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Foreword

I have been lucky enough to run across four Great Learnings in my life, the
third of which was dynamic modeling. Maybe I should go through these
Learnings chronologically, putting modeling into what I think of as its place.

The first Great Learning for me was about nature. I absorbed it as a child
simply from being outdoors. I flopped down on my back in my suburban
back yard and watched the trees, the clouds, the constellations, the Northern
Lights. Soon I was riding my bike to nearby forest preserves and learning
about wildflowers and birds and bugs. I was stunned by the beauty, the di-
versity, the complexity. Why such a variable world? I wondered. Why so
many kinds of life? How do they work? How do they fit together?

Those questions led to the second Great Learning, the world of science.
In high school, college, and graduate school I soaked up all the science I
could get—chemistry, physics, biology. I loved the careful logic of it all, the
precise definitions, the critical thinking. Science answered few of my ques-
tions about the world—in many ways it just deepened the mysteries. But it
taught me rules for thinking, for assembling evidence, for separating as-
sumptions from conclusions, and for questioning assumptions. These rules
will always be a part of me, though I haven’t practiced research science for
25 years now.

The third Great Learning came when [ started worrying about not only
nature, but about how nature interacts with human society, human popula-
tion growth, human economic aspirations. My questions were getting even
more complicated! I was in real trouble! Fortunately, my new set of con-
cerns led me to the systems folks, the dynamic modelers who were using
computers to try to encompass greater complexities than could ever be
held all together at one time by the unaided human mind.

Here was another careful, critical way of thinking, but instead of taking
things apart, as science did, it put things back together and looked at them
as wholes. It forced me to make new and important distinctions. A stock is
different from a flow, and that difference is especially important over time.
Flows can be turned on and off quickly, but stocks take awbile to fill up or
empty out.
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An information flow is different from the flow of a real, physical sub-
stance, such as the flow of water through a watershed, or the flow of traffic
along a highway, or the flow of mail through the postal system. Again the
difference has to do with #ime. Information can move almost instantly, it
can be in several places at once, it can disappear into nowhere. A real
physical flow must be conserved, it comes from somewhere and goes to
somewhere else, and it fakes a characteristic amount of time to do it.

You might think basic systems rules like these are obvious, but it still
comes as a shock to people to discover that the stuff they buy actually
comes from somewhere (such as a forest or a mine) and that when they
throw it away, it goes somewhere. It may come as even more of a shock to
learn how long it spends in that place to which it is thrown. And maybe the
biggest shock is the way what we throw out, and what we do in many
other ways, can feed back over time (another primary systems principle)
and re-enter our lives.

Like my direct experience of nature, like my training in science, my work
with dynamic modeling has stuck in my head. It affects all my thinking,
especially my sense of timing. I have a healthy respect now for the way
things that grow exponentially (from populations to epidemics to rumors)
can get very big very suddenly. 1 have a feel for the way oscillating things
(from pendulums to predator-prey systems to economies) can turn around
and go the other direction. 1 even have some dawning insight into my orig-
inal questions about why nature is so variable and diverse, how natural sys-
tems work, and what might happen as the human economy grows expo-
nentially into them.

These, and more, are the kinds of insights you can get from this book.
You will be amazed at the doors of understanding they will open. I wish for
you the same excitement and joy that learning about dynamic systems in-
stilled in me.

I haven’t yet mentioned my fourth Great Learning, which, like the others,
followed naturally from the learnings before. It had to do with ethics, mo-
rality, goodness. Most people wouldn’t think that a progression of ques-
tions that began with nature and then led to science and then to complex
systems would end up with questions about virtue. But for me it did. As I
saw how systems work, and how they break down, I began to feel a sense
of responsibility for them. I got more and more committed to making them
work. For everyone. For human society and for nature. For the present and
the future. Again, fortunately, there were people who had thought deeply
about these things and who could help me learn.

I don’t know whether your own path will follow mine. Maybe one can
learn about the ever-changing, equilibrating, oscillating, evolving, orderly-
and-yet-chaotic complexity of the world without taking a stand for that
world. Or maybe not. I just thought I had better warn you.

Donella H. Meadows



Series Preface

The world consists of many complex systems, ranging from our own bodies
to ecosystems to economic systems. Despite their diversity, complex sys-
tems have many structural and functional features in common that can be
effectively modeled using powerful, user-friendly software. As a result, vir-
tually anyone can explore the nature of complex systems and their dynam-
ical behavior under a range of assumptions and conditions. This ability to
model dynamic systems is already having a powerful influence on teaching
and studying complexity.

The books in this series will promote this revolution in “systems think-
ing” by integrating skills of numeracy and techniques of dynamic modeling
into a variety of disciplines. The unifying theme across the series will be the
power and simplicity of the model-building process, and all books are de-
signed to engage readers in developing their own models for exploration of
the dynamics of systems that are of interest to them.

Modeling Dynamic Systems does not endorse any particular modeling
paradigm or software. Rather, the volumes in the series will emphasize
simplicity of learning, expressive power, and the speed of execution as
priorities that will facilitate deeper system understanding.

Matthias Ruth and Bruce Hannon

vii



Preface to the Second Edition

Since the publication of its first edition, Dynamic Modeling has nationally
and internationally found widespread use across academic disciplines,
adoption as a coursebook and a guide for practitioners. A modeling com-
munity is rapidly developing around Dynamic Modeling and the Modeling
Dynamic Systems book series that it spawned.

The second edition answers to the calls from the modeling community
for more examples from theory and applications in the many areas that
have been covered by the first edition. For example, we have expanded
our treatment of population cohort models and included a detailed applica-
tion to the dynamics of the US population. We enriched our discussion of
positive feedbacks with a model of various fixed points. We enlarged our
section on genetics and provided more applications to the modeling of dis-
eases. The economics part of the book for the first time presents models
from game theory and of market dynamics that result from the combined
effects of inventory changes and producer expectations. The set of engi-
neering models of gravity and acceleration include examples of mechanical
amplifiers that are illustrated by the workings of a playground swing.

In addition to these expansions, many chapters have been revised and
updated to make use of the new features that STELLA® provides for model
development. All models and a run-time version of the software are in-
cluded with this book on a CD ROM that is compatible across Macintosh
and Windows platforms.

More than before, we are stressing the need to learn and apply concepts
and tools developed in one area of inquiry to other areas with the purpose
of generating new insights, streamlining the problem-solving process and
fostering creative thinking and modeling. But as before, we see dynamic
modeling as both a skill and art that can be readily acquired to solve the
many problems laid out inside the book and outside.

Bruce Hannon and Matthias Ruth
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Modeling of dynamic systems on the computer has become a real possi-
bility for the typical college student. Until now, students needed significant
preparation in mathematics and computer programming to prepare such
models. It is possible that because of this hurdle, many thought little of the
utility and wisdom of preparing and manipulating computer modes of dy-
namic events in the world around them. Without such models we were
often left to manipulate real systems in order to understand the relation-
ships of cause and effect. One could, if necessary, just change things a little
(e.g., introduce a little pesticide, CO,, etc. into the environment) and ob-
serve the effects. If no significant adverse effects are noted (in a “reasona-
ble” time), one is free to increase the level of the system change. This is an
exceedingly common paradigm. It is an elaboration of the way an auto me-
chanic repairs an engine, a kind of trial and error method. But social and
ecological systems are not auto engines. Errors in tampering with these sys-
tems can have substantial costs, both in the short and long terms. In spite of
the growing evidence, the trial and error approach remains the meter of the
day. We trust that, just like the auto mechanic, we will be clever (or “rich”)
enough to clear up the problems created by the introduced change. Hand-
eye tinkering is the American way. We let our tendency toward optimism
mask the incurred problems.

However, the level of intervention in social and ecological systems has
become so great that the adverse effects are beginning to seem unstemma-
ble. As our optimism about repair begins to crumble, we take on the atti-
tude of patience toward the inevitable—unassignable cancer risk, global
warming, fossil fuel depletion—the list is long. At the same time as we be-
come increasingly pessimistic about our ability to successfully influence
cause and effect relationships we are increasingly aware of the complexity
that underlies the multitude of possible interrelationships among the com-
ponents of the system we intend to influence. Science, often perceived as
the bearer of truth, led us to identify ever more specific issues surrounding
ever smaller parts of the system. Yet, we need to understand the inter-
actions of many or all of these parts simultaneously in order to guide our

Xi
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actions. As a result, we are often overwhelmed by details, frequently failing
to see the forest for the trees.

There is something useful that we can do to turn from this path. We can
experiment using computer models. We can use these to give us predic-
tions of the short-and long-term future outcomes of proposed actions. The
consequences of the discovery of adverse systemic effects on the computer
are no more than a ruffled pride. The potential for change of such discov-
eries should rival that of our famous technological inventions.

Computer modeling has been with us for nearly 40 years. Were it not for
the possibility of wrestling the power of modeling from the domain of the
academic, corporate or government expert, we would not be very enthusi-
astic about modeling. Fortunately, the personal computer and programs
such as the one on which this book is based are increasingly available.
These two innovations, software and hardware available to a large number
of individuals, mean that almost anyone can now begin to model real world
phenomena on their own, in terms that are easily explainable to others.
They can use these skills to explain the inscrutable and to challenge the ex
cathedra.

