00
, . 3.00
I 40.00
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5 ~ 88:~

200.00150.00100.0050.00
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8:~ +_----___.-----_r-----_r_----___.
0.00
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r

Time

FIGURE 3.13
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same graph by choosing the Graph option in STELLA's Sensitivity Specs
menu.

How will MANUFACTURING change for different values of B? Run the
model with the S-Run command and observe the resulting graphs. What
will happen to MANUFACTURING if B is equal to 1, and what if it is greater
than I? Suppose that instead of maximizing the long-run steady state popu
lation, we maximized food available per capita or average lifespan . Can
you do this by modifying this model?

ADDING INDUSTRY

FOOD(t) = FOOD(t - dt) + (FOOD_PRODUCTION - EAT) * dt

INIT FOOD = 1000 {Kilograms ; reduce to eliminate the

first peak of the population.}

INFLOWS:
FOOD_PRODUCTION = A*(POPULATION/4)A.3*IMPLEMENTS A.6

{Kilograms per Time Period}

OUTFLOWS :
EAT = EAT_PER_HEAD*POPULATION {Kilograms per Time

Period}

IMPLEMENTS(t) = IMPLEMENTS(t - dt) + (MANUFACTURING 
DETERIORATION) * dt
INIT IMPLEMENTS = 1 {Number of Objects}

INFLOWS:
MANUFACTURING = B*(POPULATION/4) A.2 {Number of Objects

per Time Period}

OUTFLOWS:
DETERIORATION . 04 *I MPLEMENTS {Number of Objects per
Time Period}

POPULATION(t) = POPULATION(t - dt) + (BIRTHS - DEATHS)

* dt
INIT POPULATION = 10 {Number of Individuals}

INFLOWS:
BIRTHS = BIRTH_RATE*POPULATION {Number of Individuals

per Time Period}

OUTFLOWS:
DEATHS = DEATH_RATE*POPULATION {Number of Individuals

per Time Period}

A 5 {l /(Individuals*Objects) per Time Period}

B . 1 {1 /0bjects per Time Period}
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FOOD_PER_CAPITA = FOOD /POPULATION {Kilogram per
Individual}
BIRTH_RATE = GRAPH(POPULATION)
(0 .00, 0.0995), (20 .0, 0.0975), (40 .0, 0.091) , (60.0,

0 .0855), (80.0, 0.083), (100, 0.075), (120, 0.062),

(140, 0.053), (160, 0 .035), (180, 0.015), (200, 0 .00)

DEATH_RATE = GRAPH (EAT_PER_HEAD)
(0 .00 , 0.197), (0 .1, 0.19), (0.2, 0 .184), (0.3, 0 .173),

(0 .4,0.163), (0 .5,0 .147), (0.6,0.121), (0 .7,0 .095),

(0.8, 0.061) , (0.9 , 0.028) , (1.00, 0 .013)

EAT_PER_HEAD = GRAPH (FOOD_PER_CAPITA)
(0.00, 0.00), (1.00, 0 .04) , (2.00, 0 .155), (3 .00,

0 .27), (4 .00, 0 .385), (5.00 , 0.52), (6 .00, 0 .63),

(7 .00, 0.72), (8 .00, 0.82), (9.00 , 0.92), (10.0 , 0 .995)
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Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.

3
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30 individuals of at least 60 years of age. Let us also assume that only
members in the cohort of 20- to 29-year-olds reproduce. The coefficient for
the birth rate is 0.12. We now need to model the reproductive rule such
that members in the second cohort reproduce at a rate of 0.12 persons born
per year per person of age 20 to 29 once they reach the third cohort. Also,
we need to make sure that , during the first period, members in the third co
hort move up into the next cohort where they are no longer able to repro
duce. We model the reproductive process by using the built-in step func
tion to change the birth rate accordingly. Then, the birth rate coefficient of
0.12 is multiplied by the size of the 20- to 29-year-old population. The
population is moved to the next cohort by the "out-" transformers. In 10
years, nearly the whole cohort (why not the whole cohort?) is moved to the
next stage . Finally, the last cohort is moved out of the system (death) at
about age 70. The death rate varies across the cohorts. The resulting model
is shown in Figure 4.1

The sizes of the age cohorts through time are given in Figures 4.2 and
4.3. Each curve represents the number of individuals in a given age cohort.
See how long it takes to reach a steady state . A slightly modified version of
this model is provided in Chapter 14 where we model age-specific popula
tion dynamics for the American Robin based on actual data describing age
specific survival rates.

Total population is nearly stable after about 150 time steps. The age dis
tributions of the cohorts at the steady state are shown in the form of bar
charts in Figures 4.4 and 4.5. To generate a bar chart , simply double-click
on an open graph pad and select "Bar." Only a maximum of five variables
can be plotted.

Experiment with changes in the fecundity of the reproductive age group
in your model. Note the extreme sensitivity of the total with respect to the
initial birth rate coefficient. Finding such sensitivity is one of the main tar
gets of any good modeler.

Use the cycle timing concept in STELLA. Time-stamp the variable BIRTH
RATE by checking the box in the upper right corner of its dialog box
(Fig. 4.6). Then place a transformer receiving the signal from variable OUT
6p. Call this variable LIFESPAN and define it with the CTMEAN built-in
function as

LIFESPAN = CTMEAN(OUT 6p) (1)

This variable now gives the mean lifespan of the people in this model. Plot
LIFESPAN and see if you can adjust the variable TIME 60 to give you a
mean lifespan of 75 years.

What are the criteria for cohort size choice? Note how the transfer coeffi
cient is I/cohort size. What if the age distribution within the cohort is very
uneven? This unevenness will produce errors in the growth or decline rates
for that cohort. So, cohort choice is concerned with potential age distribu
tion within a cohort. Variation of the birth and death rates with age will also
influence the appropriate cohort choice.
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AGE2029

FIGURE4.1

BIRTH RATE COEF

OUT 01

TIME 12

TIME60
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1: AGE 40·49 2: AGE 50-59 3: AGE 60 PLUS
100 .00 ,------------ ------ - - - - -

50 .00 -f- - - - -

0.00 .......----

FIGURE4.5

FIGURE4.6

POPULATION COHORTS

AGEO_9(t) = AGEO_9(t - dt) + (BIRTH_RATE - OUT_Ol 

DIE_I) * dt
INIT AGEO_9 = 100 {Individuals}

INFLOWS:
BIRTH_RATE = AGE20 29*BIRTH_RATE_COEF

OUTFLOWS:
OUT_Ol = AGEO_9/TIME_Ol {Individuals per Time Period}

DIE_l = .011*AGEO_9 {Individuals per Time Period}

AGElO_19(t) = AGElO_19(t - dt) + (OUT_Ol - OUT_12 

DIE_2) * dt

INIT AGElO_19 = 100 {Individuals}

INFLOWS :
OUT_Ol = AGEO_9/TIME_Ol {Individuals per Time Period}

OUTFLOWS:
OUT_12 = AGElO_19 /TIME_12 {Individuals per Time

Period}
DIE_2 .01*AGElO_19 {Individuals per Time Period}
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AGE2 0_ 29 {t ) = AGE20_29{ t - dt) + (OUT_12 - OUT_23 
DIE_3) * dt

IN I T AGE20_29 = 75 {Individuals }
I NFLOWS:

OUT_ 12 = AGEIO_19 / TIME_12 {Individuals per Time
Period}

OUTFLOWS :

OUT_23 = AGE20 _29 /TIME_23 {Individuals per Time

Period}

DIE_3 = .00 8*AGE20_29 {Individuals per Time Period}

AGE30_39{ t) = AGE30_39 {t - dt) + (OUT 23 - OUT_34 
DIE_ 4 ) * dt

IN IT AGE30 _39 = 60 {I ndividuals}
INFLOWS:

OUT_23 = AGE20_ 29 /TIME_23 {I nd i v i du a l s per Time
Period}

OUTFLOWS :

OUT_ 34 = AGE30 _39 /TIME_34 {Individuals per Time

Period}

DIE_4 = . 007 *AGE30_ 39 {Indiv iduals per Time Period}

AGE40 _49{ t) = AGE40_49{ t - dt ) + (OUT_34 - OUT_45 
DIE_ 5 ) * dt

I NI T AGE40_49 = 50 {Individuals}
INF LOWS:
OUT_34 = AGE30_39 /TIME_34 {Individuals per Time
Period}

OUTFLOWS :

OUT_45 = AGE40_49 /TIME_45 {Individuals per Time
Peri od}

DI E_5 = . 008 *AGE4 0_ 49

AGE50_ 59 {t) = AGE50 _59{t - dt ) + (OUT_ 45 - OUT_56 
DIE_6 ) * d t

INIT AGE50_59 = 40 {Individuals }
INF LOWS:

OUT_4 5 = AGE40_49 /TIME_45 {Individuals per Time
Period}

OUTFLOWS :

OUT_56 = AGE50 59 / TIME_56 {Individuals per Time
Period}

DIE _6 . 009*AGE50 59 {Individuals per Time Period}
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AGE_60_PLUS(t) = AGE_60_PLUS(t - dt) + (OUT_56 
OUT_6P) * dt

INIT AGE_60_PLUS = 30 {Individuals}
LINFLOWS:
OUT_56 = AGE50_59/ TIME_56 {Individuals per Time

Period}

OUTFLOWS:
OUT_6P = AGE_60_PLUS/TIME_60 {Individuals per Time
Period}

BIRTH RATE_COEF = (11 /l00)*(1+STEP(0.2,10)) {Births
per Individuals in Age Cohort 20-30 per Time Period}
TIME_OlIO
TIME_1210
TIME_2310

TIME_3410

TIME_4510
TIME_5610
TIME_6010

4.1.2 Population Cohort Array

Note how the structure of the model in the previous section is repeated for
each cohort. The stock of an age cohort has potentially two inflows-one
for the births and one for the aged individuals of a previous cohort. There
are also two outflows-one for the aging individuals and one for deaths.
The only substantive difference between cohorts is in the different numbers
that are used to initialize the stocks and in the different birth and death
rates . For example, the birth rates are , by assumption, all zero for all popu
lation cohorts other than that of the 20- to 29-year-olds.

To capitalize on this observation of the identical structure of the model of
different age cohorts, and to economize on our modeling effort, we make
use of STELLA's array functions. First, sketch out the stock-flow-converter
relationships that underly our model. They are shown in Figure 4.7. Then
double-click on the POPULATION stock and click in the box "Array" at the
upper left portion of the dialog box. This will specify your model as a one
or two-dimensional array. A one-dimensional (I-D) array has stocks that
form a single row. Our population cohort model in which individuals move
unidirectionally from one cohort to another can be interpreted as such a
I-D array. In contrast, a two-dimensional (2-D) array has multiple rows and
columns of stocks that are connected with each other with movement in
two dimensions (Fig. 4.8).

Open the POPULATION stock , and specify it as an array. By default,
STELLA assumes a I-D Array. Next, go to the Editor and give a name to the
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POPULATION

FIGURE 4 .7

TRANSFER IN TRANSFER OUT

first "dimension" of your array- in our case , there is only one dimension.
Call it COHORT.

You need to name the elements in the dimension of your array. Let's give
the first element the name AGEO9 by typing AGEO9 in the "Element Name/s"
field in the dialog box. Then use the arrow to navigate to a "New" element
and then type in its name and continue to do this until you named the re
maining six stocks of the model: AGE10 19, AGE20 29, AGE30 39, AGE40 49,
AGE50 59, and AGE60 PLUS. Once you have done that , click OK to return to
the dialog in which you can spec ify each stock's initial conditions. Click off

I-D Array

FIGURE 4 .8

2-D Array
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the "Apply to All" check box because the initial conditions are different for the
seven stocks--one condition does not "apply to all." Now you will notice that
you are promted with the message:

INITIAL(POP ULATION[AGEO9]) = . . . .IPlace initial value here . .. } (2)

Type in 100 to specify the initial stock of 0- to 9-year-olds. Next, navigate
with the arrows below "Apply to All" to the second element of your 1-D
array- POPULATION[AGElO 19]- and provide an initial value for POPU
LATION[AGE10 19]. Choose the same initial conditions as in the previous
section of this chapter. Continue this routine until all elements in the array
are named and have their proper initial conditions. Click OK and you
sho uld have a model that now looks like Figure 4.9. The stocks and flows
are all stacked to indicate the use of arrays.

To specify the BIRTHS flow, double-click on the flow pipe and unclick
the "Apply to All" check box. Then specify for each row the proper equa
tions. For example,

BIRTHS AGE[O 9] = BIRTH RATE COEFF*POPULATION[AGE20 29] (3)

Multiply in the other equations by zero so that no births are generated into
stocks other than that for the first cohort. For example,

BIRTHS[AGElO 19] = O*BIRTH RATE COEF*POPULATION[AGElO 19] (4)

Similarly, specify the outflows for the deaths:

DEATH[AGEO9] = .Oll*POPULATION[AGEO 9] (5)

DEATH[AGElO 19] = .01*POPULATION[AGE10 19] (6)

DEATH[AGE20 29] = .00S*POPULATION[AGE20 29] (7)

POPULATION

BIRTH RATE COEFF

TRANSFER IN

FIGURE 4.9

TRANSFER OUT
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DEATH[AGE30 39] = .007*POPULATION[AGE30 39] (S)

DEATH[AGE40 49] = .00S*POPULATION[AGE40 49] (9)

DEATH[AGE50 59] = .009*POPULATION[AGE50 59] (0)

DEATH[AGE60 PLUS] = .1*POPULATION[AGE60 PLUS] (1)

Once the births and deaths are specified, we need to model the transition
of people from stock to stock as they age . Note that the outflow from one
age cohort is equal to the inflow into the next cohort. For example,

TRANSFER OUT[AGEO 9] = POPULATION[AGEO 9]/10 (2)

TRANSFER IN[AGE10 19] = TRANSFER OUT[AGEO 9] (3)

and that there is no inflow into the AGEO 9 cohort from other cohorts, i.e.,

TRANSFER IN[AGEO 9] = O*TRANSFER OUT[AGEO 9] (4)

As in the model of the previous section, the birth rate coefficient is

BIRTH RATE COEFF = 11/100*0 +STEP(.2,10)) (5)

Calculate the total population with the built-in function ARRAYSUM,
which sums up the values that the elements in an array take on . Generate a
variable called TOTAL POPULATION, and draw an informa tion arrow from
POPULATION to TOTAL POPULATION. Then double-click on TOTAL
POPULATION, select ARRAYSUM from the list of built-ins , and enter POPU
LATION as the argument of that func tion . A dialog window will appear (as
shown in Figure 4.10).

The dialog window con tains an asterisk , denoting "all elements in the
array," the name of the dimension of the array, and the names of each ele
ment. Since we want to sum up the entries of all elements, simply click on
the asterisk. The specification of TOTAL POPULATION becomes

TOTAL POPULATION = ARRAYSUM(POPULATION[*j) (6)

Row

* ~
....-

Cohort ~

AgeO_9

AgelO_19

Age20_29

Age30_39

Age4039

Age50_59
'--
'Y

FIGURE4.10
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TOTAL POPULATION

TRANSFER IN TRANSFER OUT

FIGURE 4.11

and your STELLA model should look like the one in Figure 4.11. Create bar
charts and time series plots for eac h population cohort. When you define
those graphs, you will encounter the dialog window as in Figure 4.10. Se
lect up to five individual stocks for your plots. Also, generate a plot for the
total population. This last is shown in Figure 4.12. Compare your model
output to the results of Section 4.1.1.

This graph is ident ical to the population growth pattern from section 4.1.1.

1: TOTAL POPULAnON

540.00

495.00

400. 00300.00200 .00100.00
450 .00 +-- - - - - ;-- - - - - -r-- - - - - T""""- - - - --;

0.00

FIGURE 4.12
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POPULATION COHORT ARRAY

POPULATION[AgeO_9j (t) = POPULATION[AgeO_9j (t - dt) +
(BIRTHS [AgeO_9j + TRANSFER_IN [AgeO_9 j - DEATHS[AgeO_9j
- TRANSFER_OUT[Age O_9j) * dt
INIT POPULATION[AgeO_9j = 100
POPULATION[AgelO_19j (t) = POPULATION [AgelO_19j (t - dt)
+ (BIRTHS [AgelO_19j + TRANSFER_IN[AgelO_19j -
DEATHS [Age l O_ 19 j - TRANSFER_OUT[AgelO_19j) * dt
I NIT POPULATION[ AgelO_19j = 100
POPULATION[Age20_29j (t) = POPULATION [Age20_29j (t - dt)
+ (BIRTHS [Age20_29j + TRANSFER_IN[Age20_29j -
DEATHS[Age 20_ 29 j - TRANSFER_OUT [Age20_29 j) * d t
INIT POPULATION[Age20_29j = 75
POPULATION[Age 30_ 39j (t) = POPULATI ON[Age 30_ 39j (t - dt)
+ (BIRTHS [Age30_39 j +
TRANSFER_IN[Age30_39 j - DEATHS [Age 30_ 39 j 
TRANSFER_OUT[Age30_39j) * dt
INIT POPULATION[Age30_39j = 60
POPULATION[Age40_ 49j (t) = POPULATION [Age40_49j (t - dt)
+ (BIRTHS [Age40_49j + TRANSFER_IN[Age40_49j -
DEATHS [Age40_49j - TRANSFER_OUT [Age40_49j) * dt
INIT POPULATION[Age 40_49j = 50
POPULATION[Age5 0_59j (t) = POPULATION[Age50_59j (t - dt)
+ (BI RTHS [Age50_59j + TRANSFER_IN[Age5 0_59j -
DEATHS [Age50_59 j - TRANSFER_OUT[Age50 _59j ) * dt
INIT POPULATION [Age 50_59] = 40
POPULATION[Age_60_Plusj (t) = POPULATION[Age_60_Plusj (t
- d t) + (BIRTHS [Age_ 60_ Pl usj +
TRANSFER_IN [Age_60_Plus j - DEATHS [Age_60_Plusj 
TRANSFER_OUT [Age_60_Plus]) * dt
INIT POPULATION[Age_60_Plus] = 30

I NFLOWS :

BIRTHS[Age O_9 j = BI RTH_RATE_COEFF*POPULATI ON[Age 20_ 29j
BIRTHS [Age lO_19j =
0*BIRTH_RATE_COEFF *POPULATION[AgelO_19j
BIRTHS [Age20_29j =
0*BIRTH_RATE_COEFF *POPULATION[AgelO_19j
BIRTHS [Age30_39j =
0*BIRTH_RATE_COEFF*POPULATION[Age20_ 29j
BIRTHS [Age40_49j =

0*BIRTH_RATE_COEFF*POPULATION[Age20_29j
BIRTHS [Age50_59j =

0*BIRTH_RATE_COEFF*POPULATION[Age20_29 j
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BIRTHS [Age_60_Plus] =°*BIRTH_RATE_COEFF* POPULATION[Age20_29]

TRANSFER_IN[AgeO_9] = O*TRANSFER_OUT[AgeO_9]

TRANSFER_IN[AgelO_19] TRANSFER_OUT [AgeO_9]

TRANSFER_IN[Age20_29] TRANSFER_OUT [AgelO_19]

TRANSFER_IN[Age30_39] TRANSFER_OUT [Age20_29]

TRANSFER_IN [Age40_49] TRANSFER_OUT [Age30_39]

TRANSFER_IN[Age50_59] TRANSFER_OUT [Age40_49]

TRANSFER_IN [Age_60_Plus] = TRANSFER_OUT[Age50_59]

OUTFLOWS:

DEATHS [AgeO_9] = .Oll*POPULATION[AgeO_9]

DEATHS [AgelO_19] . 01 *POPULATION[AgelO_19]

DEATHS [Age20_29] .008*POPULATION[Age20_29]

DEATHS [Age30_39] . 007 *POPULATION[Age30_39]

DEATHS [Age40_49] . 00 8 *POPULATI ON [Ag e 4 0_ 4 9 ]

DEATHS [Age50_59] .009*POPULATION[Age50_59]
DEATHS [Age_60_Plus] = . 1 *POPULATION[Age_60_Plus]

TRANSFER_OUT[AgeO_9] = POPULATION[AgeO_9] /lO

TRANSFER_OUT[AgelO_19] POPULATION[AgelO_19] /lO

TRANSFER_OUT[Age20_29] POPULATION[Age20_29] /lO

TRANSFER_OUT[Age30_39] POPULATION[Age30_39] /lO

TRANSFER_OUT[Age40_49] POPULATION[Age40_49] /lO
TRANSFER_OUT[Age50_59] POPULATION[Age50_59j /10

TRANSFER_OUT[Age_60_Plus] = °*POPULATION[Age_60_Plus]

BIRTH_RATE_COEFF

TOTAL_POPULATION
11 /lOO*(l+STEP(.2,lO))
ARRAYSUM(POPULATION[*])

4.1.3 U.S. Population Growth
Whole courses in demographics are used to convey the ideas behind the
model of this section . In one simple model, we address the questions of
birth, death, and imigration rates and their effects on the numbers of
people in the various age groups. We discuss the ways to calibrate a model
using both theory and real data and how to project existing data on these
rates to calculate first the known population levels of the latest census year,
and then to project these rates to allow an estimate of the future level of the
u.s. population.' We realize that we skim over some of the sophisticated
statistical models that allow a consideration of the many factors that enter
into the projection of these rates, and other such variables as census count-

'All the references are given in the model in the variable for which they provided
the data .
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ing errors and omissions. But we are sure that a major lesson in model
building and demographics is conveyed by this model.

The issue is to estimate the population of the United States in the year
2020 and compare it with the official estimates by the U.S. Census Bureau .
Before we can do that, we need to derive at least some perspective on the
projection of future birth, death, and imigration rates. But before we can do
that , we need to build a model of the historical population to ensure that
we have the right model structure and that we are using the historical data
correctly. So, let's develop the model, initialize it with historical data , and
see how well the model does in "projecting" other historical data .

The modeling effort is divided into three parts . First, construct the model
with an arbitrarily early starting point. We choose the year 1900. The
numbers of people in the United States is rather well known for that year.
Then we need the historical birth, death, and imigration rates for the de
cadal years beginning with 1900 and ending at 1960. This is the validation
step . If something is wrong with our model structure or the way we have
portrayed the data , this step will reveal it.

We know that the census data exist for the year 1990 but we will use those
data to examine our projection skill, begining with the year 1960 and seeing
how well we can project the three rates across these three decades. Finally,
we will set up the model with actual rate data up to the year 1990 and pro
ject the three rates to the year 2020, allowing us to calculate the cohort and
total population in that year and compare it with Census Bureau projections.

The most elementary step of such modeling is to realize that the stocks of
populations, while based on age, are not divided up by years . This would
result in over 100 stocks , each with its own set of birth, death, and imigra
tion rates. Instead, we note that the census takers examine the death rates
for each age and observe that the death rates are nearly the same for
groups of ages. This observation defines the cohort sizes, that is, how many
years are to be included in each grouping or cohort of the population. Our
model will contain a stock for each of these cohorts.

The first of these stocks , the AGE 0 1 stock has a major input of new
births and its own death and imigration rates. Let's deal with the BIRTHS
first. Here we meet the first of data-model misfits. We have decided to
model both sexes together but the birth data are (logically) reported as a
number of births per 1000 women for the given year. We assume that the
sex ratio is one and so we must divide the product of the BF (Birth Frac
tion) by 2 and by 1000.

Secondly we notice that the population is reported differently before and
after the year 1940. After 1940 the reporting is more detailed, which causes
a second problem. While the cohorts are based on the nearly constant
death rate concept, the BF categories do not match the chosen cohorts.
They are for cohorts at half the chosen size. This means that after 1940 we
must divide in the BIRTHS calculation by 2 for the sex ratio correction, by
1000 for the data correction and by 2 again to allow us to combine the the
BF into the larger cohorts.
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Note that the population stocks are reported in whole numbers. Our only
data on imigration rates (per 1000 people in the United States at the time)
was for the entire population so we simply multiplied the imigration rate by
the cohort population size and divided by 1000. In our simple model we as
sume that the number of people in each year of age in a typical cohort
is the same and that each year, l /cohort size ages into the next cohort. For
the first cohort whose size is a single year, all the surviving babies move to
the next cohort.

The same process is repeated for each cohort, until the final one. For the
70+ category, we used the census data on the life expectancy for this cat
egory (the inverse of the life expectancy is the death rate) . The main parts
of the final model are shown in Figure 4.13. We also calculate total popula
tion as shown in Figure 4.14.

Actual and projected data used in this model are contained in graphical
form in two "sectors" (Fig. 4.15). These sectors are created with STELLA's
sector symbol shown as sixth tool of your tool bar (Fig. 4.16). To create a
sector, click on the symbol , place it in the diagram and adjust its size to
cover the model components that you wish to enclose in it. To name a sec
tor, simply overwrite the default name STELLA provides for it.

Once a sector is created, the model can be run holding the elements in a
secctor constant or updating them. Go to the Run pull-down menu and you
will see that you can specify the sectors that you wish to run along in your
model. This tool comes handy when you want to switch on or off indi
vidual components of your model. We use sectors here simply to organize
our model and keep like things together in the same sector rather than run
them in isolation from each other.

When we run this model to "predict" the 1960 population level, we over
shoot by about 1.25 %, not bad for amateurs (Fig. 4.17).

The second step is to extend the three rates from 1960 to 1990 and see
how well we can "predict" the 1990 level. Were we real demographers, we
would develop statistical models for these rates with the hope of revealing
their dependency on population size, on the level of real income, the degree
of uncertainty created by wars , the spread of diseases, the rate of improve
ment in health care, and so on . For our purposes, we simply extended by
eye what appeared to be trends in these rates. And yet we did rather well at
such extension, overstating the 1990 population by only 1.6% (Fig. 4.18).

Finally, we updated the three rates for the 1960 to 1990 period with the
real data, and extended the run of the model 30 more years, to the year
2020, missing the Census Bureau 's middle-range projections by only 0.4%
(Fig. 4.19).

Of course, these pro jections are based on the idea that the future is like
the recent past. A view of the history of the population fluctuations shows
that the population level is influenced by a depression and a major war.

Without taking a position in the debate on imigration policy, we can ex
amine the simple effect on the U.S. population of the absence of imigration
from the year 1900 on . Simply shut off the imigration fraction effect and we
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find that legal imigrants over the 90-year period from 1900 to 1990 have
added 60 million people to the population. These 60 million people have of
course added much more than population to the United States by way of
their unusual innovation and productivity . We show the effect of migration
on the population to demonstrate how facile such models can be .

You can use the method of step-wise forecasting and parameter adjust
ments not only in modeling the dyanamics of a population of your choice .
The method also provides a powerful means to ensure that a dynamic
model of a system at least replicates the data for that system. An inability to
come with the model at least close to the historical system behavior is a
good sign that you missed some important driver behind the observed dy
namics . How closely you wish to replicate past system behavior depends
on the purpose of the model and your motivation .

In the process of model calibration you will learn more about the data of
your system. You will also encounter "anomalies" that your model does not
capture. In our model , two such anomalies were the wars. Ex post we can
correct our model for their effects on population dynamics . However, it
would be virtually impossible to predict at the outset the occurrance of
such anomalies. Therefore, we often disregard them. But remember, struc
tural changes, such as those caused by wars, changes in the political system
of a country, or major technological changes, can place bounds on the re
liability of virtually any model of a social or economic system.

Would it improve matters to divide the model by gender? Could we have
started this model off in 1940 instead of 1900 and accomplished the same
goals? Can you explain why this model does not fit as well in the pre-1940
portion and how you would improve that fit? Can you change the birth
rates and immigration policy in an attempt to bring the U.S. population to a
steady state by 2030, while allowing the trends in death rates to continue?

US POPULATION GROWTH

HISTORICAL DATA, PARTIAL

ACTUAL_POPULATION = GRAPH (TIME)

(1900, 7 .6e+07) , (1910 , 9.2e+07), (1920, 1.1e+08) ,

(1930, 1.2e+08), (1940, 1.3e+08), (1950, 1.5e+08),

(1960, 1.8e+08), (1970, 2e+08), (1980, 2.3e+08),

(1990, 2.5e+08), (2000, 0.00), (2010, 0 .00), (2020,

0.00)

DOCUMENT: Actual population of the U.S. (1900 - 1990)

Data taken from: Bureau of the Census, Statistical

Abstracts of the U.S. (1994)

IMMIGRATION_FACTOR = GRAPH (TIME)

(1900,10.4), (1910 ,5.70), (1920,3.50), (1930,0 .4),

(1940,0.7), (1950,1.50), (1960,1.70), (1970,2 .10),
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(1980, 3 .10), (1990, 4 .10), (2000, 4 .32), (2010, 4 .38),

(2020, 4 .62)

DOCUMENT: Immigration fraction is the number of

immigrants per 1000 U.S . persons per year . Data was

taken from: U.S . Bureau of the Census, Statistical

Abstracts of the u.S. (1994)

PROJECTIONS DATA

HIGH_PROJECTION = GRAPH (TIME)

(1900, 7.6e+07), (1910 , 9.2e+07), (1920 , 1.1e+08),

(1930, 1.2e+08), (1940, 1.3e+08), (1950, 1.5e+08),

(1960 , 1.8e+08) , (1970, 2e+08), (1980, 2 .3e+08),

(1990 , 2.5e+08) , (2000, 2.8e+08), (2010, 3.2e+08),

(2020, 3.6e+08)

DOCUMENT: This is the highest series for projections of

the u .S. population through 2020 . The populations from

1900 to 1990 are the actual u .S. population values.

Data taken from : Bureau of the Census , Statistical

Abstracts of the u.S . (1994)

LOW_PROJECTION = GRAPH (TIME)

(1900, 7 .6e+07), (1910, 9 .2e+07), (1920, 1.1e+08) ,

(1930, 1.2e+08) , (1940 , 1.3e+08), (1950, 1.5e+08) ,
(1960, 1.8e+08), (1970, 2e+08) , (1980 , 2 .3e+08),

(1990, 2 .5e+08), (2000, 2.7e+08), (2010, 2.8e+08),

(2020, 2 .ge+08)

DOCUMENT: This is the lowest series for projections of

the u .S. population through 2020. The populations from

1900 to 1990 are the actual u .S. population values .

Data taken from: Bureau of the Census, Statistical

Abstracts of the u.S . (1994)

MIDDLE_PROJECTION = GRAPH (TIME)

(1900, 7 . 6e + 07 ) , (1910, 9 .2e+07), (1920, 1.1e+08),

(1930, 1.2e+08), (1940, 1.3e+08), (1950, 1.5e+08),

(1960, 1.8e+08), (1970 , 2e+08), (1980, 2 .3e+08),

(1990, 2.5e+08) , (2000, 2.8e+08), (2010, 3e+08) ,

(2020,3.3e+08)

DOCUMENT: This is the middle series for projections of

the u.S . population through 2020. The populations from

1900 to 1990 are the actual u.S . population values .

Data taken from : Bureau of the Census, Statistical

Abstracts of the u .S . (1994)
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Not in a sector
AGE_O_1(t) = AGE_O_1(t - dt) + (BIRTHS + IR_O_1 

OUT_01 - DIE_1) * dt

INIT AGE_O_1 = 1836200 {Individuals}

DOCUMENT: Number of °- 1 year olds in 1900. Data taken

from: Bureau of the Census, Historical Statistics of

the U.S . (Colonial Times to 1970)

INFLOWS:

BIRTHS = IF(TIME<1940)

THEN((AGE_15_24+AGE_25_34+AGE_35_44)*BF_PRIOR_TO_1940 1

2000)

ELSE((AGE_5_14 *BF_10_14+AGE_15_24*BF_15_19+AGE_15_24 *BF

_20_24 +AGE_25_34 *BF_25_29 +AGE_25_34 *BF_3 0_34 +AGE_35_44

*BF_35_39+AGE_35_44*BF_40_44+AGE_45_54*BF_45_49) /4000)

DOCUMENT : BIRTHS is the sum of the number of births per

year for each cohort .

IR_O_1 = IMMIGRATION_FACTOR*AGE_O_1/1000 {Number of

immigrants per year per cohort}

OUTFLOWS :

OUT_01 = AGE_O_1 /TIME_01 {Individuals per Time

Period}

DIE_1 = (AGE_O_1 /1000)*DR_O_1 {Deaths per year}

AGE_15_24(t) = AGE_15_24(t - dt) + (OUT_23 + IR_15_24

- OUT_34 - DIE_4) * dt

INIT AGE_15 _24 = 14951000 {Individuals}

DOCUMENT: Number of 15 - 24 year olds in 1900 . Data
taken from: Bureau of the Census, Historical Statistics
of the U.S. (Colonial Times to 1970)

INFLOWS:

OUT_23 = AGE_5_14 /TIME_23 {Individuals per Time Period}

IR_15_24 = IMMIGRATION_FACTOR*AGE_15_24 /1000*0 {Number

of immigrants per year per cohort}

OUTFLOWS:

OUT_34 = AGE_15_24 /TIME_34 {Individuals per Time

Period}

DIE_4 = (AGE_15_24 /1000)*DR_15_24 {Deaths per year}

AGE_1_4(t) = AGE_1_4(t - dt) + (OUT_01 + IR_1_4 

OUT_12 - DIE_2) * dt

INIT AGE_1_4 = 7344800 {Individuals}

DOCUMENT: Number of 1 - 4 year olds in 1900. Data taken

from : Bureau of the Census, Historical Statistics of

the U.S. (Colonial Times to 1970)
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INFLOWS:
OUT_01 = AGE_0_1 /TIME_01 {Individuals per Time

Period}
IR_1_4 = IMMIGRATION_FACTOR*AGE_1_4/1000*0 {Number of

immigrants per year per cohort}

OUTFLOWS:
OUT_12 = AGE_1_4 /TIME_12 {Individuals per Time

Period}
DIE_2 = {AGE_1_4 /1000)*DR_1_4 {Deaths per year}

AGE_25_34(t) = AGE_25_34{t - dt) + (OUT_34 + IR_25_34

- OUT_45 - DIE_5) * dt

INIT AGE_25_34 = 12161000 {Individuals}

DOCUMENT: Number of 25 - 34 year olds in 1900. Data

taken from: Bureau of the Census, Historical Statistics

of the U.S. (Colonial Times to 1970)

INFLOWS :
OUT_34 = AGE_15_24 /TIME_34 {Individuals per Time

Period}
IR_25_34 = IMMIGRATION_FACTOR*AGE_25_34 /1000*0 {Number

of immigrants per year per cohort}

OUTFLOWS:
OUT_45 = AGE_25_34 /TIME_45 {Individuals per Time
Period}
DIE_5 = (AGE_25_34 /1000)*DR_25_34 {Deaths per year}

AGE_35_44{t) = AGE_35_44(t - dt) + (OUT_45 + IR_35_44

- OUT_56 - DIE_6) * dt
INIT AGE_35_44 = 9273000 {Individuals}

DOCUMENT: Number of 35 - 44 year olds in 1900. Data
taken from : Bureau of the Census, Historical Statistics

of the U.S . (Colonial Times to 1970)

INFLOWS:
OUT_45 = AGE_25_34 /TIME_45 {Individuals per Time

Period}
IR_35_44 = IMMIGRATION_FACTOR*AGE_35_44 /1000*0

{Number of immigrants per year per cohort}

OUTFLOWS:
OUT_56 = AGE_35_44 / TIME_56 {Individuals per Time

Period}
DIE_6 = {AGE_35_44 /1000)*DR_35_44 {Deaths per year}

AGE_45_54{t) = AGE_45_54{t - dt) + (OUT_56 + IR_45 54

- OUT_67 - DIE_7) * dt
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INIT AGE_45_54 = 6437000 {Individuals}

DOCUMENT: Number of 45 - 54 year olds in 1900. Data

taken from : Bureau of the Census, Historical Statistics
of the U.S . (Colonial Times to 1970)

INFLOWS:
OUT_56 = AGE_35_44 / TIME_56 {Individuals per Time

Period}
IR_45_54 = IMMIGRATION_FACTOR*AGE_45_54 /1000*0 {Number

of immigrants per year per cohort}

OUTFLOWS:
OUT_67 = AGE_45_54 / TIME_67 {Individuals per Time

Period}
DIE_7 = {AGE_45_54 /1000)*DR_45_54 {Deaths per year}

AGE_55_64{t) = AGE_55_64{t - dt) + (OUT_67 + IR_55 64

- OUT_78 - DIE_8) * dt

INIT AGE_55_64 = 4026000 {Individuals}

DOCUMENT: Number of 55 - 64 year olds in 1900. Data

taken from: Bureau of the Census, Historical Statistics
of the U.S . (Colonial Times to 1970)

INFLOWS:

OUT_67 = AGE_45 54 / TIME_67 {Individuals per Time

Period}
IR_55_64 = IMMIGRATION_FACTOR*AGE_55_64 /1000*0 {Number

of immigrants per year per cohort}

OUTFLOWS:
OUT_78 = AGE_55_64 / TIME_78 {Individuals per Time
Period}
DIE_8 = {AGE_55_64 /1000)*DR_55_64 {Deaths per year}

AGE_5_14{t) = AGE_5_14{t - dt) + (OUT_12 + IR_5_14 
OUT_23 - DIE_3) * dt

INIT AGE_5_14 = 16966000 {Individuals}

DOCUMENT : Number of 5 - 14 year olds in 1900 . Data

taken from : Bureau of the Census, Historical Statistics

of the U.S . (Colonial Times to 1970)
INFLOWS:

OUT_12 = AGE_1_4 /TIME_12 {Individuals per Time Period}
IR_5_14 = IMMIGRATION_FACTOR*AGE_5_14 /1000*0 {Number

of immigrants per year per cohort}
OUTFLOWS:

OUT_23 = AGE_5_14 /TIME_23 {Individuals per Time
Period}

DIE_3 = {AGE_5_14 /1000)*DR_5_14 {Deaths per year}
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AGE_65_69(t) = AGE_65_69(t - dt) + (OUT_78 + IR_65 69
- DIE_9 - OUT_ 89 ) * dt

INIT AGE_65_69 = 1291 250 {Individuals}

DOCUMENT: Number of 65 - 69 y e a r o l d s in 19 00. Data

taken from: Bureau of t h e Ce n s u s , Historical Statistics

of the U.S. (Colonial Times t o 1970)

INFLOWS:
OUT_78 = AGE_55_64 / TIME_78 {Individuals per Time

Period}

IR_65_69 = IMMIGRATI ON_FACTOR*AGE_65_69 /1000 *0 {Number

of immigrants per y ear per cohort }

OUTFLOWS:
DIE_9 = (AGE_65_69 /1000)*DR_65_69 {Deaths per y e a r }

OUT_89 = AGE_65_69 / TIME_ 89 {Individuals per Time

Period}

AGE_70 _ PLUS (t) = AGE_7 0_PLUS (t - dt ) + (IR_7 0_PLUS +

OUT_89 - OUT_ 9_ 1 0) * dt

INIT AGE_70_PLUS = 1807750 {Indi viduals}

DOCUMENT: Number of 70+ year olds in 1 900 . Data taken

from: Bureau of the Census, Historical Statistics o f
the U.S. (Colonial Times to 1970)

I NFLOWS:
I R_7 0_PLUS = I MMIGRATI ON_FACTOR*AGE_70_PLUS /1 000*0

{Number o f i mmi g r a n t s per yea r per cohor t}
OUT_8 9 = AGE_65_69 / TIME_89 {Individuals per Time
Period}

OUTFLOWS :
OUT_ 9_ 1 0 = AGE_ 70_PLUS/ LI FE_ EXPECTANCY {Individuals

per Ti me Per i od}

TIME_01 = 1

DOCUMENT : Dwell t ime 1 y ear .

TIME_1 2 = 4

DOCUMENT: Dwell time 4 years .
TIME_2 3 = 10

DOCUMENT: Dwell time 10 y e a rs .
TIME_34 = 10

DOCUMENT: Dwe l l t im e 10 years .

TIME_45 = 10
DOCUMENT : Dwe l l time 10 years.

TIME_56 = 10
DOCUMENT: Dwell time 1 0 y e a r s .

TIME_6 7 = 10

DOCUMENT: Dwel l time 10 y ears .
TI ME_ 78 = 10



4.1 Population Cohorts 85

DOCUMENT : Dwell time 10 y e a r s.

TIME_ 8 9 = 5

DOCUMENT: Dwell time = 5 y e ars .

TOTAL_POPULATION =

AGE_ O_ 1 + AGE_1_ 4 + AGE_5_ 14 +AGE_ 1 5_ 24 + AGE_25_3 4 + AGE_ 35_ 4

4+AGE_45_54+AGE_55_6 4 + AGE_65_69+AGE_70_PLUS

DOCUMENT: Total p opulation = sum of population in each
c ohort.
BF_10_14 = GRAPH(TIME)

(1900, 0 .00), (1910 , 0 .00), (1920 , 0 .00) , (1930, 0 .00),
(1940 , 0 .7), (1950 , 1.00), (1960, 0 .8) , (1970, 1.20),
(1980 , 1.10 ), (1990 , 1.40) , (2000 , 1.40) , (2010, 1.23) ,
(2020 , 1.45)

DOCUMENT: Birth fract ion i s the numbe r of birt hs per

1000 women per year in each cohort. Da t a taken from:

Bureau o f the Census, Statistical Abstracts of the U.S .
(1963)

BF 15 19 = GRAPH (TIME)

(1900, 0.00), (1910, 0.00), (1920, 0.00), (1930, 0.00),
(1940, 54.1), (195 0 , 81. 6 ) , (1960, 89. 1) , (1970 , 68.3) ,
(19 8 0 , 53 .0 ), (19 90 , 59.9) , (20 00, 61. 6 ), (2010, 64.8) ,
(2020, 65 . 2)

DOCUMENT: Birth f r a c t ion is the number of births per

1000 women per yea r in each cohort. Data taken from:

Bureau o f the Census , Sta ti s t i c a l Abstracts of the U.S.
(1 963 )

BF 20 24 = GRAPH (TIME)

(1900, 0.00) , (1910, 0.00), (1920, 0 .00) , (1930, 0.00) ,
(1940,136), (1950 ,197), (1960, 2 58) , (1970 ,168 ) ,
(1980 ,115), (1990 ,116), (2000,121), (2010,124),
(2020, 126)

DOCUMENT: Bir th frac t ion i s t he numbe r of b irths per

1000 women per year in each cohort. Data taken f r om:

Bureau of the Census , Statist ical Abstracts of the U.S.
(1963)

BF 25 29 = GRAPH (TIME)

(1900, 0.00), (1910 , 0.00) , (1920, 0 .00), (1 930 , 0 .00),

(1940, 123), (1950 , 166), (1960 , 1 97), (1970, 145),

(19 80 ,113) , (1990 ,120), (20 00 ,123), (2 010 ,126 ),
(202 0, 12 8)

DOCUMENT: Birth frac tion is the number o f births per
10 00 wome n per y e a r in each cohort. Data taken from:
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Bureau o f the Census, Statisti c al Abstrac t s o f t he U. S.

(1 963)

BF 30 34 = GRAPH(TIME)

(19 00 , 0 .0 0 ) , (1910, 0 . 00), (192 0, 0 .00) , (1930 , 0. 00 ),

(19 4 0, 83 .4 ), (19 50 ,104 ) , (19 60 ,113), (1 970,73.3),

(198 0 , 61.9), (1990 , 8 0 .8) , (20 00 , 82 .2 ), (2010, 84 . 5) ,

(20 2 0, 90 . 8)

DOCUMENT: Birth fract ion is the numbe r o f births p e r 1000

women per year i n each c ohort . Data taken from: Bureau o f

the Census, Stati stical Abs t r a c t s o f the U.S. (1 963 )

BF 3 5 39 = GRAPH (TIME)

(1900, 0.00), (1910, 0.00), (1920, 0.00), (1930, 0 .00) ,

(1940,46 .3), (1950,5 2 .9), (1960 ,56.2), (1970,31.7) ,

(1980, 19.8), (1990, 31. 7 ) , (2000, 35 .9), (20 10, 3 8 . 2),

(20 20, 4 0 . 2)

DOCUMENT: Birth f raction is the number of births per 1000

wome n p e r y e a r in each c ohort. Data taken f r om: Bure a u o f

the Census , Statistical Abstracts o f the U. S. (1963)

BF 40 4 4 = GRAPH (T IME)

(19 00 , 0 .0 0 ), (1 910 , 0. 00 ) , (1 920, 0 .00) , (1 930 , 0 .00),
(194 0, 1 5 .6), (1950, 1 5 .1 ), (196 0 , 15 . 5 ), (1 970 , 8 .10) ,

(19 8 0, 3. 90), (1 99 0, 5 . 5 0 ), (20 00 , 6. 3 2 ) , (20 1 0 , 6 .96) ,

(2 0 2 0 , 7. 44 )

DOCUMENT : Birth fraction is t he number o f birt h s p er 1 000

women per y e a r in each c ohort. Data t aken from: Bureau o f

the Census , Stat i stical Abs t r ac t s o f the U. S . (1 963)

BF 45 49 = GRAPH (TIME)

(19 00, 0.00), (1910, 0 .00), (1920 , 0.00 ), (19 30 , 0.00),

(1940 , 1.90) , (1950 , 1. 20), (1960 , 0.9), (1 970 , 0.5),

(1980, 0.2) , (1990, 0.2), (2000 , 0.2), (2010 , 0 .18),

(20 20, 0.19)

DOCUMENT : Birth fracti on is the number o f births per 1000

wome n per year in each c ohort . Data taken f rom: Bureau o f

the Census , Statistical Abstracts of the U.S. (1963)

BF_PRIOR_TO_19 40 = GRAPH (TIME)

(1900, 13 0 ), (1 91 0 , 12 7 ) , (1920 , 118 ) , (19 30, 8 9 .2 ) ,

(194 0 , 79 .9 ) , (1 950 , 0 . 00 ), (196 0, 0 .00) , (1 970 , 0.0 0 ) ,

(1980 , 0 .00) , (1 9 90, 0.00) , (20 00 , 0 . 00) , (2 01 0, 0 .00),

(202 0, 0 . 00 )
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DOCUMENT: Before 1940, data could only be found for the

number of births per 1000 women between the ages of 15

and 44 . Data taken from: Bureau of the Census, Statis

tical Abstracts o f the u.s. (Colonial Times to 1970)

DR_O_1 = GRAPH (TIME)

(1900, 162), (1910 , 132), (1920, 92.3), (1 930, 69 .0),

(1940,54 .9), (1950,33 .0) , (1960,27.0) , (1970 ,21.4),

(1980, 12 .9), (1990,9 .70) , (2000,6 .60), (2010,4.12),
(2020, 2.48)

DOCUMENT: Death rates are the number of deaths per year
per 1000 p opul a t i on.

Data is take n from: Bu r e a u o f the Census , Statistical
Abs trac ts of t he u . S. (1963 )

DR_15_24 = GRAPH(TIME)

(1900 , 5. 90 ) , (1910 , 4 . 50), (1920, 4. 90), (1930, 3 .30),

(1940 , 2.00) , (1950, 1.30), (1960 , 1.10) , (1970, 1.29),

(1980,1.15), (1990,0 .98), (2000,0 .87) , (201 0 , 0. 75) ,
(20 20, 0 .69)

DOCUMENT: Death rates are the number of deaths per year
per 1000 population .

Data is taken from : Bureau o f the Census, Statistical
Abstracts of the u .S . (1963)

DR_1_4 = GRAPH (TIME)

(1900 , 19 .8), (1910, 14 .0) , (1920, 9 .90), (193 0, 5.60),
(1940, 2 .90) , (1950, 1.40), (1960 , 1.10), (1970, 0.84) ,
(19 80, 0 .64), (1990 , 0 .4 7) , (2000, 0. 3), (20 10 , 0 .2),
(2020, 0 .2)

DOCUMENT: Death rates are the numbe r of deaths per year
per 1000 p op u l ation.

Data is taken from : Bur e au o f the Census , St a t istical
Abs tracts o f the u . S. (1 9 63)

DR_25_34 = GRAPH (TIME)

(1900 ,8 .20), (1910,6 .50), (1920,6 .80), (1930 ,4 .70),

(1940, 3 . 10) , (1950 , 1. 80), (1960 , 1. 5 0 ) , (19 70 , 1.59 ),

(19 80 , 1.36), (1990, 1.39) , (2000, 1.17) , (2010, 1.08) ,
(2020, 0. 855)

DOCUMENT: De a t h rates are the number o f deaths per year
per 1000 population .

Data i s taken from: Bureau of the Census, Statistical
Abstracts of the u . S . (1 963 )
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DR_35_44 = GRAPH (TIME)

(1900, 10.2) , (1910, 9.00), (1920, 8 .10), (1930, 6.80),

(1940,5.20), (1950,3.60), (1960,3 .00) , (1970 ,3 .17),

(1980,2 .29), (1990 ,2.24), (2000,1.98), (2010 ,1.65),

(2020, 1. 65)

DOCUMENT : Death rates are the number of deaths per year

per 1000 population.

Data is taken from : Bureau of the Census, Statistical

Abstracts of the U.S . (1963)

DR_45_54 = GRAPH (TIME)

(1900 , 15 .0), (1910, 13.7), (1920, 12 .2), (1930 , 12.2),

(1940,10.6), (1950,8.50), (1960,7 .60), (1970,7 .38),

(1980,5 .90), (1990,4.77), (2000 ,3 .90), (2010,3 .38),

(2020, 2.55)

DOCUMENT: Death rates are the number of deaths per year

per 1000 population.

Data is taken from : Bureau of the Census , Statistical

Abstracts of the U.s. (1963)

DR_55_64 = GRAPH (TIME)

(1900,27 .2) , (1910,26.2) , (1920,23.6), (1930 ,24.0) ,

(1940,22.2), (1950,19.0), (1960,17.4), (1970,16.9),
(1980 ,13.8), (1990,12 .2), (2000,10.8), (2010,9 .24),

(2020, 8.54)

DOCUMENT: Death rates are the number of deaths per year

per 1000 population .

Data is taken from: Bureau of the Census, Statistical

Abstracts of the U.S . (1963)

DR_5_14 = GRAPH (TIME)

(1900,3 .90), (1910,2.90), (1920 ,2.60), (1930,1.70),

(1940 , 1.00) , (1950, 0.6), (1960 , 0.5), (1970, 0 .42),

(1980, 0.31), (1990 , 0.24), (2000 , 0 .14), (2010, 0 .12),

(2020 , 0.1)

DOCUMENT : Death rates are the number of deaths per year

per 1000 population.

Data is taken from: Bureau of the Census, Statistical

Abstracts of the U.S . (1963)

DR_65_69 = GRAPH (TIME)

(1900, 56.4), (1910 , 55.6), (1920, 52 .5), (1930, 51.4),

(1940, 48.4), (1950, 41.0), (1960, 38 .2), (1970, 37 .3),

(1980,31.2), (1990,27 .4), (2000,25.0), (2010 ,22.0),

(2020, 21.0)
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DOCUMENT: Death rates are the number of deaths per year

per 1000 population.

Data is taken from: Bureau of the Census, Statistical

Abstracts of the u.s. (1963)

LIFE_EXPECTANCY = GRAPH(TIME)
(1900,9.30), (1910,9.10), (1920,9.70), (1930,9.60),

(1940, 9 .95), (1950, 10 .9), (1960, 11.3), (1970, 12 .1),
(1980, 12.8), (1990 , 13.9), (2000, 14.6) , (2010 , 15.2),

(2020, 16 .2)

DOCUMENT: Dwell time = life expectancy for the average

70 year old .

Data taken from: Bureau of the Census, Statistical

Abstracts of the U.S. (Colonial Times to 1970)

4.2 River Toxins

In this section of our chapter on modeling two independent variables, we
apply the methods outlined in Section 4.1.1 to model not only the change of
a system over time but also how these changes manifest themselves in
space. For example, suppose that a pollutant is released into a river at one
point and we want to know how the concentration of that pollutant changes
with time AND at different points downstream of the pollution point. Time
and the distance downstream are the independent variables . How can we
design a model to keep track of distance and time simultaneously?

To solve such a problem we establish a chain of stocks of the pollutant
that represent connected sections of the river, 1, 2, 3, . . . , etc., and we
connect each stock to the next one with a controlled transfer variable, F1,
F2, F3, .... , etc. The stocks represent the volume of pollution in each sec
tion and are measured, for example, in cubic meters of pollutants. Each of
the transfer vaiables F1, F2, . . . , etc . are controlled by a dwell time, TI , T2,
T3, ... , etc., which represents how long a molecule of pollutant and of
river water stay in that particular section. The chain continues until the
length of river is described with sufficient accuracy . The stocks give the
amount of pollutant in each section at any time.

Let us assume, without any loss of generality , that the pollutant is released
at an initial injection point FO and that there are six river sections of interest.
The purpose of the model is to find the concentration in any subsequent
section at any time. We can find the concentrations at different distances
from the point of release by dividing the amount of pollutant in a section by
the volume of water in that section . The volumes of the sections VI and V2
are determined by the flow rate, Q1, which is the same for sections 1 and 2.
After section 2, this flow rate changes. This change may be caused, for
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example , by changes in the river bed or the presence of some levies. The vol
umes of the sections V3, V4, V5, and ve are determined by the flow rate Q2.