This democratization of modeling the real world indicates that we are on
the verge of a revolution in education and thought. For centuries we have
taught people how to read and write in ways that are understandable to
large groups of people. Via this standardization and the subsequent devel-
opment of these skills we were able to develop verbal descriptions for
others of dynamic phenomena in the way that we saw them in our minds—
the literate description of a mental dynamic simulation. People possess dif-
ferent mental models of the same phenomenon and there understandably
ensues a clash of views. Just why people have differing mental models in
such cases is not as important as our attempts to rationalize the broad use
of one mental model instead of another.

Long ago, the use of numbers began to augment the arguments over vari-
ous mental models. For several centuries we have developed numerate
skills in our students to let them set priorities on the assumptions in the
competing mental models. This seems like an attempt to rationalize the se-
lection process and the widespread importance attached to skills in numer-
acy and it is, at least in part, an attempt to bring many minds to the chal-
lenge of selecting the most appropriate mental model of the way the world
works.

The ecologist Garrett Hardin and the physicist Heinz Pagels have noted
that an understanding of system function, as a specific skill, needs to be
and can become a third integral part of general education, alongside lit-
eracy and numeracy. It requires the recognition (easily demonstrable with
exceedingly simple computer models) and admission that the human mind
is not capable of solving very complex dynamic models by itself. Just as we
need help in seeing bacteria and distant stars, we need help in solving
complex dynamic models. We do solve the crucial dynamic modeling prob-
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lem of ducking stones thrown at us or of safely crossing busy streets. We
learned to solve these problems by being shown the logical outcome of
mistakes or through survivable accidents of judgement. We experiment
with the real world as children and get hit by hurled stones and/or we let
adults play out their mental model of the consequences for us and we be-
lieve them. These actions are the result of experimental and predictive
models and they begin to occur at an early age. In the complex social and
ecological world, however, we cannot rely on the completely mental model
for individual or especially for group action, and often we cannot afford to
experiment with the system in which we live. We have got to learn to sim-
ulate, to experiment and to predict with complex models. Computers are
the only tool for such a purpose.

Now comes a new generation of personal computers with their easy-to-
learn format and the software STELLA ® with its iconographic programming
style. STELLA and the personal computer are slowly changing the way in
which we think. They do enable each of us to wrest out the mental model
we have of a particular phenomenon, to augment it, elaborate it and then
to do something we cannot otherwise do, to run it, to let it yield the inevi-
table dynamic consequences hidden in the structure of the model. STELLA
and the Macintosh, as well as the new, easy-to-use, Windows-based per-
sonal computers, are not the ultimate mechanisms in this process of mind
extension. They are just the first and their presence and relative ease of use
makes clear the path to freer and more powerful intellectual inquiry and
challenge by every student.

These are the arguments for this book on dynamic modeling. We con-
sider such modeling as the most important task before us. To help students
learn to extend the reach of their minds in this unfamiliar yet very powerful
way is the most important thing we can do.

Bruce Hannon and Matthias Ruth
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Modeling Dynamic Systems

Indeed, from Pythagoras through pyramidology, extreme irrationalities
have often been presented in numerical form. Astrology for centuries
used the most sophisticated mathematical treatments available—and is
now worked out on computers: though there is, or used to be, an En-
glish law which provided that “every person pretending or professing to
tell Fortunes, or using any subtle Craft, Means or Device . . . shall be
deemed a Rogue and Vagabond.”

1.1 Model Components

Model building is central to our understanding of real-world phenomena.
We all create mental models of the world around us, dissecting our obser-
vations into cause and effect. Such mental models enable us, for example,
to successfully cross a busy street. Engineers, biologists, and social scien-
tists simply mimic their observations in a formal way. With the advent of
personal computers and graphical programming, we can all create more
complex models of the phenomena in the world around us. As Heinz Pa-
gels has noted,? the computer modeling process is to the mind what the
telescope and the microscope are to the eye. We can model the macro-
scopic results of microphenoma, and vice versa. We can simulate the vari-
ous possible futures of a dynamic process. We can begin to explain and
perhaps even to predict.

Frequently, the phenomena occurring in the real world are multifaceted,
interrelated and difficult to understand. In order to deal with these phe-
nomena, we abstract from details and attempt to concentrate on the larger
picture—a particular set of features of the real world or the structure that
underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the struc-
tural and dynamic assumptions we have made in our abstractions.

The process of model construction can be rather involved. However, it is
possible to identify a set of general procedures that are followed frequently.
These general procedures are shown in simplified form Figure 1.1. Real
events stimulate our curiosity about a particular phenomenon. This curios-
ity can be translated into a question or set of questions about observed

IConquest, R. 1993. History, Humanity and Truth, 22nd Jefferson Lecturer in the
Humanities, Washington, DC, May 5, 1993.
*Pagels, H. 1988. Dreams of Reason, Simon and Schuster, New York.

B. Hannon et al., Dynamic Modeling

© Springer Science+Business Media New York 2001



4 1. Modeling Dynamic Systems

Real Events

Conqlugions and Abstract Version
Predictions of Real Events

Model

FIGURE 1.1

events and the processes that brought these events about. Key elements of
processes and observations can be identified to form an abstract version of
real events. Particularly, we may want to identify variables that describe
these events, and outline the relationship among variables, thereby estab-
lishing the structure of the model. Based on the performance and the re-
sults of operating or “running” the model, we can draw conclusions and
provide predictions about events yet to be experienced or observed. These
conclusions and predictions, in turn, can be compared with real events and
may lead to the falsification of a model, its acceptance, or more likely, its
revision. When crossing the busy street, we make an estimate of the width
of the street, the number and speed of the approaching cars, and our own
speed. We may abstract away from extraneous details such as the color of
the cars or the species of birds in the trees on the other side of the street.
Once we made our observations or estimates, and our abstractions, we re-
late the various pieces of information to each other—we develop a model.
Before we cross the street we “execute” our model in our mind, consider
the outcome, and then decide whether we have a fair chance of arriving
unharmed on the other side. If we do, we likely use this model again. If we
don’t, but are lucky enough, we revise the model and use that revised ver-
sion for our next decision. Perhaps the birds in the trees on the other side
of the street are vultures and we should have used that information as a
sign that this is a particularly dangerous spot to cross. We should have been
more precise in the estimate of the speed of the cars or the width of the
street.

Modeling is a never-ending process—we build, revise, compare, and
change models. With each cycle, our understanding of the reality improves.

Two general types of models can be distinguished. The first type is mod-
els that represent a particular phenomenon at a point of time. For example,
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a map of the United States depicts the location and size of a city or the rate
of infection with a particular disease, each in a given year. Other models
describe and analyze the very processes by which a particular phenome-
non is created. We may develop a mathematical model describing the
change in the rate of migration to or from a city, or the change in the rate
of the spreading of a disease. Similarly, we may develop a model that cap-
tures the change of these rates over time. The latter type of models are dy-
namic models that attempt to capture and represent the change in real or
simulated time.

An understanding of the dynamics and changing interrelationships of sys-
tems, such as social, biological, and physical systems, is of particular impor-
tance in a world in which we face increasing complexity. In a variety of
disciplines, scientists ask questions that involve complex and changing inter-
relationships among systems. What are the impacts of a vaccination program
on the rate of infection in a population? How does the profit-maximizing rate
of oil exploration in the lower 48 United States change with a change in the
interest rate? What are the time paths of toxins carried in a river and how do
these toxins affect the local wildlife? All good modeling processes begin (and
end) with a good set of questions. These questions keep the modeler focused
and away from the miasma of random exploration.

Models help us understand the dynamics of real-world processes by
mimicking with the computer the actual but simplified forces that are as-
sumed to result in a system’s behavior. For example, it may be assumed
that the number of people migrating from one country to another is directly
proportional to the population living in each country and decreases the
farther these countries are apart. In a simple version of this migration
model, we may abstract away from a variety of factors that impede or stim-
ulate migration, besides those directly related to the different population
sizes and distance. Such an abstraction may leave us with a sufficiently
good predictor of the known migration rates, or it may not. If it does not,
we reexamine the abstractions, reduce the assumptions, and retest the
model for its new predictions.

It is an elementary preprinciple in modeling that one should keep the
simulation simple, even simpler than one knows the cause and effect rela-
tionship to be, and only grudgingly complexify the model when it does not
produce the real effects. After all, it is not the goal to develop models that
capture all facets of real-life systems. Such models are useless because they
are as complicated as the systems we wanted to understand in the first
place.

Computer models are causal in the sense that they are built by using gen-
eral rules that describe how each element in a system will respond to the
changes of other elements. In the migration example above, the number of
migrants was assumed to be proportional to the size of the population in
each country. With migration, these population sizes change over time,
thereby leading to new levels of migration over time.
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When a model is simulated with a computer, each element of the model
is specified by initial conditions and the computer works out the system’s
responses according to the specified relations among elements. These in-
itial conditions may be based on actual measurement, such as the size of a
population in a city or the number of people affected with a disease, or es-
timates, such as estimates for the contact rate of infected people with unin-
fected ones. The estimates, in turn, may be based on empirical information
or are just reasonable guesses by the modeler and are used to illustrate the
particular processes, rather than provide exact empirical information.

Models help us in the organization of our thoughts, data gathering, and
evaluation of our knowledge about the mechanisms that lead to the sys-
tem’s change. For example:

One can create a computer model of a forest ecosystem, consisting of a group of as-
sumptions and information in the form of computer language commands and
numbers. By operating the model the computer faithfully and faultlessly dem-
onstrates the implications of our assumptions and information. It forces us to see
the implications, true or false, wise or foolish, of the assumptions we have made. It
is not so much that we want to believe everything that the computer tells us, but
that we want a tool to confront us with the implications of what we think we know.?

Some of the elements that make up the system for which a model is
being developed are referred to as state variables. State variables may or
may not be conserved. Each conserved state variable represents an accu-
mulation or stock of materials or information. Typical conserved state vari-
ables are population, resource endowments, inventories, and heat energy.
Nonconserved state variables are pure indicators of some aspects of the
system’s condition. Typical nonconserved state variables are price and tem-
perature. System elements that represent the action or change in a state var-
iable are called flows or control variables. As a model is run over time, con-
trol variables update the state variables at the end of each time step.
Examples for control variables are the number of births per period, a vari-
able that changes the state variable “population,” or the number of barrels
of crude oil extracted changing the state variable “reserves.”

Typically, components of the system that is being modeled interact with
each other. Such interactions of system components are present in the form
of feedback processes. Feedback processes are said to occur if changes in
a system component initiate changes in other components that, in turn, af-
fect the component that originally stimulated the change. Negative feed-
back exists if the change in a component leads to a response in other com-
ponents that counteracts the original change. For example, the increase in
the density of a prey species leads to an increase in predator density that,
in turn, reduces prey density. Analogously, positive feedback is present if

5Botkin, D. 1977. Life and Death in a Forest: The Computer as an Aid to Under-
standing, in: C. Hall and J. Day (eds.) Ecosystem Modeling in Theory and Practice:
An Introduction with Case Studies, John Wiley and Sons, New York, p. 217.
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the change in a system component leads to changes in other components
that then strengthen the original process. For example, if the valve of a
boiler is defective it may not open properly when the pressure of steam in-
side the boiler increases. If with increasing pressure the valve gets stuck
more tightly, pressure will increase even further, thereby restricting further
the opening of the valve. The result may be that the boiler ultimately ex-
plodes. Positive feedback, when uncontrolled, results in “explosive” dy-
namics. The defunct boiler is an apt example, and so is the case of popula-
tion “explosion.”

Negative feedback processes tend to counteract any disturbance and lead
systems toward steady state. One possible steady state for interacting pred-
ator and prey populations would be that the size of each population sta-
bilizes in the long run. Such stabilizing dynamics are in contrast to the pos-
itive feedback processes that tend to amplify any disturbance, leading
systems away from equilibria.

Typically, systems exhibit both positive and negative feedback processes
that have different and varying strengths. Variation in feedback processes
can be brought about by nonlinear relationships. Such nonlinear relation-
ships are present if a control variable does not depend on other variables in
a linear fashion but changes, for example, with the square root of some
other variable. As a result of nonlinear feedback processes, systems may
exhibit complex dynamic behavior.

Once a stimulus on a system occurs, the response of the system may not
be instantaneous. Rather, there may be a time lag between the stimulus and
the response. In some cases, the length of the time lag is rather well
known. For example, a power outage during winter in the American North-
east is typically followed by an increase in the number of births 9 months
later. How the power outage translates into demand for classrooms or
school buildings 6 years later when the children are of school age, is less
obvious and depends on a large number of other factors, such as migration
behavior of families, availability of teachers, and availability of public
funds.

People often lack an understanding of time-lagged system behavior and
they have a chronic inability to control such behavior both with regard to
the systems that humans create and with regard to natural systems. The less
well entrenched these systems are and the shorter they have been operat-
ing, the easier and less expensive it is to change them. Changing the power
supply for a new residential development can be relatively straightforward,
but changing a country’s dependency on petroleum resources is extremely
difficult—it involves changes to the entire infrastructure that supports our
current lifestyles, ranging from petroleum refineries and power generation
to automobile manufacturing and public transportation. Phasing out chloro-
fluorocarbons required an understanding of their effect on stratospheric
ozone depletion as well as the time lags associated with their release and
their damage on the environment. Understanding and managing carbon
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flows through the fossil-fuel-based economy and the global ecosystem re-
quires an understanding of multiple, interdependent, time-lagged systems.
Yet, by the time ignorance of environmental impacts has been reduced, it is
often too expensive and too difficult to influence system behavior.

Systems modelers pay special attention to nonlinearities and time lags in
their models. Throughout their lifetime they try to sharpen their perception
of nonlinearities and other systems features, and they improve their skills in
modeling them. The eloquence of their models inspires other modelers and
opens their eyes to see the world in a new way.

1.2 Dynamic Modeling as a Skill and Art

The intricacies of many real-world systems overwhelm the ability of hu-
mans to adequately understand these systems. Our mental models are often
inadequate to provide a comprehensive perspective on the many inter-
related aspects of systems and to anticipate their behavior. This is why we
need to develop formal models, and why we need to develop skills to play
out the assumptions of our formal models—we need help in handling un-
certainty, feedbacks, and lags.

Many of the decisions that society faces also require that its members are
effective in sharing their information and knowledge with each other—that
they communicate their assumptions about system behavior and that they
identify the likely system responses under alternative assumptions. One ap-
proach to societal decision making would be to identify a group of experts
and ask them for advise. This is typically done in management decision
making where consultants are brought in to find solutions for problems,
and in policy decision making where studies are commissioned to chart the
likely behavior of a social, economic, technological, or environmental sys-
tem. In either case, it is the experts who define the problem such that it can
be addressed with their problem-solving expertise. Once they have nailed
the problem down, they provide advice on how to address it.

If you ask different groups of experts, they may look at the problem dif-
ferently and they may come up with different solutions. After all, disagree-
ment among narrowly chosen perspectives on a complex system is a likely
result of complexity itself. But once the experts disagree, the question
What should I do? changes into the question Which advisor should I believe?
and this new question is often as difficult to answer as the first one.

Of course, one could always add layers to this process—such as have an
advisory staff help with decision making or with the selection of advisors.
Obviously that would not resolve your problem, but rather move it to a dif-
ferent level in the decision-making hierarchy.

The advice on which experts base their judgment is typically derived
from models of the respective system. Consultants develop databases and
simulation tools to help managers make decisions. In some cases, these
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models have not been developed from scratch by the people who use
them, but simply modified or combined to provide an answer to a specific
question. Noticing their reliance on models, you may therefore be tempted
not to ask experts for the answers that they generate with their models, but
instead to ask them to give you their models so you can form your own
opinions.

Expert systems, simulation games, and learning laboratories are three ex-
amples of model environments produced by consultants and scientists to
provide decision makers with an ability to play out the consequences of al-
ternative actions in what-if scenarios. Although these decision support tools
are a step forward in empowering decision makers, they still are based on
the understanding that an outside expert brings to the problem, rather than
on the knowledge of the people directly involved. The question What
should I do? now changes to What does the model do? The problem is then
not whether to believe the experts’ answers, but whether to believe the as-
sumptions they put into their models. And obviously, we all can find fault
with some assumption, and therefore disregard a model’s validity.

Another strategy is to go all the way and develop computer models your-
self to address the specific problems that you face. The usual response by
decision makers is that problem-specific model development in-house
would be too costly and time consuming, and that there is no guarantee
that at the end the model would be a better decision support tool than one
developed by outside experts. But that does not need to be so. Today there
are powerful methods and tools of computer modeling available that
enable virtually anyone to develop dynamic models of complex systems, to
effectively communicate different assumptions among the various stake-
holders—such as the decision makers, the scientists and other experts, and
the public. You will learn these methods and tools as you work through
this book. And you should use them to develop models with those who
have a problem to resolve. Work with them, help them identify the ques-
tions to be answered by the modeling process, help them arrive at an
agreeable solution and finally, help them formulate new questions about
their system. In this way you will learn a lot from others, and you will help
people become modelers, rather than skeptical users of models developed
for them—models whose construction is a mystery to them and models
they do not fully understand or believe in. The very nature of this book and
the books of the Dynamic Modeling Series is to help you in learning how
to translate your mental models into rigorously based computer ones and
how to engage yourself and others in a continuous learning process.