The dwell or residence time, T, in any section is just the volume of that
section divided by the flow in that section . These dwell time parameters are
used in this model analogously to the TIME 01, TIME 12, etc. parameters of
the age cohort model in the previous chapter that were required to move
the population through the different age cohorts (Figure 4.20).

The volume-flow relations are assumed to be empirically determined
and, in principle, vary over time in response to changes in the flow rates.
For simplicity of the model , however, we assume fixed values for Q1 and
Q2. Thus, the graphs that specify the volume-flow relationships are not es
sential in our model, because if Q1 and Q2 are constant, VI, V2, V3, etc.
are also constant. Nevertheless, we included the volume-flow relations in
the model to make it easier later on to investigate the implications of
changing flow rates for pollution concentrations.

For the model, we specified volume as an increasing function of the flow
rate. The graphical relationships between the volume , V, and the flow rate,
Q, of the river employed in our model is shown in Figure 4.21 for the first

Q2

FIGURE4.20
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section , i.e., for VI as a function of Q1. All other graphical relationships are
very similar. You can find them on the CD ROM that accompanies this book.

Model results are shown in Figure 4.22. The concentration of pollutants
in the first section of the river has a very pronounced spike due to the re
lease into that section. Subsequent sections of the river show increases in
concentration with time, up to a maximum, and a subsequent decline,
though the concentration never reaches zero in the long run . The further
downstream a section lies, the lower the highest concentration is, because

tj3: 16.00
4:
5: 6.00

0.00

0.00

t] 8.00
~: -I+-+-+----t-------t------I-------1
5: 3.00

\'12:
3:
4:
5:

0.00 12.75 25.50 38.25 51.00

Hours

FIGURE4.22
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of the dillution effect. Note that the concentration of pollutants in the fifth
section only appears at first glance to be larger than that of the previous
three sections, simply because we chose to plot the concentration of that
section over a different scale.

Now imagine that you are the owner of a chemical plant located in sec
tion 3 of this river. You are the owner of a plant that is identical to the one
that is periodically polluting the river at station 1 and so you too have to rid
yourself of the same quantity of poHution. Suppose that you learned that
the Environmental Protection Agency (EPA) is setting up a pollution con
centration measuring station at section 6 and that the EPA already has the
model for stream flow that we just developed above . You learn that the
EPA thinks that it is not your plant that is dumping pollutants in the stream
but that all the pollution is released by the plant at section 1.

As plant owner, you know that your plant is dumping its pollutants into
the river. However, the EPA does not suspect that you too release pollution
into the river. The EPA's assumption is based on their observation that the
firm at station 1 dumps some amount of pollutants into the river and on their
measurements at section 6. You call your engineers into your office and they
reveal their method that is fooling the EPA into thinking that all the pollution
is coming from the plant at station 1. How did they do it? What are the im
plications for water quality control by the EPA in our model?

Redo the model above but add a side stream of water that enters the
main channel at section 3. Be careful how you model the diluting effect of
this sidestream.

In a further refinement of the model , you may want to include fluctuations
of the flow rates over time to make use of the volume-flow relations specified
in our model above . Choose fluctuations of the flow rates along a sine wave
with a mean equal to the values of Ql and Q2 chosen before . Such changes
in flow rates can be easily integrated into the model where one firm tries to
trick EPA. How do the results differ from the case with constant flow rates?

To make the model even more realistic, add a process of biological decay
of the pollutant to the model. How should the biological decay activity de
pend on the pollution concentration?We would expect that the organisms in
our river are better able to deccompose or assimilate pollutants when con
centrations are low, and worse, or absent, for high pollution levels.

RIVER TOXINS

FIVE(t) = FIVE(t - dt) + (F4 - F5) * dt
INIT FIVE = 0 {Cubic Meters}
INFLOWS :
F4 = FOUR/T4 {Ejects l /Tl th of its Volume into the
Next Station at Each Time Step; Cubic Meter per Minute}
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OUTFLOWS :

F5 = FIVE /T5 {Ejects 1 /T1 th of its Volume into the

Next Station at Each Time Step; Cubic Meter per Minute}

FOUR(t) = FOUR(t - dt) + (F3 - F4) * dt

INIT FOUR = 0 {Cubic Meters}

INFLOWS:

F3 = THREE/T3 {Ejects 1 /T3 th of its Volume into the

Next Station at Each Time Step; Cubic Meter per Minute}

OUTFLOWS:

F4 = FOUR/T4 {Ejects 1 /T1 th of its Volume into the

Next Station at Each Time Step ; Cubic Meter per Minute}

ONE(t) = ONE(t - dt) + (FO - F1) * dt

INIT ONE = 0 {Amount of toxin in the first station ;

Cubic Meters}

INFLOWS:

FO = PULSE(100,DT,lOOO) {Pulses toxin into the first

station at the start of the run. Injections can be made

at various stations at various times. Cubic Meters per
Minute}

OUTFLOWS:

F1 = ONE/T1 {Ejects 1 /T1 th of its Volume into the

Next Station at Each Time Step; Cubic Meter per Minute}

SIX(t) = SIX(t - dt) + (F5 - F6) * dt
INIT SIX = 0 {Cubic Meters}

INFLOWS:

F5 = FIVE/T5 {Ejects 1 /T1 th of its Volume into the

Next Station at Each Time Step; Cubic Meter per Minute}

OUTFLOWS :

F6 = SIX /T6 {Ejects 1 /T6 th of its Volume into the

Next Station at Each Time Step; Cubic Meter per Minute}

THREE(t) = THREE(t - dt) + (F2 - F3) * dt

INIT THREE = 0 {Cubic Meters}

INFLOWS:

F2 = TWO /T2{Ejects 1 /T2 th of its Volume into the Next

Station at Each Time Step; Cubic Meter per Minute }

OUTFLOWS :

F3 = THREE/T3 {Ejects 1 /T3 th of its Volume into the

Next Station at Each Time Step; Cubic Meter per Minute}
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TWO(t) = TWO(t - dt) + (F1 - F2) * dt
INIT TWO = 0 {Cubic Meters}
INFLOWS:
F1 = ONE/T1 {Ejects 1 /T1 th of its Volume into the

Next Station at Each Time Step; Cubic Meter per Minute}
OUTFLOWS :
F2 = TWO/T2{Ejects 1 /T2 th of its Volume into the Next
Station at Each Time Step ; Cubic Meter per Minute}

CONC_1 = ONE /V1 {Cubic Meters of Pollutants per Cubic
Meter of Water}
CONC_2 = TWO /V2 {Cubic Meters of Pollutants per Cubic
Meter of Water}
CONC_3 = THREE/V3 {Cubic Meters of Pollutants per

Cubic Meter of Water}
CONC_4 = FOUR /V4 {Cubic Meters of Pollutants per Cubic
Meter of Water}
CONC_5 = FIVE /V5 {Cubic Meters of Pollutants per Cubic
Meter of Water}
CONC_6 = SIX /V6 {Cubic Meters of Pollutants per Cubic
Meter of Water}
Q1 1 {Cubic Meters per Minute}

Q2 1.6 {Cubic Meters per Minute}
T1 V1/Q1 {Dwell Time in Each Section; Minutes}
T2 V2/Q1 {Dwell Time in Each Section; Minutes}
T3 V3/Q2 {Dwell Time in Each Section; Minutes}
T4 V4/Q2 {Dwell Time in Each Section; Minutes}
T5 V5/Q2 {Dwell Time in Each Section; Minutes}
T6 V6/Q2 {Dwell Time in Each Section ; Minutes}
V1 GRAPH (Q1) {Cubic Meters}
(0 .00, 0.05), (0.167, 0.3), (0.333 , 0.35), (0 .5, 0.55),
(0.667,1.00) , (0.833,1.80), (1,2 .80), (1.17,4 .60),
(1.33, 6.80), (1.50, 8 .25), (1.67, 9.05), (1.83, 9.70),
(2.00, 9 .95)
V2 = GRAPH(Ql) {Cubic Meters}

(0 .00,0.00), (0.167,0 .7), (0.333,1.15), (0 .5,1.50) ,
(0.667 ,1.75) , (0.833 ,1.95), (1, 2.15), (1.17,2 .50),
(1.33,2.85), (1.50,3.50), (1.67,4 .85), (1.83,7.90),

(2.00, 10.0)
V3 = GRAPH (Q2) {Cubic Meters}
(0.00 ,0.075) , (0.167,1.35), (0.333 ,2.10) , (0.5,
2.48), (0.667,2.92), (0 .833, 3 .30), (1 ,3 .90), (1.17 ,
4.88), (1.33, 6.83), (1.50, 9 .07), (1.67, 11.6), (1.83,
13.3), (2.00 , 14.8)
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{Cubic Meters}

3.38), (1.25 ,4.72),

7.80), (1.58,8 .55) ,

12.3) , (1.92, 14.0),

2.02) , (1.17,

6.67) , (1.50 ,

9.90), (1. 83 ,

V4 = GRAPH (Q2)

(1.00, 0 .00), (1.08,

(1.33, 5 .92), (1.42 ,

(1.67 ,9.07), (1.75 ,

(2.00 , 15.0)

V5 = GRAPH (Q2 ) {Cubic Meters}
(0.00, 0.09) , (0 .167, 2.07), (0.333, 4 .05), (0.5 ,

5.85), (0 .667,6 .39), (0.833,6.75), (1,7.47), (1.17,

8.28), (1.33, 9 .63), (1.50, 11. 7), (1.67, 14 .7), (1.83,

17 .0), (2 .00,18.0)

V6 = GRAPH (Q2) {Cubic Meters}
(0.00,0 .1), (0.167,1.20), (0.333,1.40), (0.5,2.10),

(0 .667,2 .70), (0 .833,3.80) , (1,5.40), (1.17,8.50),

(1.33, 11. 7), (1.50 , 15.4), (1.67, 17 .4), (1.83 , 18.2),

(2.00, 19 .8)
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Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.
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FLIPPER TAlLRATE

FIGURE 5.1

how different the graphs are from the one we have run . Run over a long
enough time, any trend thought to exist in the short run will be reversed.
Try it. Run the model for 500 flips, judge the trend and then resume the
model for the remaining 1500 flips and see if your judgment holds.
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FLIPPING A COIN

CUMULATIVE_NET(t) = CUMULATIVE_NET(t - dt) + (NET) *
dt
INIT CUMULATIVE_NET = 0 {Cumulative Number of Net Head
Tossed}
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INFLOWS;

NET = HEAD_RATE-TAIL_RATE {Number of Net Head Tossed}

FLIPPER = RANDOM(O,l)

HEAD_RATE IF FLIPPER < .5 THEN 1 ELSE 0 {Number of
Head}
TAIL_RATE IF FLIPPER > .5 THEN 1 ELSE 0 {Number of
Tail}

5.2 Intoxication Model

Let us form and demonstrate a model of the path of a person who is ine
briated to various degrees as she tries to walk from some initial position to
ward a destination 100 feet away. Let the nominal step size be 1 meter.
After each step, this person resights the goal and takes another step. The di
rection should have a normally distributed variation around the desired di
rection . Analogously, the step size variation should have a normally distrib
uted variation around the normal step size of a meter. Assume that the
standard deviation for the direction and the step size are the same value
call it the INTOXICATION INDEX: the smaller this index, the less intoxi
cated this person is. Show the travel patterns for various indices.

STEP SIZE can be generated by a random variable of normal distribution
with mean = 1 and standard deviation = INTOXICAnON INDEX:

STEP SIZE = NORMALO, INTOXICATION INDEX) (5)

In order to consider the direction taken by the person, we may assume that
the person is initially situated at a point (0,0) and her goal is in the point
(0,100). The desired angle at which the person approaches her goal is

DESIRED ANGLE = IF X< aTHEN ARCTAN ((Y-100)/X)
ELSE ARCTAN ((Y-lOO)IX) + PI (6)

If the person is intoxicated this will, of course, not necessarily be the angle
at which the person approaches her goal. The chosen angle is a normally
distributed random variable with mean = DESIRED ANGLE and standard
deviation = INTOXICATION INDEX:

CHOSEN ANGLE = NORMAL(DESIRED ANGLE,
INTOXICATION INDEX)

The actual movement towards the goal is

MOVE Y = STEP SIZE' SIN(CHOSEN ANGLE)

and movement away from a straight line is given by

MOVE X = STEP SIZE' COS(CHOSEN ANGLE)

(8)

(9)
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The flows MOVE Y and MOVE X need to be defined as biflows because
these moves can take on negative values, i.e., the person may stagger away
from her goal. The total distance covered by the person is just the accumu
lation of all steps. Here, we have to be careful to sum up all step sizes in
dependent of whether they lead to the goal (positive step sizes) or away
from the goal (negative step sizes).

The final part in this model requires that the person does not continue to
move if she is "close enough" to her goal. We let STELLA pause the simula
tion run if the person is within at least half a foot in the X direction and at
least within a quarter of a foot from the goal in Y direction . Pausing STELLA
is done by the translation variable CLOSE, which we define as

CLOSE = IF (X::; .5) AND (Y::; .25) THEN PAUSE, ELSE 0 (0)

The resulting model is shown in Figure 5.3.
Plot Y against X to show the location of the person at each step . You can

set up such a plot by moving the graph icon to the STELLA diagram and
then double-clicking on the graph. When the dialogue box appears, select
"Scatter Plot" and specify X as the "X Axis" and Y as the "Y Axis."

When you run the model and the person is close enough to the goal,
STELLA will pause the model. You can then choose to stop it or resume the
mode run . If you resume the model , you will find that the person may tem
porarily move away from the goal until she again comes close.

X

ABS STEP SIZE

FIGURE 5.3
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The model runs in Figures 5.4 and 5.5 of the Intoxication Model are done
with an INTOXICATION INDEX of °and 1.0, respectively. Thus, each of
these pictures represents the path for increasing intoxication. We find that if
the person is not or only slightly intoxicated, Le., INTOXICATION INDEX is°or close to 0, the path resembles a straight line. The higher the intoxication
index , the more the person staggers around, even moving backwards at
times, and the longer it takes to reach the destination . Run the model and
you will find that for intoxication indices greater than 0, the path will always
be different, and that with increasing intoxication the number of steps (time
length of the simulation) must be increased in order to reach the goal.

Develop a model in which a person is intoxicated and attempts to ap
proach a car. Assume in this case that the car rolls at a constant velocity to
the right while the person approaches it. For that model, provide a sensi
tivity analysis of some key parameter, such as the intoxication index and
the velocity, and plot a series of "walks" for alternative parameter values.

INTOXICATION MODEL

TOTAL_DISTANCE(t) = TOTAL_DISTANCE(t - dt) +
(ABS_STEP_SIZE) * dt

INIT TOTAL_DISTANCE = 0

INFLOWS:
ABS_STEP_SIZE = ABS(STEP_SIZE)

X(t) = X(t - dt) + (MOVE_X) * dt

INIT X = 0
INFLOWS :
MOVE_X = STEP_SIZE*COS(CHOSEN_ANGLE)

Y(t) = Y(t - dt) + (MOVE_Y) * dt
INIT Y = 0

INFLOWS:
MOVE_Y = STEP_SIZE*SIN(CHOSEN_ANGLE)

CHOSEN_ANGLE =

NORMAL(DESIRED_ANGLE,INTOXICATION_INDEX)

CLOSE = IF (X<= .5) AND (lOO-Y <= .25) THEN PAUSE
ELSE 0

DESIRED_ANGLE = IF X < 0 THEN ARCTAN((Y-100) /(X)) ELSE

ARCTAN ( (Y-100) / (X)) + PI

INTOXICATION_INDEX = 0

STEP_SIZE = NORMAL(l ,INTOXICATION_INDEX)
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Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.
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nology today . Similar developments can be observed for a number of other
technologies or products that have close substitutes that enter the market at
the same time.'

A potential application of positive feedback in ecological systems can be
found in a study of the competition of two species for shoreline space."
Here we have the competition between two shore-water-oriented plants
that spread through root growth. If either of the two are the only plants in
an area, that plant will become the sole plant growing in that area, however
if the plants are equally present after a clear cut disturbance, either plant
may dominate but most likely, however, the plant that does the best in
shallow water will take over that area while the other will take the slightly
deeper water area adjacent to its competitor. So we have here a mixture of
positive feedback and adaptive advantage.

Brian Arthur illustrates the process of positive feedback with a simple
model. The idea here is that balls of two different colors are chosen at a
time and placed on a table . We start with one ball of each color on the
table. The rule for choosing the next color is given by a function of the frac
tion of balls already on the table . If the fraction of balls of a given color is
larger than a random variable that lies between 0 and 1, then another ball
of that color is added onto the table . By adding another ball of that color its
fraction is increased. As a result , for the next drawing, it is even more likely
to draw another ball of the very same color . .. . Positive feedback prevails.

In our model, the balls are either blue or red. We start with one of each
color on the table . The system is described by two state variables that are
represented by the stocks BLUE and RED . From these stocks we can calcu
late the fraction of each color.

The key equations driving the model are

ADD BLUE = IF RANDOM NUMBER < BLUE FRACTION
THEN 1 ELSE 0 (1)

ADD RED = IF ADD BLUE:;:. 1 THEN 1 ELSE 0 (2)

The STELLA model is shown in Figure 6.1 and the details of the calculation
are listed at the end of this section in the model equations. Before you look
them up, try to model the two-color positive feedback model yourself.

The fraction of each color oscillates wildly and then settles down to a
particular value (Fig. 6.2). However, this value is different on consecutive
runs! Such a phenomenon is thought by Arthur to be similar to a specific
technology that comes to dominate (or disappear from) the market. The
process is a matter of luck at least in part.

3For an application to the competition between two firms see Ruth, M. and B. Han
non (1997) Modeling Dynamic Economic Systems, Springer-Verlag , New York.
"Grace , J. 1987. The Impact of Preemption on the Zonation of Two Typha Species
Along Lakeshores, Ecological Monographs, Vol. 57, pp. 283-303 .
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Set up a sensitivity run for the blue fraction: 20 runs with the initial values
of the BLUE and RED always the same, at 1. Do you see a trend? Now do
the whole analysis over with the initial value in both colors set at 10. Now
do you see a trend? What is going on here? Note that the initial ratio is the
mean value of the fixed fractions, and the number of initial balls sets the
standard deviation on the distribution of the fixed fractions.
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TWO-COLOR POSITIVE FEEDBACK MODEL

BLUE(t) = BLUE(t - dt) + (ADD_BLUE) * dt
INIT BLUE = 1 {Numbers of Balls}
INFLOWS :
ADD_BLUE = IF RANDOM_NUMBER < BLUE_FRACTION THEN 1

ELSE 0
{< means positive feedback with many fixed points of
red /blue fraction .

> means negative feedback and the fractions always go
to 0.5.
measured in Balls per Draw}

RED(t) = RED(t - dt) + (ADD_RED) * dt
INIT RED = 1 {Numbers of Balls}
INFLOWS :
ADD_RED = IF ADD BLUE <> 1 THEN 1 ELSE 0 {The < in the
add_blue variable means : the blue fraction is the
probability that a blue ball will be drawn and if it is
greater than random , it will be drawn , if not the red
ball is drawn; measured in Balls per Draw}

BLUE_FRACTION = BLUE/TOTAL {Number of Balls per Total
Number of Balls}
RANDOM_NUMBER = RANDOM(O,l)
RED_FRACTION = RED/TOTAL {Number of Balls per Total
Number of Balls}
TOTAL = BLUE+RED {Number of Balls}

6.2 Positive Feedback with Fixed Points"

In the model of the previous section, the relationship between the BLUE
FRACTION and the probability was a linear one. That is, the BLUE FRAC
TION was a substitute for the probability that the next choice would be
blue. The higher the BLUE FRACTION, the greater the chance that a blue
ball would be picked next. However, that linear choice is somewhat arbi
trary. It could be any sort of realtionship. Here is a nonlinear connection:

ADD BLUE = IF RANDOM NUMBER < BLUE PROBABILITY
rnrnl~EO rn

where BLUE PROBABILITY is defined by the graph in Figure 6.3.

5See Arthur, B., Y.M. Ermoliev, and Y.M. Kaniovski. 1994. Path-D ependent Processes
and the Emergence of Macrostructure, in B. Arthur, Increasing Returns and Path De
pendence in the Economy, University of Michigan Press, Ann Arbor , MI, pp. 33-48.
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The complete model is shown in Figure 6.4. Note that the sort of connec
tion established now produces fixed points for the long-term BLUE FRAC
TION rather than the random long-term behavior seen in the previous sec
tion of this chapter. These fixed points are determined by the intersection of
the curved line in BLUE PROBABILITY and the 45 degree line going from
0,0 to 1,1 in Figure 6.3. There are three such intersections . When the inter
secting curve comes from above the 45 degree line, a stable fixed point is set
for the long-term BLUE FRACTION. There are two such fixed points in the
model now. The other intersection point comes from below the 45 degree
line, establishing an unstable fixed point that is never seen as a solution .

You may visualize this stable/unstable relationship as follows: When the
curve is above the 45 degree line, the chances are greater than usual that a
blue ball will be picked next and the tendency is to increase the BLUE
FRACTION. When the curve is below, there is a less than usual chance of
picking a blue ball on the next round of choice , so the BLUE FRACTION
decreases.

So, the positive feedback problem becomes determinant in the long run
if the BLUE PROBABILITY function is nonlinear, depending on the location
of the stable fixed points . The BLUE PROBABILITY curve could of course
crisscross the 45 degree line many times, creating many stable fixed points
and then this mode l becomes increasingly indeterminant. Try different
sketches of the BLUE PROBABILITY, figure out where the stable points are,
and see how predictable the solutions are. The results of our model with
the specification of the BLUE PROBABILITY as in Figure 6.3 is shown in
Figure 6.5.
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POSITIVE FEEDBACK WITH FIXED POINTS

BLUE(t) = BLUE(t - dt) + (ADD_BLUE) * dt

INIT BLUE = 1 {Numbers of Balls)
INFLOWS :
ADD_BLUE = IF RANDOM NUMBER < BLUE_PROBABILITY THEN 1

ELSE 0
{ < means positive feedback with many fixed points of
red/blue fraction.

> means negative feedback and the fractions always go

to 0 .5 .
measured in Balls per Draw)

RED(t) = RED(t - dt) + (ADD_RED) * dt

INIT RED = 1 {Numbers of Balls)

INFLOWS :
ADD_RED = IF ADD BLUE * 1 THEN 1 ELSE 0 {The < in the
add_blue variable means : the blue fraction is the
probability that a blue ball will be drawn and if it is
greater than random, it will be drawn, if not the red
ball is drawn; measured in Balls per Draw)

BLUE_FRACTION = BLUE/TOTAL {Number of Balls per Total
Number of Balls)
RANDOM_NUMBER = RANDOM(O,l)
RED_FRACTION = RED/TOTAL {Number of Balls per Total
Number of Balls)
TOTAL = BLUE+RED {Number of Balls)
BLUE_PROBABILITY = GRAPH (BLUE_FRACTION)
(0 .00, 0.14), (0.1, 0.105) , (0.2, 0 .12) , (0 .3 , 0 .165) ,

(0.4,0.27), (0.5,0.5), (0.6,0.68), (0.7,0.82),
(0 .8, 0.88), (0.9, 0.89), (1, 0.85)

6.3 Elaborations

To see what negative feedback will do, reverse the inequality between the
random number and the blue fraction in the model of Section 6.1. The end
result is always 1/2. This is what we mean above when we say that neg
ative feedback processes are an equilibrating force. Now return to the prob
lem of positive feedback and add a third color . The results are similar to
those found earlier. But note how much harder it is to write the correct
conditions for adding the various colors. Try it yourself before checking the
list of equations at the end of this section.
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The model of the three-color positive feedback is shown in Figure 6.6
and the results of one model run are plotted in Figure 6.7.

Now try to combine the effects of both kinds of feedback. Can you show
the results of such a combination where the relative strength of the negative
feedback is four times as great as the strength of the simultaneously occur
ring positive feedback?
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This little example should make clear the nature of feedback. Try to create
examples of three-color positive and negative feedback. For example, try to
make the effect of the feedback nonlinear, e.g., the number of balls added is
a function of that ball's fraction of dominance, first proportionally and then
inversely.

Now, return to the two-color model of positive feedback and find a mod
ified IF statement that enables you to model the dynamics of the two shore
water-oriented plants that spread through root growth. As discussed above,
that model should exhibit a mixture of positive feedback and adaptive
advantage.

THREE-COLOR POSITIVE FEEDBACK MODEL

BLUE(t) = BLUE(t - dt) + (ADD_BLUE) * dt

INIT BLUE = 1 {Number of Balls}

INFLOWS :

ADD_BLUE = IF RAND < BLUE_FRACTION THEN 1 ELSE 0 {<

means positive feedback with many fixed points of
red/blue fraction. Number of Balls per Draw}

GREEN(t) = GREEN(t - dt) + (ADD_GREEN) * dt

INIT GREEN = 1 {Number of Balls}

INFLOWS:
ADD_GREEN = IF (ADD_BLUE = 0) AND (ADD_RED 0) THEN 1
ELSE 0 {Number of Balls per Draw}

RED(t) = RED(t - dt) + (ADD_RED) * dt

INIT RED = 1 {Number of Balls}
INFLOWS:
ADD_RED = IF (RAND >= BLUE_FRACTION) AND (RAND <

(BLUE_FRACTION + RED_FRACTION)) THEN 1 ELSE 0 {Number

of Balls per Draw}

BLUE_FRACTION = BLUE/TOTAL {Number of Balls per Total

Number of Balls}
GREEN_FRACTION = GREEN/TOTAL {Number of Balls per

Total Number of Balls}

RAND = RANDOM(O,l)

RED_FRACTION = RED/TOTAL {Number of Balls per Total
Number of Balls}

TOTAL = BLUE + RED + GREEN {Number of Balls}
TOTAL_FRACTIONS =
GREEN_FRACTION+RED_FRACTION+BLUE_FRACTION {Number of

Balls per Total Number of Balls}
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Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.

3
B. Hannon et al., Dynamic Modeling
© Springer Science+Business Media New York 2001



112 7. Derivatives and Lags

of F(T) with the built-in function DELAY. The DELAY built-in requires that
you specify the var iable you wish to delay, and how long that delay should
be. In our case, the delay should be only one small time step, DT, so :

DELAY INTEGRAL F OF T = DELAY(INTEGRAL F OF T,DT) (2)

Consequently, the derivative of the integral of F(T) is

DERIVATIVE INTEGRAL OF F(T) = (INTEGRAL F OF T
- DELAY INTEGRAL F OF T)/DT 0)

Note again that we need to divide by DT to correct for the size of the time
step.
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ERROR
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The percentage error caused by using the numerical solution for the inte
gral instead of the analytical one can be calculated by comparing the value
of the derivative calculated by STELLA with the actual value of the flow
(Fig. 7.1). Note how smaller DTs reduce that error. In the next section, we
provide some simple illustrations and applications of derivatives and lags.

The graph in Figure 7.2 shows that, in absolute terms, the error is initially
very large (minus infinity, to be precise). Subsequent calculation lead to
smaller errors, expressed as a percentage of the growing state variable F of T.

INTEGRATION MODEL

INTEGRAL_F_OF_T{t } INTEGRAL_F_OF_T{t - dt} +
(F_ OF_T) * dt

INIT INTEGRAL_F_OF_T 0

INFLOWS:
F_OF_ T = TIME.... 2

DELAY_INTEGRAL_F_OF_T = DELAY{INTEGRAL_F_OF_T ,DT}
DERIVATIVE_INTEGRAL_OF_F_OF_T = {INTEGRAL_F_OF_T 
DELAY_INTEGRAL_F_OF_T} /DT

ERROR = IF TIME > 0 THEN
{DERIVATIVE_INTEGRAL_OF_F_OF_T-F_OF_T}/F_OF_T

ELSE 0

7.2 Appl ications of Derivatives and Lags

7.2.1 Simple Population Model

The basic function performed by programs such as STELLA is integration ,
the summing of incremental changes to a state variable. The derivative is an
undoing of integration , and derivatives of generated results can also be cal
culated with STELLA.

The derivative is useful in finding the extremes of the range of a variable.
The built-in function DELAY is used to calculate the delayed , or lagged,
value, wh ich in turn is used to calculate the derivative as the difference be
tween the actua l and the delayed value. Here are two cases for the identifi
cation of extrema using the DELAY function . The first is a switch (0-1) that
signals the peak growth rate in a population model. The population model
is very similar to the ones developed earlier. The variable SWITICH is cal
culated as the difference between the value of BIRTHS at time period t and
BIRTHS at time period t-DT. If this differen ce is positive, we know that the
present number of births exceeds that calculated for the time pe riod one
DT earlier. Thus, we did not yet encounter the maximum in BIRTHS. If the
difference is smaller than zero , then a peak must have occurred and the
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variable SWITICH should signal the presence of that peak. The variable
SWITICH is set up to do exactly that. We deliberately spelled its name differ
ently from the built-in function "SWITCH," which serves some other purpose.

In our model, the carrying capacity is set to 500, the initial population
level is 10, and the birth rate is set constant at .0006. The number of births
is calculated as

BIRTH = BIRTH FRACTION • POPULATION
• (CARRYING CAPACITY-POPULATION) (4)

The switch is defined to generate a number 1 if the difference between cur
rent and delayed births is zero or less, and a number 0 as long as current
births exceed the births in the previous period:

SWITICH = IF ((BIRTHS-DELAY(BIRTHS,DT))::;O)
AND (TIME>1) THEN 1 ELSE 0 (5)

Note also that the switch is only activated after the first period, or it could
go off at the model outset just because there is no history to the model that
would allow us to calculate the delayed value for the births .

The complete model is shown in Figure 7.3 and the results are depicted
in Figure 7.4. Births rise to a peak at which the switch signals the reversal
in the slope of the curve of births through time. Experiment with alternative
model specifications (for example, set up a goal-seeking model for the
population) and ensure that your switch accurately picks up the peak in the
number of births per time period.

POPULATION MODEL

POPULATION(t) = POPULATION(t - dt) + (BIRTHS) * dt
INIT POPULATION = 10 {Organisms per Unit Area}

INFLOWS:
BIRTHS = BIRTH_FRACTION*POPULATION*(CARRYING_CAPACITY

POPULATION)
{Organisms per Unit Area per Time Period}

BIRTH_FRACTION = .0006 {Organisms Born per Number of

Organisms Present per Unit Area per Time Period}
CARRYING_CAPACITY = 500 {organisms per unit area}

SWITTCH = IF ((BIRTHS-DELAY(BIRTHS,DT))<=O) AND

(TIME>l) THEN 1 ELSE 0

7.2.2 Two-Population Model

This problem reveals a more complicated switch than the one discussed
above. Here, we have two populations with different birth rates. The model
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CARRYING CAPACITY

BIRTH FRACTION

FIGURE 7.3

enables us to find numerically when the peaks for the entire population
occur. There are clearly two peaks, provided we started with small initial
populations.

The SUM BIRTH variable calculates the total number of births in each pe
riod , and DELTA SUM BIRTHS calculates the change in total births over the
time frame t-DT:

DELTA SUM BIRTHS = SUM BIRTHS - DELAY(SUM BIRTHS,DT,O) (6)

This is then used to generate a value of 1 in the SIGNAL variable every time
a peak in the number of births per time period is reached or passed:

SIGNAL = IF DELTA SUM BIRTHS s aTHEN 1 ELSE a (7)
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FIGURE 7.5

COUNT generates a value based on the SIGNAL that is corrected for the
length of DT:

COUNT = IF SIGNAL - DELAY(SIGNAL,DD > 0 THEN l/DT ELSE 0 (8)

PEAK COUNT keeps track of the number of peaks that occurred (Fig. 7.5).
Thus , this model can easily be expanded to accommodate multiple peaks
and model runs with different time step lengths. Figure 7.6 shows for the
results of the two-population case .
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TWO POPULATION MODEL

PEAK_COUNT(t) = PEAK_COUNT(t - dt) + (COUNT) * dt
INIT PEAK_COUNT = 0 {Total Number of Peaks up to the

Current Time Period}

INFLOWS:
COUNT = IF SIGNAL - DELAY (SIGNAL,DT) > 0 THEN l /DT

ELSE 0 {Number of Peaks per Time Period up to the

Current Time Period}

POPULATION(t) = POPULATION(t - dt) + (BIRTHS) * dt

INIT POPULATION = 10 {Organisms per Unit Area}

INFLOWS :
BIRTHS = BIRTH_FRACTION*POPULATION*(CARRYING_CAPACITY

POPULATION) {Organisms per Unit Area per Time Period}
POPULATION_2(t) POPULATION_2(t - dt) + (BIRTHS_2) *

dt
INIT POPULATION_2 10 {Organisms per Unit Area}

INFLOWS:

BIRTHS_2
BIRTH_FRACTION_2 *POPULATION_2 * (CARRYING_CAPACITY_2

POPULATION_2) {Organisms per Unit Area per Time

Period}

BIRTH_FRACTION = .0006 {Organisms Born per Unit Area
per Time Period per Number of Organisms Present}
BIRTH_FRACTION_2 = . 005 {Organisms Born per Unit Area
per Time Period per Number of Organisms Present}
CARRYING_CAPACITY = 500 {Organisms per Unit Area}
CARRYING_CAPACITY_2 = 500 {Organisms per Unit Area}
DELTA_SUM_BIRTHS = SUM_BIRTHS-DELAY(SUM_BIRTHS,DT,O)

{Organisms per Unit Area per Time Period}
SIGNAL = IF DELTA_SUM_BIRTHS<=O THEN 1 ELSE 0 {Number

of Peaks}
SUM_BIRTHS = BIRTHS+BIRTHS_2 {Organisms per Unit Area

per Time Period}
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Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.
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smog by triggering the breakdown of NO z. This process happens, simpli
fied, as follows : Sunlight causes nitrogen dioxide to break down into ni
trogen oxide and monatomic oxygen, 0. This O-atom combines then with
0z to form 0 3:

NO z~ NO + 0 ; ° + o, ~ 0 3 (1)

A STELLA model of this chemical reaction requires an initial stock of NO z
that is depleted in a reaction at a rate that depends on the concentration of
NO z and a given rate constant. The buildup of the 0z and NO stocks occurs
of course at this same rate , depending specifically on the amounts of these
compounds that are available in the reactant NO z. A second chemical
process is linked to the first one. It involves the creation of ozone from the
monatomic oxygen released in the NO z breakdown and the oxygen in the
troposphere.

Let us develop a model for the first part of this reaction, the breakdown
of nitrogen oxide. This problem reveals the basic idea in chemical kinetics
called the law of mass action . It is an empirical rule that states that reaction
speeds are proportional to the concentration(s) of the initial ingredients.
For the case of two reactants at concentrations R1 and R2 that form one
product at concentration P, the law of mass action is

P = k • R1 • R2 (2)

with k denoting the reaction rate constant. We will use this law in the fol
lowing problems in a simplified form and revisit it again in the model of an
epidemic that we develop in Chapter 19.

The model of the breakdown of NO z is shown in Figure 8.1 for hypo
thetical data . It contains the law of mass action in the following forms:

INCREASE IN°CONCENTRATION
= °PER N02 • REACTION VELOCITY (3)

INCREASE IN NO CONCENTRATION
= REACTION VELOCITY • NO PER N02 (4)

DECREASE IN N02 CONCENTRATION = REACTION VELOCITY (5)

We begin the model with an initial concentration of 2 moles of NO z per
cubic meter of air. The stocks of nitrogen and oxygen are normalized to
zero . The reaction rate constant is arbitrarily set to 0.1.

Before you model the changes in the concentrations of NO z' NO, and 0 ,
make a guess about the shape of the resulting curves . Run the model for al
ternative values of the REACTION RATE CONSTANT. Then, run the model
with a modified mass action law. In order to do this, introduce an exponent
for N02 CONCENTRATION in the REACTION VELOCITY equation. Such
an exponent may reflect the temperature dependence of a chemical reac
tion . For example, the higher the temperature, the faster the reaction takes
place, the less of the original substance is left at the next time step, and the
lower the increase in temperature will be for subsequent reactions.
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o PER N02

DECREASE N02 CONCENTRATION

FIGURE 8.1

The model is run here with an assumed reaction rate constant that does not
necessarily reflect the actual breakdown of N02 in the troposphere (Fig. 8.2).
Try to find data in a chemistry or environmental chemistry textbook that en
ables you to better quantify the speed at which N02breaks down under the in
fluence of solar radiation. Then try to introduce seasonal fluctuation, reflecting
the fact that N02decay has its most severe implications in the summer months.

Now introduce the second part of the chemical reaction that takes place
in the creation of photochemical smog. Introduce a new stock of 0 2 that is
large enough to provide a sufficient number of oxygen molecules to rea ct

1: N02 CONCENTRATION 2: NO CONCENTRATION 3:0 CONCENTRATION
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FIGURE 8.2
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with all monatomic oxygen that is created in the breakdown of NOz. Again,
introduce seasonal fluctuation into the model.

A related reaction is the breakdown of Nz0
5

into NO z and Oz . You can
fairly quickly create a model of this and similar chemical reactions, follow
ing the model above .

N02 DECAY MODEL

N02_CONCENTRATION(t) = N02_CONCENTRATION(t - dt) + (
DECREASE_N02_CONCENTRATION) * dt

INIT N02_CONCENTRATION = 2 {Moles per Cubic Meter}

OUTFLOWS:

DECREASE_N02_CONCENTRATION = REACTION_VELOCITY

{Decrease in N02 concentration; simple first-order

reaction ; measured in Moles per Cubic Meter per Second}

NO_CONCENTRATION(t) = NO_CONCENTRATION(t - dt) +
(INCREASE_IN_NO_CONC) * dt

INIT NO_CONCENTRATION = 0 {Moles per Cubic Meter}

INFLOWS:

INCREASE_IN_NO_CONC = REACTION_VELOCITY*NO_PER N02

{Increase in NO concentration as a result of N02 decay;

measured in Moles per Cubic Meter per Second}

O_CONCENTRATION(t) = O_CONCENTRATION(t - dt) +
(INCREASE_IN_O_CONC) * dt

INIT O_CONCENTRATION = 0 {Moles per Cubic Meter}

INFLOWS:
INCREASE_IN_O_CONC = O_PER_N02*REACTION_VELOCITY

{Increase in 0 concentration as a result of N02 decay;

measured in Moles per Cubic Meter per Second}

NO_PER_N02 = 1 {Moles NO produced per Mole N02

Decomposed - from stoichiometry of reaction}

O_PER_N02 = 1 {Moles ° produced per Mole N02

Decomposed - from stoichiometry of reaction}

REACTION_RATE_CONSTANT = .1 {l/Second}

REACTION_VELOCITY =

REACTION_RATE_CONSTANT*N02_CONCENTRATION

8.2 Stratospheric Ozone Depletion

As we briefly discussed above, ozone in the stratosphere protects life on
earth from harmful solar radiation . Were ozone levels to fall only 10%, the
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increase in ultraviolet rays would be 20%. The National Academy of
Sciences has estimated that every 3% reduction in 0

3
would result in 20,000

more skin cancer sufferers annually in the United States alone .
Depletion of stratospheric ozone is primarily caused by accumulation of

CFCs (chlorofluorocarbons) and to some minor degree by nitrogen oxides .
Major sources of CFC release are leaking air conditioners and refrigerators ,
evaporation of industrial solvents, and production of plastic foams. One of
the properties that makes CFCs so useful in a variety of industrial applica
tions is that they are chemically fairly inert and therefore very stable. Un
fortunately , that property also influences their adverse effect on the atmo
sphere as they remain intact. CFCs can remain in the atmosphere for more
than 100 years depending on the type . This stability allows them to reach
the stratosphere, where they are broken down by intense solar radiation,
and their components enter into other chemical reactions. One of these re
actions results in the depletion of ozone in the stratosphere. The products
of this reaction lead to a chain of reactions which, in turn, decrease ozone,
following the steps in Table 8.l.

This chain reaction is catalytic, since the chlorine reactant, which initiates
the reaction in Step C, is not permanently removed but appears as a prod
uct from Step D, ready to repeat the process over and over again . These
chemicals stay in the atmosphere until the final rainout occurs , usually after
a year or two, during which each chlorine atom destroys approximately
100,000 molecules of ozone. Ozone depletion by humans attains signifi
cance on a global scale as the ultimate consequence of the yearly emission
to the atmosphere of almost one million tons of CFCs, which translates into
an ozone loss 100,000 times larger.

The model shown in Figure 8.3 captures the dynamics of this autocata
lytic process of ozone depletion in the presence of CFCs. The values for the
reaction constants are assumed, and you may want to change them to in
vestigate the sensitivity of the model results. Additionally, you may want to
modify the mass action equation as in the example before, introducing ex
ponents for some of the reactants . Consult an environmental chemistry text
book to support your assumptions about the mass action equation and to
find realistic reaction rate constants under alternative assumptions on atmo
spheric temperature.

The model developed here does not explicitly trace the intermediate
product of free oxygen atoms that you may want to integrate into the
model together with step A of the reaction process. In contrast to the other

TABLE 8.l.

Step Reactants Products

A 0+ 0 z ~ ° 3
B CFCI3 ~ CFClz + CI
C CI + 0 3 ~ CIO + 0,
0 CIO + ° ~ CI + 0,
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CLCONC

CLOCONC

INCREASE CL CONC STEP B

CFCL3CONC

DECREASE CFCL3 CONC REACT RATE CaNST 1

FIGURE 8.3

steps of the chain of chemical reactions, Step A is typically significantly
slower. Find a reaction rate constant for the formation of ozone that would
be required to offset the depletion that takes place in your model system.
We also do not kee p track here of the CFCI

2
since it does not enter any

othe r reaction that is of interest for the model.
As you can see from Figure 8.4, the conce ntrations of 0

3
and CFCI

3
de 

cline while the concentration of CI and cia stabilize over the modeled time
horizon. Note that these results are derived for the case in which no new
CFCI

3
enters the atmosphere. How would the results be affected if the con

centration of CFCI
3

were held constant or increased due to continued emis
sions? Make an educated gue ss, and then model these new assumptions
and observe their consequences.
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In this model we did not yet consider the fact that the chlorine atom stays
in the atmosphere for 1 to 2 years and is removed steadily by rain. As a re
sult of this deficiency in our model , the reactions continue until all ozone is
depleted . To make the model more realistic, add the removal process.

STRATOSPHERIC OZONE DEPLETION

CFCL3_CONC(t) = CFCL3_CONC(t - dt ) + (
DECREASE_CFCL3_CONC) * dt

INIT CFCL3_CONC = 2 {Moles per Cubic Meter}
OUTFLOWS :
DECREASE_CFCL3_CONC = REACT_VELOC_l {Decrease in N02
concentration ; simple first-order reaction ; measured in
Moles per Cubic Meter per Time Period}

CLO_CONC(t) = CLO_CONC(t - dt) + (INCREASE_CLO_CONC 

DECREASE_CLO_CONC) * dt
INIT CLO_CONC = 0

INFLOWS:

INCREASE_CLO_CONC REACT_VELOC_2

OUTFLOWS :

DECREASE_CLO_CONC REACT_VELOC_3

CL_CONC(t) = CL_CONC(t - dt) +
(INCREASE_IN_CL_CONC_STEP_C + INCREASE_CL_CONC STEP D
- DECREASE_CL_CONC) * dt
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INIT CL_CONC = a {Moles per Cubic Meter}

INFLOWS:
INCREASE_IN_CL_CONC_STEP_C =
REACT_VELOC_1*CL_PER_CFCL3 {Increase in NO

concentration as a result of N02 decay; measured in
Moles per Cubic Meter per Time Period}
INCREASE_CL_CONC_STEP_B = CL_PER_CLO*DECEASE_CLO_CONC

OUTFLOWS:
DECREASE_CL_CONC = REACT_VELOC_2

03 _CONC(t) = 03_CONC(t - dt) + (- DECREASE_03_CONC) *

dt
INIT 03_CONC = 100

OUTFLOWS:
DECREASE_03_CONC = O_PER_03_FOR_CLO*REACT_VELOC_2

CL_PER_CFCL3 = 1 {Moles NO produced per Mole N02
Decomposed - from stoichiometry of reaction}
CL PER CLO = 1
O_PER_03_FOR_CLO = 1

REACT_RATE_CONST_1 .01 {l /Time Period}
REACT_RATE_CONST_2 = . 1

REACT_RATE_CONST_3 = . 05
REACT_VELOC_1 REACT RATE_CONST_1*CFCL3_CONC
REACT_VELOC_2 REACT_RATE_CONST_2*CL_CONC

REACT_VELOC_3
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Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.
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according to the chemical equations. You should find this a less compli
cated procedure. Then compare your model to that in Figure 9.1. Make an
educated guess of the dynamics that will result, run your model and see
whether its behavior coincides with the results in Figure 9.2.

Can you make this model with fewer stocks, say just ones for C and P?Try
to remove P at a constant rate . Assume that the enzyme is lost along with P
at a rate that is in proportion to the E concentration (e .g., O.OI"E). Figure out
how fast E and S must be added to the reaction to maintain the removal of

K3 K2

ECONC

FIGURE 9.1

ECONC

SCONC

CCONC
KI

Kl
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P and the loss of E. The idea here is to find a steady state solution . You can
find the steady state substrate addition rate by adding the inputs and losses
symbolically to the above differential equations and then setting the deriva
tives equal to 0, and solving for the steady state add rate for S.

ENZYME-SUBSTRATE REACTION

C_CONC(t) = C_CONC(t - dt) + (C_RATE) * dt
INIT C_CONC = 0 {Moles per Cubic Meter}
INFLOWS:
C_RATE = K1*S_CONC*E_CONC-(K2+K3)*C_CONC {Moles per
Cubic Meter per Time Period}

E_CONC(t) = E_CONC(t - dt) + (- E_RATE) * dt

INIT E_CONC = 10 {Moles per Cubic Meter}

OUTFLOWS :

E_RATE = K1*S_CONC*E_CONC-(K2+K3)*C_CONC {Moles per

Cubic Meter per Time Period}

P_CONC(t) = P_CONC(t - dt) + (P_RATE) * dt

INIT P_CONC = 0 {Moles per Cubic Meter}

INFLOWS:

P_RATE = K3*C_CONC {This is the Michaelis-Menten
enzyme model; P_Rate measured in Moles per Cubic Meter
per Time Period}
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S_CONC(t ) = S_CONC(t - dt) + (- S_RATE ) * dt
INIT S_CONC = 100 {Moles per Cubic Me t e r}

OUTFLOWS:
S_RATE = K1*S_CONC* E CONC-K2*C CONC {Moles per Cub i c
Meter per Time Period}

K1 .005 {l /Time Period}
K2 . 005 {l /Time Period}

K3 . 1 {l / Ti me Period}
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Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.
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stock, the ones with negative signs define the DESTROY outflows from the
stocks. For example,

FORM A = K7*(l - A)

DESTROY A = K3*A*B*Y

(5)

(6)

Let us get back to the workings of the model itself. This is a nonlinear
system that yields oscillation of some periodicity. As theory and exper
imentation show us, we can observe the phenomenon of period doubling
when we change one of the oscillating variables within certain bounds. If
these oscillating variables are changed further , we will eventually observe
chao tic behavior of the system. This was, in fact, observed . The original in
vestigators of the Olsen oscillator chose to study changes in A that would
oscillate between 0 and 1. K8 and K9, two variables influential in the crea
tion of the oscillation , can be physically changed in an actual system. K8
can be changed by changing the influx of substance B into the system, and
K9 can be changed by chang ing the concentration of some of the sub
stances added to the system.

After setting up the model as in Figure 10.1, experiment with the time step
and the integration method to get the model running. For our model run in
Figure 10.2, we chose a time step of DT = 0.01 and Euler's method as the
integration technique. We also set the reaction rate constants as follows:

1: X

K1 = 3.28

K2 = 2000

K3 = 2.24

K4 = 20

K5 = 5.35

2: Y 3: B

K6 = 1.25·10--<5

K7 = .1

K8 = .1030125

K9 = .001

4: A

1: 0 .04
2 : 0 .55
3 : 3 .90
4 : 0 .50

1:
2:
3 :
4 :

1:
2 :
3 :
4 :

0 .07
1.10
7 .80
1.00

0 .00
0 .00
0 .00
0 .00

0 .00

4

4

2---_1 l- :iJ-....J.......a... lol1l.2~......LIIr-.q.
50 .00 100.00 200 .00

FIGURE 10.2
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and our initial conditions A = 1·10-6, B = 0, X = 1.10-12
, and Y = 1.10-12

.

Change the DT and the integration method and note the significant changes
in the results .

With this model , we can show that the form of the oscillations is depen
dent on the choice of the reaction constants (Figs. 10.2 and 10.3). In the
Olsen oscillator, some of these constants depend on the concentrations of
the substances being used. Let us first evaluate impacts of the choice of K9
on the oscillation.I For this purpose, fix the values for the other parameters
and vary K9. Keep all parameter values as above and then set for sub
sequent runs of the model K9 = .0001; K9 = .01; and K9 = .05. It becomes
readily apparent that the period of the oscillations is dependent on the
value of K9, such that a larger K9 gives a longer period of oscillation. For
K9 = .05, the system no longer oscillates.

Next, determine whether the form of oscillations is dependent on Kl.
Choose K1 = 2.8 and keep the other reaction constants the same. Choose
as alternative values for K9 once K9 = .003, then K9 = .001, and finally K9
= O. The trend here is now toward chaos . The period of oscillation doubles
as we change K9 from K9 = .003 to K9 = .001. Chaos is observed at K9 =
O. We will discuss chaos in more detail in Chapter 37, but you should be al-

1 : B v . A

0 .50

7 .006 .00
0 .00 -+-- - - 1-- - -;- - - .....;.- - - -t

5 .00

B

FIGURE 10.3

'The parameter values chosen for the simulation runs in the following figures are
listed in the equation pad at the end of this chapter.
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ready aware of the possibility of "strange" model behavior as some param
eter value is slightly altered.

Finally, determine if the system is sensitive to K8. Choose the values Kl
= 2.8 and K9 = .0001, then vary K8 for subsequent runs : K8 = .08; K8 =
.15; and K8 = .20. Plot the corresponding graphs and note how they differ
from the others. These marked differences indicate that the system is very
much dependent on values assumed by the parameter K8. In fact, for K8 =
.20, there is a damping effect that eventually brings the system to equilib
rium. In this case there are no more oscillations!

OLSEN OSCILLATOR

A(t) = A(t - dt) + (FORM_A - DESTROY_A) * dt
INIT A = lE-6
INFLOWS:
FORM_A = K7*(1-A)
OUTFLOWS :
DESTROY_A = K3*A*B*Y

B(t) = B(t - dt) + (FORM_B - DESTROY_B) * dt
INIT B = 0

INFLOWS:
FORM_B = K8

OUTFLOWS:
DESTROY_B = (Kl*B*X)+(K3*A*B*Y)+(K9*B)

X(t) = X(t - dt) + (FORM_X - DESTROY_X) * dt
INIT x = lE-12
INFLOWS:
FORM_X = Kl*B*X+3*K3*A*B*Y+K6
OUTFLOWS :
DESTROY_X = 2*K2*X~2+K4*X

Y(t) = Y(t - dt) + (FORM_Y - DESTROY_Y) * dt
INIT Y = lE-12
INFLOWS:
FORM_Y = 2*K2*X~2

OUTFLOWS:
DESTROY_Y = K3*A*B*Y+K5*Y

Kl 3.28

K2 2000
K3 2.24
K4 20
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K5 5.35

K6 1.25E-6

K7 . 1

K8 . 103 01 25

K9 .001
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Genetics Models
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Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.

3
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11.2 The Mating of Two Alleles into a Genotype:
Proving the Hardy-Weinberg Law

Let us now model the process of genotype mixing, given two alleles, the
fundamental experiment in genetics . In the next chapter we will then
model the process of natural selection and mutation.

The process of genotype mixing can be illustrated for two alleles, A and
B, which are drawn randomly from a pool of 100 A alleles and 200 B al
leles. Each time step in the model is a drawing of an allele: we have 300 al
leles so the total time for the mating process is 300 time steps (actually, 302
steps are needed to clear the very last allele choice into a genotype). The
300 steps represent a generation that resulted from a mating process in
which the alleles were joining simultaneously. In STELLA, we could have
chosen a time step of 1/300 so that t = 1, 2, 3, . . . would represent 1, 2, 3,
. . . generations. The real time required for the run would not be shorter,

of course. In this simple mating process , the genotype mix is set at the end
of the first generation and remains fixed for all further ones.

The results of mating two alleles are explained by the Hardy-Weinberg
law. This law states that the genotype frequencies are determined in a ran
dom mating process in the first generation. These genotype frequencies are
for AA, pA2; for AB, 2*p*q; for BB, qA2, where p and q are the A and B
allele frequencies, respectively . In our sample problem, p = 100/300 or
approximately 0.3333 and q = 200/300 or approximately 0.666667. From
300 alleles we can have 150 genotypes, so the Hardy-Weinberg law tells
us that we should end up with 0.33333*0.33333*150 or 16.7 AA geno
types, 2*0.3333*0.666667*150 or 66.7 AB genotypes and finally,
0.66667*0.66667*150 or 66.7 BB genotypes.