Besides helping people to handle uncertainty, feedbacks, lags, and group
decision making, the development of formal and computer models pro-
vides authentic tasks that are intellectually challenging and rewarding.
Through exchange of models among modelers, the learning process turns
into a cognitive apprenticeship in which all members of the modeling
group can learn from each other.
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Computer modeling becomes “dynamic” not only when feedback pro-
cesses among system components are captured through time, but when
model development is based on the dynamic exchange of data and infor-
mation among a group of model developers and users. It is the pluralism in
perspectives that helps identify key features and behaviors of complex sys-
tems. That pluralism is also an important ingredient for the usefulness of
models in generating new knowledge and in providing decision support.
Pluralism in perspectives is typically not promoted or maintained to derive
the solutions that outside experts bring to a problem.

The process and product of dynamic modeling can help highlight gaps in
an organization’s or a society’s understanding of its processes, and it helps
identify the most important parameters in a system. As models are devel-
oped, they provide a record of the existing understanding. When the mod-
els are run, they reveal “normal” system behavior if no interference into the
system takes place, and they may reveal emergent properties of the system.
We may see smooth dynamics, or perhaps erratic transitions from one type
of dynamics to another. Such knowledge is useful in helping us make deci-
sions. If, for example, the system exhibits dynamics such as the solid line in
Figure 1.2, an interference into that system with the intent to smooth out
the rapid transitions may actually exacerbate the dynamics leading to the
more pronounced up-and-down turns of the dotted line. Knowing what is
“normal” for a system may help you maintain your calm and may even
mean that you leave the system alone—after all, you know it will soon
come back from its extreme behavior. If, however, the erratic changes in a
system’s dynamics are deemed unacceptable, we can use the model to play
out alternative what-if scenarios in order to find those controls that smooth
out the peaks.

Measure of

System Performance

A Without With
Interference Interference

# Time

FIGURE 1.2
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Perhaps there is one set of controls that makes the model behave more
erratically and another set that makes it behave more smoothly. Playing
with the controls in the model is easier, and the consequences of it are typi-
cally less costly, than playing with the controls in a real systems. This is
why we train pilots on flight simulators. But we have not done this yet for
people who make decisions about the course of ecological, social, and eco-
nomic systems.

The fact that the model may be sensitive to one set of assumptions rather
than another also can be exploited for data collection purposes. If there is
some set of assumptions to which the dynamics are very sensitive, we may
want to collect more information on that part of the model that uses the re-
spective assumptions. If the model does not respond much if one part of it
uses different assumptions, then we may not want to spend our time and
effort refining that part further. Unfortunately, a lot of data get regularly col-
lected before we know whether we actually need them. Some data are very
costly to collect and ultimately get used in models, but a good guess could
have sometimes done equally well.

The model facilitates not only insight into but also communication of
likely system behavior by generating quantitative results. Learning and
communication are also facilitated through the structure of the model itself:
while the art of Dynamic Modeling requires that one is skillfully identifying
system components and their interactions, the technique of Dynamic Mod-
eling requires a master plan for the development of the model’s structure—
not the details, but the layout of model components. With increasing expe-
rience in building models for a wide variety of problems, similarities among
systems structure may become apparent to the modelers. The more inter-
disciplinary the modeling approach, the more likely it is that knowledge
from different disciplines is brought to bear on the development of the
master plan according to which a model is designed.

For example, very successful models of the spread of a disease have
been developed by using analogies from chemistry. In a chemical reaction,
two reactants may react with each other to form a product. Similarly, the in-
dividuals in a population carrying a disease “react” with individuals who
are susceptible to the disease and generate a “product”—sick individuals.
The principles that can be used to model and understand chemical reac-
tions can, by analogy, be used to understand the spread of a disease. Effec-
tively using analogies can significantly reduce the effort that is necessary to
develop models.

Throughout this book we encounter a variety of nonlinear, time-lagged
feedback processes that give rise to complex system behavior. Such
processes can be found in a large range of systems. The variety of models
of this book naturally span only a small range—but the insights on which
these models are based can (and should!) be used to inform the devel-
opment of models for systems that we do not cover here. The models of
this book provide a basis for the formation of analogies.
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Formation of analogies is one way of dealing with complexity. A great
many new insights are generated by learning something from the structure
or behavior of one system, which is well understood, about another system,
of which we have less knowledge. The formation of analogies forces us to
choose different systems perspectives. We identify the structure of one
problem and compare it with the structure of another problem. We note
their similarities and their differences. We lay open the assumptions that
make the analogy work, and we contrast the insights we generate about
one system with the findings about the processes that govern another sys-
tem. The similarities between the systems generate one set of insights,
while the dissimilarities prompt the adoption of a different, but comple-
mentary perspective, and help place bounds on complexity.

Analogy is different from identity in that there may be identical features
but different substructures. The art of analogy is to realize what abstractions
are important—which substructures may safely be disregarded—to answer
particular questions. The creation of knowledge through analogy, however,
is not solely based on abstraction and the subsequent recognition of sim-
ilarities. Rather, true knowledge comes from the recognition of the dissim-
ilarities, alongside the similarities.

It is the intention of this book to show you how to model, not just how
to use models. In the following section we introduce to you the computer
language that we'll use throughout the book, and that will be immensely
helpful to foster our understanding of dynamic systems and develop our
skills of analogy formation. We close this chapter with a discussion of the
structure of the model-building process and an identification of a set of
easy-to-follow modeling steps. These steps are not sacred; they are in-
tended as a guide to get you started in the process.

1.3 Modeling in STELLA

STELLA® was chosen for this book as the computer language with which
we model dynamic systems because it is a very powerful, yet easy-to-learn
tool. The software provides also an “Authoring” feature that enables you to
develop models for use by others who are uninterested in, or ignorant of,
the underlying details of the model. However, since model development
and understanding are the purpose of this book, we do not discuss the Au-
thoring feature here.

The basics of the STELLA programming language are outlined briefly in
the next section. In order to easily follow that introduction, install STELLA
on your disk. The installation procedure is explained in the Appendix.
Then open the STELLA program by double-clicking on the STELLA program
icon on your disk.

STELLA is a commercially available graphical simulation program de-
veloped by High Performance Systems. Run-time versions of STELLA for
Macintosh and Windows are enclosed with this book including the models
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developed here. Note that the run-time version alows you to open existing
models, to modify them, to build your own models, but not to save
changes or new models. To order a full version of the software, contact
High Performance Systems, Inc.

As an introduction to the basic elements and the process of the modeling
with STELLA, we provide here the stepwise development of a basic model
on the growth of a population. This construction employs all of the four
graphical “tools” needed for programming in STELLA. A Quick Help Guide
to the workings of the software is provided in the Appendix. When you
open the software, you will see the symbols (or building block objects) for
stocks, flows, converters, and connectors (or information arrows) that make
up a STELLA model (Fig. 1.3).

If a globe appears on the lefthand side of the screen, click on the globe
to switch to modeling mode (Fig. 1.4). In this mode you can specify the in-
itial conditions and functional relationships of your model.

Let’s begin with the first tool, a stock, representing, for example, the
number of people living on an island of 1 square kilometer. Just click on
the rectangle, move it to the center of the diagram page and click again
with the mouse. Then type in the name “POPULATION.” What you should
get is shown in Figure 1.5.

In STELLA, this type of stock is called a “Reservoir,” which is true if we
are dealing with conserved quantities. But the appropriate name is “state
variable,” indicating and recording at least one of the states or conditions of
our system. A state variable is used in the program to make all the other
calculations in the model. More about that later. Just note for now that this
stock represents the number of people in the population on the island. But
also note that, since the area of the island is 1 (square kilometer), the value
of the population, to be changed and stored in the computer every little DT
of time throughout the running of the model, is also the density of the
population. Population is a stock, something containable and conserved in
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FIGURE 1.5

the “reservoir” sense, and density is not a stock, density is not conserved.
Yet, both variables are state variables. Thus, due to our choice of area in
this model, population and density are representable by the same rectangle.

Note the question mark in the rectangle. STELLA is saying that you must
provide an initial or starting value for all state variables. If we double-click
on the rectangle, a dialog box appears, a typical event in the use of STELLA.
STELLA is requesting the initial value. You can specify an initial value of
your choice, e.g. 10, using the keyboard or the mouse and the dialogue
keypad. Click OK, close the dialogue box, and you should have lost the
question mark.

The next question is: What controls the addition (or subtraction) of
people from the island? Let’s assume, for simplicity only, that the people on
this island are born adult and that they never die. Later we will develop
more realistic models. Here, we have only “BIRTHS” and that is the name
we give to the “Control Variable.” We use the second tool—called the
“Flow”—to represent such control of the states. Just click on the second
symbol, then click (about 2 inches left of the stock) and drag the arrow to
the “POPULATION” until the state variable box becomes spotted, and re-
lease. You should get the picture shown in Figure 1.6.

In this simple model, the arrow only points into the stock, indicating an
inflow. If and when necessary, the arrow can be selected to point both
ways. Just double-click on the circle attached to the flow symbol and
choose “Biflow.” In our case, however, BIRTHS should only be going into
the POPULATION. The control variable BIRTHS is a uniflow, say “new
people per year.”