There is another way to look at the problem of genotype mixing. If the
A and B alleles were of equal frequency of occurrence, the chance of an
AAgenotype is .25. Since in our problem, the chance of an A choice is 0.33,
the AA genotype frequency is .25*.33333, or 1/12 . The AB frequency is
2*.25*.66667, or 1/3 . The relative frequency of AB to AA is therefore 4. We
can check for the validity of this relationship in a graph generated by our
model on the mating of two alleles.

To construct the model, we must set up a stock of 100 A alleles and
another stock of 200 B alleles (Fig. 11.1). We use a random number gener
ator to pick a number between 0 and 1 so that we can compare it to the
frequency of the A allele in the total stock of alleles remaining to be
chosen. Let's call that random number RAND.

The A frequency is just A/(A + B) and we make an initial and a running
calculation of it in the variable A FREQ:

A FREQ = A/(A + B) (1)

If an A is randomly chosen we "store it" in a separate stock called A HOLD
by adding a 1 to that stock:



11.2 The Mating of Two Alleles into a Genotype 143

A A CHOSEN A HOLD AAGENOTYPE

AAGENOTYPE

BBMATE~-~

AB GENOTYPE BB GENOTYPE

FLOW3

AAFREQ ABFREQ

AAGENOTYPE AB GENOTYPE BB GENOTYPE

AAFREQ

FIGURE 11.1

ABFREQ

A CHOSEN = IF (RAND <= A FREQ)
AND ((A> 0) AND (B >= 0» THEN 1 ELSE 0 (2)

If an A is chosen next , we add another 1 to the A HOLD. Now two As have
been chosen sequentially, and they can be used to form an AA genotype.
In this case, we wish to remove the two Is from the A HOLD stock, and
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mate them to form an AA GENOTYPE. To capture this allele mating
process, the model (see Fig. 11.1) is set up so that AA MATE realizes that A
HOLD has reached 2 and dumps A HOLD into the stock called AA GENO
TYPE, leaving 0 in A HOLD and 2 in AA GENOTYPE. Since the number of
genotyp es is equal the number of pairs of alleles, we must subtract one
from A GENOTYPE every time AA MATE dumps A HOLD into AA GENO
TYPE. This subtraction is accomplished by FLOWl:

FLOW 1 = IF AA MATE> 0 THEN 1 ELSE 0 (3)

If instead of A, our second allele choice had been a B, then a one is sent to
B HOLD by B CHOSEN:

B CHOSEN = IF (RAND> A FREQ)
AND ((B > 0) AND (A >= 0)) THEN 1 ELSE 0 (4)

Once we have chosen an A and a B in subsequent draws, both AB MATE
and BA MATE dump a 1 into AB GENOTYPE:

AB MATE = IF (A HOLD = 1) AND (B HOLD = 1) THEN 1 ELSE 0 (5)

BA MATE = IF (A HOLD = 1) AND (B HOLD = 1) THEN 1 ELSE 0 (6)

The variable FLOW2 senses the AB MATE action and removes a 1 from AB
GENOTYPE. The same steps that occur for the A HOLD process, occur for
the B HOLD pro cess.

In this way 300 alleles are converted into 150 geno types. How does the
result compare with the Hardy-Weinberg law? Run the model seve ral times
and see what you get. Compare your results with one of our runs shown in
Figures 11.2 and 11.3. Could the variability of the results among your vari
ous model runs and between yours and ours be due to the small sample

I : AA FREQ

1.00

0.50

2: A B FREQ 3: BB FREQ

j i
225.00 300.00

~l#;-----_ I-----

0.00 I~_I-----rj-------,r-----,
0.00 75.00 150.00

Draws

FIGURE 11.2
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I : AA GENOT YPE 2: AB GENOTYPE 3: BB GENOTYPE

I :

~l
22.00
70.00

11.00
35.00

/ Ff'
0.00 ~I1:J::'"
0.00 1 I

0.00 75.00
I

150.00
Draws

i
225.00

I
300.00

FIGURE 11 .3

size? Try doubling the sample size and keep the initial frequency the same.
You must also doubl e the number of time steps (plus 2) to allow all the
mating to take place. Try tripling the initial number of alleles . You should
find that the larger the number of initial alleles, the closer we come to re
peating the Hardy-Weinb erg pred iction . Set up a model that does not have
a fixed supply of the alleles but calls them from an infinite source and ob
serve the long-term convergence on the Hardy-Weinberg predicted result.

What can we learn from this experiment? First we have show n how the
Hardy-Weinberg law is derived and we have learned a little more dynamic
programming. We have also learned that an analytic result ca n be useful in
cutting down on programming time and effort. As we shall see in ensuing
problems where many generations are required to reach equilibrium due to
differential survival rates, mutation , etc., the computer time grows to intol
erable levels and begins to obscure the point of the exercise. So this dy
namic programming business can be usefully complimented by analytic re
sults, but not before we understand the underlying principles.

PROVING THE HARDY-WEINBERG LAW

A (t ) = A(t - dt) + (- A_CHOSEN) * dt
INIT A = 100 {Initial A number o f alleles .}

OUTFLOWS :

A_ CHOSEN = IF (RAND <= A_ FREQ) AND ( (A > 0) AND (B >=

0 ) ) THEN 1 ELSE 0 {Proce ss o f randomly chosing A based

on its intial frequency . Ot her conditions pre v ent
negative A. }
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AA_GENOTYPE(t) = AA_GENOTYPE(t - dt) + (AA_MATE 

FLOW1) * dt

INIT AA_GENOTYPE = 0 {This counter receives 2 alleles

for each genotype and therefore a 1 must be subtracted

each time the 2 alleles are added. This is done by
flow1. }

INFLOWS:

AA_MATE = IF A_HOLD = 2 THEN 2 ELSE 0 {This mating

step occurs when second A is chosen . It empties A_hold
and sends 2 to the AA genotype counter.}
OUTFLOWS :
FLOW1 = IF AA_MATE > 0 THEN 1 ELSE 0

AB_GENOTYPE(t) = AB_GENOTYPE(t - dt) + (AB_MATE +
BA_MATE - FLOW_2) * dt

INIT AB_GENOTYPE = 0 {This counter receives 2 alleles

for each genotype and therefore a 1 must be subtracted

each time the 2 alleles are added. This is done by
flow2. }

INFLOWS :
AB_MATE = IF (A_HOLD = 1) AND (B_HOLD = 1) THEN 1 ELSE

o {This mating step occurs when a single A is stored in

A_Hold and a B is chosen . It empties A_hold and B_Hold
& sends 2 to the AB genotype counter.}
BA_MATE = IF (A_HOLD = 1) AND (B_HOLD = 1) THEN 1 ELSE
o {This mating step occurs when a single B is stored in
B_Hold and an A is chosen . It empties A_hold and B_Hold

& sends 2 to the AB genotype counter.}

OUTFLOWS:
FLOW_2 = IF AB_MATE > 0 THEN 1 ELSE 0

A_HOLD(t) = A_HOLD(t - dt) + (A_CHOSEN - AA_MATE 

AB_MATE) * dt
INIT A_HOLD = 0 {an intermediate variable = to the

number of A chosen. One generation = A + B time steps .

If next choice is A, then AA genotype is formed ; if B,

the AB is formed}

INFLOWS:
A_CHOSEN = IF (RAND <= A_FREQ) AND ((A > 0) AND (8 >=

0)) THEN 1 ELSE 0 {Process of randomly chosing A based
on its intial frequency. Other conditions prevent

negative A.

OUTFLawS~
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AA_MATE = IF A_HOLD = 2 THEN 2 ELSE 0 {This mating

step occurs when second A is chosen. It empties A_hold

and sends 2 to the AA genotype counter .}
AB_MATE = IF (A_HOLD = 1) AND (B_HOLD = 1) THEN 1 ELSE

o {This mating step occurs when a single A is stored in
A_Hold and a B is chosen. It empties A_hold and B_Hold

& sends 2 to the AB genotype counter.}

B(t) = B(t - dt) + (- B_CHOSEN) * dt
INIT B = 200 {Initial number of B alleles .}

OUTFLOWS :
B_CHOSEN = IF (RAND > A_ FREQ) AND ((B > 0) AND (A >=

0)) THEN 1 ELSE 0 {Process of randomly chasing B based

on its initial frequency. }

BB_GENOTYPE(t) BB_GENOTYPE(t - dt) + (BB_MATE -

FLOW3) * dt
INIT BB_GENOTYPE = 0 {This counter receives 2 alleles

for each genotype and therefore a 1 must be subtracted
each time the 2 alleles are added. This is done by

flow3. }

INFLOWS:
BB_MATE = IF B_HOLD = 2 THEN 2 ELSE 0 {This mating

step occurs when second B is chosen. It empties B_hold

and sends 2 to the BB genotype c oun t e r . }

OUTFLOWS:
FLOW3 = IF BB_MATE > 0 THEN 1 ELSE 0

B_HOLD(t) = B_HOLD(t - dt) + (B_CHOSEN - BB_MATE 
BA_MATE) * dt
INIT B_HOLD = 0

INFLOWS:
B_CHOSEN = IF (RAND > A_FREQ) AND ((B > 0) AND (A >=

0)) THEN 1 ELSE 0 {Process of randomly chasing B based

on its initial frequency. }

OUTFLOWS :

BB_MATE = IF B_HOLD = 2 THEN 2 ELSE 0 {This mating

step occurs when second B is chosen. It empties B_hold

and sends 2 to the BB genotype counter.}
BA_MATE = IF (A_HOLD = 1) AND (B_HOLD = 1) THEN 1 ELSE

o {This mating step occurs when a single B is stored in

B_Hold and an A is chosen . It empties A_hold and B_Hold

& sends 2 to the AB genotype counter .}
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AA_FREQ = IF AA_GENOTYPE > 0 THEN

AA_GENOTYPE /TOTAL_GENOTYPE ELSE 0
AB_FREQ = IF AB_GENOTYPE > 0 THEN

AB_GENOTYPE /TOTAL_GENOTYPE ELSE 0

A_FREQ = A/(A + B) {Tracks the randomly changing A

allele frequency . This tells us the probability that an

A allele will be chosen by the random drawing from the

A,B allele pool .}

BB_FREQ = IF BB_GENOTYPE > 0 THEN

BB_GENOTYPE /TOTAL_GENOTYPE ELSE 0

RAND = RANDOM(O,l) {A random number genrator which

gives a number between 0 and 1 .0 . This number allows us

to randomly choose from the A, B allele pool .}
TOTAL_GENOTYPE AA_GENOTYPE+AB_GENOTYPE+BB_GENOTYPE
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Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.

3
B. Hannon et al., Dynamic Modeling
© Springer Science+Business Media New York 2001
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TOTALALLELES B ALLELES

AAGENOTYPE

MUTATION

BB SURVIVERATE

FIGURE 12.1

genotypes are formed is specified by the relative frequency of A alleles in
the population:

AA RATE = TOTAL ALLELES/2 * A FREQ/\2 (4)

The third part of the model (Fig. 12.3) simply calculates the frequencies of
each genotype. These frequencies enter the Hardy-Weinberg law used in
the second part of the model.

This model needs to be run at a DT less than 1 in order to update stocks
frequently enough. If stocks are not updated frequently enough, some of
them may become 0 at times, leading to a division by 0 in the calculation of
the genotype frequencies . What does a DT < 1 imply for the interpretation
of the model's behavior over time with regard to "generations"?
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TOTAL ALLELES

BBREMATE

FIGURE 12.2

The graph in Figure 12.4 shows a randoml y varying A frequency that
stays near to the original frequency of 0.33333. Open the mutation circle
and set both mutation rates to O. Run the model again to see that A is domi
nant with the current six fertility and survival rate settings . Thus , the muta
tion from A to B effectively destroys the dominance of the A allele. Run the
model with various settings to see the effect of different rates. You should

ABGENOTYPE

AAFREQ

FIGURE 12.3
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find that the fertility and survival rate can be thought of as a single fitness
parameter, and that the relative sizes of these parameters is all that matters
in the determination of surviving genotype frequencies. Try to keep the
genotype growth rate from being exponential. Can you rig a connect ion be
tween the survival rate or fertility rate and the genotype frequency to bring
the number of genotypes to an eventual steady state?

There is a heresy afoot in evolutionary biology. Its adherents claim that at
least in part, mutation is not rand om.' The mutation rates of bacteria in
some experiments see m to speed up and produce a greate r fraction of mu
tants that are most suited to the new environmental stress (e.g ., a rise in
ambient temperature makes the current genotype distribution less than op
timal). Can you arrange such a model?

Another interesting question concerns the issue of human-caused selec
tion versus conservation . This question arises, for example, out of the work
of David Hopcraft of the Hop craft Wildlife Ranch, on the Athi River in
Kenya. Hopcraft has given up his ancestor's ways of raising English and
Scottish cattle on the hot , dry African plane s. He instead is able to make
greater income by harvesting the "extra" males from the animal herds on
his ranch, after the dominant male has been established in the breeding
groups . His observations of such herds showed that the "natural" assem-

] Hall, B.G. 1990. Spo ntaneous point mutations that occur more often when advan
tageous than when neu tral, Genetics, Vol. 126, pp. 5-16. Cairns, ]. , ]. Overbaugh,
and S. Miller. 1988. The origin of mutants, Nature, Vol. 335, pp . 142-145. Mittler, ].E .
and R.E. Lenski. 1990. New data on excisions of Mu from E. Coli MCS2 cast doubt
on directed mutation hypo thesis, Nature, Vol. 344, pp. 173-175.
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blage contained many nonbreeding males at any given time. These animals
were just consuming grass that could have gone to greater populations of
producing females . He harvests from this large, youngish male population.
In one sense, he is cleverly farming the nutrient base and the Kenyan sun
light.

Closer observation shows that the "extra" males are actually part of the
breeding population. The dominant male may account for, say, half of the
offspring in any given year, the rest coming with the help of the "extra"
males. Also, it is not necessarily the case that a dominant male this year will
also be one in the next mating season if the extra males are still around.

We tend to think of the dominant male as doing all the breeding since
that process leads to healthier offspring. But it would also lead to fewer
"ABs" in the natural population, and thus the natural population would be
at a greater than necessary risk of demise. Thus , the theories of dominance
and territoriality at their extreme are significantly flawed with regard to
maintaining genetic diversity in a population.

In real populations, the complete defense of a harem by the male is ap
parently so difficult and the drive to breed on the part of the "extra" males
is so great , that the harem defenses are significantly breached, thereby in
creasing genetic diversity. As a result , the genetic contribution of the non
dominant males may increase the stability of the overall population.

So, nature seems to be creating a tension of two opposing forces in the
breeding populations of wild animals at least. One force is seen in the selec
tion by females of strong, large, symmetrically-builtmales, a force surely pro
ducing size, speed, and general health that allows the herd to minimize loss
to predators. The counterforce, the allowance of nondominant male breeding
produces diversity, stability of population size, and resistance to unpredicta
ble challenge , from disease for example . So is the Hopcraft method really
that crafty? It seems to be much better than allowing imported cattle to stum
ble around inappropriate terrain, but is such selective removal of the extra
males leaving the future herd unstable in the face of genetically based chal
lenge? To answer these questions, you can mimic the Hopcraft situation and
its possible consequences and cures with a STELLA model based on insight
from the previous chapters. In your model you may find that it is advanta
geous to distinguish the population of animals by age classes. We will show
in the following three chapters some use of age cohort models .

NATURAL SELECTION AND MUTATION

AA_GENOTYPE(t} = AA_GENOTYPE(t - dt} + (AA_RATE 
AA_REMATE) * dt

INIT AA_GENOTYPE = 0

INFLOWS:

AA_RATE = TOTAL_ALLELES/2*A_FREQ A2 {Using the Hardy

Weinberg result to obtain the genotype frequencies.}
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OUTFLOWS :
AA_REMATE = AA_GENOTYPE {This flow represents the

convers ion of the genotype to alleles , representing the

generation change .}

AB_GENOTYPE{t) = AB_GENOTYPE{t - dt) + (AB_RATE 

AB_REMATE) * dt

INIT AB_GENOTYPE = 0

INFLOWS:

AB_RATE = 2*TOTAL_ALLELES /2*A_FREQ*{1 - A_FREQ) {Using

the Hardy-Weinberg result to obtain the genotype

frequencies.}

OUTFLOWS :
AB_REMATE = AB_GENOTYPE {This flow represents the

conversion of the genotype to alleles , representing the

generation change.}

A_ALLELES{t) = A_ALLELES{t - dt) + (NEW_A + MUTATION 

A_LOSS) * dt

INIT A_ALLELES = 100

INFLOWS:

NEW_A = 2*AA_GENOTYPE*AA_FERT*AA SURVIVE RATE

+AB_GENOTYPE*AB_FERT*AB_SURVIVE_RATE {This is the way
that genotypes break up into alleles again , after a

generation of time has passed.}
MUTATION = .3*B_ALLELES*RANDOM{0,1)*0 +

.03*A_ALLELES*RANDOM{0 ,1)

OUTFLOWS :
A_LOSS = A_ALLELES {This flow represents the converson

of the alleles into genetypes .}

BB_GENOTYPE{t) BB_GENOTYPE{t - dt) + (BB_RATE -

BB_REMATE) * dt

INIT BB_GENOTYPE = 0

INFLOWS:
BB_RATE = TOTAL_ALLELES/2*(1 - A_FREQ) A2 {Using the

Hardy-Weinberg result to obtain the genotype

frequencies .}

OUTFLOWS:
BB_REMATE = BB_GENOTYPE {This flow represents the

conversion of the genotype to alleles, representing the

generation change .}



2 {Fraction per time step of one .}

IF TIME > 0 THEN AA_GENOTYPE /TOTAL_GENOTYPE
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B_ALLELES{t) = B_ALLELES{t - dt) + (NEW_B - B_LOSS 

MUTATION) * dt

INIT B_ALLELES = 200

INFLOWS :

NEW_B = 2*BB_GENOTYPE*BB_FERT*BB SURVIVE RATE +
AB_GENOTYPE*AB_FERT*AB_SURVIVE_RATE {This is the way

that genotypes break up into alleles again , after a

generation of time has passed .}

OUTFLOWS :

B_LOSS = B_ALLELES {This flow represents the converson

of the alleles into genetypes.}

MUTATION = . 3*B_ALLELES*RANDOM{0 , 1 ) *0 +

. 03*A_ALLELES*RANDOM(0, 1)

AA_FERT

AA_FREQ

ELSE 0
AA_SURVIVE_RATE = .9 {Fraction per time step of one .}

AB_FERT 2 {Fraction per time step of one.}
AB_FREQ = IF TIME > 0 THEN AB_GENOTYPE /TOTAL_GENOTYPE

ELSE 0

AB_SURVIVE_RATE = 1 {Fraction per time step of one.}

A_FREQ = A_ALLELES/{A_ALLELES+ B_ALLELES)

BB_FERT 2 {Fraction per time step of one.}

BB_FREQ = IF TIME > 0 THEN BB_GENOTYPE /TOTAL_GENOTYPE

ELSE 0
BB_SURVIVE_RATE = . 9
TOTAL_ALLELES = A_ALLELES + B_ALLELES
TOTAL_GENOTYPE AA_GENOTYPE+AB_GENOTYPE+BB_GENOTYPE
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Ecological Models
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Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.

3
B. Hannon et al., Dynamic Modeling
© Springer Science+Business Media New York 2001
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Then we need to decide who in each pair is longer, and "kill" the shorter
ones off. Third, we need to toss a coin to determine the length of the off
spring and add these new worms to our system while we remove the in
formation about their parents , i.e., let the remaining three parents die.

The first of these three modeling problems can be solved by assuming
that we cast six dice such that at the end all six dice show a different
number. Then we always pair the same dice-the first die with the second,
the third with the fourth, and the fifth with the sixth. For example , if the
dice give the numbers 2, 4, 1, 6, 3, 5, then we take this to mean that we
should mate WORM 2 with WORM 4, WORM 1 with WORM 6, and WORM
3 with WORM 5. To make things easier, we may actually fix one die-say
the first one-and cast only the other five die . That little trick still leaves the
process perfectly random, because any time five die are cast such that their
numbers are different from each other, the number for the sixth is automat
ically determined anyway. We may as well start with that one . Here, we ar
bitrarily set it to 1.

Once all dice have been cast such that they each show a different
number, their sum is 21 (I +2+3+4+5+6=21). At that time, the worms are
officially paired and can begin their fight to the death (with the winner re
producing). Then the system is reset and the stocks, which conta in the re
sults of the round of casting the dice, are emptied, and the dice are cast
anew.

The dice of this model are represented as stocks named STOCK 1,
STOCK 2, etc., whose contents are held constant until all dice show random
numbers between 2 and 6, and all are different from each other. The ex
ception is the first die, STOCK 1, whose value is fixed at 1.

Take, for example, the second die. The converter DIE 2 in Figure 13.1
generates a random number between 1 and 7:

DIE 2 = INT(RANDOM(l ,7)) (1)

By only taking the integer of the random number we generate a string of
numbers between 1 and 6. The odds that exactly a 7 is generated are mi
nuscule . Next, we need to make sure that we only accept a number that has
not already been cast by another die-we want to avoid mating one worm
with itself. We do this, for example for DIE 2, with the following con
ditional statement that states that as long as STOCK 2 is zero and as long as
DIE 2 shows a different number from those recorded in the other stocks,
we can accept that die 's number. If not , we continue to cast that die until its
number differs from any of the others , and we then add it to the stock.

RAND 2 = IF (STOCK 2 = 0 AND DIE 2 =I- STOCK 1 AND DIE 2 =I- STOCK 3
AND DIE 2 =I- STOCK 4 AND DIE 2 =I- STOCK 5
AND DIE 2 =I- STOCK 6
AND DIE 2 =I- DIE 6 AND DIE 2 =I- DIE 5 AND DIE 2 =I- DIE 4
AND DIE 2 =I- DIE 3 )
THEN DIE 2 ELSE 0 (2)
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STOCK1

STOCK3

STOCK4

STOCK5

STOCK6

ALLDICE

FIGURE 13.1

Once all dice have been cast such that they each show a different
number, their sum is 21. We calculate that sum in the ALL DICE converter,
using STELLA's "Summer" option. Once all dice show a different number all
worms are randomly, yet unambiguously, paired with each other to begin
their fight to the death. The system is reset by emptying STOCK 2, STOCK
3 etc., and the dice are cast anew.

STOCK 2 OUT = IF ALL DICE = 21 THEN STOCK 2 ELSE 0 (3)

So far, we have only concerned ourselves with the means by which we
can randomly pair up the six worms . But what about their lengths? To keep
track of worm length, we generate six new state variables, and we assign
them some arbitrary initial values for the lengths of the worms. For simplic
ity, we set here the initial values of WORM 1 = 1, WORM 2 = 2, WORM 3
= 3, and so on.

Note in Figure 13.2 how we set up the model structure such that we al
ways update the same pair of stocks for the worms. Who these worms are,
however, is determined by casting the dice-it is not as fixed as the graph
ical model representation may suggest. For example, WORM 3 and WORM
4 are always those worms that were identified as the first and second
worms in the second pair of worms that is formed for the mating process,
but from one round of casting dice to the next, these are different worms
whose lengths may differ from those of their parents.



NEWWORM 1

NEWWORM 2

NEWWORM 3

NEWWORM 4

~I===~==~

LIFE3

NEWWORM 6

FIGURE 13.2
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Outflows from the WORM 1, WORM 2, etc. stocks occur once all dice are
cast, i.e., when ALL DICE = 21. Those worms are now ready to fight for
their lives and then generate offspring. For example, the outflow from the
WORM 1 stock is

WORM lOUT = IF ALL DICE = 21 THEN WORM 1 ELSE 0 (4)

The inflows are determined on the basis of a coin toss and who of the
two worms in a pair survived the fight for life. We will discuss the inflows
into WORM 1, WORM 2, etc. below, after we deal with the processes by
which we determine the winners of the fights and update the respective
other stocks in our model.

Take , for example, the second pair of worms-the pair that was deter
mined by tossing the third and fourth dice (Fig. 13.3), The stock LIFE 2 re
tains information about the length of the winner of a fight. That stock is in
itially set to zero, as are LIFE 1 and LIFE 3-the winners of the other two
fights.

The inflows into the stocks LIFE 1, LIFE 2, and LIFE 3 are called FIGHT 1,
FIGHT 2, and FIGHT 3, and they contain the guts of this model. Here, we
check which of the worms got matched up in the dice-casting part of this
model, and then compare their lengths . For example, if the third die
showed the number 2 and the fourth die a number 3, then we know that
the second and third worms were paired up , and we will compute the max
imum of the lengths of the two. But if the third die showed a number 2 and
the second a number 4, then WORM 2 and WORM 4 were paired up and
their lengths need to be compared. We repeat this process until we exhaust
all combinatorial possibilities. If none of the possibilities arose, that is a sign
that the process of pairing the worms by casting the dice has not yet been
completed. In this case, the value of FLIGHT 2 is set to zero and the stock
LIFE 2 remains unchanged .

STOCK3 STOCK 4

WORM 4 OUT

FIGURE 13.3

WORM 5 OUT
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FIGHT 2 = IF (STOCK 3=2 AND STOCK 4=3 AND ALL DICE=21)
THEN MAX(WORM 2 OUT,WORM 3 OUT)
ELSE IF (STOCK 3=2 AND STOCK 4=4 AND ALL DICE=2l)
THEN MAX(WORM 2 OUT,WORM 4_0UT)
ELSE IF (STOCK 3=2 AND STOCK 4=5 AND ALL DICE=2l)
THEN MAX(WORM 2 OUT,WORM 5 OUT)
ELSE IF (STOCK 3=2 AND STOCK 4=6 AND ALL DICE=21)
THEN MAX(WORM 2 OUT,WORM 6 OUT)
ELSE IF (STOCK 3=3 AND STOCK 4=2 AND ALL DICE=2l)
THEN MAX(WORM 3 OUT,WORM 2 OUT)
ELSE IF (STOCK 3=3 AND STOCK 4=4 AND ALL DICE=2l)
THEN MAX(WORM 3 OUT,WORM 4 OUT)
ELSE IF (STOCK 3=3 AND STOCK 4=5 AND ALL DICE=2l)
THEN MAX(WORM 3 OUT,WORM 5 OUT)
ELSE IF (STOCK 3=3 AND STOCK 4=6 AND ALL DICE=2l)
THEN MAX(WORM 3 OUT,WORM 6 OUT)
ELSE IF (STOCK 3=4 AND STOCK 4=2 AND ALL DICE=2l)
THEN MAX(WORM 4 OUT,WORM 2 OUT)
ELSE IF (STOCK 3=4 AND STOCK 4=3 AND ALL DICE=21)
THEN MAX(WORM 4 OUT,WORM 3 OUT)
ELSE IF (STOCK 3=4 AND STOCK 4=5 AND ALL DICE=2l)
THEN MAX(WORM 4 OUT,WORM 5 OUT)
ELSE IF (STOCK 3=4 AND STOCK 4=6 AND ALL DICE=2l)
THEN MAX(WORM 4 OUT,WORM 6 oun
ELSE IF (STOCK 3=5 AND STOCK 4=2 AND ALL DICE=2l)
THEN MAX(WORM 5 OUT,WORM 2 OUT)
ELSE IF (STOCK 3=5 AND STOCK 4=3 AND ALL DICE=2l)
THEN MAX(WORM 5 OUT,WORM 3 OUT)
ELSE IF (STOCK 3=5 AND STOCK 4=4 AND ALL DICE=2l)
THEN MAX(WORM 5 OUT,WORM 4 OUT)
ELSE IF (STOCK 3=5 AND STOCK 4=6 AND ALL DICE=21)
THEN MAX(WORM 5 OUT,WORM 6 OUT)
ELSE IF (STOCK 3=6 AND STOCK 4=2 AND ALL DICE=2l)
THEN MAX(WORM 6 OUT,WORM 2 OUT)
ELSE IF (STOCK 3=6 AND STOCK 4=3 AND ALL DICE=2l)
THEN MAX(WORM 6 OUT,WORM 3 OUT)
ELSE IF (STOCK 3=6 AND STOCK 4=4 AND ALL DICE=2l)
THEN MAX(WORM 6 OUT,WORM 4 OUT)
ELSE IF (STOCK 3=6 AND STOCK 4=5 AND ALL DICE=2l)
THEN MAX(WORM 6 OUT,WORM 5 OUT)
ELSE 0 (5)

The FIGHT 3 flow is analogous to the one for FIGHT 2, but both of these
differ slightly from the FIGHT 1 flow (Fig. 13.4) . To calculate FIGHT 1 we
do not need a ghost of STOCK 1, because we always know the value of
that stock-earlier we set it to 1.
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STOCK 2

WORM1OUT

WORM 4 OUT

FIGURE 13.4

WORM 5 OUT

Once we calculated the length of the winner of the fights in each pair of
worms, that worm will die, too . We model the winner's death with the out
flows from the respective LIFE stocks, such as

LIFE 2 EXPIRES = LIFE 2 (6)

The LIFE 1, LIFE 2, and LIFE 3 stocks are used to calculate the lengths of
the next generation of worms. For each pair of offspring we flip a coin, as
we have done in previous chapters:

COIN 1 = RANDOM(O,I)

COIN 2 = RANDOM(O,I)

COIN 3 = RANDOM(O,I)

(7)

(8)

(9)

Then we compute the length of the new worms based on the outcome of
the coin toss . We interpret numbers below .5 as tail and in that case make
the length of one new worm 1 unit less than that of the winner of the fight ,
and we make the other offspring 2 units shorter. For numbers above .5 we
make the offspring 1 and 2 units longer, respectively. For example,

NEW WORM 1 = IF (LIFE 1>0 AND COIN 1<.5) THEN LIFE 1-1
ELSE IF (LIFE 1>0 AND COIN 1>.5) THEN LIFE 1+1
ELSE ° (10)

NEW WORM 2 = IF (LIFE 1>0 AND COIN 1<.5) THEN LIFE 1-2
ELSE IF (LIFE 1>0 AND COIN 1>.5) THEN LIFE 1+2
ELSE ° (1I)

Now our model is finished. We have modules that we use to generate
random pairs of worms, to compare their lengths and let the longer one
win a fight, and to generate offspring whose lengths depend on the length
of the winner in each fight. Figure 13.5 shows in the form of a bar chart the
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5:WORM 54: WORM 43:WORM 3l :WORM 1 2:WORM 2
100 .00 --------------------- - - -

1:12:
3 :
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5 :

1:12:
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5:

50 .00 ---

0.00 ......_-

FIGURE 13.5

result of the evolution of our worms after running the model for 1000 pe
riods . To generate a bar chart , simply double-click on an open graph pad
and select "Bar." Only a maximum of five variables can be plotted.

Note that the length of the model run should not be interpreted in terms
of the number of generations of worms. At times, the process of casting
dice leads immediately to numbers that are different from each other for all
six dice. At that moment, a new generation of worms can be formed , and
only in this case is one time period equal to the length of one worm gener
ation . If the dice are cast and not all dice show different numbers, we need
to continue to cast them until they do . This may take several periods in the
model , and as a consequence, the new generation of worms will be formed
after more than one period in the model.

Of course in the world of laboratory and field experiments, the most
likely picture we would have is a seasonal or breeding cycle study of the
length of worms. In actual measurement of the worms , we would get just
one of the pictures in the series that composes Figure 13.5. We would cat
egorize the lengths in the field most likely in terms of mean length and
standard deviation. Our model allows one to actually compute these values
continuously and thus provides a way to validate the model. In the absence
of such data , we have a model here that provides a dynamic example of
natural selection dynamics .

ARTIFICIAL WORMS

LIFE_l(t) = LIFE_l(t - dt) + (FIGHT_l 
LIFE_l_EXPIRES) * dt
INIT LIFE_l = 0
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INFLOWS:

FIGHT_1 = IF (STOCK_2 = 2 AND ALL_DICE= 21) THEN

MAX (WORM_1_0UT,WORM_2_0UT)

ELSE IF (STOCK_2 = 3 AND ALL_DICE= 21) THEN

MAX (WORM_1_0UT ,WORM_3_0UT)

ELSE IF (STOCK_2 = 4 AND ALL_DICE= 21) THEN

MAX (WORM_1_0UT ,WORM_4_0UT)

ELSE IF (STOCK_2 = 5 AND ALL_DICE= 21) THEN

MAX (WORM_1_0UT,WORM_5_0UT)

ELSE IF (STOCK_2 = 6 AND ALL_DICE= 21) THEN
MAX (WORM_1_0UT,WORM_6_0UT)

ELSE 0

OUTFLOWS:

LIFE_1_EXPIRES LIFE_1

LIFE_2{t) = LIFE_2{t - dt) + (FIGHT_2 

LIFE_2_EXPIRES) * dt

INIT LIFE_2 = 0

INFLOWS:

FIGHT_2 = IF (STOCK_3=2 AND STOCK_4=3 AND

ALL_DICE=21) THEN MAX{WORM_2_0UT,WORM_3_0UT)

ELSE IF (STOCK_3=2 AND STOCK_4=4 AND ALL_DICE=21) THEN

MAX (WORM_2_0UT,WORM_4_0UT)
ELSE IF (STOCK_3=2 AND STOCK_4=5 AND ALL_DICE=21) THEN
MAX (WORM_2_0UT,WORM_5_0UT)

ELSE IF (STOCK_3=2 AND STOCK_4=6 AND ALL_DICE=21) THEN

MAX (WORM_2_0UT,WORM_6_0UT)

ELSE IF (STOCK_3=3 AND STOCK_4=2 AND ALL_DICE=21) THEN
MAX (WORM_3_0UT ,WORM_2_0UT)

ELSE IF (STOCK_3=3 AND STOCK_4=4 AND ALL_DICE=21) THEN

MAX (WORM_3_0UT,WORM_4_0UT)

ELSE IF (STOCK_3=3 AND STOCK_4=5 AND ALL_DICE=21) THEN

MAX (WORM_3_0UT,WORM_5_0UT)

ELSE IF (STOCK_3=3 AND STOCK_4=6 AND ALL_DICE=21) THEN

MAX{WORM_3_0UT,WORM_6_0UT)

ELSE IF (STOCK_3=4 AND STOCK_4=2 AND ALL_DICE=21) THEN

MAX (WORM_4_0UT,WORM_2_0UT)

ELSE IF (STOCK_3=4 AND STOCK_4=3 AND ALL_DICE=21) THEN

MAX (WORM_4_0UT,WORM_3_0UT)

ELSE IF (STOCK_3=4 AND STOCK_4=5 AND ALL_DICE=21) THEN

MAX (WORM_4_0UT,WORM_5_0UT)

ELSE IF (STOCK_3=4 AND STOCK_4=6 AND ALL_DICE=21) THEN

MAX (WORM_4_0UT ,WORM_6_0UT)
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ELSE IF (STOCK_3=5 AND STOCK_4=2

MAX (WORM_5_0UT,WORM_2_0UT)

ELSE IF {STOCK_3=5 AND STOCK_4=3

MAX {WORM_5_0UT,WORM_3 _0U T}

ELSE I F (S TOCK_3=5 AND STOCK_4 =4
MAX {WORM_5_0UT,WORM_4_0UT)

ELSE IF {STOCK_3=5 AND STOCK_4=6
MAX {WORM_5_0UT,WORM_6_0UT}

ELSE IF {STOCK_3=6 AND STOCK_4=2
MAX (WORM_6_0UT,WORM_2_0UT)

ELSE IF {STOCK_3=6 AND STOCK_4 =3
MAX (WORM_6_0UT,WORM_3 _0UT)

ELSE IF {STOCK_3=6 AND STOCK_4 =4

MAX {WORM_6_0UT,WORM_4_0UT}

ELSE IF (STOCK_3 =6 AND STOCK_4= 5
MAX (WORM_6_0UT ,WORM_5_0UT)
ELSE 0
OUTFLOWS :
LIFE_2_EXPIRES LIFE_2

LIFE_3(t} LIFE_3{t dt} + {FIGHT_3 -

LIFE_3_EXPIRES} * dt
IN IT LIFE_ 3 = 0

INFL OWS :

FIGHT_3 = IF {STOCK_ 5 =2 AND STOCK_6=3 AND

ALL_DICE =21} THEN MAX(WORM_2 _0UT,WORM_3_0UT)

ELSE IF {STOCK_ 5 =2 AND STOCK_6=4 AND ALL_DICE=21} THEN
MAX (WORM_2_0UT,WORM_4_0UT)

ELSE IF (STOCK_5=2 AND STOCK_6=5 AND ALL_DICE=21) THEN
MAX {WORM_2_0UT,WORM_5_0UT}

ELSE IF (STOCK_5=2 AND STOCK_6=6 AND ALL_DICE=21) THEN
MAX {WORM_2 _0UT,WORM_6_0UT}

ELSE IF (STOCK_5=3 AND STOCK_6=2 AND ALL_DIC E=21) THEN
MAX (WORM_3_0UT,WORM_2_0UT)

ELSE IF (STOCK_ 5 = 3 AND STOCK_6=4 AND ALL_DICE=21) THEN
MAX {WORM_3_0UT,WORM_4_0UT}

ELSE IF (STOCK_5=3 AND STOCK_6=5 AND ALL_DICE=21) THEN
MAX (WORM_3_0UT ,WORM_5_0UT)

ELSE IF {STOCK_5=3 AND STOCK_6 =6 AND ALL_DICE=21} THEN
MAX {WORM_3_0UT,WORM_6_0UT}

ELSE IF (STOCK_5 =4 AND STOCK_6=2 AND ALL_DICE=21) THEN
MAX {WORM_4_0UT,WORM_2_0UT}
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ELSE IF (STOCK_5=4 AND STOCK_6=3
MAX (WORM_4_0UT,WORM_3_0UT)

ELSE IF (STOCK_5=4 AND STOCK_6=5

MAX {WORM_4_0UT,WORM_5_0UT)

ELSE IF {STOCK_5=4 AND STOCK_6=6

MAX {WORM_4_0UT,WORM_6_0UT}

ELSE IF {STOCK_5=5 AND STOCK_6=2

MAX {WORM_5_0UT,WORM_2_0UT}

ELSE IF (STOCK_5=5 AND STOCK_6=3

MAX {WORM_5_0UT,WORM_3_0UT)

ELSE IF {STOCK_5=5 AND STOCK_6=4

MAX (WORM_5_0UT,WORM_4_0UT)

ELSE IF {STOCK_5=5 AND STOCK_6=6

MAX {WORM_5_0UT,WORM_6_0UT}

ELSE IF {STOCK_5=6 AND STOCK_6=2

MAX {WORM_6_0UT,WORM_2_0UT}

ELSE IF (STOCK_5=6 AND STOCK_6=3

MAX {WORM_6_0UT,WORM_3_0UT)

ELSE IF {STOCK_5=6 AND STOCK_6=4

MAX (WORM_6_0UT,WORM_4_0UT)

ELSE IF {STOCK_5=6 AND STOCK_6=5

MAX {WORM_6_0UT,WORM_5_0UT}

ELSE 0
OUTFLOWS:
LIFE_3_EXPIRES = LIFE_3

STOCK_1{t} = STOCK_1{t - dt}
INIT STOCK_1 = 1

STOCK_2{t} = STOCK_2{t - dt} + {RAND_2 - STOCK_2_0UT}

* dt
INIT STOCK_2 = 0

INFLOWS:
RAND_2 = IF (STOCK_2 = 0 AND DIE_2 <> STOCK_1 AND

DIE_2<>STOCK_3 AND DIE_2<>STOCK_4 AND DIE_2<>STOCK_5

AND DIE_2<>STOCK_6 AND DIE_2<>DIE_6 AND DIE_2<>DIE_5

AND DIE_2<>DIE_4 AND DIE_2<>DIE_3 ) THEN DIE_2 ELSE 0

OUTFLOWS:
STOCK_2_0UT = IF ALL_DICE = 21 THEN STOCK_2 ELSE 0

STOCK_3{t} = STOCK_3{t - dt} + (RAND_3 - STOCK_3_0UT)

* dt
INIT STOCK_3 = 0
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INFLOWS:

RAND_3 = IF (STOCK_3 = 0 AND DIE_3 <> STOCK_1 AND

DIE_3 <>STOCK_2 AND DIE_3 <>STOCK_4 AND DIE_3 <>STOCK_5

AND DIE_3 <>STOCK_6 AND DIE_3 <>DIE_ 6 AND DI E_3<>DIE_5

AND DIE_3 <>DIE_4 AND DIE_3 <>DIE_2 ) THEN DIE_ 3 ELSE 0
OUTFLOWS:

STOCK_3_0UT = IF ALL_DICE = 21 THEN STOCK_ 3 ELSE 0

STOCK_4(t)

* dt
INIT STOCK_4 = 0
INFLO WS :

RAND_4 = IF (STOCK_4 = 0 AND DIE 4 <> STOCK 1 AND

DIE_4 <>STOCK_ 2 AND DIE_4 <>STOCK_3 AND DIE_4 <>STOCK_5

AND DIE_4 <>STOCK_6 AND DIE_4 <>DIE_6 AND DIE_4 <>DIE_5

AND DIE_4<>DIE_3 AND DIE_4 <>DIE_2 ) THEN DIE_4 ELSE 0
OUTFLOWS :

STOCK_4_0UT = I F ALL_DICE = 21 THEN STOCK_ 4 ELSE 0

STOCK_5(t) = STOCK_5(t - dt) + (RAND_5 - STOCK_5_0UT)

* dt
INIT STOCK_ 5 = 0
I NFLOWS:

RAND_5 = IF (STOCK_5 = 0 AND DIE 5 <> STOCK 1 AND

DIE_5 <>STOCK_ 2 AND DIE_5 <>STOCK_3 AND DI E_5<>STOCK_4

AND DIE_5<>STOCK_6 AND DIE_5 <>DIE_6 AND DIE_5 <>DIE_4

AND DIE_5<>DIE_3 AND DIE_5 <>DIE_2) THEN DIE_5 ELSE 0
OUTFLOWS;

STOCK_5_0UT = IF ALL_ DICE = 21 THEN STOCK_5 ELSE 0

STOCK_6 (t) = STOCK_6(t - d t ) + (RAND_6 - STOCK_6_0UT )

* dt
INIT STOCK_6 = 0
INFLOWS :

RAND_6 = IF (STOCK_ 6 = 0 AND DIE_6 <> STOCK_1 AND

DIE_6 <>STOCK_ 2 AND DIE_6<>STOCK_3 AND DIE_6<>STOCK_ 4

AND DIE_6<>STOCK_5 AND DIE_6<>DIE_5 AND DIE_ 6<>DIE_4

AND DI E_ 6<>DI E_3 AND DIE_6<>DIE_2) THEN DIE_ 6 ELSE 0
OUTFLOWS:

STOCK_6_0UT = IF ALL_DICE = 21 THEN STOCK_6 ELSE 0

WORM_1 ( t ) = WORM_ 1( t - dt) + (NEW_WORM_ 1 - WORM_1_0UT )

* dt
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INIT WORM_l = 1

INFLOWS:

NEW_WORM_l = IF (LIFE_l>O AND COIN_l<.5) THEN LIFE_l-l

ELSE IF (LIFE_l>O AND COIN_l>.5) THEN LIFE_l+l

ELSE 0

OUTFLOWS:
WORM_i_OUT = IF ALL_DICE = 21 THEN WORM_l ELSE 0

WORM_2(t) = WORM_2(t - dt) + (NEW_WORM_2 - WORM_2_0UT)

* dt
INIT WORM_2 = 2

INFLOWS:

NEW_WORM_2 = IF (LIFE_l>O AND COIN_l<.5) THEN LIFE_1-2

ELSE IF (LIFE_l>O AND COIN_l>.5) THEN LIFE_l+2

ELSE 0

OUTFLOWS :
WORM_2_0UT = IF ALL_DICE = 21 THEN WORM_2 ELSE 0

WORM_3(t) = WORM_3(t - dt) + (NEW_WORM_3 - WORM_3_0UT)

* dt
INIT WORM_3 = 3

INFLOWS:

NEW_WORM_3 = IF (LIFE_2>O AND COIN_2<.5) THEN LIFE_2-1
ELSE IF (LIFE_2>O AND COIN_2 >.5) THEN LIFE_2+1

ELSE 0
OUTFLOWS :
WORM_3_0UT = IF ALL_DICE = 21 THEN WORM_3 ELSE 0

WORM_4(t) = WORM_4(t - dt) + (NEW_WORM_4 - WORM_4_0UT)

* dt
INIT WORM_4 = 4

INFLOWS:

NEW_WORM_4 = IF (LIFE_2 >O AND COIN_2<.5) THEN LIFE_2 -2

ELSE IF (LIFE_2 >O AND COIN_2 > .5) THEN LIFE_2+2

ELSE 0

OUTFLOWS:
WORM_4_0UT = IF ALL_DICE = 21 THEN WORM_4 ELSE 0

WORM_5{t) = WORM_5(t - dt) + (NEW_WORM_5 - WORM_5_0UT)

* dt
INIT WORM_5 = 5

INFLOWS:
NEW_WORM_5 = IF (LIFE_3>O AND COIN_3 < .5) THEN LIFE_3-1
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ELSE IF (LIFE_3 >O AND COIN_3 >.5) THEN LIFE_3+1

ELSE °
OUTFLOWS:
WORM_5_0UT = IF ALL_DICE = 21 THEN WORM_5 ELSE °
WORM_6(t) WORM_6(t - dt) + (NEW_WORM_6 - WORM_6_0UT)

* dt
INIT WORM 6 = 6
INFLOWS:
NEW_WORM_6 = IF (LIFE_3 >O AND COIN_3 <.5) THEN LIFE_3-2
ELSE IF (LIFE_3 >O AND COIN_3 > .5) THEN LIFE_3+2

ELSE °
OUTFLOWS:
WORM_6_0UT = IF ALL_DICE = 21 THEN WORM_6 ELSE °
ALL_DICE = STOCK_1 + STOCK_2 + STOCK_3 + STOCK_4 +

STOCK_5 + STOCK_6
COIN_1 RANDOM(O ,l)
COIN_2 = RANDOM(O , 1)
COIN_3 = RANDOM(O ,l)
DIE_2 INT(RANDOM(l,7))
DIE_3 INT (RANDOM (1, 7) )
DIE_4 INT(RANDOM(1,7))
DIE_5 INT(RANDOM(1,7))
DIE_6 INT(RANDOM(l,7))
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Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.
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NATALITY = ONE YEAR O LDS' 1.4 + TWO YEAR OLD' 2.1
+ TIIREE YEAR OLDS • 1.6 + FO UR YEAR O LDS • 1.4
+ FIVE YEAR OLDS • 1.1 + SIX YEAR O LDS • 1.0 (1)

and

NEWBORN RATE = NATALITY (2)

ONE SURVIVE

SIX DIE

FOUR DIE

FIGURE 14.1

TIlREEDIE

FOUR YEAROillS

THREE YEAR otns
FOUR YEAR OLDS SIX YEAR OillS
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1----3--5 3- -55-- - -3- - 55==--- - 3-5-

I:
2:
3:
4:
5:

I : ONE YEAR OLDS

2: TWO YEAR OLD S

520.00
240.00
120.00
40.00
12.00

3: THREE YEAR OLDS

4: FOUR YEAR OLDS

5: FIV E YEAR OLDS

I: 260.00
~ . 120.00
I 60.00
4: 20.00
5: 6.00

12.009.006.003.00

0.00
0.00
0.00
0.00
O.OO +-- - - - - -r-- - - - - -r-- - - - - -r-- - - - - ...,

0.00

I :
2:
3:
4:
5:

Years

FIGURE 14.2

The complete model is shown in Figure 14.1. It captures the dynamics
that underlie Table 14.1. However, the life table only covers the first six
years, yet robins may well exceed that age. How should we model the age
group of six and more years? In our model we rigged the die-off of the six
and older group to give a nearly constant 6+-year-old group population.

Note from the results in Figure 14.2 and Figure 14.3 that all the popula
tions are essentially stable . This is as it should be. Run the model at a

2: TOTA L ROBINS

2- - - - - -2------2--- - - -2----

I : SIX YEAR OLDS

8.00
900.00

I :
2:

~I
1

I: 4.00
2: 450.00

12.009.006.00
Years

3.00

0.00O.OO+-- - - - - -r-- - - - - -r-- - - - - -r-- - - - - ....,
0.00

I :
2:

FIGURE 14.3
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shorter time step to see if you can improve the accuracy. Try to imagine
what wou ld happen if you could change the behavior of the robin by in
creasing or decreasing its newborn survival rate. Will the model come to a
new equilibrium? Do compensating offsets have to be made somewhere
(where?) in the model?

ROBIN POPULATION

FI VE_YEAR_OLDS( t ) = FI VE_YEAR_OLDS ( t - dt) +

(FOUR_S URVI VE - FI VE_S URVI VE - FIVE_ DIE ) * d t

I NIT FIVE_YEAR_OLDS = 10 {Ini t ial number o f 5 year

a I d s . }

INFLOWS:
FOUR_SURVIVE FOUR_YEAR_OLDS* .277

OUTFLOWS :
FIVE_SURVIVE . 6* FIV E YEAR_OLDS
FIVE_ DIE = FI VE_YEAR_OLDS-FI VE_SURVI VE

FOUR_YEAR_OLDS (t ) = FOUR_YEAR_OLDS ( t - dt) +

(THREE_ SURVIVE - FOUR_SURVIVE - FOUR_DIE) * d t

I NIT FOUR_YEAR_OLDS = 36

INFLOWS:
THREE_SURVIVE = .3 64 *THREE_YEAR OLDS

OUTFLOWS:
FOUR_SURVI VE = FOUR_YEAR_OLDS*. 27 7
FOUR_DIE = FOUR_YEAR_OLDS-FOUR_ SURVI VE

NEWBORN( t) = NEWBORN( t - d t) + (NATALITY - DUMP) * dt

I NI T NEWBORN = 0
I NFLOWS :
NATALI TY = ONE_YEAR OLDS*1 . 4 + TWO YEAR OLD*2 .1
+ THREE_YEAR_OLDS* 1. 6 + FOUR_YEAR_OLDS *1.4 +

FIVE_YEAR_OLDS*l .l + SIX_YEAR_OLDS*1.0

OUTFLOWS :

DUMP = NEWBORN

NEW_ROBI NS (t) = NEW_ROBIN S(t - dt ) + (NEWBORN_RATE 

NEW_ SURVIVE - NEW_ DI E) * d t
IN IT NEW_ROBINS = 1400

I NFLOWS:
NEWBORN_RATE = NATALITY

OUTFLOWS :
NEW_SURVIVE = . 355*NEW_ROBINS
NEW_DIE NEW_ROBINS-NEW_SURVIVE
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ONE_YEAR_OLDS(t} = ONE_ YEAR_ OLDS ( t - dt} +

(NEW_SURVIVE - ONE_SURVIVE - ONE_ DI E ) * dt

INIT ONE_YEAR_OLDS = 497

INFLOWS :

NEW_SURVIVE . 355 *NEW_ROBINS

OUTFLOWS:

ONE_SURVIVE . 461*ONE_YEAR_ OLDS

ONE_DIE = ONE_YEAR OLDS-ONE SURVIVE

SIX_YEAR_OLDS(t} = SIX_YEAR_OLDS( t - dt) +

(FIVE_SURVIVE - SIX_DIE) * dt

INIT SIX_YEAR_OLDS = 6 {Initial number of s ix years

old and o l der robins.}

I NFLOWS :

FI VE_SURVI VE = . 6 *FIVE_YEAR OLDS

OUTFLOWS:

SIX_DI E = SIX_YEAR_OLDS*(1-. 16}

THREE_YEAR_OLDS( t) = THREE_YEAR_OLDS(t - d t} +

(TWO_SURVIVE - THREE_SURVIVE - THREE_DIE) * dt

INIT THREE_ YEAR_OLDS = 99

INFLOWS:

TWO_SURVIVE = . 43 3* TWO_YEAR_OLD
OUTFLOWS :

THREE_SURVIVE = . 3 64 *THREE_ YEAR OLDS

THREE_DIE = THREE_YEAR_OLDS -THREE_SURVIVE

TWO_YEAR_OLD(t} = TWO_YEAR_OLD(t - dt} + (ONE_SURVIVE
- TWO_SURVIVE - TWO_DI E) * dt

INIT TWO_YEAR_OLD = 22 9

INFLOWS :

ONE_SURVIVE . 46 1*ONE_YEAR_OLDS

OUTFLOWS :

TWO_ SURVI VE . 433 *TWO_YEAR_ OLD

TWO_DI E = TWO_ YEAR OLD-TWO SURVIVE

TOTAL_ROBINS =
ONE_YEAR_OLDS+TWO_YEAR OLD+THREE YEAR OLDS+ FOUR YEAR 0
LDS + FI VE_YEAR_ OLDS + SI X_YEAR_ OLDS
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Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.
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the (necessarily exponential) decline in egg population due to death . Then
we will realize that the exponential form assumption was necessary. The
resulting instantaneous survival fraction is designated by some constant m.
Using the experimental data to solve this equation for - m gives:

-m = In(EXP SURV FRAC(T))/T (2)

The model survival fraction (based on our choice of the time step on, via
the same exponential assumption, is

MOD SURV FRAC (On = EXP(-m*OT)

and when the expression for -m is substituted

(3)

MOD SURV FRAC(On = EXP(ln(EXP SURV FRAC(n*DT/T) (4)

which is the basic equ ation for the model survival fraction . We now have
the instantaneous survival fraction , and those surviving will mature or hatch
at the modified maturation rate

EGGS/T*MOD SURV FRAC(On (5)

that is, the survivors mature at the experimentally found maturation rate,
EGGS/T. Remember, eggs don 't have to hatch or die. They may Simply
wait. But survivors do hatch.