Next we need to know how it is that these people reproduce. Not the
real details of course—we only need to know how to represent with a sat-

POPULATION
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BIRTHS

FIGURE 1.6
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isfactory accuracy the flow of new people per year. One way to do that is
to look up birth rates in the Census statistics. There we might find that
number given as, let’s say, 3 new people per 100 existing people in the
population per year. This number can be represented as a “Translation Var-
iable” or “Convertor” (a lone circle) from the STELLA tool bar. Our BIRTH
RATE is not yet a variable—that comes later. The same process of clicking
and dragging with which you got the rectangle will get you the circle; just
open it and enter the number 0.03 (3/100) in the indicated space. Note the
impressive list of “built-in” functions to choose from for more complex
models, down the side of the dialogue box.

The last tool is the “Information Arrow” (or “Connector”). This arrow
conveys the information from a circle or rectangle, information about the
state, control, or transformation variable, to a circle, to a control or trans-
forming variable. In this case, we want to convey the information about the
BIRTH RATE to BIRTHS and we want to convey information about the level
of POPULATION to the variable BIRTHS. Two arrows must be added and
now the diagram looks like Figure 1.7.

The last modeling step is to specify BIRTHS. Open it and note the list of
required inputs. Naturally—because of the information arrows—these re-
quired inputs are BIRTH RATE and POPULATION. Recall the meaning and
the units of these two variables: BIRTHS must equal BIRTH RATE*POPULA-
TION. By clicking on these variables and the * sign, we have the needed
relationship and the variable can be closed, completing the model for a
moment.

The next item on our agenda is to set the size of the time step, DT, over
which stocks should be updated and the length of the simulation run. Let’s
arbitrarily choose DT = 1 year and the length of time as 100 years.

In order to display the results of your model, click on the icon that rep-
resents a graph and move it to the diagram. Similarly, you can plot the
model results in a table by choosing the icon that represents a table. The
STELLA icons for graphs and tables are shown, respectively, in Figure 1.8.
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Upon selection, the graph pad opens automatically (or can be opened by
double-clicking on it), and shows you the list of stocks, flows, and parame-
ters of your model. Each of these can be plotted. Select POPULATION to be
plotted, add it with the >> arrow to the list of selected items, set the scale
from 0 to 200 and check OK. Stop for a moment and ask yourself: What is
the likely result of your model? Now RUN the model by choosing RUN in
the pull-down menu. The result is shown in Figure 1.9.

The graph shows exponential growth—just as we should have expected.
And you should always say what you think the model should produce be-
fore you run it. This sort of speculation builds your intuition about system
behavior and it helps you correct programming errors. When things go dif-
ferently from your anticipation, something is wrong and it is up to you to
explain it.

What is going on here? How does STELLA do this? It is really very sim-
ple. At the beginning of each DT, say at the initial period (@time=0),
STELLA looks at all the circles for the necessary calculations. Ultimately,
the calculations will probably be based on the value of the state variables.
Only the variable BIRTHS depends on the state variable POPULATION. So,
to get the current value of BIRTHS, STELLA multiplies 0.03 times the value
of POPULATION(@time=0) or 10 (which are known thanks to the infor-

FIGURE 1.9
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mation arrows) to get 0.3. Then STELLA adds the current BIRTHS calcula-
tion to the POPULATION(@time=0) to get an updated value for the POPU-
LATION(@time=1) of 10.3. Forget the fractional people problem—there
are easy ways to interpret or handle this. For the next DT, from time = 1
to time = 2, the entire process is repeated, and so on, to the end of the
specified time.

You should see the special role of the state variable here: it is the only in-
formation that the computer uses to carry from the end of one DT to the
beginning of the next. This is why we like to call it the variable that rep-
resents the condition of the system.

This model is so simple that we could have solved it by analytical or sym-
bolic techniques with pencil and paper. It is a linear model and it is unreal-
istic. To add one more dimension of realism and to show some of the flex-
ibility of STELLA, let’s incorporate a feedback linkage from the population
to the birth rate. First, an information arrow is needed to connect POPULA-
TION with BIRTH RATE. Once this connection is made (Figure 1.10), a
question mark appears in the symbol for BIRTH RATE because the original
specification is no longer correct but requires POPULATION as an input.

Now open the BIRTH RATE and click on the required input POPULA-
TION. We can specify the relationship between BIRTH RATE and POPULA-
TION in mathematical form or just make an educated guess about their re-
lationship. Such an educated guess between variables may be represented
by drawing a graph that reflects the anticipated value of one variable (here
BIRTH RATE) that corresponds to the value assumed by another variable
(here POPULATION). This feature is called a “Graphical Function.”

Click on “Become Graph” to specify the relationship between BIRTH
RATE and POPULATION in a graphical form, set the limits on the popula-
tion at 2 and 200 and set the corresponding limits on the BIRTH RATE at 0
and 0.06 to represent a change of the birth rate when POPULATION is be-
tween 0 and 200. We are just making these numbers up, of course. Finally,
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use the mouse arrow to “draw” a curve from the maximum birth rate and
population of 2, to the point of zero birth rate and a population of 200.

Imagine that we had three observed points from various sources: these
two and one somewhere in the middle. So we have sketched in a curve that
goes through all three points and assumed that a gradual transition existed
at all the other points (Fig. 1.11). Such a sketch is good enough given the
state of our knowledge. OK this graph.

You are ready to run the model again but first guess the general shape of
the graph for POPULATION through time. First of all it should in general,
rise. Secondly, it should rise fast at first since the initial population is only
10 and the initial birth rate is therefore very high, and rise slowly later. Fi-
nally, the population should level off at 200 since that is the level when the
density would become so great that all birthing stops. RUN and you will see
that we are right (Fig. 1.12).

There is clearly no analytic solution to this problem. It has been solved
by the only available technique, namely a numerical solution method. We
should continue to investigate how sensitive the answer is to changes in the
graph and to variations in the size of DT. The time step doesn't have to be
1 year. In general, the smaller the DT, the more accurate the numerical
methods of updating the state variables, and thus, the more accurate the an-
swer. Keep making DT smaller until you see that the change in the critical
variable is within the measuring tolerances.

In general, keep your models simple, especially at first. Compare your re-
sults with measured values where at all possible. Only complicate your

FIGURE 1.11
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FIGURE 1.12

model when it does not produce results that predict the available experi-
mental data within a sufficient level of accuracy.

As your model becomes increasingly complicated, you should attempt to
maintain a structure in the STELLA diagram that clearly conveys interdepen-
dencies of the model parts. After all, its visually oriented approach to mod-
eling makes STELLA such a powerful tool. Move model parts with the “Hand”
symbol around in the diagram or change the color of icons with the “Paint
Brush” (Fig. 1.13). Just click on these symbols to activate them. Use the “Dy-
namite” to bomb away unnecessary parts of the model (see Fig. 1.13).

Once the model becomes larger and contains an increasing number of
modules, or submodels, you may want to prevent some of these parts from
changing. Click on the “Sector” symbol—the symbol on the left in Figure
1.14—and drag it over that part of the model you want to isolate. If you
then go to the Run pull-down menu you will see that you can now run sec-
tors individually or all of them together. Execution of the individual sectors
does not alter the values of the variables in other sectors.

Annotate the model] to remind yourself and others of the assumptions for
your model and its submodels. To do so, click on the “Text” symbol, iden-
tified by the letter “A,” drag it into the diagram, and type in your text.
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These tools prove very helpful when you develop increasingly compli-
cated models and when you want to share your models and model results
with others. We encourage you to make extensive use of these tools pro-
vided by STELLA. You may also want to explore features in the STELLA
software that we have not mentioned in the text, but are still useful when
building STELLA models. These features include Drill Down (visual hierar-
chy), Space Compression, High-Level Mapping Layer, as well as a number
of Authoring features. A brief overview of STELLA features is found in the
Appendix.

STELLA has excellent sensitivity analysis procedures. You should always
exercise your model thoroughly, checking your intuition against the results.
Run the model to extremes by changing the initial conditions, for example.
Soon you will want to try a formal sensitivity analysis.

Before you move on to “experiment” with the systems described in the fol-
lowing chapters you should sufficiently familiarize yourself with the basics of
the STELLA software. Make sure you can select, initialize, and connect the
various icons of that graphical programming language. In the remainder of
this book we will explore with you the use of these icons, or tools, for the
modeling of the dynamics of a variety of systems. Additional information on
the use of STELLA is provided in the Appendix. The models are also enclosed
on the CD ROM that accompanies this book. To open these models, start
STELLA, then close the blank model that STELLA provides for you—simply
go to the “File” pull-down menu and select “Close Model’—then open a
model of your choice through the “File” menu “Open Model.”

POPULATION DYNAMICS

POPULATION(t) = POPULATION(t - dt) + (BIRTHS) * dt
INIT POPULATION = 10

INFLOWS:

BIRTHS = POPULATION*BIRTH_RATE

BIRTH_RATE = GRAPH({.03} POPULATION)

(2.00, 0.06), (21.8, 0.0576), (41.6, 0.0546), (61.4,
0.0507), (81.2, 0.0465), (101, 0.0414), (121, 0.0354),
(141, 0.0291), (160, 0.021), (180, 0.0117), (200, 0.00)
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1.4 Principles of Modeling

Though our title of this section, Principles of Modeling, may seem some-
what ostentatious, we think we have learned something general about the
modeling process after many years of trying. So here is our set of 10 steps
for the modeling process. We expect you to come back to this list once in
a while as you proceed in your modeling efforts, and to challenge and re-
fine these principles of modeling.