To use this fraction , let us look first at the ADULT DEATH rate and the
model survival fraction , MOD SURV FRAC divided by DT. This step con
verts the experimental survival fraction, EXP SURV FRAC, to a daily model
survival rate (when DT = 1.0 it is equal to a one-day step) . From this we
can readily calculate the dea th rate as 1 - MOD SURV FRAC, divided by DT.
A similar calculation has is done to yield the egg death rate-adjusting for
the fact that the experimental per iod is 5 days, not 1 day (as in the adult
death rate case) .

The model (Fig. 15.1) is run for initial stocks of adults and eggs equal to
oand 50, respectively, EXP ADULT SURV = 0.8, EXP MATURE TIME = 0.2,
EXP SURV FRAC = 0.7, and ADULT SURV TIME = 1. The results are shown
in Figure 15.2.

Next, confirm that the model does actually duplicate the experiment.
Shut off the birth and hatch processes and put 100 eggs in stock. Observe
that 70% of the eggs survive after 5 days, no matter what DT you choose for
the model.

Suppose we are uncertain about the exact egg experimental fraction. We
may suspect that using literature data is not good enough, and think that
this number is within ±1O%. Need we do an experiment to find this number
if the total number of adults in 24 days is within ±10%. Insert a larval stage
into this model with a larval survival fraction of 0.8 in 3 days' maturation
time. Why doesn 't the stock of adults in this model grow as is did in the first
version?
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DEATIIS

MOD SURVFRAC

EXPMATURE TIME

EXP ADULT SURVFRAC
MODEL ADULTSURVFRAC

FIGURE 15.1

1: ADULTS
140.00

70 .00

2: EGGS

0.00 of'------,------;------..------
0.00

FIGURE 15.2

6.00 12.00

Days

18.00 24.00

TWO STAGE INSECT POPULATION MODEL

ADULTS(t} = ADULTS(t - dt} + (HATCH - ADULT_DEATH) * dt
INIT ADULTS = 0
INFLOWS:
HATCH = MOD_MATURE_RATE*EGGS {Some of the eggs neither
die nor mature.}
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OUTFLOWS :
ADULT_DEATH = ADULTS*MODEL ADULT SURV FRAC

EGGS(t) = EGGS(t - dt) + (BIRTHS - DEATHS - HATCH) *

dt
INIT EGGS = 50

INFLOWS :
BIRTHS = EGG LAY RATE*ADULTS

OUTFLOWS :
DEATHS = MOD_SURV_FRAC *EGGS
HATCH = MOD_MATURE_RATE*EGGS {Some o f the eggs neither

die nor mature .}

ADULT_SURV_TIME = 1

DOCUMENT: One day = T = 1 = experimental period f o r

which adult mortality is measured .

EGG_LAY_ RATE = . 5 {Experimental laying rate. EGGS PER

ADULT PER DAY.}
EXP_ADULT_SURV_F RAC = .8 {Experimental daily adult
survival f raction per stage, dimensionless .}
EXP_MATURE_TIME = . 2 {Experimental maturation rate,

l /DAY, i.e ., 20 eggs per 100 eggs mature each day, as

noted in the experiment . In other words, a surviving

egg mat ures on the average in fiv e days under t he

experimen tal c onditions. T = 5 days .}

EXP_SURV_FRAC =.7 {Experimental egg survival

fracti on, dimensionless, per stage . Stage = 1 fFI,
i .e ., 70 eggs per 100 eggs surv i ve each I fFl days , a s
n oted in the e xperiment. }
MODEL_ ADULT_SURV_FRAC = (1 
EXP(LOGN(EXP_ADULT_SURV_FRAC)*DT /ADULT_SURV_TIME)) /DT

{Adult mortality rate , I fday . Instantaneous survival
fraction + i n s t a n t a n e ou s mortality fraction = 1 .}
MOD_MATURE_RATE =

EXP_MATURE_TIME*EXP(LOGN( EXP_SURV_ FRAC)*DT*EXP_MATURE_T

IME) {Model maturation rate for surv ivors, l / DAY.

Hatch r a t e = i n s t a n t a ne ou s survival fracti on*model

ma t u r a t i on rate.}
MOD_SURV_FRAC = (1 

EXP(LOGN(EXP_SURV_FRAC)*EXP_MATURE_TIME*DT)) /DT {Egg

mor t a l i t y rate , l /DAY. I ns t a n t a n e ou s survival fraction

+ instantaneous mortality fraction = 1.}
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Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed
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the growth module captures the growth processes of the zebra mussel
population. The sustainability module determines the long-term, sustaina
ble level of the population by incorporating some key physical parameters.
The filtration module yields a relative indication of the impact of the popu
lation on the lake by computing the frequency with which the total popu
lation filters the entire water volume of the lake. An explanation of the
structure of each of these modules and the data and assumptions that were
used to construct them follows.

The growth module in Figure 16.1 is made up of four population cohorts
(one juvenile and three adult) . The average life span of a zebra mussel ap
pears to vary among populations in different areas . We chose a life span of
4 years, which seemed most appropriate for the analysis. Zebra mussel
populations typically reproduce once a year (usually sometime during the
summer) according to a mass synchronous spawning behavior. Therefore,
each cohort represents one generation of mussels . The juvenile cohort rep
resents all those mussels that have successfully attached to some suitable

FECUNDITY 2

SUSTAINABLE POPULATION

ADULT 2

FECUNDITY I

SURVIVE POT

ADULT 3

FIGURE 16.1
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substrate and have grown to a certain average size by the end of the first
year . These individuals are not yet sexually mature . The three adult cohorts
are the populations of each generation that have reached sexual maturity
and survived to the end of the second, third, and fourth years.

The number of individual mussels that enter the juvenile cohort in a cer
tain year is a function of the number of adult female zebra mussels and
their fecundities. Although fecundities are high (30,000 to 40,000 larvae per
female), larval mortality rates are fairly high as well. The survival rate (008)
represents the percentage of larvae that are successful in attaching to some
suitable substrate and grow to a certain size by the end of the year.

The survival potential is then the number of mussels that reach the juve
nile cohort under normal circumstances (no limiting conditions). However,
the actual number of mussels that survive the first year depends on whether
or not the overall population is close to or above the sustainable popula
tion of the lake. The sustainable population is determined in the sustain
ability module described in detail below. So, the actual number that survive
is calculated as follows: If the total population is less than the sustainable
population in any year, then SURVIVE equals the smaller of the survival po
tential, SURVIVE POT, and the difference between SUSTAINABLE POPULA
TION and TOTAL POPULATION. If the total population is greater than or
equal to the sustainable population, then SURVIVE equals SURVIVE POT
times a factor that is less than 1 and decreases exponentially as total popu
lation gets larger. The result is that the more the total population exceeds
the sustainable population, the smaller the number of juveniles that survive
during that year.

At first glance, we would expect that the sustainable population will not
be exceeded. However, due to the way in which the populations move be
tween cohorts, the total population does in fact overshoot the sustainable
level in certain years . Adult populations die at certain rates between years
leaving the remainder, which successfully grows to a new average size and
enters the next cohort. At the end of the fourth year it is assumed that the
entire generation dies out. The sustainability module of the model is shown
in Figure 16.2.

The sustainability module determines the equilibrium population level
that is expected to be reached over the long term. The key parameter that
determines this level is the availability of suitable substrate material upon
which the mussels can attach . Zebra mussels require hard substrates and
cannot live in muddy conditions. Other potentially limiting factors, such as
extremes in water temperature, calcium deficiency, and extremes in nu
trient availability, are not considered here.

Available hard substrate is calculated by multiplying the total area of the
lake bottom by the percentage of the lake bottom that is hard . This per
centage can only be estimated and its initial value is given. To determine
the sustainable population at any point in time, the average density and dis
tribution of the population must also be known. Observed density figures
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ADULT 1 ADULT 2 ADULT 3

FIGURE 16.2

EXPECfED DENSITY

SUSTAINABLE POPULAnON

SUBSTRATE PERCENT

vary widely in the literature . Therefore, we have chosen a range over which
we run our model. Our expected density figure is taken to be that density
that is sustainable over the long term.

The expansion percent parameter shows the percentage of the lake that
has been colonized over time and is represented in graphical form. We are
assuming that infestation occurs at a specific point (as from an infested bait
bucket dumped overboard) and spreads from there. Zebra mussel larvae
are distributed via lake currents as well as boat traffic. We assume that in
the first month 20% of the lake is infested with the mussel. The expansion
percentage increases drastically during the first few months and reaches a
maximum of 100% by the end of the first year . The percentage expansion
remains at that level for the relevant future . For simplicity, we assume the
values shown in Figure 16.3.

Try experimenting with the expansion rate in alternative runs of the
model. For example, assume that the expansion percentage is reduced to
20% at the beginning of each year, and proceeds to increase over the
course of the year again toward 100%. This processes is then repeated each
year. Toward that end, the EXPANSION PERCENT can be modeled with the
built-in function "MOD." MOD(TIME,12)+1 converts simulation time into
months , starting at 1. After 12 months of simulation time, MOD(TIME,12)+1
will reset itself to 1.

In the filtration module of Figure 16.4, LAKE TURNOVER is calculated.
This serves as a relative indication of how great an impact the population
will have on the current lake ecosystem. LAKE TURNOVER is the number
of times per day that the total mussel population filters the total volume of
water in the lake. The filtration rate of an individual mussel is a function of
its shell length and named here FILTER1, FILTER2, . . . , for the respective
age classes 1, 2, .. .. An initial shell length, LENGTII1, LENGTH2, . . . , is
assumed for the juvenile population and shell length grows each year as a
function of the previous year 's length.
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The amount of water filtered by each cohort is calculated by multiplying
the individual filtration rates times the population of each cohort. Daily lake
turnover is the sum of the daily filtration volumes of each cohort divided by
the total lake volume. In addition, the number of days per complete lake
turnover is calculated by dividing the daily lake turnover into one complete
tum.

LENGTH 3LENGTH 1

LAKEVOLUME

LENGTH 2

LAKETURNOVER

LAKETURNOVER

FIGURE 16.4

DAYSPERTURNOVER
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Now the model is co mplete and can be used to develop a base case
model of zebra mu ssel growth in our lake . The base case model is based on
ave rage values for model param eters as they are publishe d in the litera
ture .! You find these data in the model equations at the end of the cha pter.

The results of the base case model can be co mpared with alterna tive sce
narios to determine the impact and sensitivity of various parameters on the
growth patterns. Such a procedure is imp ortan t if no t all data are known or
give n, or if there is uncertainty surrounding parameter es tima tes .

For a sensitivity ana lysis, vary the value for SUBSTRATE PERCENT be
tween 50 and 90% and the death rates for the first three age classes within
the intervals listed in Table 16.1. Change only one parameter value at a
time.

The base case growth, density, and lake turnover pathways are shown in
Figure 16.5. We have assume d that the initial invading population consists
of 100 juveniles. In the ea rly years, population grows ex pone ntially and
reaches a total population peak of 8.08*108 mussels in yea r 13. The popula
tion then osc illates w ith decreasing extremes toward a stea dy state popula
tion of 7.79*108

. Population density follows the same pattern as total popu
lation growt h. Density peaks at 834 mussels/per square meter and stabilizes
at 772 mu ssels per squa re meter.

Similarly, lake turnover (Fig. 16.6) closely follows the population pattern
since lake turnover is directly related to the number of zebra mussels in the

T ABLE 16.1

DEATH RATE 1
DEATH RATE 2
DEATH RATE 3

Minimum

0.06
0.09
0.18

Maximum

0.12
0.15
0.18

2See, for example: Bij de Vaate, A. 1991. Distribution and Aspects of Population Dy
namics of the Zebra Mussel, Dreissena polymorpba (Pallas, 1771), in the Lake Ijssel
meer Area (The Netherlands). Oecologia Vol. 86, pp. 40-50; Griffiths, RW., W.P.
Kovalak, and D.W. Schloesser. 1989. The Zebra Mussel, Dreissena polymorpha, in
North America: Impact on Raw Water Users, in Proceedings: EPRI Service Water
System Reliability Improvement Seminar. Electric Power Research Institute, Palo
Alto, CA, pp. 11-27; Griffiths, RW., D.W. Schloesser, ].H. Leach, and W.P. Kovalak.
1991. Distribution and Dispersal of the Zebra Mussel (Dreissena po lymo rpbd) in the
Great Lakes Region, Canadian Journal of Fisheries an d Aquatic Science, Vol. 48,
pp. 1381-1388; Haag, W.R. and D.W. Garton. 1992. Synchronous Spawning in a Re
cently Established Population of the Zebra Mussel, Dreissena polymorpba, in West
ern Lake Erie, USA., Hydrobiologia, Vol. 234, pp. 103-110; Kryger,]. and H.U. Riis
gard. 1988. Filtration Rate Capacities in 6 Species of European Freshwater Bivalves,
Oecologia, Vol. 77, pp. 34-38; Mackie, G. 1991. Biology of the Exotic Zebra Mussel,
Dreissena polymorpba, in Relation to Native Bivalves and Its Potential Impact in
Lake St. Clair, Hydrobiologia, Vol. 219, pp. 251-268; Strayer, D.L. 1991. Projected
Distribution of the Zebra Mussel, Dreissena polymorpba, in North America, Cana
dia n Journ al ofFisheriesand Aquatic Science, Vol. 48, pp. 1389-1395.
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lake, but it is slightly lagged. Lake turnover peaks in year 14 at 0.37 (total
lake turnover per day) and stabilizes at 0.33. This variable is more intuitive
if presented as the number of days required for the mussel population to
filter the entire volume of the lake. In the peak of the base case, year 14,
the mussel population filters the volume of the lake in 2.69 days. This rate
changes as population drops and stabilizes at 2.99 days/turnover.
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ZEBRA MUSSEL MODEL

ADULT_l( t) = ADULT_l(t - dt) + (GROWTH_l - GROWTH_2 

DEATH_Al) * d t

INIT ADULT_1 = 0 {Numbe r of Individuals}

IN FLOWS :
GROWTH_ 1 = (1 - DEATH_RATE_1 ) *J UVENI LE {Individual s p e r
Month}

OUTFLOWS:
GROWTH_ 2 (1 - DEATH_RATE_ 2 ) *ADULT_1 {Individu a l s per

Mon t h }
DEATH_A1 DEATH_RATE_2 *ADULT_ 1 {I nd ividu a l s p e r

Month}

ADULT_2 ( t ) = ADULT_2 ( t - d t ) + (GROWTH_2 - GROWTH_ 3 

DEATH_A_ 2) * d t

I NI T ADULT_2 = 0 {Number o f Indiv i duals }

INFLOWS:
GROWTH_2 = (1-DEATH_RATE_2)*ADULT_1 {Individuals per

Month }

OUTFLOWS:
GROWTH_3 = (1 -DEATH_RATE_3)*ADULT_2 {Individua ls per

Month}
DEATH_A_2 DEATH_RATE_3*ADULT_2 {Individuals per

Month}

ADULT_3(t) = ADULT_3 (t - dt) + (GROWTH_3 - DEATH_A3 ) *
d t
I NIT ADULT_3 = 0 {Numbe r o f Individual s }
INFLOWS:
GROWTH_3 = (1-DEATH_RATE_3 )*ADULT_2 {Individuals per
Month }
OUTFLOWS:
DEATH_A3 = 1 .0 *ADULT_3 {Individual s per Month}

JUVENILE (t ) = J UVENI LE( t - dt ) + (SURVI VE - GROWTH_1 
DEATH_J ) * dt

I NIT J UVENILE = 100 {Number o f Individual s }

I NFLOWS :

SURVIVE = IF (TOTAL_PO PULATION<SUSTAINABLE_ POPULATION)

THEN MIN (SURVIVE_POT , SUSTAINABLE_ POPULATION
TOTAL_POPULATION)

ELSE ((l -(TOTAL_POPULATION
SUSTAI NABLE_ POPULATI ON) / TOTAL_POPULATI ON) A2 ) *SURVIVE_
POT {Numbe r of Individuals per Month}
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OUTFLOWS:

GROWTH_1 = {1-DEATH_RATE_1)*JUVENILE {Individuals per

Month}

DEATH_J = DEATH_RATE_1*JUVENILE {Individuals per

Month}

ATTACH_RATE = . 8 * . 01 {20% larval mortality in veliger

stage, 99% mortality post-veliger; Bij de Vaate 1991

p.46; Percent of Larvae Which Successfully Attach to

Suitable Substrate and Survive at Least to the End of

the Year}

DAYS_PER_TURNOVER = l /LAKE_TURNOVER {number of days

for complete lake turnover}

DEATH_RATE_1 = . 09

{Bij de Vaate , 1991 ,p.10}

DEATH_RATE_2 = .12

DEATH_RATE_3 = .15

EXPECTED_DENSITY = 1000

{sq m-2; Strayer; Ch 43}

FECUNDITY_1 30000 {Mackie, 1991; Larvae per Female}

FECUNDITY_2 = 35000 {Larvae per Female}

FECUNDITY_3 = 40000 {Mackie, 1991; Larvae per Female}

FILTER_1 = JUVENILE*{6 .82*{1.54E-5*LENGTH_1 A2 .42) A.88)

{L/hr; Kryger and Rilsgard, 1988}
FILTER_2 = ADULT_1*{6.82*{1 .54E-5*LENGTH_2 A2.42) A.88)

{L/hr; Kryger and Rilsgard, 1988}
FILTER_3 = ADULT_2*{6 .82*{1 .54E-5*LENGTH_3 A2.42)A.88)

{L/hr ; Kryger and Rilsgard, 1988}
FILTER_4 = ADULT_3*{6.82*{1.54E-5*LENGTH_4 A2.42) A.88)

{L/hr ; Kryger and Rilsgard, 1988}

HARD_SUBSTRATE = LAKE_BOTTOM*SUBSTRATE_PERCENT

{sq . m}

LAKE_BOTTOM = (1 . 3*lE+6+0 .142*lE+6)

LAKE_TURNOVER =

{FILTER_1+FILTER_2+FILTER_3+FILTER_4)*24 /LAKE_VOLUME

{total lake turnover per day}

LAKE_VOLUME = 8524472*1000 {liters(cubic meters *

1000L/cu .M); BLA}

LENGTH_1 = 5 {rom}

LENGTH_2 = LENGTH_1+{ .006*{LENGTH_1 A2)

. 56*LENGTH_1+12 . 1)

{Bij de Vatte, 1991; rom}
LENGTH_3 = LENGTH_2+{ .006*{LENGTH_2 A2)

.56*LENGTH_2+12.1) {rom}
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LENGTH_4 = LENGTH_3 +(.0 06*(LENGTH_3 A2)

. 56*LENGTH_3+l2.l) {rom}

POPULATION_DENSITY = TOTAL_POPULATION/HARD_SUBSTRATE

SEX_RATIO = . 6

{Ma c k i e , 1991,p.255}

SUBSTRATE_PERCENT = . 7 0

SURVIVE_ POT =
ATTACH_RATE* (SEX_RATIO* (FECUNDITY_l*ADULT_ l +FECUNDITY_

2* ADULT_ 2 + FECUNDI TY_ 3* ADULT_ 3 ) ) {Number of

Individuals}

SUSTAINABLE_POPULATION =
EXPANSI ON_PE RCENT*HARD_SUBSTRATE*EXPECTED_DENSI TY

{Number of Individual s}

TOTAL_ POPULATI ON = JUVENILE+ADULT_ l+ADULT_2+ADULT_3

{Number o f Individuals}

EXPANSION_PERCENT = GRAPH (TIME)

(1.00 ,0.2), (2 .00,0 .215) , (3 .00,0 .24), (4 .00 ,0 .2 8),

(5.00,0.33) , (6.00 ,0.435), (7 .00,0.64), (8.00,

0.78) , (9 .00, 0.89), (10 .0, 0.945), (11.0, 0.98),

(12 .0 , 1.00)



1

Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.

3
B. Hannon et al., Dynamic Modeling
© Springer Science+Business Media New York 2001
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For simplicity, we assume that the forest of our model is composed of
only three species of trees, beech, spruce, and redwood. The critical factors
influencing tree growth and population were determined to be shade tol
erance, maturation time, seed production and dispersal rate, and seed ger
mination probability. Maturation time is defined as a constant for each spe
cies. For beech, it is 10 years, for spruce it is 15 years, and for redwood it is
25 years. Seed production and dispersal rate was also defined as a constant.
For beech, the seed rate is 5000 seeds per tree per year, for spruce it is
3000, for redwood it is 1000.

Shade tolerance is a characteristic of the species of tree . Beech are mod
eled as the least shade-tolerant, so that their seed germination probability
and death rates are most affected by the amount of sunlight received. Red
wood are modeled as the most shade-tolerant.

The seed germination probability is a base percentage of the number of
seeds, modified by the amount of rain and sunlight received in the year .
For beech trees, the base number of seeds that will germinate is 0.004% of
the total number of beech seeds. In a rainy year (RAINFALL c 100) this is
increased by 0.0009%while in a drought year (RAINFALL :s; 40) it is only in
creased by 0.0003%. Likewise, if the seeds receive a lot of sunlight
(ENERGY REACHING GROUND c 900,000) the number of seeds that ger
minate is increased by 0.0006%, and if the seeds do not get much sunlight
(ENERGY REACHING GROUND :s; 50,000) the number is increased by only
0.00003%.

The module of tree growth is shown in Figure 17.1 for the example of
beech. The structure of the modules for spruce and redwood is in essence

BEECH SAPUNGS

FIGURE 17.1

BEEO-IB\EAGY BEECH SHADE TOlERANCE

BEECH SAPUNG DEATH

FIRE?
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the same. Note that we have collapsed the age cohorts of bee ch into two
stocks . The mature beech are in the reservoir titled BEECH, while 0- to 10
year-old saplings are in the BEECH SAPLINGS stock. The latter stock is not
our traditional reservoir, but a conveyor. The conveyor functions like a con
veyor belt. The entities that enter first move along the conveyor and remain
on it for a specified transit time. In our case , a transit time of 10 years
implies that saplings "move" every year from one slot of the conveyor belt
to the next until they leave the conveyor at the end of year 10.

To create a conveyor in STELLA, select the stock symbol and double
click on it. Select Conveyor among the choices listed at the top of the di
alog window. The appearance of the stock symbol changes and you are
asked to specify a transit time. That would be 10 years in the case of beech,
15 in the case of spruce , and 25 in the case of redwood. The saplings that
reach an age of 10 years move on to become mature beech. A second out
flow from the BEECH SAPLING conveyor is used to specify "leakage" from
the conveyor. These are saplings that die according to their natural mortal
ity rate or an elevated rate due to too little or too much solar energy reach
ing the ground. Note that when you draw the first outflow from the con
veyor (in our case the BEECH MATURATION flow pipe), that outflow is
automatically defined by the logic of the conveyor-no question mark ap
pears in the flow symbol asking you to specify the right-hand side of an
equation. In contrast, for the second (and any subsequent) outflow you are
asked to specify a leakage fraction-a percentage rate by which the values
in each slot of the conveyor are reduced in each time period.

In our model, shade tolerance and seed germination probability depend
on the amount of energy that the trees receive . This, in turn , dep ends on
how large the tree is (its crown size), and how many of each kind of trees
live in a cell. The solar energy flux is set at 1,000,000 units. The size of a
beech tree crown is defined as 2 (area units). Therefore, a cell can comfort
ably contain up to 50 beech trees . If the number of beech trees exceeds 50,
then they are in competition for the sunlight , and the energy available per
tree is reduced. In add ition, as the number of trees increases , the amount of
sunlight (energy) that reaches the ground (either directly or through the
leaves of the trees) decreases. This means that the seeds and seedlings have
less energy available to them and they will not germinate or grow as
quickly. The crown size for spruce is defined as 5 and for redwood it is 20.

The module for the calculations of the canopy size and energy availabil
ity is shown in Figure 17.2. Tree biomass by species is modeled as in Fig
ure 17.3 with BIOMASS CONTRIBUTION reflecting the impact that different
amounts of biomass may have on the occurrence of forest fires. Forest fires
are discussed below.

All units here are rather arbitrary. What matters is their relative order of
magnitude. The purpose here is not to develop an exactly quantified model
but rather to illuminate the dynamics behind the succession of the various
tree species in our artificial forest. Of course, with some extra effort you can
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FIGURE 17.2

find meaningful data to quantify the model and play out its dynamics. The
quantitative results will be different , but the qualitative insights that this
model generates should not be substantially changed. We have chosen
here to make our model descriptive rather than a predictive. It provides us
with some interesting insight into forest dynamics and can serve as a guide
for data collection and analysis.

To investigate the dynamics of our forest system, we introdu ce a like
lihood for forest fires to occur. In the absence of human interventions,
forest fires are caused exclusively by lightn ing strikes . In this model, the
frequency of lightn ing strikes depends on the amount of annual rainfall. If
rainfall is high in a given year, the likelihood for storms increases , and thus
a higher number of lightning strikes can be caused. Whether or not a light
ning strike causes a fire depends on several factors. The first of these is the
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amount of rainfall for the year. In a wet year , lightning strikes are less likely
to cause a fire than during drought. Other factors that can contribute are the
number of years since the last fire. If it has been a long time since a fire,
there is a large amount of forest floor debris , that when it becomes dry can
very easily touch off a fire. The module to calculate forest fire occurrence is
shown in Figure 17.4.

Run the model first without the possibility of any fires. To do this change
the equation for lightning from

LIGHTNING = IF RAINFALL> 90 THEN 1 ELSE 0 (1)

to

LIGHTNING = IF RAINFALL> 90 THEN 0 ELSE 0 (2)
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The resulting population CUlVe for each of the species is shown in Figure
17.5. Beech trees start out with a large population and maintain their dom
inance for a bit more than 125 years . Then the redwood population be
comes the dominant one . The spruce population experiences a peak in
population after around 100 years , but then it decreases, and it never be
comes dominant.

These results of Figure 17.5 match to some degree the succession of spe
cies in a forest patch in which natural and human-induced disturbances are
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minimized . We can use this model to investigate the impacts of forest fires
on species composition. As you can see from Figure 17.6, in which we al
lowed for forest fires to occur, no species ever has time to become domi
nant after each round of fires. The tree populations greatly decrease, and
then they would increase to some degree, but the fires occurred too
frequently to allow any species to continuously dominate a cell.

Run the model several times without making any changes to it. Since
there are several random elements (outbreak of fires and death rates of
trees), each run will show a completely different result. As we indicated
above , the parameters used here are simply for illustrative purposes, and the
results will also vary for different parameter choices . For example, change
the fire probability and observe the results. Alternatively, change the rainfall
pattern. Then return to our suggestion above and develop a multicell forest
model using STELLA's array features. In that model , you may want to allow
any cell to contribute seeds of each species for germination on a neighbor
ing cell. Set up the conditions such that beech generate more seeds than
spruce, and spruce more than redwood. Additionally, consider different
ways in which a forest fire may spread from cell to cell. How do these spa
tial features influence the population dynamics in your forest?

SINGLE CELL FOREST

BEECH MODULE

BEECH(t) = BEECH(t - dt) + (BEECH_MATURATION 

BEECH_DEATH) * dt

INIT BEECH = 10 {Initial Beech trees in Box}
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INFLOWS :
BEECH_MATURATION = CONVEYOR OUTFLOW

OUTFLOWS:
BEECH_DEATH = IF FIRE?=l THEN (.95 +

. 05 *RANDOM( O, l ) ) *BEECH ELSE BEECH_SHADE_TOLERANCE*BEECH

{Death fraction of beech trees)

BEECH_SAPLINGS(t) = BEECH_SAPLINGS(t - dt) +

(BEECH_GERMINATION - BEECH_MATURATION 

BEECH_SAPLING_DEATH) * dt

INIT BEECH_SAPLINGS = 5 {Initial beech saplings in

cell}
TRANSIT TIME = 10
INFLOW LIMIT = 00

CAPACITY = 00

INFLOWS :

BEECH_GERMINATION (.00004 +

(ENERGY_REACHING_GROUND/100000000000) +
(RAINFALL /22000000)) * BEECH_SEED {The number of beech

seeds that germinate per year}

OUTFLOWS :

BEECH_MATURATION = CONVEYOR OUTFLOW
BEECH_SAPLING_DEATH = LEAKAGE OUTFLOW

LEAKAGE FRACTION = IF FIRE?=l THEN 1 ELSE IF
ENERGY_REACHING_GROUND < 100000 THEN (1 .2

(ENERGY_REACHING_GROUND/100000)) ELSE IF

(ENERGY_REACHING_GROUND<200000 AND
ENERGY_REACHING_GROUND~100000) THEN (0.1
((ENERGY_REACHING_GROUND-200000) /1000000)) ELSE 0 .1

NO-LEAK ZONE = 0
BEECH_SEED = 5000*BEECH {Number of beech seeds

produced each year}
BEECH_SHADE_TOLERANCE = GRAPH (BEECH_ENERGY/BEECH)
(0.00, 1.00), (2000, 0.9), (4000, 0.805), (6000 ,

0.705), (8000 , 0.6) , (10000, 0 .5), (12000 , 0.39 5) ,

(14000, 0 .295) , (16000, 0.195), (18000, 0 .105) , (20000 ,
0.025)

BIOMASS MODULE

BEECH_BIOMASS = 2*BEECH

BEECH_POPULATION = BEECH+BEECH_SAPLINGS {Total number

of beech trees in cell}

BIOMASS_CONTRIBUTION = IF (TOTAL_BIOMASS >= 90 AND
(BEECH_BIOMASS /TOTAL_BIOMASS >= 0 .75 OR
SPRUCE_BIOMASS/TOTAL_BIOMASS >= 0. 75 OR
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REDWOOD_BIOMASS /TOTAL_BIOMASS > = 0 .75)) THEN 0 .05 ELSE

IF (TOTAL_BIOMASS > = 90 AND

(BEECH_BIOMASS/TOTAL_BIOMASS > = 0.9 OR

SPRUCE_BIOMASS/TOTAL_BIOMASS > = 0.9 OR

REDWOOD_BIOMASS /TOTAL_BIOMASS >= 0.9)) THEN 0.15 ELSE

o
REDWOOD_BIOMASS = 10*REDWOOD

REDWOOD_POPULATION = REDWOOD+REDWOOD_SAPLINGS (Total

number of redwood trees in cell)

SPRUCE_BIOMASS = 5*SPRUCE

SPRUCE_POPULATION = SPRUCE+SPRUCE_SAPLINGS (Total

number of spruce trees in box)

TOTAL_BIOMASS =
BEECH_BIOMASS+ SPRUCE_BIOMASS+ REDWOOD_BIOMASS

ENERGY MODULE
BEECH_CROWN = 2 (Average amount of shade that one

Beech tree casts . Area /tree)

BEECH_ENERGY =
ENERGY_AVAILABILITY*TOTAL_BEECH_CANOPY/TOTAL_CANOPY

(Amount of energy received by beech trees)

CELL_AREA = 100 (Cell area available for tree growth)

ENERGY_AVAILABILITY = IF (TOTAL_CANOPY > CELL_AREA)
THEN SOLAR_ENERGY*CELL_AREA/TOTAL_CANOPY ELSE

SOLAR_ENERGY

ENERGY_REACHING_GROUND = IF (TOTAL_CANOPY < CELL_AREA)

THEN SOLAR_ENERGY* (1-(0.95*TOTAL_CANOPY /CELL_AREA))

ELSE SOLAR_ENERGY*.05

REDWOOD_CROWN = 20 (Average amount of shade that one

Redwood tree casts . Area /tree)

REDWOOD_ENERGY =
ENERGY_AVAILABILITY*TOTAL_REDWOOD_CANOPY /TOTAL_CANOPY

(Amount of energy received by redwood trees)

SPRUCE_CROWN = 5 {Average amount of shade that one

Spruce tree casts . Area /tree}

SPRUCE_ENERGY =
ENERGY_AVAILABILITY*TOTAL_SPRUCE_CANOPY/TOTAL_CANOPY

(Amount of energy received by spruce trees)

TOTAL_BEECH_CANOPY = BEECH*BEECH_CROWN (Total area

covered by beech trees)

TOTAL_CANOPY =

TOTAL_BEECH_CANOPY+TOTAL_REDWOOD CANOPY+TOTAL SPRUCE

CANOPY
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{Total area covered b y all trees }

TOTAL_REDWOOD_CANOPY = REDWOOD*REDWOOD_CROWN {Tota l

area c ov e r e d b y redwood trees}
TOTAL_SPRUCE_CANOPY = SPRUCE*SPRUCE_CROWN {Total area

c overed b y spruce trees}

FIRE MODULE
YEARS_SINCE_LAST_FIRE(t) = YEARS_SINCE_LAST_FIRE(t 

dt) + (FIRE_INDEX) * dt

INIT YEARS_ SI NCE_ LAST_ FI RE = 0

INFLOWS:

FIRE_INDEX = IF FIRE? = 1 THEN (

l *YEARS_SINCE_LAST_FIRE) ELSE 1

{Increments Years Since Last Fire by 1 if t here is no

fire, otherwise it resets YSLF to O}

FIRE? = IF (LIGHTNING > 0) AND (RANDOM(O, 1) <

BIOMASS_CONTRIBUTION+RAINFALL_CONTRIBUTION+GROUND_

COVER_CONTRIBUTION) THEN 1 ELSE 0

GROUND_COVER_CONTRIBUTION = IF

YEARS_ SI NCE_ LAST_ FI RE>2 0 THEN 0 .2 ELSE 0

RAINFALL_CONTRIBUTION = GRAPH (RAINFALL)

(0. 0 0 , 0 . 67) , (10.0, 0.5), (20.0, 0 .35) , (3 0 . 0, 0 .25),

(40.0, 0.17), (50.0 , 0. 1 ) , (6 0. 0, 0 .035), (7 0 .0 , 0.0 0 ),

(80 .0, -0 .05), (90.0, -0.1) , (100 , -0 . 19), (11 0 , 

0 .2 8), (1 2 0 , -0 . 39) , (130, -0.5)

REDWOOD MODULE
REDWOOD(t) = REDWOOD (t - dt) + (REDWOOD_MATURATION 
REDWOOD_DEATH) * dt

INIT REDWOOD = 1 {Initial Redwood trees in cell}

I NFLOWS :

REDWOOD_MATURATION = CONVEYOR OUTFLOW

OUTFLOWS:

REDWOOD_ DEATH = IF FIRE?=l THEN (0.5 +

0 .5*RANDOM(0 ,1))*REDWOOD ELSE

REDWOOD_SHADE_TOLERANCE*REDWOOD

REDWOOD_SAPLINGS(t) = REDWOOD_SA PLINGS(t - dt) +

(REDWOOD_GERMINATION - REDWOOD_MATURATION 

REDWOOD_SAPLING_DEATH) * dt

INIT REDWOOD_SAPLINGS = 2

TRANSIT TIME 25

INFLOW LIMIT = 00
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CAPACITY = 00

INFLOWS:
REDWOOD_GERMINATION = ( .00004 +
(ENERGY_REACHING_GROUND/15E10) + (RAINFALL /11E6» *

REDWOOD_SEED

OUTFLOWS:

REDWOOD_MATURATION = CONVEYOR OUTFLOW

REDWOOD_SAP LING_DEATH = LEAKAGE OUTFLOW

LEAKAGE FRACTION = IF FIRE? = l THEN 1 ELSE IF
ENERGY_REACHl NG_GROUND < 1E5 THEN (1.2

(ENERGY_REACHING_GROUND /100000» ELSE I F
(ENERGY_REACHING_ GROUND < 2E5 AND

ENERGY_REACHlNG_GROUND ~ 1E5 ) THEN (0 .1 
«ENERGY_REACHING_ GROUND- 2E 5) /lE6» ELSE 0.1

NO- LEAK ZONE = 0

REDWOOD_SEED = 100 0* REDWOOD

REDWOOD_ SHADE_TOLERANCE =

GRAPH (REDWOOD_ENERGY /REDWOOD)
(0.00, 1.00) , (2 0000 , 0.54), (40000, 0 .31) , (60000 ,

0 .195), (80000 , 0.095), (100000, 0 .045), (120000,

0 .02 5) , (140000, 0 .02), (160000, 0 .015), (180000,

0.01) , (200000 , 0 .005)

SPRUCE MODULE
SPRUCE(t) = SPRUCE(t - dt) + (S PRUCE_MATURATION 

SPRUCE_DEATH) * dt

I NI T SPRUCE = 2 {Initial Spruce trees in cell}

IN FLOWS :
SPRUCE_MATURATION = CONVEYOR OUTFLOW

OUTFLOWS :
SPRUCE_DEATH = I F FI RE?=l THEN (0 . 7 +
0.3* RANDOM(0,1 »*SPRUCE ELSE
SPRUCE_SHADE_T OLERANCE*SPRUCE

SPRUCE_SAPLINGS (t ) = SPRUCE_SAPLI NGS(t - d t) +
(S PRUCE_GERMINATION - SPRUCE_ MATURATION 

SPRUCE_SA PLING_DEATH) * dt

INIT SPRUCE_SA PLINGS = 3
TRANSIT TIME = 1 5

I NFLOW LIMIT = 00

CAPACITY = 00
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INFLOWS:

SPRUCE_GERMINATION = (.00004 +
(ENERGY_REACHING_GROUND/150000000000) +
(RAINFALL /11000000)) * SPRUCE_SEED

OUTFLOWS:
SPRUCE_MATURATION = CONVEYOR OUTFLOW

SPRUCE_SAPLING_DEATH = LEAKAGE OUTFLOW

LEAKAGE FRACTION = IF FIRE? = 1 THEN 1 ELSE IF

ENERGY_REACHING_GROUND < 100000 THEN (1 .2

(ENERGY_REACHING_GROUND/100000)) ELSE IF

(ENERGY_REACHING_GROUND<200000 AND

ENERGY_REACHING_GROUND~100000) THEN (0 .1

((ENERGY_REACHING_GROUND-200000) /1000000)) ELSE 0.1

NO-LEAK ZONE = 0

SPRUCE_SEED = 3000*SPRUCE

SPRUCE_SHADE_TOLERANCE = GRAPH (SPRUCE_ENERGY/SPRUCE)

(0 .00 , 0 .995), (5000, 0.605), (10000, 0 .42), (15000,

0.31), (20000, 0.255), (25000, 0.2), (30000, 0 .15),

(35000, 0 .105) , (40000, 0.08) , (45000, 0.05), (50000 ,

0.02)



18
Predator-Prey Models

He shall have his life for a prey, and shall live.
-Jeremiah 38:2

18.1 Basic Model of Predator-Prey Interactions

In this chapter we continue to model multispecies assemblages. But in con
trast to the previous chapter, the two-species model developed here con
sists of a predator population and a prey population (Fig. 18.1). Both are
present within a given area with a specified carrying capacity. The birth
rates for predators and prey are given exogenously, yet the number of
births depends on predator-prey interaction and the carrying capacity of
their ecosystem:

BIRTHS PREDATOR = BIRTH RATE PREDATOR
• (PREDATORS - DEATHS PREDATOR) (1)

PREDATORS

E0=====¥==9)I
BIRTHS PREDATOR

E0====§§====l)
joI---'

BIRTHS PREY

BIRTH RATE PREY

FIGURE 18.1
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Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.

3
B. Hannon et al., Dynamic Modeling
© Springer Science+Business Media New York 2001
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BIRTHS PREY = (PREY-DEATHS PREY)' BIRTH RATE PREY
• (l-PREY/CARRYING CAPACITY PREY) (2)

Similarly, the dea ths of predators and prey depend on their interac tion-the
prey consumed by predators.

DEATHS PREDATOR = PREDATORS - CONSUME/CONSUME RATE (3)

DEATHS PREY = CONSUME (4)

To ensure that the predators of our model do not CONSUME more prey
than available, we make use of STELLA's built-in function MIN, which gen
erates the smaller of two numbers. In our case

CONSUME = MIN(PREY,CONSUME RATE' PREDATORS) (5)

Run the model for different initial population sizes, birth and death rates,
and carrying capacities. Can you save the populations from crashing?' In
the model run below (Fig. 18.2) we have apparently not been able to avoid
the demise of the two populations .

What are we missing in this model that allows real-world predator-prey
systems to con tinue to exist? We'll provide one answer in the following sec
tion of this chapter. Remove the DEATHS PREDATOR connection to
BIRTHS PREDATOR and rerun the model. Do you get a difference in the re
sult? Why (not)?

1: PREDATORS 2: PREY

1: 42000 .0
2 : 90000.0

---

1: 2 1000 .0 -
2 : 45000 .0

-L
I

1: 0 .00 1 1- 22 : 0 .00
0 .00 10 .00 20 .00 30.00 40 .00

Time

FIGURE 18.2

'For modifications of the predator-prey models with oscillations arou nd population
equilibria and stable limit cycles see Swart,]. 1990. A System Dynamics Approach to
Predator-Prey Modeling, System Dynamics Review, Vol. 6, pp . 94-99.



206 18. Predator-Prey Models

BASIC PREDATOR PREY MODEL

PREDATORS(t) = PREDATORS(t - dt) + (BIRTHS_PREDATOR 

DEATHS_PREDATOR) * d t

I NIT PREDATORS = 900 {Individuals}

INFLOWS:

BIRTHS_PREDATOR = BIRTH_RATE_PREDATOR*(PREDATORS

DEATHS_PREDATOR) {Individuals per Time Pe r i od }

OUTFLOWS :

DEATHS_PREDATOR = PREDATORS-C ONSUME /C ONSUME_RATE

{Individuals per Time Period}

PREY(t) = PREY(t - dt) + (BIRTHS_PREY - DEATHS_PRE Y) *

d t

INIT PREY = 9000 {Individuals}

INFLOWS:

BIRTHS_PREY = (PREY- DEATHS_PREY)*BI RTH_ RATE_ PREY* (l 

PREY/CARRYI NG_CAPACITY_PREY) {Individuals per Time

Period}

OUTFLOWS:

DEATHS_ PREY = CONSUME {Individuals per Time Period}

BIRTH_RATE_PREDATOR = . 2 {Individuals per Individuals
per Time Period}

BIRTH_RATE_PREY = 2 {I ndividuals p e r I n d ividua l s per

Time Period}

CARRYING_CAPACITY_PREY = 90000 {Individuals}

CONSUME = MIN(PREY , CONSUME_RATE*PREDATORS)
{Individuals per Time Period}

CONSUME_RATE = 1 {Numbe r o f Prey per Time Period p er

Numbe r o f Predators }

18.2 Spatial Predator-Prey Modell

The model in the previous section had all predators and prey in the same
place . There , the populations of predators and prey always crashed . How
would our result differ if we broke up the same area into nine subcells,
each with one-ninth of the original carrying capacity. All other model fea-

2'fhis model is based on the project by one of our stude nts, Jim Westervelt.
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tures held the same, but now, we have predators and prey move among the
cells, "chasing or fleeing from each other. "

The prey migrate routinely regardless of their population in the starting
or the receiving cells, and the predators migrate to a new cell when they
begin to starve in their current cell. Once the migration quantity is estab
lished , a random process determines its distribution to adjacent cells. This
simple idea enables the prey to "escape" to a neighboring cell where the
predator population may be at a relatively low level. But the cellular model
is more realistic than the single cell model; it adds geographic reality to the
problem and it allows for differentiation of predator and prey behavior.

The STELLA model for the first cell of the nine-cell predator-prey model
is shown in Figure 18.3. This first cell is in the upper left-hand corner of the
square nine-cell model. Consequently, predators and prey can move to the

PRED LF 2 MIG RATE PRED

PREDUP4

fJ=~~----J

BRPREY 1

CCPREY

DEATH PREY 1

FIGURE 18.3

PREDDN 1
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right (RT) and down (DN). The fraction of predators and prey that move is
a random number between 0 and 1. The migration rate of prey, MIG RATE
PREY, is specified exogenously. The number of prey consumed in cell 1
cannot exceed the number of prey in that cell and is at least 0 and at most
the consumption rate times the number of predators in that cell. Thus ,

CONSUME 1 = MIN(PREY I,CONSUME RATE • PRED 1) (6)

The consumption rate, in turn, is also given exogenously.
The migration rate of predators, MIG RATE PRED, depends on the avail

ability of prey in the cell. For simplicity, we assume that the number of
predators that migrate is the product of the number of starvation deaths and
the migration rate of predators.

A listing of the STELLA equations for the first cell of the nine-cell model
is given at the end of this chapter. The graphical representation of that
cell is shown in Figure 18.3. In order to build the nine-cell model, the dia
gram is just duplicated and slightly modified . The modification necessary
includes, besides a change of variable names, rules that enable movement
in the proper directions.

The nine parts of the spatial predator-prey model can be combined to
visually represent the predator and prey populations of each cell at a point
in time (Fig. 18.4). Develop "Ghosts" in STELLA and animate them so that

PRED 1 PREY 1

FIGURE 18.4

PRED 2 PREY2

PREY POPULATION
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- -- ------,---

2:PREY POPULATION1: PRED

100000 .0

50000 .00

0.00

FIGURE 18.5

0 .00 75 .00 150. 00

Time

225 .00 300.00

when you run the model you can see the population sizes change for each
cell. Also, calculate the total populations of predators and prey and plot
them over time.

Run this model and you will find that it will crash only very rarely. The
results of one model run are shown in Figure 18.5. Try changing the pa
rameters again and you will find that it is difficult to make it crash! Again,
remove the DEATHS PREDATOR connection to BIRTHS PREDATOR and
rerun the model. Do you get a difference in the result? Why (not)?

Trim the number of cells to four, spread the initial population evenly and
see what happens. Try the four cells in a row and then in a square. Do you
find a difference in survival times? Does this step give you any ideas about
the shape and size of residue habitat that can maximize survival probability.
Now try five in a row versus one cell with four cells arranged one on each
of its sides . Run your models with different DT. How do the results differ,
and why? If the model were expanded to 33X33 cells, would we expect to
see patches with only prey , others with only predators?

By noting the largest range of the predators in a natural area, one could
test the assemblages needed to meet prescribed probabilities of survival.
Presumably, this largest range would enable the remainder of the living
components of the system to survive easily.

What are the basic variables here? Cellular configuration, initial predator
prey population, and the distribution of the variation of the carrying capac
ity. Try to eliminate the latter two in order to see what real difference the
configuration of the cell can make to the survival of the predator-prey
process . Reconstruct the model making use of STELLA's array features.
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FIRST CELL OF NINE CELL PREDATOR-PREY MODEL

PRED_1 (t) = PRED_1(t - dt ) + (BI RTH_ PRED + I M_PRED_1 

MIG_PRED_1 - DEATH_PRED_1 ) * d t

I NIT PRED_1 = 1 000

I NFLOWS :

BIRTH_PRED = BR_PRED* (PRED_1

DEATH_PRED_1)

IM_PRED_1 = PRED_LF_2+PRED_UP_4

OUTFLOWS:
MIG_PRED_1 = MIN (PRED_1-DEATH_PRED_1,

MIG_RATE_P RED*DEATH_PRED_1)

DEATH_PRED_1 PRED_1-

CONSUME_1 /CONSUME_RATE)

PREY_1(t) = PREY_1(t - dt) + (BIRTH_PREY_1 + IM_PREY_1

- DEATH_PREY_1 - MIG_PREY_1) * dt

INIT PREY_1 = 1 0000

INFLOWS:

BI RTH_PREY_1 = (PREY_1 

DEATH_PREY_1 ) *BR_ PREY_ 1* (1

PREY_ 1 / CC_PREY)

I M_PREY_1 = PREY_LF_2 +PREY UP 4

OUTFLOWS:
DEATH_PREY_1 = CONSUME_1

MIG_ PREY_ 1 = MIG_ RATE_ PREY*( PREY_ 1 

DEATH_PREY_1 )

BR_PRED = .2

BR_PREY_1 = 2

CC_ PREY = 10 0 00

CONSUME_RATE = 1

CONSUME_1 = MIN(PREY_1,CONSUME_RATE*PRED_1)

MIG_RATE_PRED = . 0 5 {this times the number o f

star vation deaths is the number that migrate}

MIG_RATE_PREY = .1 {this is the p r oportion o f the prey

that mi g r a t e}

PPREY_DN_1

PPREY_RT_1

RANDOM(O,l )

RANDOM (0 , 1)
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PRED_POPULATION = T5+T3+Tl
PRED_PROB_l = PPRED_RT_l+PPRED_DN_l

PRED_RT_l MIG_PRED_l*PPRED_RT_l /PRED_PROB_l

PREY_POPULATION = T2+T4+T6
PREY_PROB_l = PPREY_RT_l+PPREY_DN_l

Tl PRED_7+PRED_4+PRED_l
T2 PREY_7+PREY_4+PREY_l
T3 PRED_2+ PRED_5+ PRED_8
T4 PREY2 + PREY_5+ PREY_8
T5 PRED_9+PRED_6+PRED_3
T6 PREY_3+PREY_6+PREY_9
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Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.
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NONIMMUNE CONTAGIOUS

K CONTACfRATE

RECOVERY RATE DIE

FIGURE 19.1

The structure of the complete model is shown in Figure 19.1. Initialize this
model with the parameter values and initial conditions listed in the equa
tions at the end of this chapter. Vary a in consecutive runs , for example, set
a = .9, a = 1.1, a = 1.3. Presumably, the basic form (a = 1.0) has shown
some historical veracity, i.e., the form has been sufficiently fit with histori
cal data .

The reaction is an interesting one for such a simple model (Fig. 19.2).
The initial epidemic is the most severe and converts 90% of the population
to an immune condition. Ensuing epidemics occur with regular frequency

300.00

4: SICK

225.00150.00
Time

3: NON IMMUNE2: IMM UNE

2

0.00

==rr
37~\-1./1 ·-\f"3~

-F"-===4====r 1 4====r 1~*'----=+1---"-4=="

75.00

0.00
0.00

8:88

1: 175000.00
2: 990000.00
3: 500000.00
4: 175000 .00

1:
2:
3:
4:

- - ----+----

1: CONTAGIOU S

~ ~ 1~~888R88
3: 1000000.00
4: 350000 .00

FIGURE 19.2
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and are increasingly less severe , finally reaching a steady-sized non immune
population. At this steady state, the immune population is growing at the
birth rate, and the contagion rate is constant and equal to the birth rate.

Try running the model with different time steps and explain why the re
sults differ. Could you connect the birth rate with the immune population
and try to reach a steady state immune population? Does the disease die
out of the population? Is it possible to wipe out the population with a varia
tion in the parameters in this form of the model?

Can you introduce an optimum (minimum number of sick) vaccination
program to stabilize the disease in this latter form of the model? Can you
model how the disease can frustrate the vaccination program through mu
tation? Can you break the population into age groups with different k,
death rates, birth rates, initial population, and disease-induced death rates
for each? Show how some of these folks seem to be more resistant to the
disease and skip from contagious to immune directly. Show how the result
changes when immunity is slowly lost. Note that in reality the immunes
mingle with the nonimmunes and therefore dilute the original effect of the
contact rate coefficient. Can you fix this problem?

Split the model into one that captures the same population but distin
guishes two regions . Immune and contagious people can travel, but not the
sick ones. People from the two regions have different contact rates and are
affected by the disease differently, Le., the recovery rates differ for the two
subgroups of the population. What are the implications for an optimal vac
cination program that does not restrict travel between the regions? For ad
ditional examples of models of epidemics see Hannon and Ruth.?

EPIDEMIC MODEL

CONTAGIOUS(t) = CONTAGIOUS(t - dt) + (SICK_RATE 
BED_RATE) * dt
INIT CONTAGIOUS = 1 {Individuals}

INFLOWS:
SICK_RATE = CONTACT_RATE*(CONTAGIOUS+SICK)*NON_IMMUNE

{Individuals per Time Period}

OUTFLOWS:
BED_RATE = CONTAGIOUS {Individuals per Time Period}

IMMUNE(t) = IMMUNE(t - dt) + (RECOVERY_RATE) * dt

INIT IMMUNE = 0 {Individuals}

2Hannon, B. and M. Ruth (1997) Modeling Dynamic Biological Systems, Springer
Verlag, New York.
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RECOVERY_RATE
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.9*SICK {Individuals per Time Period}

NON_IMMUNE(t) = NON_IMMUNE(t - dt) + (BIRTHS 

SICK_RATE) * dt

INIT NON_IMMUNE = 1000000 {Individuals}

INFLOWS:
BIRTHS = 5000 {Individuals per Time Period}

OUTFLOWS :
SICK_RATE = CONTACT_RATE * (CONTAGIOUS+SICK) *NON_IMMUNE

{Individuals per Time Period}

SICK(t) = SICK(t - dt) + (BED_RATE - RECOVERY_RATE 

DIE) * dt
INIT SICK = 0 {Individuals}

INFLOWS:

BED_RATE = CONTAGIOUS {Individuals per Time Period}

OUTFLOWS:

RECOVERY_RATE = .9*SICK {Individuals per Time Period}

DIE = .1*SICK {Individuals per Time Period}

CONTACT_RATE = O*K*(COS(TIME/PI)) +K

K = .000002 {l /(Number of Contagious+Sick)*Nonimmune)

per Time Period}
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Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.

3
B. Hannon et al., Dynamic Modeling
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don 't move, including carrion, and berries on occasion. It seems sufficient
for the purposes of determining population viability to simply represent the
basics of the wolf diet.

Disease and starvation play major roles in wolf mortality, particularly in
pup mortality. Red wolves, like all canids, are vulnerable to several parasites,
including heartworms, mange mites, hookworms, ticks, and other intestinal
worms. They can also become infected with rabies, canine distemper virus,
and canine parvovirus. A parasite monitoring program of red wolves at the
Alligator River National Wildlife Refuge determined that of all the parasites
that might possibly infect the wolves, "only hookworms occurred frequently
enough to be of immediate concern to red wolf reintroductions ."3 Thus, we
model hookworms infection as a source of wolf mortality.

In the model (Fig. 20.1) the red wolf population is divided into two main
categories (pups and mature wolves) because these groups have different

PUP DEAll-iS

RAC DENSITYoMAlUREWOLVESPUPS

I+------€Q PUPHOOKDR
P-~I---:?''r''i.

DEERDENSITY

FIGURE 20.1

3phillips, M.K. and J. Scheck. 1991. Parasitism in Captive and Reintroduced Red
Wolves , Journal ofWildlife Diseases, Vol. 27, pp . 498--501.
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death rates , and of course, since wolves aren 't born reproductively mature.
The initial stock of pups is 0, and that for the adult wolf population is 25.
The variable MATURING represents the growth of pups into adults . It is de
fined as

MATURING = DELAY ((PUPS - PUP DEATHS),2) (1)

because it takes 2 years for pups to reach reproductive maturity . The natu
ral death rate, NDR, of pups, irrespective of hookworm infection or starva
tion, is assumed to be .2.

TOTAL WOLF POPULATION = (MATURE WOLVES + PUPS
+ STOCKING - REMOVAL)*MIGRATION FACTOR (2)

The MIGRATION FACTOR is a percentage by which we multiply the total
population to reflect that at all times a fraction of the wolf population dis
perses out of the area of Cades Cove. The migration factor is set as

MIGRATION FACTOR = IF (DEER DENSITY + RAC DENSITY)
< .2 THEN RANDOM ( .5, .8) ELSE .9 (3)

to reflect the impact that the density of the deer and raccoon prey has on
red wolf migratory behavior.

STOCKING represents the addition of new wolves into the area by man
agers . It is very difficult to predict when captively bred animals will be
available for release. Before any such animal can be released, it must be
shown to be as genetically close to the existing wild population as poss ible,
and then it must undergo "training" to learn how to live in the wild. To en
hance their success rate, wolves are typically released as mated pairs, or oc
casionally as small family groups. For these reasons, the conditional state
ment for STOCKING is based on a random time function , and a random
number of wolves released between 2 and 4:

STOCKING = IF TIME = RANDOM (0,200)
THEN RANDOM (2,4) ELSE ° (4)

Removal of wolves by managers usually occurs because the wolves are
too tolerant of human beings. The natural birth rate, NAT BR, decreases as
density increases. In captivity, wolves may live up to 14 years, but in the
wild , their absolute maximum life expectancy is probably 8 years, and even
that is likely generous.' Consequently, we assumed that 12 to 13% of the
population would die each year, thus MATURE NDR = .125.

PUP DEATHS and MATURE DEATHS are specified using a law-of-mass
action-type relationship, with the population in question being multiplied
by the various different death rates affecting that population:

PUP DEATHS = PUPS * PUP NDR
* PUP MALNUTRITION DR * PUP HOOK DR (5)

4Busch, R.H. 1995. The Wolf Almanac. Lyons & Burford , New York.



20. Reestablishment of Wolves 219

MATURE DEATHS = MATURE WOLVES * MATURE NAT DR
* MATURE MALNUTRITION DR
* MATURE HOOK DR (6)

with the PUP HOOK DR and MATURE HOOK DR as the hookworm
induced death rates of pups and adults, respectively .

Hookworm larvae are found on the ground, and they infect animals when
those animals come into contact with the soil during walking or lying down.
The larvae need moisture to survive in the soil and they use rain as a dis
persal agent. So, in the model infection rates increase with increasing yearly
rainfall." The corresponding relationship is specified as a graph . The min
imum and maximum values for infection rate on the graph are based on re
ported infection rates at Alligator River National Wildlife Refuge (67%) and
infection rates in Texas and Louisiana (82%).6 RAINFALL, in turn, is set to be
a random number between 45 and 55 inches, resulting in a long-term mean
of 50 inches, as observed in that area. PUP HOOK DR is a graph based on
the INFECTION RATE, increasing as infection rate increases (Fig. 20.2) .

The deer population module (Fig. 20.3) is set up in basically the same
way as the wolf population, with one stock each for juveniles and adults.
As we did with wolves , we set the initial juvenile population at O. The deer
population in Cades Cove typically fluctuates from between 400 and 800
deer. We set the initial ADULT DEER population at 400.

The rate at which deer mature, D MATURING, is modeled analogously to
wolves , with the survivors of the juvenile population flowing into the adult
population stock after a delay of 1.5 years, the time it takes for deer to
reach reproductive maturity." Again, dens ity is based on the total popula
tion size-the sum of the two subpopulations-divided by the area of

MATURE HOOK DR

FIGURE 20.2

PUPHOOK DR

RAINFALL

INFECTION RATE

5Chandler, A.C. and CP. Read. 1961. Introduction to Parasitology. 10th ed . John
Wiley and Sons, New York.
6phillips, M.K. and]. Scheck. 1991. Parasitism in Captive and Reintroduced Red
Wolves, Journal of Wildlife Diseases, Vol. 27, pp . 498-501; Chandler, A.C. and CP.
Read. Introduction to Parasitology. 10th ed . John Wiley and Sons, New York, 1961.
7HaUs, L.K. (ed.) , 1984. White-Tailed Deer: Ecology and Manag ement. Stackpole
Books , Harrisburg, PA.
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J DEER DENSITYFACTOR

JUVDEER

TOTAl DEER pop

FIGURE 20.3

Cades Cove, and the natural birth rate is a graph showing decreasing birth
rates with increasing density.

Maximum deer density on this graph is based on a generous estimate of
the .2 deer per acre. Following data in the book by Halls," we set the max
imum birth rate of deer, DEER NATBR =.68, the natural juvenile death rate
]UV DEER NDR = .4, and the natural adult death rate AD DEER NDR = .2.
]UV DEER DEATHS is based on the juvenile deer population times the juve
nile natural death rate times the juvenile deer predation by wolves OUV

8Halls, L.K. (ed.). 1984. White-Tailed Deer: Ecology and Management. Stackpole
Books, Harrisburg, PA.
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DEER PRED). JUV DEER PRED is the total wolf population times J DEER
DENSITY FACTOR, which is the percentage of juvenile deer preyed upon
per wolf per year. This is a graph based on the deer density, where per
centage prey caught is increasing with increasing density. The maxima and
minima for this graph are guesses based on the following assumptions:
Deer in the Smoky Mountains area range in weight from approximately 88
to 300 Ib,9 so we decided to use 200 lb as our weight of a typical deer. 5 lb
of food/day * 365 days /year = 1825 lb/year. 1825 Ib/200 lb corresponds to
approximately 9 deer per wolf per year. We originally divided this number
by our initial deer population of 400 to get a predation factor of .023. Real
izing this was a gross overestimate, since wolves don't prey on deer alone,
we cut this figure approximately in half to give .012. Then, we split the
population into juveniles and adults, and since wolves prey more heavily
on juveniles than adults, we assumed the bulk of this factor .012 would be
for juvenile predation. Thus, we set the minimum of the graph for the range
of predation on the juvenile deer population at .01 and the maximum at .05
as arb itrary. The corresponding specifications for the adult portion of the
population-AD DEER DEATHSand ADULT DEERPRED-are set up in the
same way these factors were set up for the juvenile subpopulation. AD
DEER DENS FACTORis again a graph based on deer density, and the range
of this percentage of adult deer preyed upon per wolf per year is set from
oto .01 as arbitrary guesses; we purposefully made the range on this graph
smaller than that on the JUV DEER PRED graph since wolves prey more
heavily on juveniles than adults.

To model raccoon population dynamics, the model follows the same pat
tern as we used for wolves and deer (Fig. 20.4). Initial juvenile raccoon
population is set equal to O. To specify the initial population size of adult
raccoon, we make use of the knowledge that when food is abundant,
raccoon densities can be around 100 raccoons per square mile .'? Con
sequently, 1,000 raccoons would be a generous estimate of the maximum
population size . Since the model starts out on the low end of the possibili
ties for the deer population, the same assumption is made here, setting the
initial ADULT RAC population at 400.

RAC MATURING represents the growth of raccoon juveniles into adults .
That maturation typically takes one year. The natural birth rate of raccoon is
a graph based on density, with birth rates decreasing as density increases.
The maximum of 2 on this graph is based on the assumption that there are 4
cubs/litter, so 4 cubs/2 adults /yr = 2. Juvenile mortality is higher than adult
mortality, with the maximum death rate of cubs in the winter around .s6.J1
We therefore set the average for JUV RAC NDR to .4. Making the relationship

9Silva, M. and ].A. Downing . 1995. CRC Handbook of Mammalian Body Masses.
CRC Press, Boca Raton , FL.
IOMacClintock, D. 1981. A Natural History ofRaccoons. Charles Scribners' Sons, New
York.
llMacClintock, D. 1981. A Natural History ofRaccoons. Charles Scribners' Sons , New
York.
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TOTALWOLFPOPUlATION
ADULTRACPRED

J RACDENSFACTOR

o

FIGURE 2004

between juvenile and adult mortality similar to that in the deer population,
we set the ADULT RAC NDR = .2.

J RAC DENS FACTOR and AD RAC DENSFACTOR are the percentages of
each subpopulation preyed upon pe r wolf per year. Raccoons range in
weight from 10 to 30 lb, and we assume here a weight of 18 lb for a rac
coon. The range on the JUV RAC DENS FACTOR is arbitrarily placed be
tween .03 and .06. For the AD RAC DENS FACTOR, this range falls in our
model between .01 and .03-purposefully lower than that for the juveniles.

To represent the death of wolves by starvation, we created a parameter
called PREY AVAILABILITY, which is the sum of total deer population and
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PUPMALNUTRITION DR

FIGURE 20.5

total raccoon population (Fig. 20.5) . We then create MATURE MALNUTRI
TION DR and PUP MALNUTRITION DR, which are based on graphs of
PREY AVAILABILITY, with malnutrition death rates increasing as prey avail
ability decreases. It is generally accepted that starvation plays a major role
in pup mortality, so we estimated that at least 10% of the pup population
would die of starvation each year, and arbitrarily set the maximum PUP
MALNUTRITION DR at 30%. The range of the MATURE MALNUTRITION
DR graph is set lower than that for the pups C01-.1O).

The results of our model are shown in Figure 20.6. It seems that according
to our model, at least, an initial population of 25 wolves in the GSMNP is in
deed viable, in the sense that it will survive for at least 100 generations, and
that the minimum viable population of red wolves in the Smokies is 2. The
wolf population shows a general trend of growth (with fluctuations from year
to year based on the dynamics of the prey populations) to a maximum of
around 150 wolves. Run the model with an initial wolf population of 2 and
you will see that even that is enough to maintain wolves in the area for 100
generations. In our simple model there are no problems with inbreeding.
How would you change the model to accommodate that possibility?

Given all the guesses of parameter values that we made to specify and run
the model, a key question obviously is: How realistic is this model, and thus,
how much faith can be placed in its results? It seems that the results are
overly optimistic because we have underestimated the death rates for the
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populations involved. In particular, since we did not incorporate all of the
diseases that contribute to red wolf mortality, this model predicts that the
wolf population will be more prosperous more quickly than it is likely to be
in real life. Though you may have a population of 150 canids that look like
red wolves, there is no way of knowing without genetic analyses just how
many of those canids are really pure red wolves and how many are hybrids.
One of the major factors that contributed to the decline of the red wolf spe
cies in the first place was genetic dilution of the species due to hybridization
with coyotes. Crossbreeding is probably due to reduction in habitat size and
the unchecked spread of coyotes. It is an established fact that when their
numbers are small, red wolves will mate with coyotes. Coyotes are currently
present in the Smokies, and while red wolves are released into the wild with
their mates from captivity, there is no way to keep wolves born in the wild
from choosing coyotes as mates. Therefore, genetic dilution of the species
will certainly continue to occur, and it is difficult to predict whether the canid
population that will survive in the Smokies will be composed of "pure" red
wolves or one composed primarily of hybrids, as the wild red wolf popula
tion was prior to the initiation of captive breeding programs to save the spe
cies from extinction. Finally, the fate of the red wolf population depends on
human activity in the area-a key issue that we have not modeled here.

To assess the viability of the population under alternative parameter as
sumptions, conduct a thorough sensitivity analysis and note the parameters
that are critical for our results to hold. Within which ranges can these pa
rameters vary and the wolf population still persist over 100 generations?
How would the results of this model change if the seasonality of death rates
for each of the populations was taken into account? How could dilution of
the red wolf gene pool by hybridization with coyotes be incorporated into
this model? How would viability of the wolf population be affected if ran
dom chaotic events led to large reductions in the prey populations?

REESTABLISHMENT OF WOLVES

ADULT_DEER{t) = ADULT_DEER{t - dt) + (D_MATURING 

AD_DEER_DEATHS) * dt

INIT ADULT_DEER = 400

INFLOWS:
D_MATURING = DELAY{{JUV_DEER-JUV_DEER_DEATHS) ,1.5)

OUTFLOWS:

AD_DEER_DEATHS =
ADULT_DEER*AD_DEER_NDR*ADULT DEER PRED

ADULT_RAC{t) = ADULT_RAC{t - dt) + (RAC_MATURING 

ADULT_RAC_DEATHS) * dt

INIT ADULT_RAC = 400

INFLOWS :
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RAC_MATURING = DELAY((JUV_RAC-JUV_RAC_DEATHS) ,1)

OUTFLOWS:

ADULT_RAC_ DEATHS =
ADULT_ RAC* ADULT_RAC_NDR*ADULT_ RAC_ PRED

JUV_DEER(t) = JUV_DEER(t - dt) + (DEER_ BI RTHS 

D_MATURING - JUV_DEER_DEATHS) * dt

INIT JUV_DEER = 0

INFLOWS:

DEER_BIRTHS = ADULT_ DEER*DEER NAT BR

OUTFLOWS:

D_MATURING = DELAY((JUV_DEER-JUV_DEER_DEATHS) , 1 . 5 )

JUV_DEER_DEATHS = JUV_DEER*JUV_DEER_NDR*JUV_DEER_PRED

JUV_RAC(t) = JUV_RAC(t - dt) + (RAC_BIRTHS 

RAC_MATURING - JUV_RAC_DEATHS) * dt

INIT JUV_RAC = 0

I NFLOWS :

RAC_BIRTHS = ADULT_ RAC*RAC NAT BR

OUTFLOWS :

RAC_MATURING = DELAY ( (JUV_RAC-JUV_RAC_DEATHS) , 1 )

JUV_RAC_DEATHS = JUV_RAC*JUV_RAC_NDR*JUV_RAC_PRED

MATURE_WOLVES ( t ) = MATURE_WOLVES ( t - dt) + (MATURI NG 
MATURE_ DEATHS) * dt

INIT MATURE_WOLVES = 25
I NFLOWS :

MATURING = DELAY( (PUPS-PUP_DEATHS) , 2 )
OUTFLOWS:

MATURE_DEATHS =
MATURE_WOLVES*MATURE_NAT DR*MATURE MALNUTRITION DR*
MATURE_HOOK_DR

PUPS(t) = PUPS(t - dt) + (BIRTHS - MATURING 
PUP_DEATHS) * dt

INIT PUPS = 0

INFLOWS :

BIRTH S = MATURE_WOLVES*NAT BR

OUTFLOWS:

MATURING = DELAY((PUPS-PUP_DEATHS), 2)

PUP_DEATHS =
PUPS *PUP_NDR*PUP_MALNUTRITION DR*PUP HOOK DR
ADULT_ DEER_ PRED =
TOTAL_WOLF_P OPULATION*AD_DEER_DENS_FACTOR
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ADULT_RAC_NDR = . 1

ADULT_RAC_PRED =
TOTAL_WOLF_POPULATION*AD_RAC DENS_FACTOR

AD_DEER_NDR = .2

AREA_CADES_COVE = 5000

DEER_DENSITY = TOTAL_DEER_POP/AREA_CADES_COVE

JUV_DEER_NDR = .4

JUV_DEER_PRED =
@BTX:TOTAL_WOLF_POPULATION*J_DEER_DENSITY_FACTOR

JUV_RAC_NDR = . 25

JUV_RAC_PRED = TOTAL_WOLF_POPULATION*J_RAC_DENS_FACTOR

MATURE_NAT_DR = .125

MIGRATION_FACTOR = IF (DEER_DENSITY+RAC_DENSITY) < .2

THEN RANDOM ( . 5 , . 8 )

ELSE .9

PREY_AVAILABILITY TOTAL_DEER_POP + TOTAL_RAC_POP

PUP_NDR = .2

RAC_DENSITY = TOTAL_RAC_POP/AREA_CADES_COVE

RAINFALL = RANDOM (45, 55)

REMOVAL = IF TIME = (RANDOM (0,200) ) THEN (RANDOM

(0 r 1) ) ELSE 0

STOCKING = IF TIME = (RANDOM ( 0, 200) ) THEN (RANDOM

(2, 4)) ELSE 0
TOTAL_DEER_POP = ADULT_DEER+JUV_DEER

TOTAL_RAC_POP = ADULT_RAC+JUV_RAC

TOTAL_WOLF_POPULATION = (MATURE_WOLVES+PUPS+STOCKING

REMOVAL)*MIGRATION_FACTOR
WOLF_DENSITY = TOTAL_WOLF_POPULATION/AREA_CADES_COVE

AD_DEER_DENS_FACTOR = GRAPH (DEER_DENSITY)

(0.00, 0.000~5), (0.02 , 0 .00055), (0 .04, 0.0012),
(0.06, 0.00175), (0.08, 0.0026), (0.1, 0.0033), (0 .12,

0.00415), (0.14, 0.0049), (0 .16, 0.00605), (0 .18,

0.00725) , (0.2, 0.0097)

AD_RAC_DENS_FACTOR = GRAPH (RAC_DENSITY)

(0 .00, 0.01), (0.02, 0.0106) , (0.04 , 0.0111) , (0 .06,

0 .0117), (0.08, 0 .0127) , (0.1, 0.0141), (0.12, 0 .0158),

(0.14, 0.0176), (0.16, 0.0198), (0.18, 0 .0231), (0.2,

0 .03)

DEER_NAT_BR = GRAPH (DEER_DENSITY)

(0.00, 0.68), (0 .02, 0 .466), (0 .04, 0 .296), (0 .06,

0.214) , (0.08 , 0.167), (0 .1 , 0.112) , (0.12, 0 .0816),

(0 .14, 0 .051), (0.16, 0.0238), (0 .18, 0 .0068), (0.2 ,

0 .00)
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INFECTI ON_ RATE = GRAPH (RAINFALL)
(45.0, 0 .67), (46.0, 0 .676), (47 .0, 0 .681), (48 .0,

0.688), (49 .0 ,0 .698), (50 .0,0.708), (51.0,0.717),

(52 .0 ,0.729), (53.0, 0.747), (54.0,0.773), (55.0 ,

0 . 8 2)

J_DEER_DENSITY_FACTOR = GRAPH (DEER_DENSITY)
(0 .00 , 0.0104), (0.02, 0 .0116), (0.04 , 0.0132), (0 .06 ,

0.0154), (0.08, 0 .0186), (0.1, 0.022) , (0 .12, 0 .025),

(0 .14, 0 .0286), (0.16, 0.0336) , (0.18, 0.0398), (0 .2,

0.05)

J_RAC_DENS_FACTOR = GRAPH (RAC_DENSITY)
(0 .00 , 0 .03), (0 .02 , 0.0315) , (0.04, 0 .0331) , (0.06,

0.0342), (0.08, 0.0 355), (0 .1, 0.0372), (0 . 12, 0.039),

(0.14 , 0.0414), (0.16, 0.0454), (0 . 18, 0.051) , (0.2,

0 .06)

MATURE_HOOK_DR = GRAPH (INFECTION_RATE)
(0.67,0.01), (0 .685,0.0104), (0.7,0.0122), (0.715,

0 . 01 4 2 ) , (0.73,0.0174), (0.745, 0 .02 2), (0 . 7 6 ,

0 .0268), (0.775, 0.0314), (0 .79, 0.036), (0 .805,

0 .0416) , (0. 82,0 .0494)

MATURE_MALNUTRITION_DR = GRAPH (PREY_AVAILABILITY)
(0.00, 0.09 87), (200, 0.0699), (400 , 0 .0559) , (600,

0 .0469), (8 00 , 0 .0406), (1000, 0 .0339), (1200, 0.02 89),

(1400, 0.0235), (1600, 0 .0186), (18 00 , 0 .0136) , (2000,

0 .01)

NAT_BR = GRAPH (WOLF_DENSITY)
(0 .00, 2.48) , (0.002, 1.71), (0 .004, 1.21), (0.006,

0. 838), (0 .008, 0.55) , (0.01, 0.4), (0 .012, 0.238) ,

(0.014, 0 .163), (0.016, 0.075), (0.018, 0 .05), (0 .02,
0 .00)

PUP_HOOK_DR = GRAPH (INFECTION_RATE)
(0.67,0.203), (0 .685,0.208), (0.7,0 .219), (0 .715 ,

0.247), (0 .73,0 .2 83), (0 .745,0 .33 8), (0 .76 ,0.401),

(0.775, 0.497), (0.79, 0 .591), (0.805, 0 .67), (0 .82,

0.75)

PUP_MALNUTRITION_DR = GRAPH (PREY_AVAILABILITY)
(0.00, 0.297) , (200, 0.26 ), ( 4 0 0 , 0 . 217), (600 , 0 . 1 83) ,

(80 0, 0.155), (1000, 0.14 3), (1200, 0.13 2), (1400,

0.121) , (1600, 0.112), (1800, 0.104) , (2000, 0 .1)

RAC_NAT_BR = GRAPH (RAC_DENSITY)
(0 .00, 2.00), (0 .02, 1.55), (0.04, 1.29), (0.06, 0 .95),

(0.0 8 , 0 .69), (0 .1, 0.49), (0.12, 0.33), (0.14, 0 .21),

(0. 16 , 0 .1), (0 . 18 , 0 . 03) , ( 0 . 2, 0 .0 0)
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Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.
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density increases following a large masting event, then larval ticks should
not have any difficulty finding mice on which to obtain a blood meal-the
authors seem to assume that the mouse density establishes the carrying ca
pacity for larval ticks. Thus, many larvae will be able to compl ete molting
into the nymphal stage and reappear the following spring 0 .5 years after
the masting event).

Unfed larvae generally do not carry the Lyme disease bacterial organism
B.d. and so the active larvae season (summer into fall) is not correlated
with human cases of Lyme disease. Larvae generally get the infection from
mice that had been infected earlier in the year by the other generation's ac
tive nymphal stage (spring into summer). After winter stasis and early
spring molting, the unfed nymph is ready for a blood meal and is likely to
transmit the Lyme disease agent to an intermediate host or to a dead-end
host, such as humans. Additionally, the unfed nymphal stage is the most
dangerous for it is the infected stage most likely to feed on human blood.
Based on these facts, we should expect that if the population density of
mice is high and many larvae can acquire a blood meal, the following
spring should see a significant increase in active nymphs and an increase in
human Lyme disease cases .

One key component of the ecology of Lyme disease is the production of
acorns (Fig. 21.1). We assume that acorns can be produced by two different
species of oak trees, the white oak (Quercus a lba) and the black oak
(Quercus velutina) . Based on the work by Sork et al.' in east-central Mis
souri, we have been able to simulate the average yearly acorn production
for each tree species, as well as simulate the production of the large acorn
mast event associated with the two species. The acorn production is nor
mally distributed and nonnegative . The white oak has large acorn produc
tion abo ut every 3 years, whereas the black oak has a large mast event
every 2 years.

Based on the amou nt of total acorns produced , we have develo ped an
assumption about ACORN MAST INDEX-an index is actually calculated on
the basis of field observa tions by counting the number of acorns on a series
of randomly selected branches on a series of randomly selected trees. How
ever, we did not want to extrapolate how many branches a tree has. In
stead, we assumed that if acorn production is 0, then the mast index is O.
Additionally, acorn mast indices above 200 seem to be rare, so we set the
highest acorn production possible in our model to correlate with a mast
index of 200. We assumed a linear relationship between acorn production
and mast index . Because of this relationship and because the mast index is
not a measure of a particular tree but a measure applied to severa l branches
of severa l trees, we do not require a real value for the number of trees in
our model , but a proportion of trees. Figure 21.2 shows an example model
run for a 50% compos ition of both oak species in our forest patch.

5Sork, V.L.,). Brambl e , and O. Sexton. 1993. Ecology of Mast-Fruiting in Three Spe
cies of North American Decidu ou s Oa ks. Ecology, Vol. 74, pp . 528-541.
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Based on the work by Wolff, we used a linear regression equation that
relates the summer white-footed mouse density (mice per hectare) to the
acorn mast index:

SUMMER MOUSE POPULATION DENSITY
= 7.28 + 0.60 • ACORN MAST INDEX (1)

Thus , the minimum mouse population density is 7.28 and mouse popula
tion density increases with an increase in the acorn mast index.

The mouse population dynamics are based on the acorn mast index
(Fig. 21.3). In order to use the above equation, we assumed the summer
mouse population density to be the carrying capacity (K) for mice. Addi
tionally, the reason for the increase in population (N) during the summer
following a large mast event is due to an additional litter being born in the
winter. White-footed mouse females generally have two litters per year , but
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when the acorn mast is substantial some may have three . Because of this
additional litter event , the natural rate of increase (R) for the population can
vary based on the acorn mast production. Thus, we have assumed R to vary
with changes in K. Since K is mast index-derived, R will also be driven by
mast index due to its relationship with K. Nevertheless, the R value when
K=20 is based on Wolff's work.

Though we have made many assumptions that may not reflect the actual
conditions in the mouse population, we have modeled a population that
reaches the predicted density the summer following a mast event. Figure
21.4 shows the time-varying behavior of the mouse population size, N, the
carrying capacity , and the acorn mast index using Wolff's summer mouse
population correlation equation. Figure 21.5 displays the relationship of R
and the acorn mast index.

Changes in deer population dynamics are handled differently in the
model from the ways in which we specified changes in mouse population
(Fig. 21.6). Based on the work by McShea and Schwede," we assumed deer
respond to the variation in acorn crops by spending more or less time in
particular parts of their habitats . The authors showed that deer are more
likely to use the oak forest habitat if acorn production is good, and the per
centage of habitat use is correlated with acorn production. Based on
McShea and Schwede's data, we assumed an average 3.5 deer per hectare.
Their study area was approximately 60% nonforested and 40% forested.
Thus, we could assume for the purpose of this model that if our model was
placed in 1 square kilometer of their study area, 4 hectares would be for-

~l
3:

I:N

60.00

200.00

2: K 3: ACORN MAST INDE X

~l 30.00 ,l,3: 100.00

~l 0.00
3: 0.00 3 3 3

0.00 208.00 416.00 624.00 832.00

FIGURE 21.4

6McShea, W.]., and G. Schwede. 1993. Variable Acorn Crops: Responses of
White-Tailed Deer and Other Mast Consumers, Journal of Mammo!ogy, Vol. 74,
pp . 999-1006.
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ested and one of those hectares would be our model. Assume a deer had
50% habitat use in the forest. Since our model is 1/4 of the total forest, we
assumed that the deer's percent habitat use in our model is 12.5% (1/2 • 1/4
= 118). We were able to roughly correlate the increases in home range and
forest habitat use with the acorn mast indices reported by Wolff. Both
studies took place in Virginia at the same time, so it was good to see that

PROB INMODEL Ha

ACORN MASTSTORE NUMBER

ACORNSAVAILABLE

FIGURE 21.6

DEER PERCENT HABITAT USE
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when Wolff reported high acorn mast years, McShea and Schwede's data
indicated increases in percent habitat use.

Because deer percent habitat use is a function of the presence of acorns
in the forest, we modeled acorn fall by using a sine function. As soon as the
acorn production is randomly selected in the oak-acorn sector (during the
last week of summer) and the acorn mast index is generated, a sine wave
of acorn availability develops that peaks during late September into Oc
tober and then declines. Since we roughly correlated the percent habitat
use with the acorn mast index, we have assumed that acorn availability is
proportional to the acorn mast index.

Based on the appea rance and disappea rance of acorns, the deer increase
and then decrease their numbers in our model forest during the fall. Addi
tionally, the maximum deer number is based on acorn production . In large
mast years, more deer should come into our model. Figure 21.7 displays the
acorn mast index in the late summer, and the subsequent autumnal acorn
availability. Figure 21.8 shows the relationship be tween acorn mast index
and deer wandering through our model.

Tick burdens on mice and deer are important , for we assumed that they
represent the carrying capacity for our tick stage popul ations. Tick burdens
on mice have been assumed to be related to the number of tick larvae and
nymphs found on mice during the spring and summer seasons. We have
used data collected from the 1990 and 1992 to 1997 seasons in Castle Rock
State Park, Illinois. The data provided a mean number of larvae and
nymphs on mice for a particular sampling day during a particular month. In
order to ascertain what the tick burden would be for a particular wee k, we
had to consider the biology of tick feeding. For example, larvae require
about 4 days to successfully feed , whereas nymphs require about 4.5 days.

1: ACORN MAST INDEX
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2· ACORNS AVAILABLE

0.00 1-2.....--......... '
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FIGURE 21.7

..1.10............ '
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(2)

In order to acquire the weekly larval tick burden for this part of the model
(Fig. 21.9) we specified the following relationship:

WEEKLY LARVAL TICK BURDEN
= N • DAILY LARVAL TICK BURDEN • 7 / 4

For a daily larval tick burden of 5 larval ticks and 20 mice, 175 larval ticks
could successfully feed per week (instead of 700 if the feeding time was
one day) . The same mathematical assumption was applied to the weekly
nymphal tick burden per mouse (see Fig. 21.9).

Figure 21.10 displays the relationship between mouse population density
and the weekly larval and nymphal tick burdens. Note the seasonal distri
bution of nymphs and larvae. We have used this seasonal information to
regulate the appearance of unfed larvae and unfed nymphs. To make the
model more realistic, we could have included an environmental basis for

DAilY LARVALTICKBURDEN WEEKLY LARVALllCKBURDEN

N

WEEKLY NYMPHllCK BURDEN MICE

WEEKLY LARVAL llCK BURDEN MICE

DAILYNYMPH llCK BURDEN WEEKLY NYMPH llCK BURDEN

FIGURE 21.9
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the emergence of the nymphal and larval stages , based on the microclimate
of the litter layer, particularly humidity . This has not been done.

We assume that the number of adult ticks entering and leaving our
model is equal, so we make no concessions to tick migration on deer. Ad
ditionally, we assume that deer are host to approximately 30 adult ticks per
day, and since the feeding period for an adult female is 7 days, we assume
30 adult ticks per week on a deer (Fig. 21.11)

Figure 21.12 shows the seasonal variation in adult tick burdens in our
I-hectare forest.

The population dynamics of the black-legged tick illustrate the two dif
ferent populations which are active during particular seasons (Figs. 21.13
and 21.14). We have assumed that the ticks cannot immigrate or emigrate
from the model (or immigration = emigration). In nature, ovipositing and

LARVAE SURV RATE

TOTAl. ACTIVE NYMPHS OUT

AOU.TOVIPOSlnoN RATE AllU-TEMERGENCl:RATE ADULT RESTRATE

FIGURE 21.13
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lARVAE SURVRATE

ADULTOVIPOSITION DEATII

FIGURE 21.14

ADULTEMERGENCE ADULT RESTRATE

egg development are based on cumulative degree days. In lieu of good
data to model temperature dependence, we have approx imated the devel
opment of eggs by employing a sine wave function , with its average area
under the curve equal to the average success of hatching and its length (in
weeks) appropriate to the occurrence of hatching in the wild.

Ticks move in sequential fashion from egg to larva to nymph to adult
during a 2-year period , in which they are in resting stages prior to molting
to the next life stage. Conveyors have been used to simulate the rest pe
riods. Additionally, we have assumed that intermediate and definitive host
densities account for the carrying capacity and feeding success of the tick
stages dependent on a blood meal to molt.
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Figures 21.15 to 21.17 show, respectively, the populations of larvae,
nymphs, and adult ticks. The last indicates that the adult tick population
numbers are not yet limited by deer numbers.

Now that all the pieces of the model are in place, we can calculate the
number of active tick nymphs. By accumulating the number of ticks suc
cessfully molting from larval to nymphal form, we have set up a reservoir
that can provide the number of active nymphs per year. This variable can
then be compared with the magnitude of the acorn mast index 2 years prior
to see if the hypothesis holds true .
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Based on the results shown in Figure 21.18, it seems that nymphal activ
ity increases almost 2 years following a large mast event. However, the in
crease is proportional to the difference between the mast event responsible
for the increase and the mast event that occurred almost 4 years prior to the
nymphal increase. Thus, we could make predictions about the danger of
Lyme disease associated with a masting event.

Another interesting question we can address with our model is whether
the oak species composition has a population effect on the two different tick
populations. 1. scapularis has a life span of 2 years in the wild. If the popula
tions are responsive to acorn mast production, and excessive mast acorn pro-
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duction happens only every 2 years, one population of ticks may crash or re
main very low whereas the other population maintains high numbers. As you
run the model you can see that population 1 benefits from the black oak
mast whereas population 2 maintains lower population numbers or crashes.

How about a combination? Because black oak masts are larger than
white oak masts, a 50-50 species composition may still favor the tick popu
lation synchronous with the 2-year black oak mast. Even with white oak at
75%, population 2 crashes . At 100% white oak composition, you can see
that the 3-year cycle of large masts benefits both tick populations. How
ever, also note the beneficial effect on active nymphs not only 2 years after
the mast event but also 3 years after the mast event. Could there exist re
sidual benefits from the large mast event that carried over because the tick
burden carrying capacities were not limiting? What would happen if mice
and/or deer were excluded from the model forest? What if the deer popu
lation density changed in response to disease, predation, and harvesting?
What if mice were allowed to emigrate/immigrate into the model? The tick
burdens on mice for our model are based on Illinois data, and mouse tick
burdens are higher on the East Coast. What if the model employed higher
daily tick burdens on mice? These are just a few questions that can be ad
dressed with the model of this chapter, and we encourage you to do so .

LYME DISEASE

Deer Movement
DEER(t) = DEER(t - dt)
INIT DEER = 35 {deer per 10 hal

ACORNS_AVAILABLE =
ABS (SINWAVE (ACORN_MAST_STORE_NUMBER, (38-25)*2))*2
DEER_FOREST = DEER*DEER_PERCENT_HABITAT_USE/100
DEER_MODEL_FOREST = IF PROB_IN_MODEL_Ha < ° THEN °
ELSE DEER_FOREST * PROB_IN_MODEL_Ha
PROB_IN_MODEL_Ha = 0 .25 {Deer are in 10 ha = 1 sq. krn,

6 ha nonforested, 4 ha forested . Model is in 1 of the 4
forested hectares, so there's a 1 in 4 (25%)
probability of being in the model forest.}
DEER_PERCENT_HABITAT_USE = GRAPH (ACORNS_AVAILABLE)
(0 .00, 7.00), (10.0, 12.5), (20.0, 18.0), (30.0, 24.0),
(40 .0, 30.5), (50 .0, 37.0), (60.0, 44.0), (70.0, 50.5),
(80.0, 57.5), (90 .0, 64.0), (100, 70.5)

Mouse Population Dynamics

MOUSE_K_SUMMER_CAP(t) = MOUSE_K_SUMMER_CAP(t - dt) +
(MOUSE_S_TO_S_SUMMER_CAP - MOUSE_CHANGE_S_TO_S_CAP) * dt
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INIT MOUSE_K_SUMMER_CAP 20

INFLOWS;
MOUSE_S_TO_S_SUMMER_CAP

MOUSE_NEXT_SUMMER_POP_DENSITY

OUTFLOWS;

MOUSE_CHANGE_S_TO_S_CAP = IF (TIME<25) THEN 0 ELSE IF

(WEEK_COUNTER = 25) THEN MOUSE_K_SUMMER_CAP ELSE 0

N(t) = N(t - dt) + (dN) * dt

INIT N = 2

INFLOWS;

dN = R*N*(l-(N/K)) {Individuals per Week}

K = MOUSE_K_SUMMER_CAP

R = R_K_DEP / N

R_K_DEP = GRAPH(K)

(0 .00, 0 .00), (12.0, 1.40) , (24.0 , 2.80), (36.0 , 3.50),

(48.0, 4 .20), (60.0, 4.90) , (72.0, 5.50) , (84 .0 , 6.00),

(96 .0 , 6.50), (108, 6 .90), (120, 7.30)

Oak - Acorn Production

ACORN_MAST_STORE_NUMBER(t) = ACORN_MAST_STORE_NUMBER(t 

dt) + (ACORN_MAST_STORE_IN - ACORN_MAST_STORE_OUT) * dt
INIT ACORN_MAST_STORE_NUMBER = 0

INFLOWS:
ACORN_MAST_STORE_IN = ACORN_MAST_INDEX

OUTFLOWS;

ACORN_MAST_STORE_OUT = IF WEEK_COUNTER>38 THEN

ACORN_MAST_STORE_NUMBER ELSE 0

BLACK_OAK_ACORN_MAST = If (BLACK_OAK_AMP_RATE < 0)

THEN 0 ELSE
BLACK_OAK_PROPORTION*BLACK_OAK_AMP_RATE

BLACK_OAK_AMP_RATE = IF (TWO_YEAR_COUNTER = 77) THEN

(NORMAL(3259,2983)) ELSE

IF (TWO_YEAR_COUNTER<>77) AND (WEEK_COUNTER=25) THEN

(NORMAL(1059,834)) ELSE 0

BLACK_OAK_PROPORTION = IF WHITE_OAK_PROPORTION > 1 OR

WHITE_OAK_PROPORTION < 0 THEN 1 /0 ELSE

(l-WHITE_OAK_PROPORTION)

MOUSE_NEXT_SUMMER_POP_DENSITY = IF (WEEK_COUNTER = 25)

THEN
.60*ACORN_MAST_INDEX + 7.28) ELSE 0 {Number of mice

the following summer in one hectare}
THREE_YEAR_COUNTER = COUNTER(0,156)
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TOTAL_ACORN_MAST =

BLACK_OAK_ACORN_MAST+WHITE_OAK_ACORN_MAST

TWO_YEAR_COUNTER = COUNTER (0 , 104)

WEEK_COUNTER = COUNTER(0,52)
WHITE_OAK_ACORN_MAST = IF (WHITE_OAK_AMP_RATE < 0)

THEN 0 ELSE

WHITE_OAK_PROPORTION*WHITE_OAK_AMP_RATE

WHITE_OAK_AMP_RATE = IF (THREE_YEAR_COUNTER = 129)

THEN (NORMAL(2441,1526)) ELSE IF

(THREE_YEAR_COUNTER<>129) AND (WEEK_COUNTER = 25) THEN

(NORMAL(700 ,480)) ELSE 0

WHITE_OAK_PROPORTION = 1

ACORN_MAST_INDEX = GRAPH (TOTAL_ACORN_MAST)

(0 .00, 0 .00), (1000 , 20 .0), (2000, 40.0), (3000, 60 .0),

(4000, 80.0), (5000 , 100) , (6000 , 120) , (7000, 140),

(8000, 160), (9000, 180), (10000 , 200)

Tick Burden on Deer
TICK_PER_DEER_PER_DAY = IF (WEEK_COUNTER>=27) AND

(WEEK_COUNTER<=38) THEN 3 0 ELSE 0

WEEKLY_ADULT_TICK_BURDEN_DEER =

DEER_MODEL_FOREST*TICK_PER_DEER_PER_DAY* (7 /7)

Tick Burden on Mice

WEEKLY_LARVAL_TICK_BURDEN

N*WEEKLY_LARVAL_TICK_BURDEN__MICE

WEEKLY_LARVAL_TICK_BURDEN__MICE
DAILY_LARVAL_TICK_BURDEN* (7 /4) {convert successful

biting period per day to week}
WEEKLY_NYMPH_TICK_BURDEN =

N*WEEKLY_NYMPH_TICK_BURDEN_MICE

WEEKLY_NYMPH_TICK_BURDEN_MICE =

DAILY_NYMPH_TICK_BURDEN * (7 /4.5) {convert successful

biting period per day to week}

DAILY_LARVAL_TICK_BURDEN = GRAPH (WEEK_COUNTER)

(0.00 , 0.00) , (2.00, 3 . 33), (4.00, 3.33), (6.00, 4.80),

(8 .00, 4.80), (10 .0, 9.90) , (12 .0, 9.90) , (14 .0, 9 .90),

(16 .0 , 5 .30), (18.0, 5.30) , (20 .0, 8.70), (22 .0, 8.70) ,

(24 .0 , 4 .40) , (26.0, 4.40), (28 .0, 1.80), (30.0, 1.80),

(32 .0 , 0 .00), (34.0 , 0.00), (36.0, 0 .00), (38.0, 0.00) ,

(40 .0 , 0 .00) , (42.0 , 0.00), (44 .0, 0 .00), (46.0, 0 .00),

(48 .0 , 0 .00) , (50 .0, 0 .00) , (52 .0, 0.00)

DAILY_NYMPH_TICK_BURDEN = GRAPH (WEEK_COUNTER)

(0.00, 1.35), (2 .00 , 2 .67), (4 .00, 2 .67), (6.00, 1.10) ,

(8 .00, 1.10), (10.0, 0.6) , (12.0 , 0 .6), (14.0, 0.6),
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(16 .0, 0 .3) , (1 8.0, 0.3) , (20 .0, 0.1) r (22. 0 , 0 .1 ) r

(24 .0 , 0 . 1) t (26 .0 , 0 .1 ) t (28 .0 , 0 .1) , (30 .0, 0 .1 ) ,
(32 .0, 0 .00) ,

(34 .0 , 0 .00) , (36 .0, 0 . 0 0 ) , (38 .0, 0 .00) , (40 .0 , 0.00) r

(42.0 , 0.00) , (44 .0, 0 . 0 0 ) , (46 .0 , 0.00) , (48 .0 , 0.00) ,
(50 .0, 0 .0 0) , (52 .0 , 0 .00)

Tick Population Dynami cs

ADULT_FED( t ) = ADULT_ FED( t - dt) + (ADULT_ FEED_RATE 

ADULT_REST_ RATE) * d t
IN I T ADULT_ FED = 0

INFLOWS :
ADULT_FEED_RATE = if

(WEEKLY_ADULT_T I CK_BURDEN_DEER>=ADULT_UNFED) then

WEEKLY_ADULT_TICK_BURDEN_DEER else (ADULT_UNFED)

OUTFLOWS :
ADULT_ REST_ RATE = ADULT_ FED

ADULT_OVIPOSITION(t) = ADULT_OVI POSI TION (t - d t) +
(ADULT_ EMERGENCE_RATE -

ADULT_OVI POSI TION_RATE) * d t

I NIT ADULT_OVIPOSITION = 30 0

I NFLOWS :
ADULT_EMERGENCE_RATE = CONVEYOR OUTFLOW
OUTFLOWS:
ADULT_OVI POSITION_RATE = ADULT_OVI POSITION

ADULT_REST( t) = ADULT_REST(t - d t) + (ADULT_REST_RATE

- ADULT_ EMERGENCE_RATE) * d t

INIT ADULT_ REST = 0
TRANSIT TIME = 18

INFLOW LIMIT = 00

CAPACITY = 00

INFLOWS :
ADULT_ REST_ RATE = ADULT_FED

OUTFLOWS :
ADULT_ EMERGENCE_RATE = CONVEYOR OUTFLOW

ADULT_UNFED( t) = ADULT_UNFED(t - d t) + (N_MOLT 
ADULT_ FEED_RATE - ADULT_UNFED_ DEATH) * dt

INIT ADULT_UNFED = 0

INFLOWS :

N_MOLT = CONVEYOR OUTFLOW

OUTFLOWS:
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ADULT_FEED_RATE = IF
(WEEKLY_ADULT_TICK_BURDEN_DEER>=ADULT_UNFED) THEN

WEEKLY_ADULT_TICK_BURDEN_DEER ELSE (ADULT_UNFED)

ADULT_UNFED_DEATH = (l-ADULT_SURVIVAL_RATE) *

ADULT_UNFED

EGGS(t) = EGGS(t - dt) + (EGG_EMERGENCE_RATE 
EGG_HATCH - EGG_FAILURE) * dt

INIT EGGS = 0

INFLOWS :
EGG_EMERGENCE_RATE CONVEYOR OUTFLOW

OUTFLOWS :
EGG_HATCH

(EGGS*EGG_SURVIVAL*EGG_ENVIRONMENTAL_FACTOR_2)

EGG_FAILURE = IF (EGG_ENVIRONMENTAL_FACTOR_2 0) THEN

EGGS ELSE (l-EGG_SURVIVAL)*EGGS

EGGS_REST(t) = EGGS_REST(t - dt) + (EGG_OVIPOSITION 
EGG_EMERGENCE_RATE - EGG_REST_FAILURE) * dt

INIT EGGS_REST = 0
TRANSIT TIME = 9
INFLOW LIMIT = 00

CAPACITY = 00

INFLOWS:

EGG_OVIPOSITION =

ADULT_OVIPOSITION*ADULT_FEMALE POPULATION RATIO*
EGG_MAX

OUTFLOWS:
EGG_EMERGENCE_RATE = CONVEYOR OUTFLOW
EGG_REST_FAILURE = LEAKAGE OUTFLOW

LEAKAGE FRACTION = IF
(EGG_ENVIRONMENTAL_FACTOR_2=O) THEN 1 ELSE (1
EGG_FECUNDITY)

NO-LEAK ZONE = 0

LARVAE_ACTIVE(t) = LARVAE_ACTIVE(t - dt) + (EGG_HATCH

- LARVAE_DEATH - LARVAE_FEED) * dt

INIT LARVAE_ACTIVE = 0

INFLOWS:
EGG_HATCH =

(EGGS*EGG_SURVIVAL*EGG_ENVIRONMENTAL_FACTOR_2)

OUTFLOWS :
LARVAE_DEATH = IF (WEEKLY_LARVAL_TICK_BURDEN=O) THEN
LARVAE_ACTIVE ELSE (l-LARVAE_SURV_RATE)*LARVAE_ACTIVE
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LARVAE_FEED = IF (LARVAE_ACTIVE >=
WEEKLY_LARVAL_TICK_BURDEN) THEN

WEEKLY_LARVAL_TICK_BURDEN ELSE (LARVAE_ACTIVE)

LARVAE_FED(t) = LARVAE_FED(t - dt) + (LARVAE_FEED 

LARVAE_MOLT - LARVAE_FED_DEATH) * dt

INIT LARVAE_FED = 0

TRANSIT TIME = 40

INFLOW LIMIT = 00

CAPACITY = 00

INFLOWS:

LARVAE_FEED = IF (LARVAE_ACTIVE >=
WEEKLY_LARVAL_TICK_BURDEN) THEN

WEEKLY_LARVAL_TICK_BURDEN ELSE (LARVAE_ACTIVE)

OUTFLOWS :

LARVAE_MOLT = CONVEYOR OUTFLOW

LARVAE_FED_DEATH = LEAKAGE OUTFLOW

LEAKAGE FRACTION = (l-LARVAE_SURV_RATE)

NO- LEAK ZONE = 0

NYMPHS_ACTIVE(t) = NYMPHS_ACTIVE(t - dt) +
(LARVAE_MOLT - N_DEATH - N_FEED) * dt

INIT NYMPHS_ACTIVE = 0

INFLOWS:
LARVAE_MOLT = CONVEYOR OUTFLOW

OUTFLOWS :
N_DEATH = IF (WEEKLY_NYMPH_TICK_BURDEN = 0) THEN

NYMPHS_ACTIVE ELSE (l-NYMPH_SURVIVAL_RATE) *
NYMPHS_ACTIVE

N_FEED = IF (NYMPHS_ACTIVE >=
WEEKLY_NYMPH_TICK_BURDEN) THEN

WEEKLY_NYMPH_TICK_BURDEN ELSE (NYMPHS_ACTIVE)

NYMPH_FED(t) = NYMPH_FED(t - dt) + (N_FEED - N_MOLT 

NYMPH_FED_DEATH) * dt

INIT NYMPH_FED = 0

TRANSIT TIME = 26

INFLOW LIMIT = 00

CAPACITY = 00

INFLOWS :
N_FEED = IF (NYMPHS_ACTIVE >=
WEEKLY_NYMPH_TICK_BURDEN) THEN
WEEKLY_NYMPH_TICK_BURDEN ELSE (NYMPHS_ACTIVE)

OUTFLOWS :
N_MOLT = CONVEYOR OUTFLOW
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NYMPH_FED_DEATH = LEAKAGE OUTFLOW
LEAKAGE FRACTION = (l-NYMPH_SURVIVAL_RATE)

NO-LEAK ZONE = 0

TOTAL_ACTIVE_NYMPHS_YEAR(t)

TOTAL_ACTIVE_NYMPHS_YEAR(t - dt) +
(TOTAL_ACTIVE_NYMPHS_IN - TOTAL_ACTIVE_NYMPHS_OUT) * dt

INIT TOTAL_ACTIVE_NYMPHS_YEAR = 0

INFLOWS :
TOTAL_ACTIVE_NYMPHS_IN = LARVAE_MOLT

OUTFLOWS :
TOTAL_ACTIVE_NYMPHS_OUT = IF LARVAE_MOLT 0 THEN

TOTAL_ACTIVE_NYMPHS_YEAR ELSE 0

ADULT_FEMALE_POPULATION_RATIO 0 .5

ADULT_SURVIVAL_RATE = .92

EGG_ENVIRONMENTAL_FACTOR = (SIN(2*PI /52*TIME))*1.632

EGG_ENVIRONMENTAL_FACTOR_2 = IF

(EGG_ENVIRONMENTAL_FACTOR<O) THEN 0 ELSE

EGG_ENVIRONMENTAL_FACTOR

EGG_FECUNDITY = 1
EGG_MAX = 3000 {Max number of eggs per oviposition}
EGG_SURVIVAL = .0336

LARVAE_SURV_RATE = . 37
NYMPH_SURVIVAL_RATE = .92

Tick Population Dynamics 2
AADULT_FED_2(t) = AADULT_FED_2(t - dt) + (ADULT_FEED_2
- ADULT_REST_RATE_2) * dt

INIT AADULT_FED_2 = 0

INFLOWS :
ADULT_FEED_2 = IF

(WEEKLY_ADULT_TICK_BURDEN_DEER>=ADULT_UNFED_2) THEN
WEEKLY_ADULT_TICK_BURDEN_DEER ELSE (ADULT_UNFED_2)

OUTFLOWS:
ADULT_REST_RATE_2 = AADULT_FED_2

ADULT_OVIPOSITION_2(t) = ADULT_OVIPOSITION_2(t - dt) +
(ADULT_EMERGENCE_RATE_2 - ADULT_OVIPOSITION_DEATH_2) *

dt
INIT ADULT_OVIPOSITION_2 = 0

INFLOWS:

ADULT_EMERGENCE_RATE_2 = CONVEYOR OUTFLOW

OUTFLOWS:
ADULT_OVIPOSITION_DEATH_2 ADULT_OVIPOSITION_2
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ADULT_REST_2(t) = ADULT_REST_2(t - dt) +
(ADULT_REST_RATE_2 - ADULT_EMERGENCE_RATE_2) * dt

INIT ADULT_REST_2 = 0

TRANSIT TIME = 18

INFLOW LIMIT = 00

CAPACITY = 00

INFLOWS:
ADULT_REST_RATE_2 AADULT_FED_2

OUTFLOWS:
ADULT_EMERGENCE_RATE_2 = CONVEYOR OUTFLOW

ADULT_UNFED_2(t) = ADULT_UNFED_2(t - dt) +
(NYMPH_MOLT_2 - ADULT_FEED_2 - ADULT_UNFED_DEATH_2) *

dt
INIT ADULT_UNFED_2 = 0

INFLOWS :
NYMPH_MOLT_2 CONVEYOR OUTFLOW

OUTFLOWS:
ADULT_FEED_2 = IF
(WEEKLY_ADULT_TICK_BURDEN_DEER>=ADULT_UNFED_2) THEN

WEEKLY_ADULT_TICK_BURDEN_DEER ELSE (ADULT_UNFED_2)
ADULT_UNFED_DEATH_2 = (1-ADULT_SURVIVAL_RATE) *

ADULT_UNFED_2

EGGS_2(t) = EGGS_2(t -dt) + (EGG_EMERGENCE_RATE_2 
EGG_HATCH_2 - EGG_FAILURE_2) * dt

INIT EGGS_2 = 0

INFLOWS:
EGG_EMERGENCE_RATE_2 CONVEYOR OUTFLOW

OUTFLOWS:
EGG_HATCH_2 =

(EGGS_2*EGG_SURVIVAL*EGG_ENVIRONMENTAL_FACTOR_2)

EGG_FAILURE_2 = IF (EGG_ENVIRONMENTAL_FACTOR_2=O) THEN

EGGS_2 ELSE (1-EGG_SURVIVAL)*EGGS_2

EGG_REST_2(t) = EGG_REST_2(t - dt) +
(EGG_OVIPOSITION_2 - EGG_EMERGENCE_RATE_2 

EGG_REST_FAILURE_2) * dt

INIT EGG_REST_2 = 0

TRANSIT TIME = 9
INFLOW LIMIT = 00

CAPACITY = 00

INFLOWS:
EGG_OVIPOSITION_2 ADULT OVIPOSITION 2*ADULT FEMALE
POPULATION_RATIO*EGG_MAX
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OUTFLOWS :
EGG_EMERGENCE_RATE_2 = CONVEYOR OUTFLOW

EGG_REST_FAILURE_2 = LEAKAGE OUTFLOW
LEAKAGE FRACTION = IF

(EGG_ENVIRONMENTAL_FACTOR_2=0) THEN 1 ELSE (1

EGG_FECUNDITY)

NO-LEAK ZONE = 0

LARVAE_ACTIVE_2(t) = LARVAE_ACTIVE_2(t - dt) +
(EGG_HATCH_2 - L_DEATH_2 -LARVAE_FEED_2) * dt

INIT LARVAE_ACTIVE_2 = 0

INFLOWS :
EGG_HATCH_2 =

(EGGS_2*EGG_SURVIVAL*EGG_ENVIRONMENTAL_FACTOR_2)

OUTFLOWS :
L_DEATH_2 = IF (WEEKLY_LARVAL_TICK_BURDEN=O) THEN

LARVAE_ACTIVE_2 ELSE (1
LARVAE_SURV_RATE)*LARVAE_ACTIVE_2

LARVAE_FEED_2 = IF (LARVAE_ACTIVE_2 >=

WEEKLY_LARVAL_TICK_BURDEN) THEN

WEEKLY_LARVAL_TICK_BURDEN ELSE (LARVAE_ACTIVE_2)

LARVAE_FED_2(t) = LARVAE_FED_2(t - dt) +
(LARVAE_FEED_2 - LARVAE_MOLT_2 - LARVAE_FED_DEATH_2) *

dt
INIT
LARVAE_FED 2 = 0

TRANSIT TIME 40
INFLOW LIMIT 00

CAPACITY = 00

INFLOWS :
LARVAE_FEED_2 = IF (LARVAE_ACTIVE_2 >=
WEEKLY_LARVAL_TICK_BURDEN) THEN
WEEKLY_LARVAL_TICK_BURDEN ELSE (LARVAE_ACTIVE_2)

OUTFLOWS:
LARVAE_MOLT_2 = CONVEYOR OUTFLOW

LARVAE_FED_DEATH_2 = LEAKAGE OUTFLOW

LEAKAGE FRACTION = (l-LARVAE_SURV_RATE)

NO-LEAK ZONE = 0

NYMPH_ACTIVE_2(t) = NYMPH_ACTIVE_2(t - dt) +
(LARVAE_MOLT_2 - N_DEATH_2 - NYMPH_FEED_2) * dt

INIT NYMPH_ACTIVE_2 = 350

INFLOWS :
LARVAE_MOLT_2 = CONVEYOR OUTFLOW
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OUTFLOWS:
N_DEATH_2 = I F (WEEKLY_NYMPH_TICK_BURDEN=O) THEN

NYMPH_ACTIVE_2 ELSE (l -NYMPH_SURVIVAL_RATE) *
NYMPH_ACTIVE_2

NYMPH_ FEED_2 = I F (NYMPH_ACTIVE_2 >=

WEEKLY_NYMPH_TICK_BURDEN) THEN WEEKLY_NYMPH TICK BURDEN

ELSE (NYMPH_ACTIVE_2)

NYMPH_ FED_ 2{t) = NYMPH_FED_2{ t - dt ) + (NYMPH_ FEED_2 

NYMPH_MOLT_2 - NYMPH_ FED_DEATH_2 ) * d t
INIT NYMPH_ FED_2 = 0

TRANSIT TIME = 26
INFLOW LIMIT = 00

CAPACITY = 00

INFLOWS:
NYMPH_FEED_2 = IF (NYMPH_ACTIVE_2 >=

WEEKLY_NYMPH_ TI CK_ BURDEN) THEN WEEKLY_NYMPH TI CK BURDEN

ELSE (NYMPH_ACTIVE_2 )

OUTFLOWS:
NYMPH_MOLT_ 2 = CONVEYOR OUTFLOW

NYMPH_FED_ DEATH_2 = LEAKAGE OUTFLOW
LEAKAGE FRACTION = (l -NYMPH_SURVIVAL_RATE)

NO - LEAK ZONE = 0

TOTAL_ACTIVE_NYMPHS_YEAR_2{t) =
TOTAL_ACTIVE_NYMPHS_YEAR_2 {t - d t) +
(TOTAL_ACTIVE_NYMPHS_IN_2 - TOTAL_ACTIVE_NYMPHS_OUT_2)

* d t
I NIT TOTAL_ACTI VE_NYMPHS_YEAR_2 = 0

INFLOWS:
TOTAL_ACTIVE_NYMPHS_IN_2 = LARVAE_MOLT_2

OUTFLOWS:
TOTAL_ACTIVE_NYMPHS_ OUT_2 = IF LARVAE_MOLT_ 2

TOTAL_ACTIVE_NYMPHS_YEAR_2 ELSE 0



1

Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.
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FIGURE 22.3

in Figure 22.3 and the results are plotted in Figure 22.4. Indeed, we observe
the tragedy of the commons.