1.

Define the problem and the goals of the model. Frame the questions
you want to answer with the model. If the problem is a very large one,
define subsystems of it and goals for the modeling of these subsystems.
Think now: Is my model to be descriptive or predictive?

Designate the state variables. (These variables will indicate the status of
the system.) Keep it simple. Purposely avoid complexity in the begin-
ning. Note the units of the state variables.

. Select the control variables, the flow controls into and out of the state

variables. (The control variables are calculated from the state variables
in order to update them at the end of each time step.) Note to yourself
which state variables are donors and which are recipients with regard
to each of the control variables. Also, note the units of the control vari-
ables. Keep it simple at the start. Try to capture only the essential fea-
tures. Put in one type of control as a representative of a class of similar
controls. Add the others in step 10.

. Select the parameters for the control variables. Note the units of these

parameters and control variables. Ask yourself: Of what are these con-
trols and their parameters a function?

. Examine the resulting model for possible violations of physical, eco-

nomic, etc. laws, for example, the conservation of mass, energy, and
momentum; any continuity requirements. Also, check for consistency
of units. Look for the possibilities of division by zero, negative volumes
or prices, etc. Use conditional statements if necessary to avoid these
violations.

. To see how the model is going to work, choose some time horizon

over which you intend to examine the dynamic behavior of the model,
the length of each time interval for which state variables are being up-
dated, and the numerical computation procedure by which flows are
calculated. (For example, choose in the STELLA program Time Step =
1, time length = 24.) Set up a graph and guess the variation of the state
variable curves before running the model.

. Run the model. See if the graph of these variables passes a “sanity test.”

Choose alternative lengths of each time interval for which state vari-
ables are updated. Choose alternative integration techniques. (For ex-
ample, reduce in STELLA the time interval DT by half and simulate the
mode again to see if the results are the same.)
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8. Vary the parameters to their reasonable extremes and see if the results
in the graph still make sense. Revise the model to repair errors and
anomalies.

9. Compare the results with experimental data. This may mean shutting
off parts of your model to mimic a lab experiment, for example.

10. Revise the parameters, perhaps even the model, to reflect greater com-
plexity and to meet exceptions to the experimental results, repeating
steps 1 to 10. Frame a new set of interesting questions.

Don’t worry about applying all of these steps in this order as you de-
velop your models and improve your modeling skills. However, check
back to this list now and then to see how useful, inclusive, and reasonable
these steps are.

Remember that modeling has three possible general uses: first, you can
experiment with models. A good model of a system enables you to change
its components and see how these changes affect the rest of the system.
Second, a good model enables prediction of the future course of a dynamic
system. Third, a good model stimulates further questions about the system
behavior and the applicability of the principles that are discovered in the
modeling process to other systems.

The models developed in this book are all built with the graphical pro-
gramming language STELLA. In contrast to the majority of computer lan-
guages available today, STELLA enables you to spend the majority of your
time and effort on understanding and investigating the features of a dy-
namic system, rather than writing a program that must follow some compli-
cated, unintuitive syntax. Eventually, any modeling enterprise may become
so large that the program STELLA is too cumbersome. For example, in spa-
tial ecological modeling we use STELLA to capture the expertise of a vari-
ety of life science professionals. We then electronically translate that ge-
neric model into C+ or FORTRAN and apply it to a series of connected
cells, for example as many as 120,000 in a model of the sage grouse.* The
next step is to electronically initialize these now-cellularized models with a
specific Geographic Information System and run the results on a large par-
allel processing computer or a large network of paralleled workstations. In
this way, the knowledge-capturing features of STELLA can be seamlessly
connected to the world’s most powerful computers.

The cellular approach to building dynamic spatial models with STELLA
and running those models on ever more powerful computers is receiving
increasing attention in landscape ecology and environmental management.
An alternative, but closely related approach has been chosen by Ruth and
Pieper’ in their model of the spatial dynamics of sea level rise. Their model

“Westervelt, J. and B. Hannon. 1993. A Large-Scale, Dynamic Spatial Model of the
Sage Grouse in a Desert Steppe Ecosystem, Mimeo, Department of Geography, Uni-
versity of Illinois, Urbana, Hlinois.

SRuth, M. and F. Pieper. 1994. Modeling Spatial Dynamics of Sea Level Rise in a
Coastal Area, System Dynamics Review, Vol. 10, p. 389.
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consists of a relatively small set of interconnected cells, describing the
physical processes of erosion and sediment transport. Each cell of the
model is initialized with site-specific data. These cells are then moved
across the landscape to create a mosaic of the entire area to be covered by
the model. In its use of an iconographic programming language, its visual
elements for data representation, and its representation of system dynamics,
the model is closely related to pictorial simulation models® and cellular au-
tomata models.” The approach is flexible, computationally efficient, and
typically does not require parallel-processing capabilities. Though slightly
awkward, it is also possible to use STELLA to carry out object-oriented
modeling.

In the next chapter we begin with identifying features of dynamic mod-
els that are repeated throughout this book and fundamental to many dy-
namic processes. Then, we turn our attention to the particulars of models
for chemical, genetic, ecological, economic, and engineering processes. As
we develop these models, we introduce the general principles that underlie
the respective disciplines, enabling you to pursue the investigation of these
systems further, and to ask and answer questions of your own about the
dynamics of increasingly complex real-world phenomena.

®Cdmara, A.S., F.C. Ferreira, J.E. Fialho, and E. Nobre. 1991, Pictorial Simulation Ap-
plied to Water Quality Modeling, Water Science and Technology, Vol. 24, pp. 275-281.
"Toffoli, T. and N. Margolus. 1987. Cellular Automata: A New Environment for Mod-
eling, MIT Press, Cambridge, MA.
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2
Four-Model Set

So self starts nothing, but what tends apace, / Home to the goal, where
it began the race.
—William Cowper, “Charity”

2.1 Stimulus-Response Model

In this chapter we discuss basic model forms that underlie a variety of mod-
els developed in this book. In order to easily follow our discussion, you
should open the respective model from the CD ROM that came with this
book, or even better, create the models from scratch as we proceed.

There are four basic model forms that continually reappear in the mod-
eling process. They are presented here as both an introduction to STELLA
and as a general introduction to modeling. For these basic forms of models
we use populations as an example of (conserved) state variables.

The first of these basic model forms is the STIMULUS-RESPONSE form.
Here the contribution to the population is independent of the stock or state
variable. The likely analogy is the immigration of people to a host popula-
tion: these people arrive without a clue as to the condition of the host, pre-
suming that nothing could be worse than the conditions where they are. In
this case, the arriving population (a flow) provides a simple stimulus for the
change in the host population (the stock). This stimulus leads to the growth
of the population that absorbs the immigrants. The STELLA model for the
STIMULUS-RESPONSE model is shown in Figure 2.1.

The state variable POPULATION has as its inflow the NET IMMIGRA-
TION that does not depend on the state variable itself:

NET IMMIGRATION = IMMIGRATION FACTOR ¢D)

POPULATION
NET IMMIGRATION

&3 = D

IMMIGRATION FACTOR

FIGURE 2.1

B. Hannon et al., Dynamic Modeling 27
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POPULATION is measured in numbers of individuals. NET IMMIGRATION
is measured in numbers of people per time period. The units of IMMIGRA-
TION FACTOR are here equal to those of NET IMMIGRATION. At this point
we do not concern ourselves with the origin of the immigrants. Rather, the
immigrants just appear, and we model this appearance as a flow that origi-
nates in a “cloud” and feeds into the stock of POPULATION.

The flow of NET IMMIGRATION is modeled as a function of the variable
IMMIGRATION FACTOR, which is, in turn, a function of TIME. TIME is a
built-in function of STELLA and is just the current time period. Open IMMI-
GRATION FACTOR and either type in TIME as the “right-hand side of the
equation” or select TIME from the list of built-in functions. We used the
graphical relationship in Figure 2.2 to specify the change in NET IMMIGRA-
TION with TIME.

The way in which the immigration factor depends on the time period is
specified in a graphical relationship. Alternatively, we may have chosen an
explicit mathematical relationship. In this model, the immigration factor as-
sumes a value of zero in time period zero and reaches the value of 1.6 in
time period 100. Consequently, net immigration increases steadily, and
population increases at an increasing rate.

Running the STIMULUS-RESPONSE model over 100 periods with an in-
itial population of 10 yields the levels of population over time that are
shown in Figure 2.3.

FIGURE 2.2
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FIGURE 2.3

Before we move on to introduce other model forms, let us verify that the
units in which the parameters and variables are measured are compatible
with each other. Checking the consistency of the units is a very important
step in model building and application. For a summary of the variables and
constants in our model see Table 2.1.

Given these units, we can check their consistency by “calculating” the
units of the population stock derived from the reproductive rule

POPULATION(t) = POPULATION(t — dt) + (NET IMMIGRATION) * dt (2)
with
NET IMMIGRATION = IMMIGRATION FACTOR 3)

If we disregard for the moment the time indices and substitute in this rule
the units in which the variables and parameters are measured we get

NUMBER OF INDIVIDUALS = NUMBER OF INDIVIDUALS
+ NUMBER OF INDIVIDUALS PER TIME PERIOD * Time Period
= NUMBER OF INDIVIDUALS “

Since “Time Period” is equal to DT, “Time Period” cancels out and the units
of our model “sum up” correctly.

TABLE 2.1

Variable Units

POPULATION Number of Individuals

NET IMMIGRATION Number of Individuals per Time Period

IMMIGRATION FACTOR Number of Individuals per Time Period
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STIMULUS-RESPONSE MODEL

POPULATION(t) = POPULATION(t - dt) + (NET_IMMIGRATION)
* dt

INIT POPULATION = 10 {Individuals}

INFLOWS:

NET_ IMMIGRATION
Time Period}

IMMIGRATION_FACTOR {Individuals per

IMMIGRATION_FACTOR = GRAPH (TIME)

(0.00, 0. 00), (8.33, 0.2), (16.7, 0.344), (25.0, 0.48),
(33.3, 56), (41.7, 0.864), (50.0, 1.01), (58.3,
1.12), (66 7, 1.23), (75.0, 1.33), (83.3, 1.42), (91.7,
1.52), (100, 1.58)

2.2 Self-Referencing Model

The second form is the SELF-REFERENCING model, where, for example,
the population level is influential in forming its own growth rate. In this
case, the population levels off at a maximum. This maximum is predeter-
mined, yet the path along which it is approached or reached is determined
by the processes occurring in the system. The self-referencing process may
or may not have an implicit limit. Here the specific limit is the net birth rate
of zero when the population has reached a certain level. We might think of
this limit as a “goal” of the population but nothing in the model explicitly
requires that it will be reached. In this particular form of the model, the net
birth rate is set at zero when the population reaches 100. The model will
show that the population approaches 100 but never quite gets there. Sup-
pose that the NET BIRTH RATE had a small positive value at the point
where the population is at a level of 100. The population would continue
to rise at this rate indefinitely. The model is still of the SELF-REFERENCING
form.

The SELF-REFERENCING model is shown in Figure 2.4. The inflow into
the POPULATION stock, NET BIRTHS, depends now explicitly on the level
of the population a time step earlier: this year’s population is equal to last
year’s population plus the births that occur this year minus the deaths of
this year. NET BIRTHS is measured in numbers of individuals per time pe-
riod. The net effect of births and deaths for the population is taken together
by multiplying a NET BIRTH RATE by the population.
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POPULATION
ED =
NET BIRTH
NET BIRTH RATE
FIGURE 2.4
NET BIRTHS = NET BIRTH RATE * POPULATION )

The units of NET BIRTH RATE are 1/number of individuals in the popula-
tion/time period.

As in the previous model, we do not concern ourselves with the origin or
destination of the people who are borne or die, and we model their ap-
pearance and disappearance jointly, for the case of a positive net birth rate,
as a flow that originates from a “cloud.”

The NET BIRTH RATE in our model is not a fixed number but depends,
in turn, on the population. As in the previous chapter, this dependence is
specified, for simplicity, graphically. Alternatively, anthropologists may
have told us the statistical relationship between NET BIRTH RATE and
POPULATION in functional form. We could have then expressed the influ-
ence of the population size on the magnitude of NET BIRTH RATE by this
function instead of the graph. The graphically expressed relationship be-
tween NET BIRTH RATE and POPULATION is shown in Figure 2.5.

The resulting population dynamics are shown in Figure 2.6. The popula-
tion levels off over time since NET BIRTH RATE becomes zero as POPULA-
TION reaches 100.

Before you move on with this model, make sure you know the units of
each parameter and variable of the model. Verify that the units are compat-
ible. Use the method applied in the previous section to check for the com-
patibility of the units.

Look again at the model we actually have here. Note well that if the NET
BIRTH RATE graph were a straight line between the present end points, the
resulting population grows according to the formal term “logistic.” The dif-
ferential equation formed is nonlinear and it has an analytic solution. Most
nonlinear differential equations are not solvable analytically, so our model
is a rare case. If, however, the net birth rate is dependent on the population
in a nonlinear way, i.e., the NET BIRTH RATE line is curved in some way,
the resulting differential equation has no analytic solution.



32 2. Four-Model Set

FIGURE 2.5

The very existence of the logistic definition reflects our past struggle be-
tween models with analytic solutions and reality-in-modeling. Frequently, a
logistic relationship among system components is postulated in order to
make the analytical problem solvable. With the advent of computers and
numerical solution techniques and such programs as STELLA, we need to
worry less about analytic tractability and more about modeling reality.

FIGURE 2.6
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SELF-REFERENCING MODEL

POPULATION(t) = POPULATION(t - dt) + (NET_BIRTH) * dt
INIT POPULATION = 10 {Number of Individuals}

INFLOWS:

NET_BIRTH = NET BIRTH_RATE*POPULATION {Number of
Individuals per Time Period}

NET_BIRTH_RATE = GRAPH (POPULATION)

(0.00, 0.0597), (8.33, 0.0558), (16.7, 0.0519), (25.0,
0.0453), (33.3, 0.0405), (41.7, 0.0345), (50.0,
0.0288), (58.3, 0.0249), (66.7, 0.0204), (75.0,
0.0165), (83.3, 0.0114), (91.7, 0.0051), (100, 0.00)

2.3 Goal-Seeking Model

The third basic model form is called GOAL SEEKING. A target population is
the goal and the difference between the current population and the target
drives the population toward the target. Unlike in the previous models, the
process that underlies the GOAL SEEKING model is one of explicitly seek-
ing the target. There are many examples of this kind of process. The decay
of a radioactive source (the target is zero radiation), the cooling of a hot
brick (the target is the ambient temperature), and the diffusion of a con-
centrated gas (the target is the room concentration, which is increasing as
the gas escapes from the original container).

The GOAL SEEKING model is shown in Figure 2.7. Here, the flow of NET
BIRTHS depends not only on the stock of the population but also on the
exogenously defined TARGET POPULATION:

NET BIRTHS = NET BIRTH RATE
* (TARGET POPULATION — POPULATION) ©)

POPULATION

NET BIRTHS

B———

NET BIRTH RATE
TARGET POPULATION

FIGURE 2.7
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Here we arbitrarily set the exogenous population target to 100 and our
starting population equal to 10. Consequently, the flow NET BIRTHS is pos-
itive at the outset of the model run, and remains positive as long as the
population size lies below the target. As the population grows, the differ-
ence to the target vanishes and approaches zero. Subsequent increases in
population size become ever smaller, leading to a population that ap-
proaches 100 individuals.

Again, note the units in which the variables and parameters of the
model may be recorded and make sure that these units are compatible
with each other. Once you checked for the compatibility of the units,
make an educated guess of the model behavior. The population dynamics
for our parameters and initial conditions set in the goal seeking model are
plotted in Figure 2.8.

FIGURE 2.8
GOAL-SEEKING MODEL
POPULATION(t) = POPULATION(t - dt) + (NET_BIRTHS) * dt
INIT POPULATION = 10 {Number of Individuals}
LINFLOWS:

NET_BIRTHS = NET_BIRTH_RATE* (TARGET_POPULATION -
POPULATION) {Number of Individuals per Time Period}

NET_BIRTH_RATE = .03 {Net Addition of Individuals per
100 Individuals in Population per Time Period}
TARGET_POPULATION = 100 {Number of Individuals}
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2.4 Goal-Setting Model

The most sophisticated form of the basic models is called the GOAL SET-
TING model. Here the POPULATION state variable is involved in setting
the population density, along with external forces. In this model, these ex-
ternal forces are affecting the area that is inhabitable by the population.
Thus, together with the state variable POPULATION, these external forces
determine the population density. That density is, in turn, controlling the
target population: an increase in the population leads to an increase in the
population density, and consequently, to a lower net birth rate such that a
steady population size might be achieved in the long-run.

The population density is calculated simply as the ratio of the number of
individuals per area

POPULATION DENSITY = POPULATION/VARIABLE AREA @)

and the relationship between density and the VARIABLE TARGET POPU-
LATION is graphically specified as in Figure 2.9.

We now use the VARIABLE POPULATION TARGET to calculate the NET
BIRTHS as we have done similarly in the previous section of this chapter:

NET BIRTHS = NET BIRTH RATE
* (VARIABLE TARGET POPULATION — POPULATION) (8)

FIGURE 2.9
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FIGURE 2.10

We further assume that external forces affect the size of the area that can
be inhabited, thereby influencing the population density and, thus, the
level for a steady population size (the target) that may be achieved. The
change in area over time is graphically defined as in Figure 2.10. The re-
sulting model is shown in Figure 2.11, and its dynamics are depicted in Fig-
ure 2.12.