Alternatively to adding sheep proportional to the number of sheep on
the commons, we may choose a decision rule that is less detrimental to the
resource necessary to maintain the population of sheep. For example, we
may want to add sheep proportional to the amount of grass on the com
mons . The result of this model is shown in Figure 22.5. The initial number
of sheep is too large for the commons, resulting in a decline of the amount
of grass available and a reduction in the size of the sheep population. As
the stock of grass recovers , we are able to add more sheep.

A third decision rule would be to add sheep proportional to the number of
sheep on the commons and proportional to the amount of grass. The result

1:GRASS 2: SHEEP

60.00

1~1=2'
15.00 30.00

Years

8:8lS+-- - - """T"""- - -.::::;:.!.:::=:=:::::::::==;::1 -='= = =;
0.00 45.00

FIGURE 22.4
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of this model is shown in Figure 22.6. Of course, with this decision rule we
will not do as well in the long run as when we only consider the resource
base for our decision. Again, we do not avoid the tragedy of the commons .

Now the problem becomes one of finding the largest steady state level of
sheep that can be raised on this commons through cooperation. Try adding
sheep only if the grass is above a certain level. Imagine that the Commons
Board, appointed by the village, measures the grass regularly and issues
permits on some equitable basis to the shepherds of the village. What level
of grass is controlling and how many sheep to add , are the critical ques-
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tions. Set up the model such that the Board takes one whole DT = 1 to re
port and issue the permits. In such a model extension, we have a lag in the
system.

Now try making the weather cycle through the seasons, that is, have the
grass senesce periodically and then regrow. Or perhaps more appropri
ately, have the grass growth rate cycle between 0 and some maximum rep
resenting the seasonal effects. Does this make it harder to avoid the
tragedy?

TRAGEDY OF THE COMMONS

GRASS(t) = GRASS(t - dt) + (GRASS_GROWTH 

CONSUMPTION) * dt

INIT GRASS = 250

INFLOWS:

GRASS_GROWTH = GRASS *GROWTH_RATE

OUTFLOWS:

CONSUMPTION = SHEEP*EAT_PER_HEAD

SHEEP(t) = SHEEP(t - dt) + (SHEEP_ADD - SHEEP_REMOVAL)

* dt

INIT SHEEP = 50

INFLOWS:

SHEEP_ADD = .85*SHEEP*0 + .05*GRASS*1

OUTFLOWS:

SHEEP_REMOVAL = SHEEP*DEATH_RATE

AVAILABLE_PER_HEAD = GRASS /SHEEP

DEATH_RATE = GRAPH (EAT_PER_HEAD)

(0.00,1.00), (0 .667,0 .96), (1.33,0.92) , (2.00,

0 .87), (2.67,0.805) , (3.33,0 .75), (4.00,0.685),

(4.67,0.61), (5 .33,0.525), (6.00,0.44), (6.67,

0.34), (7 .33,0.275), (8.00,0.26)

EAT_PER_HEAD = GRAPH (AVAILABLE_PER_HEAD)

(0.00, 0.00), (1.00, 0.23), (2.00, 0.56), (3.00, 0.87),

(4.00,1.27), (5.00,1.62), (6.00,1.85), (7.00 ,1.94),

(8.00,1.98), (9 .00,2 .00), (10.0,2.00)

GROWTH_RATE = GRAPH (GRASS)

(0.00, 0.198), (83.3, 0 .169), (167, 0.149), (250,

0.127), (333, 0.111), (417, 0.091), (500, 0 .071), (583,

0.052), (667,0.039) , (750,0.027), (833,0.0195),

(917, 0.0105), (1000, 0.00)
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Economic Models



1

Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.
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TABLE 23 .1

Term

Input quantity
Production. output
Total cost
Average cost
Marginal cost
Price
Revenue
Marginal revenue
Profit

Typical Units

Tons/year
Tons/year
Dollars/year
Dollars/ton
Dollars/ton
Dollars/ton
Dollars/year
Dollars/ton
Dollars/year

Symbol

x
Q
C

AC
MC
P
R
MR
R-C

she did have to wait. So you must pay her for the risk and the delay. The
amount paid in excess of the $100 reflects time value.

These principles-substitution, opportunity cost, and time value-are ex
plicitly dealt with later on in this part of the book. First, however, we must
understand the ideas of competition, monopoly, and economic equilibrium.
These provide the framework for our analyses . We use a series of three
models to illustrate frequently made assumptions on the behavior of firms.
For example, a standard assumption is that firms expand the level of their
output until they maximize the level their profits . Another important as
sumption is that firms have perfect information about all current and future
features of the economy and environment that are necessary for their deci
sion making. All relevant information is correctly subsumed in the price of
a good or service , thereby giving important signals to producers and con
sumers for their behavior. These assumptions are shown in the following
three problems. It is convenient, however, to first define the terms we are
using (Table 23.1).
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Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.

3
B. Hannon et al., Dynamic Modeling
© Springer Science+Business Media New York 2001



262 24. The Competitive Firm

the firm to keep on expanding. If increases in input lead to a decrease in
profits, then the optimal size of the firm (as measured by the amount of Q
produced) is surpassed. Thus , there is an optimum amount Q at which profit
is maximum.

This relationship between changes in Q and in PROFIT can be expressed
mathematically as a derivative. We saw in Chapter 7 that STELLA can be
used to calculate derivatives of functions, or equivalently the slopes of
graphs representing the relationship among variables. Derivatives, or
slopes, are expressed as a ratio of the change in one variable to a change in
another variable. This relationship, however complicated, must contain
only two variables, so that the ratio is unambiguous. Slopes are useful in
finding the peaks or minima that one variable reaches as the other changes.
Mathematically such changes are expressed as total , not partial , derivatives.

STELLA can easily handle the total derivatives but not the partial de
rivatives . Total derivatives are just the difference in a state variable. The
functional form of the partial derivatives must be entered directly in the
program.

How can we calculate the optimal output of the firm? In order to find the
optimal output, the firm must successively adjust its input such that the
peak in the PROFIT curve is reached. This adjustment process is done in
the program at only one place, the flow CHANGE X. The model for this op
timization problem is shown in Figure 24.1.

CHANGE X

FIGURE 24.1



(4)
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The optimization model is verified by comparing marginal cost with
price, here held constant. This is one way in which economists build trust
in a model-by checking its consistence with theory. Another, more ambi
tious approach would be to check against reality-more ambitious because
it may require not just a rethinking of the structure of a model but also the
reasonability of the assumptions on which the model is based. The latter
could go at the heart of the economic theory itself and may help advance
the discipline as a whole.

Economic theory tells us that in the optimum of a profit-maximizing firm
in perfectly competitive markets, marginal cost and price are equal. This
can be shown mathematically by taking the derivative of the PROFIT func
tion with respect to Q:

dPROFIT dR ac
--- = - - - = MR - MC = P - MCso dQ dQ

This derivative must be equal to 0 for the firm to be in an optimum. Thus

P - MC = 0 => P = Me. (5)

The STELLA program for the profit-maximizing firm contains the follow
ing part , used to verify the optimum by applying economic theory. With
this model component we can calculate at each period the marginal cost
and the marginal revenue. The latter is equal to the price . As the optimum
is approached, the marginal cost curve should rise to the marginal revenue
curve . Both should be equal in the optimum. Marginal cost and revenue are
calculated with the module of Figure 24.2, and indeed the expected result
holds , as Figures 24.3 and 24.4 show.

c

Q

FIGURE 24.2
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Profit maximizing is only one of several possible assumptions about the
behavior of a firm. Can you putyourself in the place of our businesswoman
and name several other objectives? How would you model alternative be 
havioral assumptions?

The slope of the profit with respect to Q is found in this problem by
comparing the current profit with the delayed profit , the profit rate one
small time step ago . If the change in profit becomes 0 or negative,
CHANGE X changes from 3 to o. When the profit rate is positive, the input
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X is indexed upward through CHANGE X. The input X allows an increase
in Q through the production function, and it also feeds to the cost cal
culation with the unit cost of the input X, RI. The marginal cost (MC) and
the marginal revenue (MR) are calculated in the right-hand-side part of the
model. MC is the change in cost divided by the change in Q. MR is the
change in revenue (P*Q) divided by the change in Q.

The maximum profit for this single competitive firm is not 0 (2878) when
its optimal Q (1437) is reached. This means that more firms will enter the
market, driving the price down and their collective output Q up, until the
profit rate of the last firm is O. If we assume that all the firms in the market
use identical technology (A and ALPHA are the same for each firm) and pay
the same rate for a unit of input, RI, the problem can be solved in STELLA,
and we will do so in Chapter 26. However, first we will deal with the firm
that handles two rather than one input. The rate at which the profit rate is
maximized is of course controlled by CHANGE X. In reality this rate is set by
the rate at which a new plant can be designed, built, and brought on-line .

Note well that the rate of growth to the maximum profit point is arbitrary.
The actual rate of growth of a firm to the approximate target size is the rate
of investment in new and replacement capital, the availability of trained
labor and natural resources, and the understanding of how to employ them
with near minimum cost. In our model, try to change the rate at which the
plant grows . Change its production function . What happens if you make
ALPHA greater than 1 and what is the meaning of this? When ALPHA is less
than 1, we are representing one of the principle truths of economics: dur
ing expansion, sooner or later, the law of diminishing returns sets in. Di
minishing returns to scale means that an increase in inputs leads to an in
crease of output but at a decreasing rate.

Before we leave this problem, let's try to make it more realistic. Try to
add a capital stock to the problem. Make the rate of growth of X a delayed
function of the capital stock. Add the cost of the borrowed money to pay
for the stock to the cost function . Add the productivity of the capital stock
to the production function (Q) . If we let the profit change function deter
mine the rate of capital expansion, and the size of the capital stock deter
mine (with a lag time) the rate of use of X, we have a reasonable model of
a firm.

PROFIT MAXIMIZING COMPETITIVE FIRM

X(t) = X(t - dt) + (CHANGE_X) * dt
INIT X = 1 {Units of X)

INFLOWS:

CHANGE_X = IF DEL_PROFIT> 0 THEN 3 ELSE 0 {Units of X
per Time Period)

A = 50 {Units of Q per Units of X}
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ALPHA = .6
C = R_1* X {$}

DEL_PROFIT = PROFIT - DELAY (PROFIT,DT, .1) {$}

MC = (C - DELAY(C,DT, . 1 ) )/ (Q - DELAY (Q,DT, . 1 ) ) {$ per
Units of Q}
MR = (R - DELAY(R,DT, . 1 ) )/ (Q - DELAY(Q,DT, .1)) {$ per
Units of Q}
P = 5 {$ per Unit}
PROFIT = P*Q - C {$ }
Q = A*XAALPHA {Units of Q}
R = P*Q {$}

R_1 = 16 {$ per Unit X}
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Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.

3
B. Hannon et al., Dynamic Modeling
© Springer Science+Business Media New York 2001



268 25. The Monopolistic Firm

How does the monopoly choose its profit-maximizing-output level and
what is the corresponding price? As in the analytic solution of the previous
chapter, we take first the derivative of the profit function with respect to
output. We arrive at the condition that marginal revenues must equal mar
ginal cost if the firm wants to achieve a profit maximum:

aPROFIT aR ac
--- = - - - = MR - MC = 0 ~ MR = MC (1)ao ao ao

However, MR ;f:; P because the price depends on the demand curve . The
difference between price and marginal cost is the monopoly rent rate . The
solution to the monopolist's profit maximization problem is shown in Fig
ure 25.2 as Q*, the corresponding price is P". The supply curve is the mo
nopolist's marginal cost curve .

Figure 25.2 illustrates that in the optimum, the monopolist produces less
and charges a higher price than a firm in a perfectly competitive market. As
a result , profits will be higher, too.

Let us model the process in which the monopolist identifies her profit
maximizing output level (Fig. 25.3). For the monopolist whose initial output
level is below the profit-maximizing one, price will initially be high but
drop with increased production.

The results of the model are shown in Figure 25.4. profits increase
steadily until a maximum is achieved. At that point marginal revenues equal
marginal costs, and from then on price and output are held constant. Since
output remains constant, the marginal cost and marginal revenue curves are
no longer defined in our model, once the optimum is achieved: these
curves are calculated by dividing through Q minus DELAY(Q,DT), which is

P,MR,MC

p*

FIGURE 25.2

Q*

MR

Supply Curve

(MC Curve)

Demand Curve

Q
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CHANGE X
FIGURE 25.3

R

O. Use STELLA to calculate that monopoly rent rate and observe its change
over time. Before you run your model , however, guess the likely outcome.

In Figure 25.4, the maximum profit is found to be $4287 for an output of
934 units, at a price of $6.84 per unit output. We find the marginal revenue
is no longer strictly equal to the price, but becomes equal to the marginal
cost when the profit is maximized . This is exactly what the analytic theory
would predic t.

How might you improve the CHANGE X portion of the model to reflect
more realistic conditions? Should you hook it to the level of the profit rate

2: 0 3: P 4:MC 5:MR

11.25 22.50
Time

I !lilt:

33.75 45.00
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to show that it would be easier to borrow money (higher CHANGE X) if the
profit rate is higher? How abo ut sudden rises in the level of Rl? Can the
model handle it? If not, try averaging the CHANGE X variable to keep it
from being too sensitive. What abou t inventory? How would you introduce
into the model an inventory of produced goods?

BASIC MONOLISTIC MODEL

X( t ) = X( t - dt) + (CHANGE_ X) * dt

INIT X = 1 {Units o f X}

INFLOWS :

CHANGE_X = IF (PROFIT - DELAY(PROFIT,DT,l)) > 0 THEN 3

ELSE 0 {Units o f X per Time Period}

A = 50 {Units of Q per Units of X}
ALPHA = .6

C = Rl *X {$}

MC = (C - DELAY(C ,DT, . 01 ) ) / (Q - DELAY(Q,DT , .1 ) ) {$ per

Units o f Q}

MR = (R - DELAY( R,DT,lO)) /(Q - DELAY( Q,DT , .1)) {$ per

Uni ts o f Q}

P = 10- . 003 38*Q {The selling price is a funct i on of Q;

that i s, the monopoly controls the ou t p u t level AND

price , unlike the compet itive f irm who c ou ld no t af fect
price . This i s t h e d emand cur ve, e xper i mental l y
derived . $ per Unit Q}

PROFIT = (P* Q- C) {$}
Q = A*XAALPHA {Units o f Q}

R = P*Q { $ }

Rl = 16 {$ per Units X}

25.2 Taxing Monopolies

The higher prices of monopolies have given rise to many activities in the
u.s. Justice Department over the past centu ry. Monopolies have been
broken by the Department in an effort to restore competition, lower prices,
and increase supplies.

Frequ ently, monopolies are price-regulated . The common monopoly
might have its price regulated to where P = Me, if the regulators ca n get
through the thicket of opposing lawyers and accountants. At this point, the
monopoly rent rate is 0 and the firm is still making a profit. Should the reg
ulators manage to reduce the price charged by the monopoly to the aver
age cost of the firm, then profits become O.
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Normally, firms choose output levels corresponding to the rising portion
of their marginal and average cost curves . There are natural monopolies,
however, that operate in the region of declining average and marginal
costs. Electric utilities belong to this group. It can be easily shown that the
lowest price to regulate such a natural monopoly is where average cost
equals average revenues, i.e.,

R
AC = - = P

Q

If the utilities were regulated such that

R
MC = - = P

Q

(2)

(3)

the firm fails.' Still, partial, or regional, monopolies can develop if the firm
is facing a demand curve different from the overall market demand curve,
Le., if the market price is higher than the intersection of its marginal cost
curve and its own demand curve.

Another approach, perhaps more tempting for the government than con
trolling price , is to let monopolies reign and then tax them. Thus , the gov
ernment might try to avoid the costly antitrust litigation and the separate
problem of raising taxes elsewhere.

What sort of monopoly-taxing strategies cause what kinds of impacts? We
can easily evaluate three: a tax based on a fraction of the profits, a quantity
based tax, and an annual lump sum tax. In order to assess the impacts of
these taxes, we only need to slightly modify the model of the previous sec
tion. These modifications are shown in Figure 25.5 and include a new cal
culation of profits and, in the case of a production tax, a new marginal
revenue, NMR.

Figures 25.6 and 25.7 reveal the effect of the profit tax and the quantity
based production tax, respectively . Figure 25.8 shows that the effect of the
lump sum tax on output prices is nonexistent. The firm's profit is lowered
by the amount of the tax, but the profit-maximizing monopoly will not
change its price or its output level. This is the pure tax-collecting role of the
monopoly.

It is hard for the government to tell when it is taxing the monopoly too
much or not enough. Profits are a very slippery number to accurately de
termine . Therefore, the most common way to tax a monopoly is on the
basis of its output, i.e., to impose a tax on the firm per unit of its output.
The graphs show the unfortunate results: consumer price is higher in the
case of an output or production tax, and consequently, output is lower.
Marginal cost and marginal revenue differ at the profit-maximizing level of

'See Pindyck, R. and D. Rubinfeld . 1989. Microeconomics, Macmillan, New York,
p.354 .
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outpu t by the amount of the tax. This is calculated in the model as NMR,
the net marginal revenue.

When output-based taxes are placed on monopolies, these firms try to
gain the right to use accounting depreciation rates that show losses that are
approximately equal to their tax payments, and the revenue situation for
the government becomes a draw . So, we as government agents, revert to
taxing the average individual consumer where no such exp licit optimizing
occurs . Yet some individuals can and do employ the needed expertise to
reduce their taxes while others with less disposable income find that the
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cost of trying such a procedure exceeds its benefits. In this case, we would
be trading revenue-raising efficiency for regressive taxes.

The model was run for a production tax equal to $0.20 per unit output.
The tax revenues collected by the government from the firm in its profit
maximizing production point are approximately $183. We can easily find the
profit tax rate that yields the same tax revenue from the profit-maximizing
firm. We find that the profit tax rate must be approximately $ 0.0425 per
dollar of profits earned by the firm. Of course, the lump sum tax with the
same tax is just $183.

The calculations of tax revenues in STELLA are not done with stocks but
with translation variables. If we use stocks, we calculate the cumulative tax
revenue that is collected by the government over time, and of course, de
pends on the speed at which the monopolist adjusts production to achieve
a profit maximum. The faster the profit-maximizing output can be achieved,
and everything else being equal, the lower the cumulative tax revenues.
However, we are interested in the tax revenues in the firm's optimum, in
dependent of the monopolist's ability to adjust her production. Thus , we
need to calculate the tax revenues at each period of time. The use of trans
lation variables enables us to do this.

MONOPOLY MODEL WITH TAXES

X(t) = X(t - dt) + (CHANGE_X) * dt
INIT X = 1 {Units of X}
INFLOWS:
CHANGE_X = IF (PROFIT - DELAY(PROFIT,DT,l)) > 0 THEN 3
ELSE 0 {Units of X per Time Period}

A = 50 {Units of Q per Units of X}
ALPHA = .6
C = Rl*X {$ per Time Period}
LUMP_SUM_TAX = 183 {$ per Time Period}
MC = (C - DELAY(C,DT, . 01 ) )/ (Q - DELAY (Q,DT, .1)) {$ per
Units of Q}
MR = (R - DELAY(R,DT,10))/(Q - DELAY(Q,DT, . 1 ) ) {$ per
Units of Q}
NMR = MR-PRODUCTION_TAX {$ per Units Q}
P = 10-.00338*Q {The selling price is a function of q;
that is , the monopoly controls the output level AND
price, unlike the competitive firm who could not affect
price. This is the demand curve, experimentally
derived. $ per Unit Q}
PRODUCTION_TAX = 0 {.2 is the value of the production
tax in the absence of other taxes; $ per Unit Q}
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PRODUCTION_TAX_REVENUE = PRODUCTION_TAX*Q

PROFIT = ({P - PRODUCTION_TAX)*Q - C) * (1-PROFIT_TAX) 

LUMP_SUM_TAX {$ per Time Period}

PROFIT_TAX = 0 {O.0425 is the value if the other tax

rates are zero; $ per $ Profit}

PROFIT_TAX_REVENUE = {P*Q - C) *PROFIT_TAX

Q = A*XAALPHA {Units of Q}

R = P*Q {$ per Time Period}

R1 = 16 {$ per Unit X}
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Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.
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is one of driving the difference between average cost and marginal cost to
owhile insisting that each firm is maximizing profits (P = Me) . By increas
ing X, we exhaust all profits through an increase in the number of firms in
the market. Marginal cost is made equal to output price , in the equation for
N, to guarantee maximum profits for every X. The model is shown in Fig
ure 26.2.

Figure 26.3 shows the optimal number of firms is about 29, and it shows
the continuous equality of price and MC-maximum possible profits for
each firm-and the eventual equality of MC and AC when the number of
firms entering the market has stabilized-maximum but 0 profit for all
firms. This is the equilibrium for the market. Equilibrium of the firm is as
sumed from the beginning with condition P = Me. Run the model at a DT
= .25. Plot Q versus X and Q versus C to understand the full nature of the
production function .

Imagine that there exist five other firms that are the same as the ones
shown in the diagram except that for these five firms, A = 75. These are
the low-cost firms. Think of them as farms on fertile land, and the firms
with A = 50 as farms on poorer land. The good farms are limited in
number to five. How many of the poorer farms will exist in the market
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CHANGE X

FIGURE 26.2

when equilibrium is reached? How much profit will a good farm make?
This apparently complex problem can be solved in a few minutes using
the model shown, but you must really understand the meaning in the
mechanisms behind Figures 26.1 and 26.2.
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MARKET EQUILIBRIUM MODEL

X(t) = X(t - dt) + (CHANGE_X) * dt

INIT X = 1 {Units of X}

INFLOWS:

CHANGE_X = AC - MC {Units of X per Time Period}

A = 50 {Units of Output per Unit Input}

AC = C/Q {$ per Unit of Q}

ALPHA = 13 {Units of Output per Unit Input}

C = R1*X {$}

MC = (C-DELAY(C,DT,l)) /(Q-DELAY(Q,DT, . 0 01 ) ) {$ per

Unit of Q}

N (10-MC) /(.00338*Q) {Number of Firms}

P = 10- .00338*N*Q

Q = A*XA2-ALPHA*X A3

R1 = 50 {$ per Unit X}
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Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.
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FIGURE 27.1

The resulting isoquant and cost function are shown in Figures 27.2 and
27.3. The cost function has a minimum that determines the firm's choice of
a profit-maximizing input combination, assuming that the profit-maximizing
output level was already determined. In fact, both decisions are carried out
simultaneously by the firm. The model of the following section provides a
solution to this problem of simultaneously choosing profit-maximizing
input and output quantities.
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In the model developed here , the minimum costs are $459.99. In that
minimum, the firm uses 17.25 units of X. The second graph shows the rela
tionships between X and Y, the isoquant. Given the cost-minimizing X, the
optimal choice of Y is 9.20 units.

ISOQUANTS

A = 50 {Units of Output per Units of X per Units of Y}

ALPHA = . 3
BETA = . 2

COST = R1*X + R2*Y {$}
Q_BAR = 183 .13 {Units of Output}

R1 = 16 {$ Per Units of X}

R2 = 20 {$ Per units of Y}

X . 1 * (TIME + 1)

Y = (Q_BAR/(A*XAALPHA))A(l /BETA)

27.2 Finding the Profit-Maximizing Output Level
and Input Combinations

As in the previous chapters, we assume that the firm seeks the profit
maximizing output level, given fixed input costs (R1 , R2) and output price
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P. The production function is assumed to be of the same form as in the pre
vious chapter:

Q = A*XAALPHA*YABETA (4)

A, ALPHA, and BETA are constants that are characteristic for the hypotheti
cal production processes investigated here.

The problem is to find the cost-minimizing mix of the inputs, X and Y,
and at the same time, maximize profits. It is a very difficult problem to
solve with STELLA and so we mix in a little analysis before approaching the
numerical solution. It can be shown with a bit of calculus that the cost
minimizing level of Y is Rl*BETA*X!R2*ALPHA. To derive the conditions
for profit-maximizing output and optimal input combinations, note that

PROFIT = P*Q- Rl*X- R2*Y (5)

Taking the partial derivatives of the PROFIT function with respect to X and
Y yields

(7)

(6)

ay = P*BETA*Q/Y - R2 = 0

aPROFIT
~a---':'x- = P*ALPHA*Q/X - Rl = 0

aPROFIT

These two equations can be combined to give to condition that in the
optimum

Y = Rl*BETA*X!R2*ALPHA (8)

This equation provides a relationship between the two inputs . Once one
input (X) is determined for the profit-maximizing output level, we can
readily calculate the corresponding, optimum quantity of the other input
(Y). Now we can proceed as we did in the problem of Chapter 26, adjust
ing the amount of one input until we find the profit maximum. As in that
model, a positive slope on the profit curve causes X to rise, which in turn
causes Y to increase, and together, X and Y give an increase in Q. Revenue
(P*Q) and cost combine to give the new profit, based on a cost-minimizing
mix of the inputs . Any number of inputs can be handled in this way.

Note the independence of the output level in this result. Realize that the
total derivative of the cost must be 0 and for fixed Q, the total derivative of
the profit function must also be O. These two necessary conditions yield the
result shown here . The sufficient condition for a maximum is that ALPHA +
BETA < 1.

The model for the two-input case shown in Figure 27.4 assumes initially
a small value for the input X. Since the firm attempts to achieve a profit
maximum, there is some amount of input Y that corresponds to X, accord
ing to Y = Rl*BETA*X!R2*ALPHA. Given these inputs of X and Y, we are
able to calculate the corresponding output Q, cost C, and thus, the profit re
alized by the firm. This profit need not be the maximum, given the prices P
for its output, and Rl and R2 for its inputs. As long as profit maximum is
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Q

FIGURE 27.4

CHANGE X

not achieved, i.e. , as long as an increase in inputs X and Y yields an in
crease in PROFIT ove r the profits achieved one small time step DT earlier,
X, and thereby Y, are increased.

The model shows that the profit-maximizing output level is Q = 183.13
units (Fig. 27.5), This is exactly the output level that we chose to model the
isoquant of the previous section. The optimum output level requires a cost-
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minimizing choice of X and Y. Our new model results coincide with those
of the previous section, i.e ., the profit-maximizing input combination is X =
17.25, Y = 9.20.

The graphs show the peak of PROFITwith associated Q, X, and Y. It is also
shown that marginal cost, Me (the change in cost associated with a change in
Q) , rises to meet the price at the time wh en profit is a maximum (Fig. 27.6).
Thus, these costs behave as the theory of microeconomics predicts.

A numerical solution using STELLA can be worked out completely by
combining the ideas in the previous economic models with this approach.
However, you will often find that the appropriate combination of analytic
and numerical analysis will minimize your overall effort .

COMPETITIVE FIRM WITH SUBSTITUTION

X(t) = X(t - dt) + (CHANGE_X) * dt

INIT X = 1 {Units of X}

INFLOWS :

CHANGE_X = if (PROFIT-Delay(PROFIT,dt, .1)) > 0 then 1

else 0 {Units of X per Time Period}

A = 50 {Units of Q per (Units of X) AAlpha per Units of

Y)
ALPHA = .3

BETA = . 2

C = Rl*X+R2*Y {$}
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MC = (C-DELAY(C,dt, .1)) /(Q-DELAY(Q,dt, .1)) {$ per

Units of Q}

P = 5 {$ per Unit Q}

PROFIT = P*Q - C {$}

Q = A*X~ALPHA*Y~BETA {Units of Q}

R1 = 16 {$ per Unit X}

R2 = 20 {$ per Unit Y}

Y = ((R1*BETA)/(R2*ALPHA)) * X {Units of Y}
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Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.

3
B. Hannon et al., Dynamic Modeling
© Springer Science+Business Media New York 2001
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FIGURE 28.2
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Years
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years from now. Compare this model with the model of diffusion discussed
in Chapter 2.

If we are interested in the amount received t periods from now for an in
vestment of $100 at a given interest rate, we just need to reverse the arrow
in the STELLA model, thereby accumulating value . Such a calculation gives
us the future value of our investment. Now the stock rises exponentially.

Often we do not invest a given amount of money in just one period but
repeat the investment ove r a number of periods. Similarly, firms typica lly
receive a stream of profits over time. In the model of Figure 28.3, the cur
rent value of an annual investment series ($100) is calculated . The result is
displayed in Figure 28.4.

Investments may not be uniform over time. Similarly, streams of profits
may follow cycles of high and low sales. For simplicity, in the model of Fig
ure 28.5 we represent such cyclic investment patterns, or annual payments
AP, by a sine wave (mean value = 1.0). The resulting present value is cal
culated and plotted in Figure 28.6. Here we had to calculate the present

CURRENT VALUE ANNUAL PAYMENT

INTEREST RATE

FIGURE 28.3



28. Time Value 289

1:CURRENTVALUE

1: 280000.0

1: 140000.00

1:

FIGURE 28.4

1~'
-----r

1

----~oo ~oo d oo
Years

100.ob

value and sum it, or accumulate it, for the combined present value of the
series of values represented by the sine function .

In calculating the present value, one can use either EXP(-INTEREST
RATE'TIME) or the factor (I + INTEREST RATE)I\(-TIME/DT) . What is the
difference? The first one is continuous (or infinitely often) negative com
pounding and the second is stepwise (DT) negative compounding. Run the
two with DT = 1 and note the difference. The second rises to the same
present value of some string of future values but it rises more quickly .
Change DT to smaller values and run the model repeatedly. You should
find the curves get closer and closer. The exponential discounting is just
getting more accurate but the step discounting is actually changing to more
and more frequent negative compounding, a conceptually different result.

Now return to the models of Chapters 24 and 25. In the two microeco
nomic problems shown in those chapters, the firm is thought to maximize

CUM PRESVALUE

SINE

FIGURE28.5
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the current value of its profit. A more reasonable view is that future profits
to the firm have a lower value right now. Consequ ently, the firm is more re
alistically thought to maximize the present value of its profits. This mod
ification is easy to make by multiplying the PROFIT equation by

e-discount rate ' t

where e is Euler's number. Choose an interest rate of 5% as the relevant rate
of discount.

In STELLA, the discounting is achieved by using the built-in function EXP
for Euler's number, and TIME for t. The present value of profits is then

PRESENT VALUE PROFIT = PROFIT*EXP(-INTEREST RATE"TIME) (1)

The discount rate is usually assumed to be constant throughout the period
under consideration. Modify the models of the competitive firm and the
monopolist to calculate the present value of profits. How do the results
differ from the calculation of current value of profits? How are the results
different if you choose discrete discounting?

TIME VALUE MODELS

CUM_PRES_VALUE(t) = CUM_PRES_VALUE(t - dt) + (AP) * dt

INIT CUM_PRES_VALUE = 0 {$}

INFLOWS:

AP = SINE*EXP(-INTEREST_RATE*TIME) {$ per Time Period}

CURRENT_VALUE(t) = CURRENT_VALUE(t - dt) +
(INTEREST_PAY + ANNUAL_PAYMENT) * dt



28. Time Value 291

INIT CURRENT_VALUE 1.00{$}

INFLOWS :

INTEREST_PAY =
PULSE(CURRENT_VALUE*INTEREST_RATE*DT,O,DT) {$ per Time

Period}

ANNUAL_PAYMENT = PULSE(100,0,1) {$ per Time Period}

PRESENT_VALUE(t) = PRESENT_VALUE(t - dt) + (

PRESVALUE_RATE) * dt

INIT PRESENT_VALUE = 100 {$}

OUTFLOWS:

PRESVALUE_RATE PRESENT_VALUE*INTEREST_RATE {$ per

Time Period}

INTEREST RATE = .05 {annual interest rate; $ Interest
per $ Principal per Time Period}

SINE = SIN(.062S*TIME)+1 {PULSE(100,0,1); $}



1

Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.
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The profit is compared with its most recent value, and if it is still grow
ing, sales are increased. Sales are slowed (fewer salesperson-years, less ad
vertising) if the profit begins to diminish . We have averaged the rate of pro 
duc tion so that planning for production can be handled (wo rker hiring, rate
control, overtime). The real problem here is to set all the parameters and
find the optimal inventory. Recreate the model as in Figure 29.3 and find
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for yourself the optimal inventory. Hopefully , it is larger than that needed
to meet the fluctuations in sales and labor force availability. Our results are
shown in Figure 29.4.

Try to constrain this process by saying that labor is the input X and it is
only available at certain times, e.g., 40 hours per week or 8 hours per day
for five days per week.
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You can see why business people always talk about inventory control.
The government is not powerless in this problem. They could allow por
tions of inventory costs to be called legitimate expenses and therefore
dedu ctible from net income and taxes . The federally financed interstate
highway system allows (largely at the expense of the public and the envi
ronment) rapid shipment in response to sales orders. If the firm has large
production facilities, they can produce and ship with relatively small inven
tories at the firm's location . The trucks are carrying the inventory!

INVENTORY MODEL

INPUT_X(t) = INPUT_X(t - dt) + (DEL_X) * dt

INIT INPUT_X = 40 {Units of the Input per Time Period}

INFLOWS :

DEL_X = GRAPH(DEL_INVENTORY {Units o f the Input Per

Time Period"2 })

(-2, -1) (- 1.6 , -0 .55) (-1. 2, - 0 . 2 6 ) (-0. 8 , - 0 .12)
(- 0.4 , -0.04) (0, 0) (0 .4 , 0.04) (0. 8 , 0 .12) (1. 2,

0. 27) (1.6, 0 .55 ) (2, 1)

I NVENTORY(t) = INVENTORY (t - dt) + (PRODUCTION 

SALES) * dt
I NI T INVENTORY 60 0 {Un i t s o f the Pr oduc t }
I NFLOWS:

PRODUCTION 2 .5 * I NPUT_X " 0 . 4 {Uni ts o f the Pr oduct
per Ti me Period}
OUTFLOWS:

SALES = SALES_LEVEL {Units o f the Product per Time
Pe r i od}

SALES_LEVEL(t) SALES_LEVEL(t - dt) + (DEL_SALES) *
dt
INIT SALES_LEVEL = 10 {Units of the Product }

INFLOWS :

DEL_SALES = GRAPH (DEL_PROFIT)

( - 0. 5, -1 ) (-0.4, -0.51) (- 0.3, -0.23) (-0 . 2, - 0. 1)

( - 0. 1, -0.02) (0 , 0 ) (0. 1, 0 .02) (0. 2, 0 .11) (0 .3 ,

0 .23) (0. 4 , 0.4 8) (0 .5 , 1 )

DAMPING_FACTOR = I F ( (DESI RED_ I NVENTORY 

I NVENTORY) " 2 >

DELAY( (DESIRED_ I NVENTORY - INVENTORY) "2 ,DT, 0. 1 )) THEN 8
ELSE 1 {Th e s quare r emov es the sign effec t of t he

dif f e rence. l / Time Peri od}
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DEL_INVENTORY = DAMPING_FACTOR * (DESIRED_INVENTORY 

INVENTORY) / INVENTORY

{Units of the Product per Time Period}

DEL_PROFIT = (PROFIT - DELAY (PROFIT,DT,0.1)) / SQRT
(PROFIT A 2) {$ per Time Period}

DESIRED_INVENTORY = 250 {Units of the Product}

INTEREST_RATE = 0.002

{$ Interest per $ Principal per Time Period}
INVENTORY_COST = INTEREST_RATE * PRICE * INVENTORY {$
per Time Period}

PRICE = 10 - 0 .00338 * SALES {$ per Unit of the

Product}

PRODUCTION_COST = UNIT_COST * INPUT_X {$ per Time

Period}

PROFIT = PRICE * SALES - PRODUCTION_COST 

INVENTORY_COST {$ per Time Period}

UNIT_COST = 1 {$ per Unit of the Input}
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TABLE 30.1

Age Biomass Age Biomass Age Biomass

21 847.00 42 4770.00 63 10032.00
24 1238.00 45 5555.00 66 10760.00
27 1730.00 48 6241.00 69 11478.00
30 2253.00 51 6955 .00 72 12414.00
33 2848.00 54 7685.00 75 13154.00
36 3442.00 57 8418.00 78 13885.00
39 4087.00 60 9293.00 81 14460.00

again at the cost of 1
0

, and so on into the distant definite future . Con
sequently, the present value of your profits is

PVP = -1
0

+ (PQ - IJe-rt + (PQ - IJe-r2t

+ (PQ - IJe-r3t + . .. +(PQ - IJe-mt

= PQ(e-rt + e-r2t + e-r3t + . .. +e-mt)

-1
0
(l +e-rt + e-r2t +e-r3t + . . , +e-mt) (1)

For simplicity of this analytical expression, let us define a new variable a
= e-rt

, so we have

PVP = PQ (a + a2 + a3+ . . . + an)
- 1

0
(I + a + a2 + a3+ . . . + an) (2)

Our calculation of the cumulative present value of profits depends on the
choice of the planning horizon. The longer our planning horizon, the more
profits are accumulated. However, the further in the distance these profits
occur, the lower their contribution to the cumulative present value .

Ideally, we would like to determine the optimal harvest decision over an
infinite time horizon. This requires infinite summation in the previous equa-

INTEREST RATE

TREESTOCK

FIGURE 30.1

sroGROWTH RATE
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tion . With a little mathematical trick, we can get rid of this infinite sum of
the a's . For that purpose, let us define that sum as

=> as = a + a2 + a3+ . . . + an+ an+ 1

=> (s - as) = 1 - an+1

=> sO - a) = 1 - an+1

(3)

(4)

(5)

(6)

and therefore

s=
1 - a

(7)

Since a = e", the numerator will get very close to 1 for long time horizons,
Le., for large n. We can thus, for all intents and purposes, write

1
s= - -

1 - a
(8)

which we insert into the present value profit function to eliminate the sum
of the a's, leading to

(9)

This is the expression for the present value of profit rate function used in
the STELLA model (see Fig. 30.1) for the optimal harvest of walnut trees.
Figure 30.2 shows that the present value of the profit rate rises to a maxi
mum as the age and size of the stand increase, and when that profit rate is
at a maximum, the trees are cut. From the table in the model we see that
the maximum of the discounted profit is approximately $561 and that the
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correspo nding cut period is 36 years. Try varying the interest rate to see
how the cut time changes.

We are using real tree growth data here . What is causing the sudden
changes in the growth rate curve? Can you modify these data to give a more
meaningful result? In the mode below, we used a smoo thing procedure to
acco mplish that task.

OPTIMAL TREE CUTTING

BI O_GROWTH_RATE

SMTH1(DERIVN(TREE_ST OCK, 1) /TREE_STOCK, 2) {Boar d f t . per

Time Period}

CUT = IF ((PVP_RATE - DELAY(PVP_RATE ,DT, .1)) < 0) AND

(TIME > 22) THEN TREE_STOCK/DT ELSE 0 {Board ft.}

INITIAL_INVESTMENT = 100

INTEREST_RATE = .05 {$ per $ Invested per Time Period }

PRICE = 1 {$ per b oard ft.}

PVP_RATE = (PRICE*TREE_STOCK-INITIAL_INVESTMENT) /( l-

EXP( -INTEREST_RATE*TIME )) - PRICE*TREE_STOCK {$ Per

Time Period}

TREE_STOCK = GRAPH (TIME)

(2 1.0 , 84 7) , (24. 0 , 1238) , (2 7.0, 1 730), (30.0 , 22 53) ,

(33.0 , 28 48), (36.0, 34 42) . (3 9 .0, 408 7) , (42 .0, 47 70),
(45 .0 , 5555), (48 .0, 62 41 ), (51.0, 695 5) , (54.0, 7 685) ,

(57 .0 ,8418), ( 60 .0 ,9293), ( 63 .0 , 10032), (6 6 . 0 ,

107 60 ), (6 9 .0, 11478) , (72.0 , 12 41 4 ), (75 . 0, 13154),

(78.0, 13885), (8 1.0 , 144 60)
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Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.

3
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the Gulf of Mexico, however the red snapper is meant to be representative
of several major target species. Thus, the model represents a multiple spe
cies fishery without explicitly modeling the interaction between species.
This assumes that the various target species will be affected similarly by the
management strategy of reserves. Fishing effort and biological parameters
can be easily adjusted for application of the model to other fish species and
for purposes of sensitivity analyses.

The purpose of the model is to examine the economic and ecological ef
fects of various sizes of reserves and fishery production . Thus, our model
should allow both reserve size and fishing effort to be adjusted before a run
begins. The primary control variable in the model, however, is the size of
the reserve.

Most important for the dynamics of the model , and the fate of the fishery,
are the spatial range of fish, reproduction strategies, growth rates, and
weight-fecundity relationships. A basic assumpti on of the model is that
eggs are produced on the reef but undergo an extended larval stage out on
the open ocean before returning to be spread evenly around the reef.

In the model , fish are divided into age classes and their physical position,
either inside or outside the reserve. Thus, this model combines features of
the age cohort models and spatial models discussed earlier. For simplicity,
we distinguish here only three age classes. This simplified model works
somewhat differently from a more complex model with 10 age classes. The
reserve quickly becomes very dense and recruitment is cut off. Recruitment
for the fishery remains high and the fishe ry exports young fish to the re
serve while the reserve ships back older fish to the fishery. The reserve
benefits the fishery in two ways. It increases egg product ion , and thus re
cruits for the fishery, and provides a refuge for adults to grow and then
move back to the fishery to be caught.

Each period , the fish in each age class are subject to fishing and are
caught according to an annual fishing mortality rate multiplied by the stock
of that age class. Fish in the reserve are subject to fishing also, but at a
much lower rate. These fish are assumed to be caught while foraging out
side the reserve. Fish from each age class may also die from other causes
besides fishing . An age-specific annual natural mortality rate is multiplied
by the stock to determine the number that die. Both fishing mortality rates
and natural mortality rates are originally put into the model as instanta
neous rates. These rates are summed to get a total mortality rate and inte
grated over time to calculate annual rates. The rest of the fish grow and
move to the next age class. Most fish go to the next age class in the same
location . However, some fish emigrate from the fishery to the reserve or
vise versa. The age classes for fisheries (F) and reserve (R) are calculated
separately in the model. The main structure of the model is shown in Fig
ure 31.1.

Each period , a number of eggs are produced based on the number and
age of fish in both the reserve and the nonreserve fishery. There is an ex-
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FIGURE31.1

ANN NAT MORT R2 ANN NAT MORT R3

ANN NAT MORT F3

ponential relationship between fish age/size and fecundity . In the model,
fish weights and fecundity conform to data from the Gulf of Mexico for the
Red Snapper. The eggs produced leave the system (undergoing a pelagic
larval stage) and return to be dispersed evenly over the fishery and reserve ,
i.e., if the reserve is 10% of total area, it receives 10% of all eggs produced.
The number of recruits that enter the reserve and fishery each period is a
function of the number of eggs received, a base recruitment rate (rep
resenting a survival rate for larvae and juveniles) and a density-dependent
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TOTALRESERVE WEIGHT

RECRUITSS R

RECRUIT RATER

FIGURE 31.2

compensation mechanism. The compensation mechanism redu ces the re
cruitment rate as biomass density rises or increases it as density falls. This
mechanism keeps the system stable. Without this mechanism, disturba nce
would cause the fishery to eithe r increase to infinity or collapse. The com
pensation is relatively slight when the fishery/ reserve is at moderate den
sities, but increases its effect when the density gets very low or high.

Compensation and recruitment for the reserve are calculated in the mod
ule of Figure 31.2. Compensation is modeled with a graphical function as
plotted in Figure 31.3.
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FIGURE 31.4

The calculation of compensation and recruits for the fishery is done anal
ogously to that for the reserve . The corresponding module is shown in Fig
ure 31.4, and compensation in the fishery is plotted in Figure 31.5.

The production of eggs, in turn, is a function of the female ratio in the
population, the fecundity factor, and the mean gonad weight in the respec
tive fishery. These relationships are captured in the module of Figure 31.6.

The instantaneous transfer of fish between reserve and fishery, TRANS
R:F, and between fishery and reserve, TRANS F:R, are a function of the in
stantaneous transfer rates that are characteristic for the particular fish spe
cies. The relationships are shown in Figure 31.7.

.. . . ... . .. . . . .. . . . . . . . .

cc
Iz

c:::l

~
cc
Vl
Z
~
e,

:r
c:::l
u

· . . . . . . . . . .
L....- ---tl · · · : · · · · :· · · · :· · · · : · · · · :· · · · :· · · · :· · · · :· · · · :· · · · :· · · · :· · · .· . . . . . . . . . .· . . . . . . . . . .· . . . . . . . . . ... . . ... . . . .. . . ... . . ... . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . .· . . . . . . . . . .. . ... ... .. . . ... . . ... . . ... . . . . . . . ... . . . . .. . . . . . . . . . . . . . . . . . . . . .. . . . .· . . . . . . . . . .· .· .· ... .· . . . .. .· . . . .. .· . . . .. .· . . . . . . . . . .

:::.\::::~ : ::: ~ :: :: ~: : :: ~ : : :: ~ : : : : ~ : ::: ~:::: ~: ::: : :: : : : : : : :
\ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

: :: : : : \::: : : ::: : l : : : : : :: : : : : :: : : :: : : : ::: : ::: :: ~ : : : : :: :: :
~---.l . . . . : ... .~... ..:. ..:._
0.000

10000 .00 ¢

10000.00

DENS ITY_ FACTOR_R

FIGURE 31.5



306 31. Fisheries Reserve Model

FISHERY 1 GONAD WTl RESERVE 1

FEMALE RATIO
FECUNDITY FACTOR

FIGURE 31.6

From these instantaneous transfer rates we can calculate the annual
transfer of fish among the reserves and fisheries. Together with the coeffi
cients that determine fishing effort of fish that reside in the fisheries and
those living in the reserves but temporarily leaving the reserves, we can cal
culate the mortalities for the fish population (Figs. 31.8 to 31.13). The effort
coefficients are exogenously specified.

In order to determine the amount of fish that can be caught, total fish
biomass must be divided among the fishery and the reserve . Additionally,
we need to specify the mass of fish at different age classes. This is done ex
ogenously by the translation variables WEIGHT F1, WEIGHT F2, WEIGHT
F3 (Fig. 31.14).

Each period the total value (price'weight) of fish caught is discounted ac
cording to the length of time that has passed from the institution of the
reserve and added to the cumulative net present value of harvests
(Fig. 31.15). Price is assumed to remain constant at one unit per pound of

INST TRANSF:R

FIGURE 31.7
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FIGURE 31.13



FISHERY I

FISHERY 3

31. Fisheries Reserve Model 309

RESERVE 1

TOTAL BIO MASS

FISHING 1

FISHING R l

FISHING 2

FISHING R2

FISHING 3

FIGURE 31.14

TOTAL FISHI G WEIGHT

WEIGHT Fl

WEIGHTF3

fish caught. When the reserve is first instituted, fish production drops
roughly proportional to the reserve size relative to the original fishery. It
takes several years for production to respond to the reserve and recover to
prior levels. Thus the discount rate is very important.

The model is initialized with a population structure that results from a set
of age-specific natural mortality rates and fishing mortality rates in the ab
sence of a reserve. A reserve size is then chosen and the model is run for
several years until a steady state is reached. Steady state of the fish popula
tion almost always occurs within 20 years, but always within 60 years if one
is reached at all.

The results indicate that recruits to the fishery and egg production in
crease over time (Figs. 31.16 and 31.17). Not only does the total biomass in
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FISHERY_2*ANN_TRANS_F2

FISHERY_2*ANN_FISH_MORT_F2
FISHERY_2-MORTALITY_F2-TRANS_F2:R3-
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the reserve increase but also the total biomass in the fishery. Thus , the
overall effect of the introduction of the reserve on the fish population is
positive , effectively protecting biodiversity and habitat as well as fishery
production.

Since conventional methods of common property management that de
pend on reducing fishing are frequently expensive and difficult or impossi
ble to apply, marine reserves provide a feasible alternative management
strategy. The analytical model developed here not only indicates that ma
rine reserves can be effective in sustaining or increasing fishery yields, it also
demonstrates the advantages of age-class-specific modeling of fishery dy
namics over previous models that did not differentiate the different spatio
temporal dynamics of different age classes.

FISHERY RESERVE MODEL

FISHERY_l(t) = FISHERY_l(t - dt) + (RECRUITS_F 
FISHING_l - AGE_Fl :F2 - MORTALITY_Fl - TRANS_Fl :R2) *
dt
INIT FISHERY_l = . 5475*I NI TI AL_FI SH_TOTAL* (1
RESERVE_SIZE)
INFLOWS:
RECRUITS_F = RECRUITSS_F
OUTFLOWS:
FISHING_l
AGE_Fl :F2
FISHING_l
MORTALITY_Fl = FISHERY l*ANN NAT MORT__Fl
TRANS_Fl:R2 = FISHERY_l*ANN_TRANS_Fl

FISHERY_2(t) = FISHERY_2(t - dt) + (AGE_Fl :F2 +
TRANS_Rl:F2 - FISHING_2 - AGE_F2 :F3 - MORTALI TY_F2 
TRANS_F2 :R3) * dt
INIT FISHERY_2 = . 3255*I NI TI AL_FI SH_ TOTAL* (1 
RESERVE_SIZE)
INFLOWS :
AGE_Fl:F2 = FISHERY_l - MORTALITY_Fl - TRANS_Fl :R2 
FISHING_l
TRANS_Rl:F2 = RESERVE_l*ANN TRANS Rl
OUTFLOWS :
FISHING_2
AGE_F2 :F3
FISHING_2
MORTALI TY_F2
TRANS_F2:R3
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FISHERY_3(t) = FISHERY_3(t - dt) + (AGE_F2 :F3 +
TRANS_R2:F3 + NET_TRANS_3 - FISHING_3 - MORTALITY_F3)

* dt
INIT FISHERY_3 = INITIAL_FISH_TOTAL* .1270*(1

RESERVE_S IZE)

INFLOWS :

AGE_F2 :F3 = FISHERY_2-MORTALITY F2-TRANS F2:R3

FISHING_2

TRANS_R2 :F3 = RESERVE_2*ANN_TRANS_R2

NET_TRANS_3 = (RESERVE_3*ANN_TRAN_R3)

(ANN_TRAN_F3*FISHERY_3)

OUTFLOWS :

FISHING_3 = FISHERY_3*ANN_FISH MORT F3

MORTALITY_F3 = FISHERY_3*ANN_NAT_MORT_F3

NET_PRESENT_VALUE_OF_HARVEST(t) =
NET_PRESENT_VALUE_OF_HARVEST(t - dt) +
(NET_PRESENT_VALUE_OF_TOTAL_FISHING_WEIGHT) * dt

INIT NET_PRESENT_VALUE_OF_HARVEST = 0

INFLOWS:
NET_PRESENT_VALUE_OF_TOTAL_FISHING_WEIGHT

TOTAL_FISHING_WEIGHT/(l .l ~TIME)

RESERVE_l(t) = RESERVE_l(t - dt) + (RECRUIT S_R 
AGE_Rl :R2 - MORTALITY_Rl - TRANS_Rl :F2 - FISHING_Rl) *

dt
INIT RESERVE_l = .5475*INITIAL_FISH_TOTAL*RESERVE_SIZE

INFLOWS :
RECRUITS_R = RECRUITSS_R

OUTFLOWS:

AGE_ Rl: R2 = RESERVE_l-MORTALITY_Rl-TRANS Rl :F2

FISHING_Rl

MORTALITY_Rl = RESERVE_l *ANN_NAT_MORT_Rl

TRANS_Rl :F2 = RESERVE_l*ANN_TRANS_Rl

FISHING_Rl = RESERVE_l*ANN_FISH_MORT_Rl

RESERVE_2(t) = RESERVE_2(t - dt) + (AGE_Rl :R2 +
TRANS_Fl :R2 - AGE_ R2 : R3 - MORTALITY_R2 - TRANS_R2:F3 

FISHING_R2 ) * dt

INIT RESERVE_2 = . 32 55 *I NI TI AL_ FI SH_ TOTAL*RESERVE_ SI ZE

INFLOWS :
AGE_Rl :R2 = RESERVE_l-MORTALITY_Rl -TRANS_Rl :F2 

FISHING_Rl



31. Fisheries Reserve Model 313

TRANS_Fl:R2 = FISHERY_l*ANN_TRANS_Fl

OUTFLOWS :

AGE_R2:R3 = RESERVE_2 -MORTALITY_R2 -TRANS_R2 :F3 

FISHING_R2

MORTAL ITY_R2 = RESERVE_2 *ANN_NAT_MORT_R2

TRANS_R2: F3 = RESERVE_2*ANN_TRANS_R2

FI SHI NG_ R2 = RESERVE_2*ANN_FISH_MORT_R2

RESERVE_3 ( t ) = RESERVE_3(t - d t) + (AGE_R2 : R3 +
TRANS_F2 : R3 - MORTALI TY_R3 - FISHI NG_R 3 - NET_TRANS_3 )

* d t

I NI T RESERVE_3 = INI TIAL_FISH_TOTAL* RESERVE_S IZE* .1270
INFLOWS:

AGE_ R2 : R3 = RESERVE_2-MORTALITY_R2-TRANS_R 2 :F3
FISHING_R2

TRANS_F2 : R3 = FI SHERY_2 *ANN_TRANS_F2

OUTFLOWS:

MORTALITY_R3 = RESERVE_3*ANN_NAT_MORT_R3

FISHING_R3 = RESERVE_3*ANN_FISH_MORT_R3

NET_TRANS_3 = (RESERVE_3*ANN_TRAN_R3)

(ANN_TRAN_ F3* FISHERY_3)

ANN_FISH_MORT_Fl =
INST_FISH_MORT_F_Fl / INST_TOTAL_MORT_Fl*(l -EXP(
INST_TOTAL_MORT_Fl))

ANN_FISH_MORT_F2 =
INST_FISH_MORT_F2 /INST_TOTAL_MORT_ F2* (1 - EXP( 
I NST_TOTAL_MORT_F2 ) )

ANN_ FISH_MORT_F3 =
I NST_FISH_MORT_F3 /INST_TOTAL_ MORT_F 3 * (1-EXP ( 
I NST_ TOTAL_MORT_ F3 ) )

ANN_FISH_ MORT_R l =
I NST_FISH_MORT_ Rl /INST_TOTAL_ MORT_Rl * ( l-EXP (
INST_TOTAL_MORT_Rl ) )

ANN_ FISH_ MORT_R2 =
INST_FISH_MORT_ R2 /INST_TOTAL_MORT_R2 * (1-EXP (

INST_ TOTAL_MORT_R2))

ANN_FISH_MORT_R3 =
I NST_FI SH_MORT_ R3 / I NST_TOTAL_ MORT_R3 * (1 - EXP (
INST_TOTAL_MORT_R3))

ANN_NAT_MORT_F3 =
INST_NAT_MORT_F3 / INST_TOTAL_MORT_ F3*(1-EXP( 

INST_TOTAL_MORT_F3))
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ANN_NAT_MORT_F_2 =
INST_NAT_MORT_F2 /INST_TOTAL_MORT_F2 *(1-EXP(
INST_TOTAL_MORT_F2»

ANN_NAT_MORT_R1 =
INST_NAT_MORT_R1 /INST_TOTAL_MORT_R1*(1-EXP(

INST_TOTAL_MORT_R1»

ANN_NAT_MORT_R2 =

INST_ NAT_MORT_R_ 2 / INST_TOTAL_MORT_R2 *(1-EXP(

INST_TOTAL_MORT_R2»
ANN_NAT_MORT_R3 =

INST_NAT_MORT_R3 /INST_TOTAL_MORT_R3*(1-EXP(
INST_TOTAL_MORT_R3»
ANN_NAT_MORT_F1 =

INST_NAT_FISH_MORT_F1 /INST_TOTAL_MORT_F1 *(1-EXP(

INST_TOTAL_MORT_F1»

ANN_TRANS_F1 INST_TRANS_F:R

ANN_TRANS_F2 INST_TRANS_F:R

ANN_TRANS_R1 INST_TRANS_R:F

ANN_TRANS_R2 INST_TRANS_R :F
ANN_TRAN_F3 = I NST_TRANS_F:R

ANN_TRAN_R3 = I NST_TRANS_R:F
BASE_INST_FISH_MORT_F1 .01

BASE_INST_FISH_MORT_F2 .5
BASE_INST_FISH_MORT_F3 .5
BASE_INST_FISH_MORT_R1 . 01
BASE_INST_FISH_MORT_ R3 .5
BASE_INST_FISH_MORT_R_2 = . 5

BASE_INST_TRANS_RATE = . 4
DENSITY_FACTOR_F = TOTAL_FISHERY_WEIGHT/((l

RESERVE_SIZE) *100 )
DENSITY_FACTOR_R =

TOTAL_RESERVE_WEIGHT/(RESERVE_SIZE*100)

EFFORT_COEFF_F 2

EFFORT_COEFF_R = . 02

EGGS =
(((FISHERY_1+RESERVE_1) *GONAD_WT1)+((FISHERY_2+RESERVE

_2)*GONAD_WT_2)+((FISHERY_3 +RESERVE_3) *GONAD_WT3»*FEC

UNDITY_FACTOR*FEMALE_RATIO

FECUNDITY_FACTOR = 12000
FEMALE_RATIO = . 5

GONAD_WT1 = 0
GONAD_WT3 = 100
GONAD_WT_2 = 10
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INITIAL_FISH_TOTAL = 2085556

INST_FISH_MORT_F2 =
BASE_INST_FISH_MORT_F2*EFFORT_COEFF F

INST_FISH_MORT_F3 =
BASE_INST_FISH_MORT_F3*EFFORT_COEFF_F

INST_FISH_MORT_F_F1 =
BASE_INST_FISH_MORT_F1*EFFORT_COEFF_F
INST_FISH_MORT_R1 =
BASE_INST_FISH_MORT_R1*EFFORT_COEFF_R

INST_FISH_MORT_R2 =
BASE_INST_FISH_MORT_R_2*EFFORT_COEFF_R

INST_FISH_MORT_R3 =
BASE_INST_FISH_MORT_R3*EFFORT_COEFF_R

INST_NAT_FISH_MORT_F1 = .5

INST_NAT_MORT_F2 .3

INST_NAT_MORT_F3 .2

INST_NAT_MORT_R1 . 5

INST_NAT_MORT_R3 . 2

INST_NAT_MORT_R_2 = .3

INST_TOTAL_MORT_F1 =
INST_FISH_MORT_F_F1 + INST_NAT_FISH_MORT_F1
INST_TOTAL_MORT_F2 =
INST_FISH_MORT_F2+INST_NAT_MORT_F2

INST_TOTAL_MORT_F3 =
INST_FISH_MORT_F3+INST_NAT_MORT_F3

INST_TOTAL_MORT_R1 =
INST_FISH_MORT_R1+ INST_NAT_MORT_Rl
INST_TOTAL_MORT_R2 =
INST_FISH_MORT_R2+ INST_NAT_MORT_R_2

INST_TOTAL_MORT_R3 =
INST_FISH_MORT_R3+INST_NAT_MORT_R3

INST_TRANS_F:R = BASE_INST_TRANS_RATE*RESERVE_SIZE

INST_TRANS_R:F = BASE_INST_TRANS_RATE*(l-RESERVE_SIZE)
RECRUITSS_F = EGGS*RECRUIT_RATE_F*(l

RESERVE_SIZE)*COMPENSATION_F

RECRUITSS_R =

RECRUIT_RATE_R*EGGS *RESERVE_SIZE*COMPENSATION_R

RECRUIT_RATE_F = .00000594

RECRUIT_RATE_R = .00000594

RESERVE_SIZE = .1

TOTAL_BIOMASS =
TOTAL_FISHERY_WEIGHT+TOTAL_RESERVE WEIGHT

TOTAL_FISHERY = SUM(FISHERY_l,FISHERY_2,FISHERY_3)
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(2500 0,

0 .9 5) ,

(6000 0 ,
0 . 25) ,

(2 500 0 ,

0 .95) ,

(60000 ,

0 . 2 5) ,

= GRAPH (DENSITY_FACTOR_F)

(1 5000, 3 .90 ) , (2 00 00 , 1.50) ,

1. 0 0 ) , (3 5000 , 1.00 ) , (40000 ,

(50 000, 0 .8 5 ) , (5 5000 , 0 . 85) ,

0 .65) , (7 0 00 0 , 0.25), (7 50 00 ,

= GRAPH (DENSI TY_ FACTOR_R )

(15000, 3 .90) , (20000 , 1. 50) ,

1.00) , (3 5 00 0, 1. 0 0 ), (40000 ,

(50000 , 0 . 85) , ( 55000 , 0 . 85 ) ,
0 .6 5 ) , (70000 , 0 .25) , (7500 0 ,

TOTAL_FISHERY_ WEIGHT =
(F ISHERY_ 1* WEIGHT_F1)+ (FISHERY_2 *WE IGHT_F2) + (FI SHERY_3

*WEIG HT_F3)

TOTAL_F I SHING_WEIGHT =

((FI SHI NG_1+ FISHING_ R1)*WEIG HT_ F1)+ (( FISHI NG_2+ FISHI NG

_R2) *WEIGHT_F2)+( (F ISHING_ 3 + FISHING_R3 )*WEIGHT_F3)

TOTAL_RESERVE = SUM(RESERVE_1 ,RESERVE_ 2 ,RESERVE_3)

TOTAL_RESERVE_WEI GHT =
(RESERVE_1 *WEIGHT_F1) + (RESERVE_ 2 *WEIGHT_ F2 ) + (RESERVE_3

*WEI GHT_ F3)

WEIGHT_ F1 . 0 5

WEI GHT_ F2 = 2

WE IGHT_F3 = 5

COMPENSATI ON_F

(10 00 0 ,9 . 80 ),

1. 00) , (300 00,

(4500 0, 0. 95 ) ,

0 .65), ( 6 50 0 0 ,

(8 0 0 00 , 0 .00)

COMPENSATI ON_R

(10 000, 9 . 80 ),

1.00 ), (3 0 00 0,

(450 0 0 , 0 .95 ),
0. 65 ) , ( 6500 0,

(80 000 , 0 . 00)
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Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.
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over the time horizon starting today (t = 0) up to the future period T in
which the mine is entirely exhausted. This terminal time, T, will be deter
mined when we run our model. Output, Qtt), is the variable that can be
controlled by the mining operation in order to achieve a maximum. Here,
the price at time period t is pet), and cost of extraction is C(t). The rate of
discount, r, is known and constant over time. The cost of extraction is a
function of the mining output,

C(t) = B*Q(t)I\DELTA (2)

where B and DELTA are constants. Production cost increases with an in
creasing rate of extraction.

Since the mine contains only a finite amount of minerals, the maximiza
tion is constrained by the condition that the initial resource stock must be
greater than or equal to the total amount that is being extracted over the T
periods, Le.,

T

x« = 0) ~LQ(t)dt (3)

An additional constraint that is placed on our optimizing mining operation
by the condition that refilling of the mine is not possible , i.e.,

(4)

A final condition is given by the fact that the change of the amount of min
erals in the mine, X(t) = ax/ at, is solely brought about by the extraction
process, i.e., no discoveries or adjustments in our estimates of the reserve
size take place. The formal statement of this condition is

xro = -Q(t) (5)

The negative sign indicates that X decreases over time.
Analytically, the optimal rate of extraction at each time period t, Qtt), can

be calculated by maximizing the following function with respect to Qtt),
our control variable:

H = [P(t)*Q(t) - C(t)] - A(t)*Q(t) (6)

The term in square brackets is the present value of profits. The last term
of this equation subtracts an amount A(t)*Q(t) from this present value of
profits. This amount is a "penalty" for reducing the resource stock by an
amount Qtt) . The parameter A(t) reflects this "penalty" and can be inter
preted alternatively as the amount that a mining operation is willing to pay
to have an additional unit of the mineral in the ground. It is referred to as
the scarcity rent.

This approach to intertemporal optimization is known as optimal control
theory.' The function H is referred to as a Hamiltonian. The conditions for

! Dorfman, R. 1969. An Economic Interpretation of Optimal Control Theory, The
American Economic Review, Vol. 59, pp . 817-831.
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the optimal extra ction path are given by the first partial derivative of the
Hamiltonian with respect to the control variable Q(t),

dH dC(t)
dQ(t) = P(t) - dQ(t) - h(t) = 0 (7)

(8)

and the condition that describes the way in which H is influenced by a
change in the resource stock X. The latter condition is

dH
- dX(t) = h(t) - r*h(t)

Since H is not a function of X(t), we know

}.(t) - r" h(t) = 0

and thus ,

~(t)
- = r
h(t)

(9)

(10)

This last condition is known as the Hotelling Rule- and can be inter
preted easily: In the optimum of the mining operation (i.e., the maximum
of present value of profits) the scarcity rent of the finite resource must rise
at the rate of interest. This rule summarizes our discussion above: as the
owners of the mining operation we extract just that much from the mine at
each period of time that the resulting percentage change in the scarcity
rent, ~(t)/h(t) , is exactly the rate of interest that would be applied for an in
vestment of our profits. Even though this rule is rather intuit ive, we still
need to know the value for the scarcity rent, since this is not directly ob
servable by us-unlike the price of the mineral or the extraction cost. How
ever, a little bit more calculus gives us the ne cessary information.

The first partial derivative of H with respect to Qtt) can be rewritten as

dC(t)
h(t) = P(t) - dQ(t) = P(t) - MC(t) (11)

Recall that in the profit maximum of a firm that produces an ordinary
good, the price is equal to marginal cost. For the mining operation that ex
tracts a nonrenewable resource, price equals marginal cost plus a rent, h(t) ,
to the mine owners that is due to the nonrenewability of the good supplied
by the mine . This is the reason why h(r) is called the scarcity rent.

From the condition above we can also calculate the change of the scar
city rent over time ,

dh(t) . . .at = h(t) = Ptt) - MC(t) (12)

2Hotelling, H. C. 1931. The Economics of Exhaustible Resources,Journal of Political
Economy, Vol. 39, pp . 137-1 75.
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and together, these two equations yield

p = r*CP -MC) + MC (3)

We have now expressed the optimal time path for the extraction of the
minerals from the mine in observable quantities . As the owners of the mine,
we must now translate these conditions into a STELLA program to find ex
actly how much we can extract from our mine, with an initial amount of
60,000 units of the mineral, at each period. In our use of equation 13, we
will call the time derivative of price, DEL P and the time derivative of MC,
DEL Me.

Note when you are running this model, there are some terminal con
ditions you must meet. These are called the sufficiency conditions and are
needed to insure optimality, in addition to the necessary conditions that
lead to equation 13. The sufficiency conditions for this problem are: ACT) ~
0, xrrrxm = 0, and because we have no prespecified terminal time T in
this model, we have a third sufficiency condition: HCT) = O. The last of
these three conditions is met rather naturally in this model. We can readily
see from equation 6 that if QCT) = 0, then HCn = o. So at the terminal
time, the production rate must be O. From equation 7 we can see that A~ 0
since P - MC ~ afor all time. Therefore xcn must be a to satisfy the second
condition. So we pick an initial price that will bring X and Q to zero simul
taneously and we will have achieved the maximum associated CUMULA
TIVE PV PROFIT.

To solve such a problem in STELLA, we use a trial and error procedure to
constantly adjust the initial price and rerun the model so that the cumu
lative present value of profits, CUMULATIVE PV PROFIT, is maximized
CFig. 32.1). Use the Table Window to do this. Adjust the starting price such
that the production rate is 0 just as the resource stock reaches 0 (i.e., the
sufficiency conditions for the optimum). This will always be the case when
the cost does not depend on the stock size or when there are no indepen
dent additions or reductions in the stock. A trial and error process is not the
only way to solve this problem. We can set up the terminal conditions and
run the problem backwards in time. The result is a curve of initial prices as
a function of initial reserve size. We can pick the correct starting price di
rectly from the curve for the 60,000 unit reserve .

The graph of Figure 32.2 shows a smooth decline in the production rate,
QCt), a steady rise in the price, and a fall in marginal cost, Me. Repeated so
lution of the problem with different initial prices finally produced the graph
shown in Figure 32.2. Can you find the proper starting price if the initial re
serve is 100,000 units? What is the optimum path if we change the DT to 0.1
instead of 1.0? How is the result altered if we stop the problem at t = 20
and reoptimize on the remaining reserve?

Run the model to assure yourself that the scarcity rent rises at the rate of
interest as the analytic theory indicates it should in the absence of any stock
effects. Also demonstrate that CUMULATIVE PV PROFIT is maximized
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when the resource is exhausted by a production rate that smoothly goes to
oat the same time.

This model does not handle all cases. For example, if the cost of extract
ing the resource is related to the size of the reserve (the known quantity of
that resource in the ground that is economically extractable), then the
model no longer holds . The scarcity rent will rise more slowly than the rate
of interest. This means that not all of the resource might be used , i.e., that
the production rate reaches 0 before the stock is exhausted. In cases of bi
ological resources, the interest rate in the above equation is changed by the
rate of change of the growth of the resource with respect to a change in re
source stock size. We will augment our little model from the theory and
apply it in the following section to the case of full monopoly.

COMPETITIVE SCARCITY

CUMULATIVE__PV_PROFIT(t) = CUMULATIVE__PV_PROFIT(t 
dt) + (PV_PROFIT) * dt

INIT CUMULATIVE__PV_PROFIT = 0 {The cumulative present
value of the profit ; $}
INFLOWS:
PV_PROFIT = CV_PROFIT/(l+r) ATIME {The present v a l ue of

the rate of profit; $ per Year}
P(t) = P(t - dt) + (DEL_P) * dt

INIT P = 1 .95 {The resource exhaustion time depends on
this v a l u e as it indicates where the problem is started
wrt the shutoff price of 10. $ per Units of X}
INFLOWS :
DEL_P = r*(P - MC) + DEL_MC {$ per Units of X per Time

Period}

X(t) = X( t - dt) + (- Q) * dt

INIT X = 60000 {Units of X}

OUTFLOWS :
Q = (10 - P) /.00338 {q goes to zero simultaneously

with stock exhaustion . This is the optimal

(profit-maximizing) path and the simultaneity is

achieved by adjusting the initial price . Units of X per

Time Period}

B = . 1
C = B*QADELTA {This is the total cost and it is

independent of any stock size or interest rate . $ per
Year}
CV_PROFIT = P*Q-C {$ per Year}
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DELTA = 1. 2 {Th is val ue must b e > one so tha t the

cos t v s q curve i s c onvex. }

DEL_C = C - DELAY(C,DT ,C+1.23) {$ p er Uni t of X per

Year}
DEL_EXTRACTI ON = Q - DELAY(Q , DT,Q+2.17) {Units o f X

per Time Period}
DEL_MC = (MC - DELAY(MC ,DT)) / DT {$ per Unit o f X}

LAMBDA = P - MC {$ per Unit X}
MC = DEL_C/DE L_EXTRACTION {$ per Uni t X}

r = . 05 {$ p e r $ I nvested per Time Period}

32 .2 Monopoly Scarcity

Let us return to the basic model of sec tion 32.1 but now assume that our
firm has a monopoly for the resource it extracts. As a monopolist, we could
influence the price by our control ove r the rate of extraction. The extraction
rate will be chosen such tha t we maximize the cumulative present value of
profits, CPVP. The Hamiltonian in this model is

with

H = [P(Q(t)) * Q(t) - C(Q(t))]e-r"t - ,,-(t) * Q(t)

MR = 10 - .00676 * Q~~ = [MR - ~~]*e - r.[ - x

d[P(Q)*Q(t)]
where MR = Marginal Revenue = dQ

dH .
- - = "

dX

(14)

(15)

(1 6)

as the optimality and adjoint equations . These equa tions are virtua lly the
same as those for the perfect compe titors, with the exception that price is
now a function of Q, and the refore, marginal revenues are no longer equal
to the price . When you set up the model, reme mber to correct for the size
of DT to calculate the change in MR over time.

For the demand curve

P = 10 - .00338 * Q

and therefore, marginal reve nues are

MR = 10 - .00676 * Q.

(17)

(18)

Solving the demand curve for Q allows the extraction rate to be determine d
from MR, which is a state variable in our model. Using the demand curve
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lets us find the price once Q has been determined. Price in the monopoly
case is MR plus a monopoly rent rate.

The marginal revenue curve for a straight-line demand curve is a straight
line at twice the slope of the demand curve, as shown in equation (I8)
and the preceding sketch. Can you prove this? In Figure 32.3 we show the
four possibilities for market equilibrium for the competitive/monopoly,
finite/nonfinite resource conditions. We have now covered all four of these
conditions with our models:

1. P = MC for the pure competition condition with no finiteness in the
inputs.

2. P = MC + SRR (the scarcity rent rate) for the competition/finiteness
condition.

3. MR = MC and P = MC + MRR (the monopoly rent rate) for the mo
nopoly/nonfiniteness condition.

4. MR = MC + SRR and P = MC + SRR + MRR for the monopoly/finite
ness condition.

Note well that the monopoly extracts both types of rent rates if it realizes
that its input is finite. The rent rate is a possible scarcity indicator for the
input resource. The problem lies in distinguishing between MRR and SRR,
that is, in distinguishing the monopolist from the competitive firms that are
using an increasingly scarce resource.

Before trying to find the rent rate and how it may have changed for a
particular industry, one must first determine the degree of monopoly in the
industry. One can assume away monopolistic possibility and then look for
differences between P and MC for the industry. This approach, however, is

Monopoly
FiniteResources

Demand
MCMC

Monopoly
Non-FiniteResources

Competition
.------ FiniteResources

Competition
Non-Finite
Resources

MRMCMC

SRR

o

MC

Dollars
per
Ton

o Output, Tons per Year

SRR=ScarcityRent Rate MRR=Monopoly Rent Rate

FIGURE 32.3



32.2 Monopoly Scarcity 325

hardly satisfying! As we have seen earlier, there exists an approximate sur
rogate for the SRR, the marginal discovery cost, the cost of finding the next
unit of a resource. If that is not 0, then there probably exists some SRR and
the resource is probably becoming scarce .

The model of a monopoy is solved here for a 60,000 unit finite resource
(the same as section 32.1) using trial and error values for the initial MR
(Fig. 32.4). The MR is adjusted until the resource stock and the production
rate are simultaneously 0 (to meet the sufficiency conditions noted in sec
tion 32.1) and at this point, the cumulative present value of profits, CPVP, is
maximized. Use the Table Window for this effort. We used a DT = 1 here
(Figs. 32.5 to 32.7). Would a smaller DT bring more accuracy to this model?

We can now compare the competitive and the monopoly under scarcity.
Begin the scarcity model of the collection of firms in section 32.1 and the

r

MONOPOLISTIC P

FIGURE 32.4

COMPETITIVE P

o 0
COMPEfITIVE Q
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monopoly model of this section with the same amount, 60,000 units. Fig
ures 32.8 and 32.9 depict the differences.

Note how much higher the price is here, in the initial and intermediate
times, when compared with the competitive case (section 32.1). Interest
ingly, the competitive price rises above the monopoly price in the 23rd
year. Note also how much lower cumulative present value of profits is and
how much longer the resource lasts: approximately 63 years for the mo
nopoly versus approximately 33 years with perfect competition. The total

64.0048.00
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cumulative present value of the monop oly profit is about one-third higher
than the competitive counterpart.

Is it always the case that monop olies will slow the rate of resource use?
For the linear demand curve this is always true. But for a demand curve
with a rising price elasticity of demand, the monopolist will use the re
source faster than the competitors! The price elasticity of demand is

(9)

64.0048.0032.00
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48.00 64.00

(20)

and an example of a demand curve with increasing price elasticity is

120
p = -

Q 0.5

Solve for the optimal extraction path under perfect competition and under
monopolistic behavior, using this demand curve to show that the monopo
list is now more "shortsighted" than the competitors. Because the mo
nopoly profit is lower here than in the total competitive case , will mo
nopolies be less likely to form in the finite resource markets than in regular
markets? If a monopoly exte nds the life of a finite resource and accrues
smaller cumulative present value profit, would you prefer that a monopoly
controlled your society's finite resources? Before you jump to conclusions,
recall also that discount rates, which playa primary role in determining the
rate of extraction, are not usually constant over time.'

MONOPOLISTIC SCARCITY

CPVP(t) = CPVP(t - d t) + (PVP) * dt

INIT CPVP = 0 {Dollars}

INFLOWS:
PVP = CVP*EXP(-r*TIME) {Dollars per Year}

MR(t) = MR(t - dt) + (DEL MR) * dt

3For optimal depletion models with varying discount rates and with many other
modifications , such as discovery of new reserves or recycling, see Ruth, M. and B.
Hannon (1997) Modeling Dynamic Economic Systems, Springer-Verlag, New York.
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INIT MR = .978

INFLOWS:

DEL MR = r*(MR - MC) + DEL MC /DT {Dollars per Year}

X(t) = X(t - dt) + (- MONOPOLISTIC_Q) * dt

INIT X = 60000 {Tons}
OUTFLOWS:
MONOPOLISTIC_Q = (10 - MR)/.00676 {Tons per Year}

GRAPH (TIME) See data from Chapter

per

.1 {Dollars per Ton}

B*MONOPOLISTIC_QADELTA {Dollars per Year}

MONOPOLISTIC_P*MONOPOLISTIC_Q-C {Dollars

B =

C =
CVP
Year}

DELTA = 1.2 {This value must be > one so that the C
versus Q curve is convex.}

MC = IF MONOPOLISTIC_Q > 0 then DELTA*C/MONOPOLISTIC_Q
else 0 {Dollars per Ton}
MONOPOLISTIC_P = 10 - . 0 033 8*MONOPOLI STI C_ Q {Dollars
per Ton}
MRR = MONOPOLISTIC_P-MR {Dollars per Ton}

r = . 05 {Dollars per Dollar per Year}

DEL MC = (MC-DELAY(MC,DT)) /DT {Dollars per Ton}

COMPETITIVE_P GRAPH (TIME) See data from Chapter

32.1.

COMPETITIVE_Q

32.1.
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Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.
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firms in the market in this period), are used to find the expected net reve
nues or expected payoffs for each firm.

For our model we assume that two firms, J and B, must make a decision
whether they enter the market based on their expectations of making prof
its. The market for their goods will be either large (total demand equaling
20,000 units) or small (total demand equaling 6,000 units) :

LARGE M DEMAND = IF RAND < .4 THEN 20000 ELSE 0 (1)

SMALL M DEMAND = IF RAND ~ .4 THEN 6000 ELSE 0 (2)

The owner of B conducts market research to improve her chances of
knowing the market size, but the owner of J has takes no such action. The
critical decision for each of the two firms is whether to enter the market. B's
decision to enter depends on its expected annual profit and whether it ex
pects the market will be large or small. B enters the market if its normally
distributed expected profit is positive:

BENTER = IF EXP PROFIT B > 0 THEN 1 ELSE 0 (3)

J also enters the market if its normally distributed profit is positive, re
gardless of any anticipated market size:

J ENTER = IF EXP PROFITJ > 0 THEN 1 ELSE 0 (4)

Since the expected profits are normally distributed, their standard deviation
must also be specified. The mean and standard deviation in these normally
distributed expected profit functions are derived in part from prior expe
rience in this market and in part on research-derived information. B's market
research provides her with some information on the size of the market in the
next period. She knows that if the market is small, her actual profits are likely
to be small or negative. But if the market is large, her profits are likely to tum
out to be large.J knows that B is acting in this way and likely abstaining from
the expected small market. In this case, J is likely to have the small market all
to herself. J also knows that if the market is large, both firms will do well.
These possibilities tell J to favor entering the market regardless of size, but
her mean profit is lower than is that of B should the market be large. Here, J
actually knows what B is doing , which may not always be the case . In some
sense, J is piggybacking on the research done by B.

Once the market-entering decision has been made, we know how many
firms (0, 1, or 2) actually joined the market (Fig. 33.1). Knowing the
number of firms in the market, N, allows the price to be computed (either
10 or 12, depending on the number of active firms). The expected revenues
of each firm for this period can then be calculated if the quantity sold , Q
PER N, can be found. Q PER N is just the market demand (small or large)
divided by N, which in turns determines the expected quantities sold by
each firm (Q J and Q B).

The companies have different cost structures. J has a fixed cost of
$40,000, and a unit production cost of $5. B has a fixed cost of $60,000 and
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LARGE M DEMAND

SMALL M DEMAND

FIGURE 33.1

a unit cost of $3. Given this simple cost function, made up of both fixed
and variable costs, the expected cost for] and B, ] COST and B COST, can
be determined based on the expected quantities to be produced and a
fixed cost (see Fig. 33.1).

Information on expected profits is needed to make the market-entering
decision. Now that one or both firms are in the market, they can make a
better estimate of their expected payoffs (Fig. 33.2). They know what their
revenues will be once the market size is known, given expected costs. This
enables them to calculate their expected payoff for the period. Expected
payoff is discounted over time by an interest rate to correct for the future
period in which it is expected-the ensuing stream of discounted payoffs
can be calculated and summed, resulting in a cumulative present valued
profit, CPVP, for each firm (Fig. 33.3). Long-term values of CPVP determine
the most successful firm. The strategies that ultimately lead to these long
term CPVP values are the issue here. Is there a superior strategy that can
consistently win under these marketing rules?

We expect B to enter the market when the market is large and not to
enter when it is small-independent of ]'S actions . ] , given her rational ex
pectation of B, will know this fact and nearly always choose to enter. B will
not enter when the market is small, so] can count on usually making at
least a small profit. Therefore, we would predict that] will nearly always
enter, and B will tend to enter when the market is large.
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REVENUEJ

REVENUEB

EXPPROATB

FIGURE 33.2

We can count the number of times each of these firms actually enters the
market , realizing that it is possible that neither will enter in any given pe
riod (Fig. 33.4). We simply count each of the resulting possible outcomes
based on the payoffs for each firm. There are four combinations for the
pairing of the firms, and two market sizes, giving eight possible outcome
conditions for the period . We show that indeed B enters the market less
often than J and that each firm usually makes some profit (Figs. 33.5 and
33.6). But the "winning" strategy, the firm with the largest CPVP, is likely to
be different in ensuing model runs.

One set of model results are shown in Figures 33.5 and 33.6. As we im
agined, in repeated play, these firms, regardless of their expected payoffs

PAYOFFJ PAYOFFB

000 c500
REVENUEJ J COST REVENUE B BCOST

JCPVP

FIGURE 33.3
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PAYO FF J

FIGURE 33.4

use all strategies. We find that some strictly dominated strategies, e.g., B en
tering when the market is small, were still played occasionally.

Run this model to show these conclusions. Over a large number of runs ,
does it pay for B to spend to fix an estimate of market size for the next pe
riod and allow this knowledge to influence its market entering possibilities?

1: BCPVP

600000 .00

2: J CPVP

100.00

I

I
I
i

75.00
i

SO.OO

=00 _ ?:-=~';;" ~~--1_2...,e::;;;-====:J

0.00 l
J2

i
0.00 25.00

FIGURE 33.5



1: PAYOFF B

120000 .00

4050 0.00

·39000.00

2: PAYOFF J
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0.00

FIGURE 33.6

25.00 50.00 75.00 100.00

That is does B "win" in this larger CPVP sense more often than J? Can you
refine the expected profit functions to change over time, based on what
was earned in the previous period? Can you make the firms calculate their
expected profits so that the losing strategies are played less often?

MARKET GAME

Expected Costs

B_COST = IF Q_B > 0 THEN 60000 + 3*Q_B ELSE 0 {TOTAL

COST FOR BELJEAU = FIXED COST PLUS VARIABLE COSTS}

J_COST = IF Q_J>O THEN 40000+ 5*Q_J ELSE 0

LARGE_M_DEMAND = IF RAND < . 4 THEN 20000 ELSE 0

{PROBABILITY OF A LARGE MARKET AND THE UNITS DEMANDED

IN THAT CASE}

Q_B = Q_PER_N*B_ENTER {IF B ENTERS, THIS NUMBER IS

STRICTLY POSITIVE}

Q_J = Q_PER_N*J_ENTER {IF J ENTERS, THIS NUMBER IS

POSITIVE}

Q_PER_N = IF N>O THEN (LARGE_M_DEMAND +
SMALL_M_DEMAND) /N ELSE 0 {THIS DETERMINES WHETHER THE

MARKET IS SPLIT OR CAPTURED BY ONE FIRM }

RAND = RANDOM(O , 1)

SMALL_M_DEMAND = IF RAND ~ . 4 THEN 6000 ELSE 0

{PROBABILITY OF A SMALL MARKET AND THE UNITS DEMANDED
IN THAT CASE}
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Expected Profits
B_CPVP(t) = B_CPVP(t - dt) + (B_PVP) * dt

INIT B_CPVP = 0

INFLOWS:
B_PVP = PAYOFF_B/EXP(I*TIME)

J_CPVP(t) = J_CPVP(t - dt) + (J_PVP) * dt

INIT J_CPVP = 0

INFLOWS:
J_PVP = PAYOFF_J /EXP(I*TIME)

I = .05
PAYOFF_B

PAYOFF_J

REVENUE_B-B_COST

REVENUE_J-J_COST

Expected Revenues

B_ENTER = IF EXP_PROFIT_B>O THEN 1 ELSE 0

EXP_PROFIT_B = IF RAND>= .4 THEN NORMAL(-11.25,350.25)

ELSE NORMAL (32.5,3425) {THE MEAN AND STD DEV OF
BELJEAU'S PROFIT GIVEN LARGE OR SMALL MARKET}

EXP_PROFIT_J = NORMAL(10.875,1397 .554) {THE MEAN AND

STANDARD DEVIATION OF JOKYX'S POSSIBLE PROFITS IN

OOO'S}
J_ENTER = IF EXP_PROFIT_J>O THEN 1 ELSE 0
N = B_ENTER+J_ENTER {Number of Firms in the Market}
PRICE = IF N=2 THEN 10 ELSE 12 {price per unit for a
monopolist or duopolist}

REVENUE_B PRICE*Q_B
REVENUE_J = PRICE * Q_J

Strategy Count
L_BIN_JIN(t) = L_BIN_JIN(t - dt) + (B10_J10) * dt

INIT L_BIN_JIN = 0

INFLOWS:
B10_J10 = IF PAYOFF_B=10000 AND PAYOFF_J=10000 THEN 1

ELSE 0

L_BIN_JOUT(t) = L_BIN_JOUT(t - dt) + (B120_JO) * dt

INIT L_BIN_JOUT = 0

INFLOWS:
B120_JO = IF PAYOFF_B=120000 AND PAYOFF_J=O THEN 1

ELSE 0
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L_BOUT_JIN(t) = L_BOUT_JIN(t - dt) + (BO_Jl00) * dt

INIT L_BOUT_JIN = 0

INFLOWS :
BO_Jl00 = IF PAYOFF_B=O AND PAYOFF_J=100000 THEN 1

ELSE 0

L_BOUT_JOUT(t) = L_BOUT_JOUT(t - dt) + (BO_JO) * dt

INIT L_BOUT_JOUT = 0

INFLOWS :
BO_JO = IF PAYOFF_B=O AND PAYOFF_J=O AND RAND< .4 THEN

1 ELSE 0

S_BIN_JIN(t) = S_BIN_JIN(t - dt) + (BN39_JN25) * dt

INIT S_BIN_JIN = 0

INFLOWS:
BN39_JN25 = IF PAYOFF_B= -39000 AND PAYOFF_J=-25000

THEN 1 ELSE 0

S_BIN_JOUT(t) = S_BIN_JOUT(t - dt) + (BN6_JO) * dt

INIT S_BIN_JOUT = 0

INFLOWS:
BN6_JO = IF PAYOFF_B=-6000 AND PAYOFF_J=O THEN 1 ELSE

o

S_BOUT_JIN(t) = S_BOUT_JIN(t - dt) + (BO_J2) * dt

INIT S_BOUT_JIN = 0

INFLOWS :
BO_J2 = IF PAYOFF_B=O AND PAYOFF_J=2000 THEN 1 ELSE 0

S_BOUT_JOUT(t) = S_BOUT_JOUT(t - dt) + (BO_JOS) * dt
INIT S_BOUT_JOUT = 0

INFLOWS :
BO_JOS = IF PAYOFF_B=O AND PAYOFF_J=O AND RAND>=.4

THEN 1 ELSE 0
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Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.
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farming, and that if one uses the Commission's assumptions, a 1- to 2-year
pig cycle would result instead of the 4-year cycle actually observed. In an
effort to shed light on the debate, we made use of the Commission's as
sumptions and data as much as possible, and modeled the dynamics of the
pig cycle.' Where necessary, we used our own judgments to make up for
missing information, and then explored the sensitivity of the model results
to alternative specifications.

The model captures the bacon pig market based on the assumption that
the whole market consists of breeder and slaughter pigs (Fig. 34.1). We as
sume an initial pig population of 10 breeders.

BREEDABlE STOCK
BACON PRICE DELAYED PIGFACTOR

FIGURE 34.1

PRODUCTlON FACTOR PRODUCTlON

PROCESSING

Cycle: A Rejoinder, Economica , Vol. 2, pp . 42~28; Coase, RH. and RF. Fowler.
1937. The Pig Cycle in Great Britain: An Explanation , Economica, Vol. 4, pp . 55--81;
Coase , RH. and RF . Fowler. 1940. The Analysis of Produ cer 's Expectations, Eco
nomica , Vol. 7, pp . 280-292.
4We wish to thank Professor R H. Coase for his kind comments on the model and
our findings.
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The variable LITTER is the number of piglets produced by a pregnant fe
male pig each month. With LITTER = 3.5 piglets per breeder per month
and a gestation period of 4 months , the size of each litter will be 14 piglets.

Two-thirds of the breeders are assumed to be female . The report states
that each female has on average 4 litters which equates to 16 months worth
of breeding throughout the life span of a breeder, assuming a GESTATION
of 4 months. With an average life span of 28 months for a breeder, this
leaves 12 months for the females in the breeder population to be receptive .
Twelve months divided by 28 months is the percentage of time of receptiv
ity. This percentage times two-thirds (the female percentage population of
breeders) gives the BREEDABLE STOCK figure of two-sevenths.

Subsequent to gestation, a FEED PERIOD and FATTENING period of, re
spectively, 3 and 5 months raise piglets to pigs that can either be sold for
bacon or used as breeders. The PIG FACTOR used in our model is simply
the total of feed and fattening period, Le., 8 months. Separating the FEED
PERIOD from the FATTENING period enables the model to be easily ex
panded to include variations in the age at which pigs can be slaughtered
and diverted to the bacon market from the porker market , which in reality
are somewhat separate.

The decision which route a pig will go-to breeding or slaughter-cle
pends on the price of feedstuffs. As the price of feed increases, farmers do
not want to produce more pigs, so they slow the rate of reproduction. This
price responsiveness is modeled as

with

INCEPTION RATE = .5 - (FEED PRICE/10) (1)

and

FEEDSTUFFS PRICE = 6 - (BACON PIG PRICE/FEED FACTOR) (2)

BACON PIG PRICE = IF 10 - (FATTENING/PIGFACTOR) < 2
THEN 2 ELSE lO-CFATTENING/PIG FACTOR) (3)

based on a simple extrapolation of data plotted in Coase and Fowler." The
prices for feedstuffs and bacon pigs are measured in £ per unit of feedstuffs
and £ per pig, respectively, and each of them depends on some factor that
we have chosen to properly scale the relationships. Each of these factors, in
turn, is discussed in more detail below.

Production cost, revenues, and profits are calculated in the module of Fig
ure 34.2. Virtually no information was available to estimate feed prices and
per capita feedstuffs consumption by pigs. As a result, the profit function is
unlikely to have the correct values but the shape of the curve is correct.

Run the model and you will find that it begins cycling at around 100
months, the time that the conveyors run through a full cycle and the pig

5Figure I, p . 151 in Coase, R.H. and R.F. Fowler. 1935. Bacon Production and the
Pig-cycle in Great Britain, Economica, Vol. 2, pp . 142-167.
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PROFIT FEEDPERIOD FAlTENlNG BREEDING

BACON PIGPRICE FEEDSTUFFS PRICE

PROFIT

PERCAPITA CONSUMPTION

FEEDPERIOD FATTENING BREEDING

BACON PIGPRICE FEEDSTUFFS PRICE
PERCAPITA CONSUMPTlON

FIGURE 34.2

population has time to adjust to its fluctuations . The sizes of the stocks are
shown in Figure 34.3. Corresponding relationships among fattening , gesta
tion, and feedstuffs prices are plotted in Figures 34.4 and 34.5. As Figure
34.6 shows, there is an inverse relationship between the behavior of feed
stuffs and bacon pig prices-when bacon pig prices are up , demand for

3: FATIENING2: SLAUGHTERHOUSE

40.00 of-------1-(\-11-- 1-1- 1

1: BREEDING

80.00 -

1.00 100.75 200.50 300.25 400.00

Months

FIGURE 34.3
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2

2: BACON PIG PRICE

1: 35 .00
2: 5 .00

1: FATTENING

1: 70.00
2: 10.00

1: 0.00
2: 0.00 -t-"-----r------r--------,.-------,

1.00 100.75 200.50 300 .25 400.00

Months

FIGURE 34.4

feedstuffs is low, and vice versa. The resulting implications for farmers '
costs of production and profit are displayed in Figure 34.7.

Figures 34.3 to 34.7 clearly illustrate that once the pig cycle is in full
swing, the length of each cycle is very nearly 2 years, as Coase and Fowler
argued. However, our model is based on several assumptions that are not
all directly derived from actual data . Along with assumptions about feed
stuffs prices and consumption of feedstuffs by pigs, a number of other
model specifications had to be either inferred from data plotted in graphs
of the original reports and papers, or assumed. Sensitivity analyses can
shed light on the implications of our assumptions.

2: BACON PIG PRICE1: GESTATION

1: 60.00
2: 10.00

1: 30.00
2: 5.00

1: 0.00
2: 0.00 +------;------i---..;........;....--i-------;

1.00 100.75 200.50

Months

300 .25 400.00

FIGURE 34.5
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1.00

FIGURE 34.6

100.75 200 .50

Months

300.25 400.00

Explore the implications of alternative assumptions about litter sizes, and
you should find that increasing litter size means equally frequent waves
with greater amplitude. A greater total population is realized with a greater
LITIERvalue . Sensitivity analysis for the breedable stock and for the incep
tion rate show similar results to those of larger litter sizes. This is as ex
pected since breedable stock size, litter size, and inception rate all deter
mine the rate at which piglets are generated.

Perhaps the least supported assumptions of the model are with respect to
the PRODUCTION FACTOR and PIG FACTOR. However, as Figure 34.8

1: PROF IT

100.00

0,00

1

1\~;<\3
lr-2

I
I
I
I
I

2: COSTS

1.00 100.75 200.50
Mon ths
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FIGURE 34.7
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FIGURE 34.8

shows, varying the PRODUCTION FACTOR between 12 and 18 simply
alters the amplitude of the pig cycle, not its periodicity. Similarly, Figure
34.9 shows for a PIG FACTOR ranging for subsequent runs from 6 to 12
that only the amplitude of the cycle is affected. So, even though these
numbers are purely speculative, the results are fairly robust to our assump
tions , and provide ample confidence to side with Coase and Fowler and
help us (finally) put to rest their debate with the Reorganisation Commis
sion for Pigs and Pig Products.

1-7: BREEDING
65.00 ., - - - - - - - - - - - - - - - - - - - - - - - ---,

35.00 ...----11/

100.75 200.50

Months

300.25 400 .00

FIGURE 34.9
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PIG CYCLE

BREEDING(t) = BREEDING(t - dt) + (FOR_SERVICE - CULL)

* dt
INIT BREEDING = 10

TRANSIT TIME 28
INFLOW LIMIT 00

CAPACITY = 00

INFLOWS:
FOR_SERVICE = PRODUCTION*SUPPLY {breeders per month}

OUTFLOWS:

CULL = CONVEYOR OUTFLOW

FATTENING(t) = FATTENING(t - dt) + (GROWTH - MARKET) *

dt
INIT FATTENING = 0

TRANSIT TIME 5
INFLOW LIMIT 00

CAPACITY = 00

INFLOWS :

GROWTH = CONVEYOR OUTFLOW

OUTFLOWS:
MARKET = CONVEYOR OUTFLOW

FEED_PERIOD(t) = FEED_PERIOD(t - dt) + (BIRTHS 

GROWTH) * dt
INIT FEED_PERIOD = 0

TRANSIT TIME = 3
INFLOW LIMIT = 00

CAPACITY = 00

INFLOWS :
BIRTHS = CONVEYOR OUTFLOW
OUTFLOWS :
GROWTH = CONVEYOR OUTFLOW

GESTATION(t) = GESTATION(t - dt) + (CONCEPTIONS 

BIRTHS) * dt

INIT GESTATION = 0

TRANSIT TIME 4
INFLOW LIMIT 00

CAPACITY = 00

INFLOWS:
CONCEPTIONS =
BREEDING*INCEPTION_RATE*LITTER*BREEDABLE STOCK
{inceptions per month}
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OUTFLOWS:

BIRTHS = CONVEYOR OUTFLOW

SLAUGHTERHOUSE(t) = SLAUGHTERHOUSE(t - dt) +
(SLAUGHTER - PROCESSING) * dt

INIT SLAUGHTERHOUSE = 0

TRANSIT TIME = 1

INFLOW LIMIT = 00

CAPACITY = 00

INFLOWS :

SLAUGHTER = (l-PRODUCTION)*SUPPLY {pigs to be

butchered per month}

OUTFLOWS:

PROCESSING = CONVEYOR OUTFLOW

SUPPLY(t) = SUPPLY(t - dt) + (MARKET - FOR_SERVICE 
SLAUGHTER) * dt

INIT SUPPLY = 0 {pigs}

INFLOWS:

MARKET = CONVEYOR OUTFLOW

OUTFLOWS:

FOR_SERVICE = PRODUCTION*SUPPLY {breeders per month}

SLAUGHTER = (l-PRODUCTION)*SUPPLY {pigs to be
butchered per month}

BACON PIG PRICE = IF lO-(FATTENING /PIG_FACTOR) < 2

THEN 2 ELSE lO-(FATTENING/PIG_FACTOR) {pounds per pig}
BACON_PRICE_DELAYED = DELAY(BACON_PIG_PRICE,l2)

BREEDABLE_STOCK = 2 /7 {pigs per breeding per time

period that are able to become pregnant}

COSTS = TOTAL_POPULATION*FEEDSTUFFS_PRICE*

PER_CAPITA_CONSUMPTION {pounds}

FEEDSTUFFS_PRICE = 6-(BACON_PIG_PRICE /FEED_FACTOR)

{pounds per unit of feed}

FEED_FACTOR = 2

INCEPTION_RATE = . 5- (FEEDSTUFFS_ PRI CE/ l O) {inceptions

per breeders}

LITTER = 3.5 {pigs per month per breeders}

PER_CAPITA_CONSUMPTION = . 05 {feed units per pig per
month}
PIG_FACTOR = 8

PRODUCTION = .4-(FEEDSTUFFS_PRICE /PRODUCTION_FACTOR)

{breeders per pigs}



34. Pig Cycle 347

PRODUCTION_FACTOR = 15

PROFIT = REVENUE - COSTS {pounds}

REVENUE = SLAUGHTER*BACON_PIG_PRICE {pounds}

TOTAL_POPULATION BREEDING+FATTENING+FEED_PERIOD

{pigs}
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Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.
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The program developed in this chapter determines how many items
should be performed at each station before the workers switch to their
other task. Such modeling is extremely valuable to designers of assembly
lines and for "just in time" production. Incidentally , "just in time" produc
tion comes from a desire to minimize the capital of the inventory (the parts
waiting for assembly). Since an improperly made part arriving just in time
would stop the whole production process, quality control at the sub
assembly plant is an absolute necessity. So, production quality seems to be
a product of cost-minimizing efforts rather than an ephemeral goal or an in
herent characteristic of a producer.

To model the assembly line as described above, first layout its general
structure as shown in Figure 35.1 with only the stocks and flows. Next,
specify STATION 1, STATION 2, and STATION 3 as ovens . Do so by
double-clicking on the reservoir symbols and checking the Oven button.
Start with STATION 1. Set its cook time to 4 and the capacity of the oven,
its fill time, and initial value each to 1. This station can now take on one
unit each time period it is empty and a non-zero inflow occurs . It will then
process that entry for 4 minutes . Note that when you click OK, the question
mark in the stock for STATION 1 should disappear, and with it the question
mark in the outflow should disappear as well. The outflow from STATION
1 (and similarly of the other ovens and the conveyor for TRANSFER 1 2) is
automatically determined by the logic internal to the definition of the
queue and conveyor. Proceed to specify the other stocks and flows of the
model as discussed above and shown in Figure 35.2.

HOlDINGW1

f:j1====:===Cj

FROM WAREHOUSE

STATION 1

STATION 2 HOLDING 12 TRANSFER 12

LOAD 4 LOAD2

LOADS

FIGURE 35.1

LOAD 6 LOAD 7



LOADS

FIGURE 35.2

LOAD6

35.1 Basic Model 353

The results of our model , presented in Figure 35.3, show a stepwise in
crease in finished products, and the changes in delivery and holding stages .
The model assumes that the workers get no break and they can 't screw up
in their assembly plant. They are robotic . Add humanity to this model. Let
them take preplanned breaks and let them have a finite error rate. You may
also need an inspector who supervises the production process. If you wish
to keep track of the order in which goods are produced, replace the HOLD
ING . . . stocks by Queues.

1:
2:
3:

FIGURE 35.3

2: FINISHED PRODUCT

25 .00
Hours

3: HOLD ING 2 3

500 .00
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ASSEMBLY LINE

FINISHED_PRODUCT(t) = FINISHED_PRODUCT(t - dt) +
(LOAD_7) * dt
INIT FINISHED_PRODUCT = 0

INFLOWS :
LOAD_7 = CONTENTS OF OVEN AFTER COOK TIME, ZERO

OTHERWISE

HOLDING_l_2(t) = HOLDING_l_2(t - dt) + (LOAD_3 

LOAD_4) * dt
INIT HOLDING_l_2 = 0

INFLOWS:
LOAD_3 = CONVEYOR OUTFLOW

OUTFLOWS :
LOAD_4 = IF PERSON_ONE = 2 THEN 1 ELSE 0

HOLDING_2_3(t) = HOLDING_2_3(t - dt) + (LOAD_5 

LOAD_6) * dt
INIT HOLDING_2_3 = 0

INFLOWS:
LOAD_5 = CONTENTS OF OVEN AFTER COOK TIME, ZERO

OTHERWISE
OUTFLOWS :
LOAD_6 = IF (PERSON_TWO = 1) THEN 1 ELSE 0

HOLDING_W_l(t) HOLDING_W_l(t - dt) + (FROM_WAREHOUSE
- LOAD_i) * dt
INIT HOLDING_W_l = 5

INFLOWS :
FROM_WAREHOUSE = IF (PERSON_TWO =2) AND (TIME <

QUIT_TIME) THEN 5 ELSE 0

OUTFLOWS:
LOAD_l = IF (PERSON_ONE = 1) THEN 1 ELSE 0

STATION_l(t) = STATION_l(t - dt) + (LOAD_l - LOAD_2) *
dt
INIT STATION 1 = 1

COOK TIME = 4
CAPACITY = 1
FILL TIME = 1

INFLOWS :
LOAD_l = IF (PERSON_ONE 1) THEN 1 ELSE 0
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OUTFLOWS:

LOAD_2 = CONTENTS OF OVEN AFTER COOK TI ME, ZERO
OTHERWI SE

STATION_ 2 ( t ) STATION_2(t - dt) + (LOAD_4 - LOAD_5) *
dt

I NIT STATI ON_2 = 0

COOK TI ME = 5

CAPACITY = 1

FI LL TIME = 1
I NFLOWS :

LOAD_4 = IF PERSON_ONE = 2 THEN 1 ELSE 0
OUTFLOWS :

LOAD_5 = CONTENTS OF OVEN AFTER COOK TIME, ZERO
OTHERWISE

STATI ON_3(t) STATION_3 (t - dt) + (LOAD_6 - LOAD_7 ) *
d t
I NIT STATION_3 = 0

COOK TIME = 14

CAPACI TY = 1

FILL TIME = 1
I NFLOWS:

LOAD_6 = IF (PERSON_TWO = 1 ) THEN 1 ELSE 0
OUTFLOWS:

LOAD_7 = CONTENTS OF OVEN AFTER COOK TIME , ZERO
OTHERWISE

TRANSFER_1_2( t) TRANSFER_1_2( t - dt) + (LOAD_2 -
LOAD_3 ) * dt
I NIT TRANSFER_ 1_2 = 0

TRANSIT TIME = 5
INFL OW LIMIT = 00

CAPACI TY = 00

I NFLOWS:

LOAD_2 = CONTENTS OF OVEN AFTER COOK TI ME, ZERO
OTHERWISE
OUTFLOWS :

LOAD_3 = CONVEYOR OUTFLOW

PERSON_ ONE = IF (STATI ON_1 = 0 ) AND (STATION_2 = 0)

AND (HOLDING_1_2 = 0) AND (HOLDING_W_ 1 ~ 0) THEN 1 ELSE
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IF (STATION_2 = O) AND (STATION_1 = O) AND

(HOLDING_1_2 * O) THEN 2 ELSE 0

PERSON_TWO = IF ((HOLDING_2_3 * O) AND (HOLDING_W_1 >

10)} OR ((HOLDING_2_3 * O) AND (TIME > QUIT_TIME)} THEN
1 ELSE IF HOLDING_W_1 ~ 10 THEN 2 ELSE 0
QUIT_TIME = 190

35.2 Car Assembly Line'

Here we model an auto assembly line where two labor teams must accom
plish the following five tasks: engine manufacuring 00 minutes) , chassis
manufacturing (20 minutes) , engine parts shipping (2 minutes) , chassis parts
shipping (2 minutes) , and finally, auto assembly 05 minutes), where time is
the time per product unit. The labor teams are given three breaks per shift:
two 30-minute morning and afternoon breaks and one 60-minute meal
break. Each labor team has two tasks. The distribution of these tasks be
tween the teams will affect the production rate. For any run of the model,
workers have a particular set of production priorites, switching to fill the
three parts inventories when inventory levels become critically low. Worker
scheduling must be consistent, not requiring them to do two things at once.

Naturally, the first question is: How many cars can this process produce
under differing labor team assignments? And second: Can the assembly line
be made more efficient if the distribution of tasks between the two labor
teams is changed?

The use of the STELLA ovens is prominent in this model. Ovens can be
set to take in any number of units at once , with an adjustable maximum ca
pacity, and then process (hold) the item(s) for a specified time, whereupon
the item(s) are released to an inventory stock for the next stage .

The labor team controls are set such that they work only when Working
Hours equals 1, and this variable is set to 0 over the lunch hour and for two
breaks. If a task is in progress when lunch or a break time is reached, the
workers complete the current task before stopping their work.

The data for this model are not actual data but made up for the purposes
of illustrating the use of parallel and series "production chain" models in in
dustry . Here the engine and chassis are produced in parallel, followed by
their assembly into a single unit, whose assembly rate depends on the
availability of engines, chassis, and labor (Fig. 35.4).

Figure 35.5 illustrates the output of the model's first run for the course of
one work day. Here , the model is set up so that labor team 1 is taking care
of engine and chassis manufacture while labor team 2 completes the other
tasks. More specifically, team 1 would build engines as long as the parts are

lWe thank Mark Hersam for his work on this model.
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available and no engines are in storage; otherwise, team 1 would manufac
ture chassis, assuming that chassis parts are available . On the other hand,
team 2 would fill the engine parts or chassis parts stocks if either is empty;
if the engine and chassis parts stocks are not empty, team 2 would assem
ble cars if both the chassis and engine were ready. At the end of one day,
the total number of cars produced equals 13 automobiles.

Would a change in the the distribution of labor allow for more cars to be
built in one day? Figure 35.6 shows the results if labor team 1 is in charge
of engine manufacturing and auto assembly, while labor team 2 takes care
of the rest of the work. Now, 15 cars are built in the course of one day. Al
tering the distribution of labor, automobile production was increased by
15.4 percent. Through careful positioning of labor, assembly lines can be
made more efficient at no additional cost.
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Examine the chassis and engine stocks in this model. The chassis stocks
seem to grow indefinitely, while the engine stocks oscillate from 0 to I !
Check this statement with a graph of these variables. This is not good in
ventory control. Apparently there is an engine shortage in the current
model. Can you improve production by further changing the allocation of
labor? Don 't use any more labor-minutes than you do now . .. just try to
rallocate them. If engine produ ction should be increase d, in which stage is
it most efficient to do so? Team 2 does the delivery of engines when it is
not delivering parts and building chassis. Should we conside r a thrid labor
team? What data are mssing here for a complete optimization? Could the
breaks be scheduled at different times to improve produ ction efficiency?

i
540.00405.00270.00

2: WORKINGHOURS

2

135.00

0.00
0.00 1- ......--...I-~----.l.-,r--.L....---""'"T...J....2 --,

0.00

1: AUTOWAREHOUSE

1: 20.00 2- - ----.,
2: 1.00

1: 10.00
2: 0.50

1:
2:

Minutes

FIGURE 35.6



35.2 Car Assembl y Line 359

CAR ASSEMBLY

AUTO_ASSEMBLY( t) = AUTO_ASSEMBLY(t - dt) + (AUTO_LOAD

- AUTOS_ STORED) * d t
I NI T AUTO_ASSEMBLY = 0

COOK TI ME = 1 5

CAPACITY = 1
FILL TIME = 1

I NFLOWS :
AUTO_LOAD = IF LABOR_TEAM_1 = 2 THEN 1 ELSE 0

OUTFLOWS :
AUTOS_STORED CONTENTS OF OVEN AFTER COOK TIME, ZERO

OTHERWISE

AUTO_WAREHOUSE(t) AUTO_WAREHOUSE(t - dt) +
(AUTOS_STORED) * dt

IN IT AUTO_WAREHOUSE = 0
INFL OWS :
AUTOS_STORED = CONTENTS OF OVEN AFTER COOK TIME, ZERO

OTHERWISE

CHASSI S_ DELIVERY( t) = CHASSIS_ DELIVERY(t - d t ) +
(CHASSIS_WAREHOUSE - CHASS IS_PARTS_LOAD) * d t

INIT CHASSIS_ DELI VERY = 0

COOK TIME = 2

CAPACITY = 10

FILL TIME = 1
INFLOWS:
CHASSIS_WAREHOUSE = IF LABOR_TE AM_2 = 3 THEN 10 ELSE 0
OUTFLOWS:
CHASS IS_ PARTS_LOAD = CONTENTS OF OVEN AFTER COOK TIME,
ZERO OTHERWI SE

CHASSIS_MANUFACTURING(t) = CHASSIS_MANUFACTURING(t 

dt) + (CHASSIS_LOAD - CHASS I S_STORED) * dt

INIT CHASSI S_ MANUFACTURI NG = 0

COOK TIME = 20

CAPACI TY = 1

FILL TIME = 1

I NFLOWS :

CHASSI S_LOAD = IF LABOR_TEAM 2 = 1 THEN 1 ELSE 0
OUTFLOWS :

CHASSIS_ STORED = CONTENTS OF OVEN AFTER COOK TIME,
ZERO OTHERWISE
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CHASSIS_PARTS(t) = CHASSIS_PARTS(t - dt) +
(CHASSIS_PARTS_LOAD - CHASSIS_LOAD) * dt
INIT CHASSIS_PARTS 0
INFLOWS:

CHASSIS_PARTS_LOAD CONTENTS OF OVEN AFTER COOK TIME,
ZERO OTHERWISE

OUTFLOWS:

CHASSIS_LOAD = IF LABOR_TEAM_2 = 1 THEN 1 ELSE 0

CHASSIS_STORAGE(t) = CHASSIS_STORAGE(t - dt) +
(CHASSIS_STORED - CHASSIS_USED) * dt

INIT CHASSIS_STORAGE = 0

INFLOWS :

CHASSIS_STORED = CONTENTS OF OVEN AFTER COOK TIME,
ZERO OTHERWISE
OUTFLOWS :

CHASSIS_USED = IF AUTO_LOAD=l THEN 1 ELSE 0

ENGINE_DELIVERY(t) = ENGINE_DELIVERY(t - dt) +
(ENGINE_WAREHOUSE - ENGINE_PARTS_LOAD) * dt

INIT ENGINE_DELIVERY = 0

COOK TIME = 2
CAPACITY = 10
FILL TIME = 1

INFLOWS :
ENGINE_WAREHOUSE = IF LABOR_TEAM_2 = 2 THEN 10 ELSE 0
OUTFLOWS:
ENGINE_PARTS_LOAD = CONTENTS OF OVEN AFTER COOK TIME,
ZERO OTHERWISE

ENGINE_MANUFACTURE(t) = ENGINE_MANUFACTURE(t - dt) +
(ENGINE_LOAD - ENGINES_STORED) * dt

INIT ENGINE_MANUFACTURE = 0

COOK TIME = 10

CAPACITY = 1
FILL TIME = 1

INFLOWS:
ENGINE_LOAD = IF LABOR_TEAM_1 = 1 THEN 1 ELSE 0
OUTFLOWS :
ENGINES_STORED CONTENTS OF OVEN AFTER COOK TIME,
ZERO OTHERWISE
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ENGINE_PARTS(t) = ENGINE_PARTS(t - dt) +
(ENGINE_PARTS_LOAD - ENGINE_LOAD) * dt

INIT ENGINE_PARTS = 0

INFLOWS :

ENGINE_PPARTS_LOAD = CONTENTS OF OVEN AFTER COOK TIME,

ZERO OTHERWISE

OUTFLOWS:
ENGINE_LOAD = IF LABOR_TEAM_l = 1 THEN 1 ELSE 0

ENGINE_STORAGE(t) = ENGINE_STORAGE(t - dt) +
(ENGINES_STORED - ENGINES_USED) * dt

INIT ENGINE_STORAGE = 0

INFLOWS :
ENGINES_STORED = CONTENTS OF OVEN AFTER COOK TIME,

ZERO OTHERWISE

OUTFLOWS:

ENGINES_USED IF AUTO_LOAD=l THEN 1 ELSE 0

LABOR TEAM_l = IF (( ENGINE_MANUFACTURE = 0) AND

(AUTO_ASSEMBLY = 0) AND (ENGINE_PARTS > 0) AND

(ENGINE_STORAGE = 0) AND (WORKING_HOURS = 1)) THEN 1
ELSE IF ((AUTO_ASSEMBLY = 0) AND (ENGINE_MANUFACTURE

0) AND (WORKING_HOURS = 1) AND (PARTS_AVAILABLE = 1) )

THEN 2 ELSE 0
LABOR_TEAM_ 2 = IF ((CHASSIS_PARTS = 0) AND

(WORKING_HOURS = 1) AND (CHASSIS_MANUFACTURING = 0) AND

(CHASSIS_DELIVERY = 0) AND (ENGINE_DELIVERY = 0)) THEN
3 ELSE IF ((ENGINE_PARTS = 0) AND (WORKING_HOURS = 1)
AND (CHASSIS_MANUFACTURING = 0) AND (CHASSIS_DELIVERY =
0) AND (ENGINE_DELIVERY = 0)) THEN 2 ELSE IF

((CHASSIS_PARTS>O) AND (CHASSIS_MANUFACTURING = 0) AND
(CHASSIS_DELIVERY = 0) AND (ENGINE_DELIVERY = 0) AND
(WORKING_HOURS = 1)) THEN 1 ELSE 0
PARTS_AVAILABLE = If(CHASSIS_STORAGE > 0 AND
ENGINE_STORAGE > O)THEN(l)ELSE(O)

WORKING_HOURS = IF ((TIME > 120 and TIME < 150) OR

(TIME > 240 and TIME < 300) OR (TIME > 420 and TIME <

450)) THEN 0 ELSE 1
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Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.

3
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M*d2Y/d2t = M*g = weight (2)

Here, g is the acceleration of gravity. It is the one-way attraction by which
the Earth pulls on the weight. The weight at rest has an inertial force

(3)

so the alternate expression for any weight (e .g., yours) is its mass times g.
To solve this second order differential equation in STELLA, we use the

substitution

Then

q = dY/dt (4)

(5)

The diagram (Fig. 36.2) and model equations show how to arrange such a
description. It can be done for any order differential equation.

Check out the falling rock model. Set A = O. Run the model and note
how the velocity continues to grow (Fig. 36.3). Run the model again with
different initial velocities . The velocity keeps growing (linearly) because
there is no air resistance.

Abstracting away from air resistance may be a convenient procedure to
develop and test our model. However, we know from many real-world ex
periments that air resistance may be significant. Therefore, we include
some air resistance in our model. The simplest way to do that is to add in a
force that is proportional to the velocity of the weight : the faster it falls, the
greater the force of air resistance. Now the balance of forces shows that the
mass of the weight matters, where before it did not (Fig. 36.4) Try adding
in the air resistance (A = 10) and what do you find?
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The object reaches a terminal velocity, its acceleration goes to 0 if given
enough falling time. Actually, it isn't so much the mass of the object alone
that causes our model to be sensitive to the mass dropped, but shape plays
a significant role, too. Obviously, a feather dropped from the building
would reach terminal velocity almost immediately . A feather and a rock of
the same weight would not fall at the same rate. These differences in the
way different objects fall or glide are reflected in the value of A.

Where does the A come from? Its value was determined from carefully
measured actual experiments such as the one we have been talking about.
So the engineer "forces" his or her theory to work by finding the experi-
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mental values of the theoretical constants. Measurements of these constants
are frequently affected by a myriad of influences on the respective objects
or systems. Thus, it may very well happen that measurements of these theo
retical constants are incorrect.

In order to better understand the model , try turning the falling stone into
a falling rocket with a specific force or thrust and that linearly loses half its
weight (the fuel) in some specified time. And then try to make the coeffi
cient A depend on the velocity.

Try throwing the rock straight up from the surface of a lake and then pro
ject its path for 10 seconds after it hits the water. Let the water have 10
times the velocity-resisting effect as the air.

FALLING ROCK

V(t) = V(t - dt) + (V_DOT) * dt
INIT V = 0 {Integral of the acceleration dv /dt =
v_dot. v_dot becomes v, the velocity of the falling
weight. Note that also v = = y_dot.}
INFLOWS :
V_DOT = 3 2 . 2 - A*V/M {This equation comes from the
conservation of forces acting on the body : the inertial
force
(up), the air resistance force (up) and the weight
(down) . }

y(t) = y(t - dt) + (Y_DOT) * dt
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INIT Y = 0 {Integral of dy/dt
distance of fall.}
INFLOWS:
Y_DOT = -V
DOCUMENT : The negative sign means that the rock is
falling downward .

A = 10*1 {The nonzero constant (pounds-seconds A2/foot)

is the coefficient which converts velocity into a drag
force due to air resistance.}
M = 50 {The mass of the falling object = weight /g.}

36.2 Projectile Motion

In the previous section we modified the model of a falling rock into a
model of a falling rocket, losing mass as it falls. Why let rocks fall when one
could direct them and send them off with an initial velocity?The problem is
really the same as in the one-dimensional case , complicated by our need to
keep track now of both the height and distance reached by the projectile.
The relevant forces are illustrated in Figure 36.5.

Now we need two state variables, one for the horizontal distance, X, and
one for the vertical distance, Y. The initial velocity (100 feet per second)
and the firing angle must be specified by the rocket scientist launching the
object. The model for this problem is shown in Figure 36.6.

Set A = 0 to find the path with no air resistance . The result is shown Fig
ure 36.7. Vary the firing angle to find the maximum height and maximum
horizontal distance possible with this initial velocity. Can you verify this
angle using the force conservation equation and a little calculus?
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Now set A = 15 and note the difference in the path. We plotted our re
sults in Figure 36.8. It is no longer symmetrical! But it does fit our intuition
a little better . Now find the firing angle for maximum horizontal reach. Can
you verify the result analytically?

Finally, suppose that half the projectile weight is propellant with a thrust
of 1 pound per pound of propellant burned per second and it burns at a
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rate of 10 pounds per second. Firing the projectile with the given initial ve
locity ignites the propellant. Now what is the resulting path? This problem
is more difficult than it generally seems. Be sure that you remember how
Newton specified the inertial force : "The rate of alteration of motion is ever
proportional to the motive force impressed."

Newton wrote in Latin but thought in English. His Latin writings were
then translated back into English by someone else . Given this bizarre lin
guistic history and realizing that he wrote in the mid 1600s at the beginning
of the mechanical age , it is no wonder that he is hard for us to understand.
He is saying that the inertial force is equal to the time rate of change of the
momentum (mass times velocity) or d(M*V)/dt. If the mass is constant, we
have the familiar

F = M*A (6)

but in the rocket problem we do not have a constant mass . This is the prob
lem that NASA faces when it fires a shuttle, except that the shuttle does not
have an initial velocity . At least, we can abstract away from the initial ve
locity given by the Earth's rotation provided we are planning an interplan
etary trip. In our model, if we include the Earth's rotation, our projectile
would not fly. You can fix that problem by shuting off the initial velocity
and increasing the thrust force .

Imagine a wind is blowing directly against the x direction and that the
wind velocity drops off to 0 at the ground. Make use if a logarithmic func
tion to model the change in velocity of the wind. How would such a wind
affect the path of the projectile?
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PROJECTILE MOTION

P(t) = P(t - dt) + (P_DOT) * dt

INIT P = 100*SIN(FIRING_ANGLE) {initial vertical

v e l oc i t y . }

INFLOWS:

P_DOT = -A*P /M - 32.2

Q(t) = Q(t - dt) + (Q_DOT) * dt

INIT Q = 100*COS(FIRING_ANGLE) {initial velocity in
the horizontal direction .}

INFLOWS:
Q_DOT = -A*Q /M

X(t) = X(t - dt) + (X_DOT) * dt

INIT X = 0

INFLOWS :
X_DOT = Q

y(t) = y(t - dt) + (Y_DOT) * dt

INIT Y = 0

INFLOWS:
Y_DOT = P

A = 15

FIRING_ANGLE

horizontal.}

M = 50

50*PI /180{radians , angle with the

36.3 Mass-Damper-Spring

Let us assume a weight that hangs on a spring that exerts a vertical force .
That force is proportional to, and oriented in, the same direction as the
stretch . We can model this system of mass-damper-spring by resorting
again to Newton and the conservation of forces. We make the distance trav
eled by the mass equal to Y (positive downward) and realize that the
weight force is just cancelled by the force of the initial extension of the
spring. So the 0 for the displacement Y is where the weight is at rest when
hanging on the spring. Therefore, when a positive Y displacement is seen,
the spring force (K"Y), the damping force (q"dY/dt = q"V), and the inertial
force (M'dv/dt) all act upward. Thus,

dV/dt = -g"V/M - K"Y1M + P1M, (7)
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from the conservation equation. P is an external force that can be set up any
way you wish. Here we choose to make it a harmonic force, varying as the co
sine of an angle that is a function of time. The relevant forces are illustrated in
Figure 36.9 and the corresponding STELLA model is shown in Figure 36.10.

The choice of DT in this problem is nontrivial; use as the rule for the
choice of DT: DT = 1/2 the smallest time constant in the problem. Here this
turns out to be DT = 0.02. Try running the model with a DT = 1, and ob
serve the results .

It is hard to tell when setting up a new and complex problem whether
the weird results are from the wrong choice of DT or some programming

K

FIGURE36.10
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error. Most often this question is easily resolved by trial and error: keep cut
ting the DT in half and run the model again. If this improves the appear
ance of the result, then you are probably doing the correct thing .

Figure 36.11 shows how the mass swings over time, moving from the in
itially almost erratic behavior into a constant bounce up and down. The same
process can be shown graphically by plotting velocity versus distance. At
early stages the mass-damper-spring system follows a seemingly unsystem
atic pattern that corresponds to the excentric curves in Figure 36.12. After
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some time, a constant pattern of velocity-distance relationships establishes it
self, leading to the almost uniform circle in the lower part of the graph .

Run the model that you have constructed with the external force and the
damping force turned off. Then tum each on and note in tum the effects.
Any feature of this model can overwhelm the others: the spring can be so
large that it dominates the external and damping force, for example.

MASS-DAMPER-SPRING

V(t) = V(t - dt) + (V_DOT) * dt

INIT V = 0 {v = velocity of the mass . This problem has
a weight of mass m hanging on a spring with spring

constant k. It is displaced a distance y with velocity

v. The force of the weight is cancelled by the intial

spring displacement.}

INFLOWS:

V_DOT = -K /M*(Y-BUMP) + l*P /M - Q/M*(Y_DOT

DERIVN(BUMP,l)) {Remove zeros to get the effects of the

exteranl forcing and the damping . The inertial force ,
m*v_dot , opposes the direction of motion .}

Y(t) = Y(t - dt) + (Y_DOT) * dt

INIT Y = 0 {Initial velocity. This problem will run
only on Runga-Kutta . The time constant is l /sqrt(k /m)
or about 1 /8 sec . So try DT = about 1 /16 as a start .}

INFLOWS:
Y_DOT = V {The basic differential equation is :

d2 (x) / d 2 (t)

- k/m*x + P - q /m* v.}

BUMP = IF TIME ~ 8 THEN (1 - COSWAVE( .l,l)) ELSE 0

K = 12 {Spring constant , weight /unit extension of the

spring.}
M =.2 {mass , weight /gravity acceleration .}
P = 5*COS(3*TIME) {Th is is the exciting f orce. The

natural frequency of the system is sqrt(k /m) .}

Q = .50 {Damping coefficient. Damping slows the

velocity as would air resistance , for example.}

36.4 Mechanical Amplifier

Perhaps you can recall the childhood experience on the playground swing.
Without any understanding of the physics behind the process, every pre-
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schooler learns quickly to "pump" the swing in order to increase and sus
tain the swinging motion. The pumping process requires that the swingers
quickly pull themselves up to a full sitting position as near the bottom arc
of the swing as possible. To do this, the swinger lays out flat at the extreme
positions of the arc. The swinger pulls on the swing ropes to very quickly
raise themself to the full sitting position just as they cross the bottom of the
arc, and then quickly layout flat again as the swing begins to rise. It takes
energy and arm strength to do this as the swinger is pulling against not only
their body weight but also the centifugal force, which reaches a maximum
at the bottom of the arc. Through this pulse , the swinger inserts energy into
the process that allows them to rise higher on the backswing than pre
viously, until such a time as the air resistance and mechanical friction
energy dissipate the input pulse .

The principle can be demonstrated in the classroom with a small board
fixed to the desk at one end. Through a small hole in the free end a string
is passed to a small iron weight (the swing seat and the swinger). The in
structor holds the upper end of the string in one hand and gives the weight
a small push with the other. The instructor pulls on the string in rhythm
with the weight's cycle; the weight is pulled up slightly and quickly just as
it passes directly under the board, and it is let out fully and quickly when
the weight has just passed the bottom of the arc. The swinging amplitude of
the weight will then increase.

To model this process, we develop the equation of motion for the pen
dulum swing . From engineering mechanics, the transverse inertial force
is M·[L*d2(PHI)/d2t + 2·dLldt·d(PHI)/dt), where PHI is the angle of rota
tion from the vertical, Q is the damping coefficient due to air resistance, M
is the mass of the seat and rider, and L is the (varying) length of the
string from the hinge to the center of mass. The transverse air resistance
force is Q·L·d(PHI)/dt and the transverse component of the weight is
M·g·SIN(PHI), with g as the gravity constant. The balance of these forces
(in the same direction when PHI is increasing) gives a second-order differ
ential equation that can be decomposed into two first-order differential
equations:

d2(PHI)/d2t = dY/dt = -I 2·d(L)/dt/L + Q/M)·Y -g!L·SIN(PHI) (8)

and

d(PHI)/dt = Y (9)

These equations are solved simultaneously in STELLA (Fig. 36.13). The
principles of their derivation can be found in many mechanics textbooks.'

If L is not a constant but instead varies cyclically with the cycle of the
swing such that it is the shortest when passing the low point and longest at
the extremes of PHI, then the swing is pumped. It is pumped by the energy

lFor example: Beer, F. and E. Johnson, Statics and Dynamics, McGraw-Hill, New
York, 1962, eq. 11.46, p. 432.
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y

FIGURE 36.13

needed to shorten the swing when the centifugal force is greatest. Length
ening the pendulum extracts energy from the system. Therefore the pump
ing should be done in a very short period near the lowest position of the
swing. The swing responds to this energy input by increasing its arc until
the air resistance (damping) energy loss overcomes the pumping energy
input. The swing retains (approximately) its arc as long as the rider can
continue the energy input. Note how it was necessary to determine the
maximum angle of the swing so that the swinger has a goal. If the maxi
mum swing angle is greater than the goal, pumping is suspended.

Figure 36.14 shows the pulsed shortening of the effective swing length
and the resulting cycles of the swing. The pulsing is intermittent and irreg
ular (due to the limits set in L) but they keep the swing in motion .

Systems with this sort of a pulse input of energy are sometimes called
"kicked" systems. Certain electronic and electrical systems can exhibit such
oscillating behavior when kicked repeatedly by a voltage or current pulse .'

This is a complex form of the simple pendulum problem. There are many
other interesting variations on the simple pendulum. Do you know that you
can make a pendulum vibrate steadily back and forth, in an inverted position
if you shake its suspension point vertically in the right frequency and ampli
tude range? Try to write the equations of motion of this problem. It's tough
and the solution in STELLA is trial and error. But the phenomenon is real.

Yurke, B. 1991. Back Action Evasion as an Alternative to Impedance Matching,
Science , Vol. 252, pp. 528-532.
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MECHANICAL AMPLIFIER

PHI(t) = PHI(t - dt) + (d_PHI \dt) * dt

INIT PHI .5

INFLOWS:

d_PHI\dt = Y

PHI_MAX(t) = PHI_MAX(t - dt) + (D_PHI_MAX) * dt
INIT PHI_MAX = .01

INFLOWS:
D_PHI_MAX = IF (d_PHI \dt < . 03 ) AND (d_PHI \dt > 0)

THEN (ABS(PHI) - PHI_MAX) /dt ELSE 0

Y(t) = Y(t - dt) + (dY \dt) * dt

INIT Y = . 2

INFLOWS:

dY\dt = - 32.2 /L*SIN(PHI) - Y*(Q /M+2*DERIVN(L,1) /L)

L = if (PHI_MAX < .6 ) AND ((PHI>-.OOl) AND (PHI

< . 001 ) ) THEN L_MEAN - 1 ELSE L_MEAN

L_MEAN = 10

M 10

Q = .5
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Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.

3
B. Hannon et al., Dynamic Modeling
© Springer Science+Business Media New York 2001
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to a much higher level, which causes slow decline in the foliage. Again, at a
critical foliage level, the insect population drops suddenly down to its
former, lower equilibrium level, allowing the foliage to begin growing again.
This is a recurring cycle, and it is the long-term equilibrium condition. But it
is deterministic, unlike the chaotic results that we will turn to now.'

There are two different styles of modeling chaos in STELLA. The first are
descrete models that are sensitive to the time step DT, the second are con
tinuou s function models. We discuss these in the following sections.

37.2 Jenson Chaos

In order to show that chaotic system behavior can occur even in some of
the simplest models, we return to a population model similar to the one
discussed at the beginning of this book. Let us be more general and refer to
the state variable as X and the net flow as DELTA X. The exogenous pa
rameter influencing the net flow is A. The net flow DELTA X updates the
stock X:

DELTA X = Xit + DT) - X(t)

The "reproductive rule" in this model is

X(t + DT) = A*X(t)*O - X(t))

and , consequently,

DELTA X = A*X(t)*O - X(t)) - Xtt)

(1)

(2)

(3)

The STELLA model of this problem has as its main component the DELTA
X equation updating the stock X at each period of time. We also calculate
the stock X delayed by DT as LAG X. To compare the dynamics of this
model with a totally random process we further calculate a random number
RAND and its delayed value (Fig. 37.1).

Run the model with an initial X of 0.1, DT = 1 and A = 1. Then, raise for
subsequent runs A to 1, 2 , 3, and then 4, and watch X (Fig. 37.2). Now lower
the time step to DT = 0.5 and find the value for A at which chaos begins
again. Keep shortening DT until you note that the critical A gets extremely
large. This model shows you that the A for DT = 0 is infinity. This result is
correct since chaos is typically not noticed on the continuous level. Chaos oc
curs on the continuous level only if you are stuck with a specific DT in your
particular problem and the parameters lie within the critical range.

Use the model with DT = 0.5 to identify the critical A values . You will
find that for A < 3.0 there is one solution, namely the logistic; for 3.0 < A <
3.4 there are two solutions; for 3.4 < A < 3.5 there are four solutions; for A

'Fo r a model of spruce budworm dynamics and oth er examples of catastrophe
see Hannon, B. and M. Ruth (1997) Modeling Dynamic Biological Systems, Springer
Verlag, New York .
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LAG X

RAND

FIGURE37.1

DELAYRAND

> 3.57 there is essent ially an infinite number of solutions (chaos) with nota
ble exce ptions (try A = 3.83). The upshot of this model is that as A rises to
3.57 (and DT = 1), increasing bifurcation is seen but the number of solu
tions for X is finite. For A> 3.57, one cannot predict what the final equilib
rium value will be and even whether there will be a finite or infinte number
of solutions: there is no definite set of equilibrium values . However, there
seem to be values that are "visited" more frequently than others. '

1: X

1.0

0.5

.00

FIGURE 37 .2

2:X

10.00

3:X

4

4:X

1

30.00

4

40.00

2For a full discussion of this and other vers ions of chaos, see Jenson, R.V. 1987.
Classical Chaos, American Scientis t, Vol. 75, pp . 168-181.
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1:X v.LAG X

1.00

LAGX 0.50

1.000.50
X

O.OO-fl'C;;;....-.....,~---r----r---....,

0.00

FIGURE 37.3

So, how do you tell if the phenomena you note from a model is chaotic
or random? After all they both seem equally unpredictable. Try this: Plot X
against X(t-DT) for the above problem and for the function X = RAN
DOM(O,l). The first plot (Fig. 37.3) reveals the parabolic nature of the
population function , and the second plot (Fig. 37.4) is truly random. So
chaos is unpredictable but not so unpredictable as a truly random process.

1: RAND v. DELAY RAND

1.00

DELAY RAND 0.50

1.0(0.50
RAND

O.OO-+-....::;.-.....,~---r----~-~....,

0.00

FIGURE 37.4
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It is rather like saying that Anne has a travel schedule that is so unpredicta
ble that I don't know whether she will be in California, South Dakota, or
West Virginia next week, versus , I don't know which of the 50 states she
will be in next week.

JENSON CHAOS

X(t) = X(t - dt) + (DELTA_X) * dt
INIT X = .1

INFLOWS:
DELTA_X = A*X*(l - X) - X {X_t plus one - X
X}

A = 4
DELAY_RAND = DELAY(RAND,DT)

LAG_X = DELAY(X,DT)

RAND = RANDOM(O,l)

37.3 Lorenz Chaos

delta

Much of the effort of dealing with nonlinearities goes back to Edward Lor
enz, who simulated weather patterns on a computer. In 1961, Lorenz found
inconsistencies in his weather models that are now known as the first rec
ognized instances of chaos. He simplified his equations into the three
shown in the model of this section.' They are realized now as chaos in con
tinuous functions as opposed to the previous example, which is tied to dis
crete phenomena.

For the model, the parameters P, R, and B are given exogenously to
gether with the initial conditions of the stocks X, Y, and Z (Fig. 37.5). The
flows are specified by the following differential equations:

dX/dt = P*(Y - X)

dY/dt = (R-Z)*X - Y

dZidt = X*Z - B*Z

(4)

(5)

(6)

3For a good description of Lorenz's encounter of chaos see Gleick,]. 1988. Chaos:
Making a New Science, Penguin Books, New York. For more detail see : Grebogi, c.,
E. Ott, and]. Yorke. 1987. Chaos , Strange Attractors and Fractal Basin Boundaries in
Non Linear Dynam ics, Science, Vol. 238, pp. 632-638.



37.3 Lorenz Chaos 381

R

FIGURE 37.5

Run the model with a DT of .0005 and set for consecutive runs R = 16, 22,
28, 34,40. The results are shown in Figure 37.6. Then choose a DT = .005,
run the model again with the previous series of values for R and compare
the results. Can you make a qualitative statement about the system behav 
ior as R increases and/or DT decreases? Assess the validity of your state
ment with further model runs.

1: X v. X DOT

f
a
o
x

FIGURE 37.6

200 .00
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LORENZ CHAOS

X ( t ) = X ( t - dt) + (X_DOT) * d t

INIT X = 1

INFLOWS:

X_ DOT = p * (Y-X)

Y ( t ) = Y ( t - d t ) + (Y_DOT) * dt

INI T Y = 1

I NFLOWS :

Y_ DOT = (R-Z )*X-Y

Z ( t) = Z (t - d t ) + (Z_DOT) * dt

I NIT Z = 0

I NFLOWS:

Z_DOT = X*Y- B*Z

B 813
P 10

R 40

37.4 Two-Well Chaos

If we take the mass-spring-damper problem of Chapter 36.3 and make the
spring nonlinear, we see again what appears to be the end of Newton's
hold on the world of science . It is Newton-with-history. This model, like the
two simple ones above, enables us to produce a reproducible but unpre
dictable result in what was formerly a well-behaved variable. We encounter
chaos.

To get a hands-on experience with chaos , take a very thin sheet of steel
abo ut one inch wide and 10 to 20 inches long . Hold it at the bottom end
and shake your hand rapidly in a horizontal direction. You can feel the
sheet flexing evenly at lower frequencies but it becomes erratic at higher
ones. This is chaotic behavior. The sheet begins to jump between lateral
and torsional vibration. These jumps are seemingly random.

We can show chaos in the mass spring problem by replacing the linear
with a nonlinear spring. All other features of the problem are of the same
style as the earlier problem . The model developed here thus builds directly
on the deterministic, linear-spring model of Chapter 36.3. The model is
shown in Figure 37.7 and is sometimes referred to as the Duffing equation.

The model can also be invisioned as a little cart in which the re are two
semicircular depressions, separa ted by a hill. The cart is shaken in line with
the two depressions by an oscillating exte rnal force . A marble is placed in
one of the we lls. With the right frequency and size of the shaking force, the
marble will oscillate gently in one of the wells but suddenly without ex
pectation , shift over the interlying hill into the other we ll, where it will os-
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v

YOOT YMINUS 1

FIGURE 37.7

cillate gently again, for awhile, then jump back. The shifting between wells
is unpredictable so we say that the position of the marble is chaotic. In the
original interpretation of the model, we say that the weight oscillates about
one point and then suddenly shifts to oscillate about another point. Run the
model to see this phenomenon (Fig. 37.8). Change the parameters to see
how narrow the range is for such behavior.

Figure 37.9 shows the position of the ball in the cart. Every time there
is a change in the sign of Y, the ball jumped to the other depression in
the cart. If there is no change in sign, the ball merely moved within a
depression.

1: Y
1.6

"

J
0.0 -- --

I
1

I
-1.60

.00 10 .00 30 .00 400 .00

FIGURE 37.8
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1; Y v. Y MINUS 1

1.60

Y MINUS 1
0.00

1
j
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Y
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-1.60

FIGURE 37.9

TWO WELL CHAOS

V(t) = V(t - dt) + (VDOT) * dt
INIT V = 0
INFLOWS;
VDOT -V/3 +Y_YA3 + F*COS(TIME)

Y(t) Y(t - dt) + (YDOT) * dt
INIT Y = 0
INFLOWS :
YDOT = V

F = .1
Y_MINUS_1 DELAY(Y,l)
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Modeling Dynamic Systems
Indeed , from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available-and is
now worked out on computers: though there is, or used to be, an En
glish law which provided that "every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device .. . shall be
deemed a Rogue and Vagabond."

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists , and social scien
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa
gels has noted, " the computer modeling process is to the mind what the
telescope and the microscope are to the eye . We can model the macro
scopic results of microphenoma, and vice versa. We can simulate the vari
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted ,
interrelated and difficult to understand. In order to deal with these phe
nomena, we abstract from details and attempt to concentrate on the larger
picture-a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved . However, it is
possible to identify a set of general procedures that are followed frequently .
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios
ity can be translated into a question or set of questions about observed

'Conquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
2Pagels, H. 1988. Dreams ofReason, Simon and Schuster, New York.

3
B. Hannon et al., Dynamic Modeling
© Springer Science+Business Media New York 2001
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We highly encourage you to take up and refine some of the models pre
sented in this book to further accommodate data from real systems.

We selected a variety of different systems, spanning the disciplines of
physics, genetics, biology, ecology, economics, and engineering, to illus
trate the power of dynamic modeling and the multitude of possible appli
cations. Other dynamic modeling books geared specifically toward some of
these and other disciplines are published in this book series.

With this book, and the series as a whole, we wish to initiate a dialogue
with (and among) you and other modelers. We invite you to share with us
your ideas, suggestions and criticisms of the book, its models , and its pre
sentation format. We also encourage you to send us your best STELLA mod
els. We intend to make the best models available to a larger audience, pos
sibly in the form of books, acknowledging you as one of the selected
contributors. The models will be chosen based on their simplicity and their
application to an interesting phenomenon or real-world problem. Keep in
mind that these models are mainly used for educational purposes.

So register now by (e-) mailing or faxing us your name and address and
possibly something about your modeling concerns. Invite your interested
colleagues and students to also register with us now. We can build a mod
eling community only if we know how to make, and maintain, contact with
you. We believe that the dynamic modeling enthusiasm, the ecolate skill,
spreads by word of mouth, by people in groups of two or three sitting
around a computer doing this modeling together, building a new model or
reviewing one by another such group. Share your thoughts and insights with
us, and through us, with other modelers. Here is how you can reach us:

Bruce Hannon, Professor
Department of Geography and
National Center for Supercomputing Applications
University of Illinois
220 Davenport Hall, MC 150
Urbana , IL 61801, USA

Matthias Ruth, Professor
School of Public Affairs
University of Maryland
Van Munching Hall
College Park, MD 20742, USA
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Al
System Requirements

A1.1. Macintosh

Macintosh Minimum Requirements

Mac as 7.1
68040 Processor
16MB RAM
35 MB Hard Disk Space
Color Monitor running at least 256 colors

Macintosh Recommended Requirements

120 MHz Power PC or better
32MB RAM
Color Monitor running thousands of colors
Quick'Time?' 3.0 or higher

A1.2 . Windows

Windows Minimum Requirements

Windows 95, Windows 98, Windows NT 4.0, or Windows 2000
Pentium-Class Processor
16MB RAM
30MB Hard Disk Space
VGA Display with at least 256 colors

Windows Recommended Requirements

233 MHz Pentium Processor or better
64MB RAM
SVGA Display with 16-bit/high color
SoundBlaster or compatible sound card
Quick'I'ime" 3.0 or higher

391



A2
Quick Help Guide'

A2.1 . Overview of STELLAR Operating Environment

il File Edit Model Run Help

D STElLAS Research 5.1.1 ~ E3

DI-s>IO I\1 IOIElIi91 1 ~ 1 1iiiiI1 = I AI 11\ li 'I{}1
.c.

1:.1.1 ..:::~..l.]·,··:!.:·.1. 1 J. ].E.:';1..2.=e
r--

Conv erter ~:::,.& . ion N!Jrner lc Pain t brush
Connector Ob j ect D lspl~y

Ted 80..

~ .
+ C I lIIl .~Zoom Boxes -.

Map lModel -----.
Toggle

Model
Construction/Map .
1.10 del /Equatto ns
Arrows ~

IBy High Performance Systems, Inc.

392
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A2.2 . Drawing an Inflow to a Stock

a) Select the Flow with one dick.
Move the cursor to the desired
position on the diagram. Click and
hold. Begin dragging toward the
stock.

D
Populatio n

D
o

Population

EJ==~===9::
b) Wlen contact has been
made, the stock will
highl ight/fill in.

Population

c) Release the click. The cursor returns to
the Hand. Note: When variable is
highlighted, its namem~ be edited.

• 0 M
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A2.3. Drawing an Outflow from a Stock

Populatio n a) Select the Flow with one dick. Position the cursor in the
center of the stock from which it will flo w

b) Click and hold.
Drag the flow out
of the stock.

Population

C5
c) Retease the click. The cursor
returns to the Hand.

Population

•-



A2A. Replacing a Cloud with a Stock

Appendixes 395

6
V' Stock 1

C5
flow 1

D
b) Drag the stock toward the
cloud. V'l.flen the Hand is "on"
the cloud, the cloud will
highlightlfill in.

c) Reiease the click. The could is
now replaced by the stock.

!lI"iI I
i i=__._ =.1

C5
flow 1

Stock 1 -
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A2.5. Bending Flow Pipes

Stock 1

o
o

Stock 2

D
Wlile drawing a Flow, depress the shift key to create a bend in the flow
pipe. (You can cre"e as many bends as you like)

A2.6 . Repositioning Flow Pipes

Stock 2

-
Select the Flow by clicking on it·s circle using the Hand. Click <rid drag
the "handles" to reposition the flow pipe.
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A2.7. Reversing Direction of a Flow

o
o

Stock 1 Stock 2

Non.m~ I

Command- or Control- dick on <l"ro'Atleads to rw erse the di rection of
nows.

A2.8. Flow Define Dialog-Builtins

Click OK alter
loading a
buinin to get
on-line help
"Ath Its format.

Click on a bulnln
from this list to
enter it into the
equation box.

"0" now 00
UNIFLOW 0 81flOW

o Unit conversion

(ID(D(l)BRequired Inputs 8ulltlns

;. 00000[3 PMT ;.
G)1]Jl])0 POISSON

CDl1Jl1IG PULSE dl• I--r;- ITJOGJ PV
QELEM Fi

c:::=JGJ IOLEN r;

'8' fl ow ••••

IPUl.SEO

I
I Format: PUlSE«volume>(, <first pulse>, dntervabj) I· I--

Click to select unillow or billow. Unillows now In one
direction only; binows can now in either direction .

!
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A2.9. Moving Variable Names

EJ '
D

Stoc k 2

Click and drag to rmve avanane name around its icon. commend- or
Control-dick to move the name to the nearest cardinal position (North,
South, Eest 0 r \M!st).
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A2.10. Drawing Connectors

DI'?rlo:ll IOIEjI (Ql1 1 ~ IUITilI =I AI I M I ~ l i' 1 4.} 1
6 •
'V a) Select the Connector with one dick. Move the cursor e-i@ to the entity from which the Connector will be drawn. I::

l::::J Population

10 , STEUA® Research 5.1.1r-==;= :I;!] 13

births

b) Click and hold. Drag the cursor toward the target.

Population

(0 0 0
births~

c) When the connector makes contact with the
target, the target will highlightiTill in. Release the
click to forge the connection. The cursor reverts
to the hand. Click arld drag on the cird e end of
the connector to move it.

Population

~births

.....
•

- 1+ ~ !fUll'
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A2.11. Defining Graphs and Tables

pad pages as you'd like.

Seled the graph pad or table pad icon then deposit it on

Note: Analogous operations for TablePads.

the diagrlm. An empty graph ortable'page willl4lpe~.

Double·dick the graph or table page to enter the
D81nedialog.

0 = Untitled 08
J!i#

r ················ ··r ·· ·················· ··T·· ····· ················I······· ·················1
!

I •

Graph Type: ~ Time Series o Scatter O Bar o Sketchable
o Comparative o Con nect Dot s o Benchm ark

Allowable Selected.'. ...
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A2.12. Dynamite Operations on Graphs and Tables

o

1 :
2 :

Dyncmite variable name to
clear v ariable from the graph.

9 ,00 18 ,00

Rosolt. : pI (l~nx &Horos) V.or.

Dyncmite hlJ"e to d ear data
from the graph pad page.

Dyncmite max or min value to revert to default scale for var iable.

Dyncmite nere to delete page from graph pad.

Nute: Analog ous 0 peratio ns for Table Pads.
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Index

Abstraction, 3, 5
Adjoint equation, 323
Advantage, adaptive , 103
Age distribution, 61
Allele , 141-145
Approximation , numerical. See

Solution, numerical
Authoring, 12, 20

Behavior
chaotic (seechaos)
complex system , 54, 56
dyn amic , 21, 43, 102

Bifurcation , 376, 378
Biodiversity. See Diversity
Biomass, 297, 309

Capital investment, 297
Carrying capacity, 204, 209
Catalyst, 129
Cellular automata, 23
Chain reaction, 125
Chaos, 54, 136, 212, 376-384
Commons, tragedy of the , 251-2 55,

301 (see also Resource , common
property)

Compatibility of units. See Consistency
of un its

Competition, 259, 261, 270, 317
Complexity, 5, 12, 22, 387
Compounding, negative , 289
Computer, 5, 17

pa rallel processing, 22
Configuration, cellular , 209
Connector. See Information arrow
Conservation biology, 141
Consistency of units , 21, 29, 31, 34,

38, 43
Control strategy, 50
Convector. See Variable , translation
Conveyo r, 46, 351
Cusp , 376

Decay, exponential, 38, 178
Delay. See Lag
Demand curve, 267, 268, 276
Deriva tive , 111, 113, 262, 283,

319
Differential equation , 31, 47, 111, 129,

269, 363
Diffusion , 39, 288
Discounting, exponential, 289
Discovery, 317
Distribution, normal, 98
Diversity, 141, 311
Drill down. See Visual hierarchy
Duffing equation, 382
Dynamics, spatiotemporal, 311
Dynamite, 19

Edition , 46-47
Enzyme , 129
Equilibrium, 102, 133, 137, 145, 176,

182,362, 377, 378
of firm, 277
economic, 260
market, 277

Estimate , 6
Euler 's number, 290

Fecundity, 184, 302-303, 305
Feedback, 6, 56

negative, 6, 102-110
nonlinear, 11
positive, 6, 102-110

Fishery , 301-311 , 387
Force , 362

conservation of, 362, 366, 369
harmonic, 370
inertial , 362, 368, 369

Function
built-in , 15, 28
cost, 280-281
graphical, 17, 28, 297
logarithmic , 368
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Function (continued)
production, 52, 55, 261, 265, 276,

277, 280, 283
step, 61

Game theory , 330
Ghost, 53, 149, 208
Goal seeking, 33-34, 37
Goal setting , 35-37
Gonad, 305-306
Graphical programming. See

Programming language
Gravity, 362, 363
Growth

exponential, 152
logistic, 31-32

Hamiltonian, 318, 319, 323
Hand , 19
Hardy-Weinberg law, 142-148
Heterozygote, 141
High-level mapping layer, 20
Hotelling rule, 319

Indicator, 6
Information arrow , 15, 17,45,53
Integration, Ill, 135
Inventory, 292-296, 352
Isoquant, 280-281

Lag, 51, Ill, 113, 255, 265
Law of mass action , 121-122, 125,

129,212

Mass action equation. See Law of mass
action

Mechanics, classical, 376
Model

complex (see complexity)
construction, 3
continuous function , 377
deterministic, 376, 382
discrete , 377
object-oriented, 23
weather, 380

Modeling mode, 13
Module , 19, 182-183,305,387
Momentum, 362, 368
Monopoly, 260, 267-275, 323-328

Natural selection , 149, 156, 163
Network ,22

Olsen oscillator, 133-138
Opportunity cost, 259, 287, 292,

297
Optimal control theory , 318
Oscillation, 136, 187
Oven, 351
Ozone

depletion, 124-128
formation , 121-122

Paint brush, 19
Parameter, 21-22
Pause , 99
Periodicity, 135
Pig cycle, 338
Population, 66, 72, 113, 114, 343
Prediction, 22
Predictor, 5
Price elasticity, 327-328
Probability of survival, 209
Process , dynamic , 3, 5
Programming language, graphical, 20,

22,23
Publisher, 46

Queue, 46, 351, 353

Random number, 142, 377
Randomness, 96, 156, 377
Rate equation. See Differential

equation
Reserve, 301-311
Reservoir, 14
Resistance, air, 362, 363, 366
Resource

common property, 297, 301
nonrenewable, 297, 317
renewable, 297, 301, 317

Returns, diminishing, 52

Scarcity rent , 318-319
Sector, 19
Self-referencing, 30-33, 37, 38
Sensitivity analysis, 20, 45, 57, 101,

125, 187, 302
Simulation, pictorial , 23



Simulation program, graphica l. See
Programming language, graphical

Sine wave, 92, 288
Smoothing, 300
Solution

analytical, 18, 31, 48, 259 (see also
Technique, analytical)

num erical, 18, 31, 48, 259, 283
Space compression, 20
Spring, 382
Spruce budworm , 376
Stability, 133, 153
State variable, 17, 18, 21, 35, 40, 48,

53, 60, 351, 376
conserved, 6, 13, 27
nonconserved, 6, 14

Steady state, 7, 45, 54, 56, 61, 152,
187, 214, 251, 254, 309

Stimulus-response, 27-29, 37
Structure, 3, 4, 387
Submodel. SeeModule
Subscribe, 46--47
Substitution, 259, 280, 297
Substrate, 129, 182, 184
Succession, 192
Sustainabili ty, 301
Syntax, 22
System

boundary, 44, 48

Index 409

dynami c, 387
nonlinear, 376

Technique
analytical, 17, 18
symbo lic, 17

Terminal
condition, 320
date, 320
velocity, 364

Trajectory, optimal, 259
Trial and error, 320, 325, 371

Value
current, 287, 288, 290
present, 287, 288, 290, 298
time, 260, 287, 292, 297

Variable
control, 6, 14, 21, 302, 318
random , 96, 103
translation , 15, 99, 274, 306

Velocity, 362-365, 366, 369, 371
term inal, 364

Vibration
lateral, 382
torsional, 382

Visual hierarchy, 15

Workstation, paralleled, 22
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