POPULATION
NET BIRTHS

&3

VARIABLE AREA
NET BIRTHRATE

POPULATION DENSITY

VARIABLE TARGET POPULATION

FIGURE 2.11
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FIGURE 2.12

You should be able to find these basic forms of STIMULUS-RESPONSE,
SELF-REFERENCING, GOAL SEEKING, and GOAL SETTING in many differ-
ent types of systems. For example, the plight of the manufacturer of a
widget may depend on a goal that is set endogenously rather than exoge-
nously. To maximize profits, this person uses a given price for widgets
taken from the marketplace. This price and the profit-maximizing proce-
dure combine to yield an optimal size for the producer’s company. But sup-
pose foreign competition is affecting the price in unpredictable ways. Then
our producer must continually adjust the price in the model to account for
the price variation. In this case, the goal is profit (the most possible) but the
price enters directly into the profit calculation. Other examples are pro-
vided in the following section.

GOAL-SETTING MODEL

POPULATION(t) = POPULATION(t - dt) + (NET_BIRTHS) * dt
INIT POPULATION = 10 {Number of Individuals}

INFLOWS:

NET_BIRTHS =

NET_BIRTH_RATE* (VARIABLE_TARGET_POPULATION -
POPULATION) {Number of Individuals per Time Period}
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NET_BIRTH_RATE = .03 {Net Addition to, or Subtraction
of, Individuals per 100 Individuals in the Population
per Time Period}

POPULATION_DENSITY = POPULATION/VARIABLE AREA
{Individuals per Square Kilometer}

VARIABLE_AREA = GRAPH (TIME)

(0.00, 42.8), (8.33, 43.1), (16.7, 43.5), (25.0, 44.4),
(33.3, 45.5), (41.7, 46.7), (50.0, 48.1), (58.3, 49.9),
(66.7, 51.7), (75.0, 53.3), (83.3, 55.5), (91.7, 58.0),
(100, 60.0)

VARIABLE_TARGET POPULATION = GRAPH (POPULATION_DENSITY)
(0.00, 99.5), (0.833, 96.5), (1.67, 93.5), (2.50,
90.0), (3.33, 86.5), (4.17, 82.0), (5.00, 77.5), (5.83,
68.5), (6.67, 59.0), (7.50, 50.0), (8.33, 37.0), (9.17,
21.0), (10.0, 0.00)

2.5 Examples
2.5.1 Exponential Decay of a Stock

Assume that there is a stock of some substance that decays over time. The
rate of decay is proportional to the remaining concentration. The propor-
tionality factor is a physical constant that is characteristic for that particular
substance. How would we model the process of decay in order to find the
time period at which the concentration falls below a certain level?

This is one of the simplest models that we can build in STELLA. It con-
sists of a stock that is named CONCENTRATION. With time, the concentra-
tion is depleted at a DECAY RATE. The decay rate is proportional to the level
of the concentration. The constant of proportionality is called the DECAY
CONSTANT. The DECAY RATE is calculated by multiplying the CONCEN-
TRATION and the DECAY CONSTANT:

DECAY RATE = DECAY CONSTANT*CONCENTRATION )

We arbitrarily set the initial concentration to 100 and the decay rate to
.1733. The corresponding model is shown in Figure 2.13.

Before you run the model, note the units of the decay rate, decay con-
stant, and concentration. Make sure that these units are compatible with
each other. Also, guess the dynamic path of CONCENTRATION.

The result is shown in the graph of Figure 2.14—an exponential decay
toward zero from the original concentration. We can now find on our graph
the time period at which the concentration falls below a certain level. For
example, after 4 hours, the concentration is less than 50%.

This model is of the simple self-referencing type discussed above. It is as
though the concentration is the driving force. Does the concentration ever
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CONCENTRATION

== D63

DECAY RATE

DECAY CONSTANT
FIGURE 2.13

reach zero? It is like Zeno’s paradox, or the frog that jumps half the remain-
ing distance out of a well with each jump, or the movement of a chemical
across an osmotic membrane. With each time period we get slightly closer
but the amount by which we approach zero concentration decreases also.

Redraw the flow of this model so that it adds, rather than subtracts, from
the stock, and then run the model again after rescaling. In the case of an in-
flow, the model vields some form of attractor, whose force of attraction is
proportional to its size, very similar to compounded interest on an initial in-
vestment. We will discuss this interpretation of the reverse of diffusion in a
later chapter.

Change the time step and run the model again. Do so by running the
model first at a DT = 1, then at DT = 0.5, DT = 0.25, DT = 0.125. You
should always explore the sensitivity of the model to changes in the time
step, since we are using numerical approximation techniques to solve for
the dynamics of the system. When changing the DT for a successive run,
follow the rule

1: CONCENTRATION
100.00

1

\

50.00 \

N

M
\“‘1

0.00 6.00 12.00 18.00 24.00
Hours

0.00

FIGURE 2.14
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DT
DT,., 5 —Zﬁ a0

Keep on reducing the DT until the results of your simulation do not change
significantly. You recognize that the speed of calculation is reduced with

EXPONENTIAL DECAY

CONCENTRATION(t) = CONCENTRATION(t - dt) + (-
DECAY_RATE) * dt

INIT CONCENTRATION = 100 {micro curies}
OUTFLOWS:

DECAY_RATE = DECAY_CONSTANT*CONCENTRATION {Rule: the
decay rate of the initial concentration is linearly
proportional to the concentration level.}
DECAY_CONSTANT = .1733{1/days}

smaller DT. Thus, you may not want to start out with a very small DT
but try to find the one that is just small enough for the purposes of your
model in the sense that further decreases in DT do not alter the results
significantly.

2.5.2 Newtonian Cooling

This model presents a slight complexification of the problem outlined in
the previous example. The system for which the model is designed consists
of some object of a particular temperature surrounded by a cooler environ-
ment of ambient temperature. Let us assume that this environment is large
in comparison to the object and that the ambient temperature is not in-
creased to a measurable extent as the object cools. The object’s tempera-
ture is determined by the difference between the temperature of the object
and that of the surrounding environment. The ambient temperature be-
comes the target final temperature of the object.

In order to model the cooling process we must answer the following two
questions: What is the state variable (stock) of this system? How is the state
variable affected by other components of the system? The state variable is
the temperature of the object that is above the environmental or ambient
temperature. We represent this state variable by a stock. The scale for the
temperature does not matter. Scale differences are compensated for in the
size of the decay constant, which we call COOLING CONSTANT in this
model.
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TEMPERATURE

COOLING RATE

COOLING CONSTANT \iRIENT TEMPERATURE

FIGURE 2.15

For simplicity, the ambient temperature is set constant—it does not
change as the object cools. The cooling rate of the object then is

COOLING RATE = COOLING CONSTANT
* (TEMPERATURE — AMBIENT TEMPERATURE) (11

The STELLA diagram is shown in Figure 2.15. The model is of the simple
goal seeking type. Its behavior is shown in Figure 2.16.

The resulting graph is similar to the exponential decay of the first exam-
ple, except that the target is not zero here. Try to build a model in which a
cool object is heated. You can easily develop such a model by reversing the
direction of the flow pipe.

Also, try to change the time step of the model simulation. How fast can
you run the model and not sacrifice the level of your desired accuracy? As
we discussed above, the rule is that you keep cutting the time step in half

FIGURE 2.16
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as long as the level of desired accuracy is maintained. Another way to in-
crease the accuracy of the solution is to change the solution technique to
Runge-Kutta 2 or 4 (second or fourth order). Order refers to the number of
subdivisions on the time step over which approximations of the variable
are made. These last two techniques have certain limits as we shall see
later.

Can you construct a two-stage reduction in the temperature where the
first body rejects its heat to a second body, which in turn rejects it to the en-
vironment? Assume the two bodies are the same size and material. What
adjustments of the model are necessary to reflect temperature changes in
the environment? How do these changes in the environment’s temperature
affect the final temperature of the object? What will happen, when the
environmental temperature fluctuates over time due to some natural
processes (e.g. the diurnal or seasonal warming and cooling of the sur-
roundings)?

NEWTONIAN COOLING

TEMPERATURE (t) = TEMPERATURE(t - dt) +

(- COOLING_RATE) * dt

INIT TEMPERATURE = 37 {Initial temperature of a body
in degrees centigrade cooling to the surrounding
temperature of the environment: 10 Degrees C}

OUTFLOWS :

COOLING_RATE = COOLING_CONSTANT* (TEMPERATURE-
AMBIENT_TEMPERATURE)

{Newton’s law of cooling: the rate of change of a body
is linearly proportional to the temperature difference}
AMBIENT_TEMPERATURE = 10 {Degrees C}

COOLING_CONSTANT = .06 {1/Time Period}




3

Gradual Development
of a Dynamic Model

Imitation cannot go above its model.
—Ralph Waldo Emerson, Collected Works

3.1 Modeling Industrialization
for a Simple Agrarian Society

In the previous chapter we modeled simple dynamic systems and identified
a set of basic model forms. While the previous chapter outlined how to
model a simple system under alternative assumptions, this chapter shows
how to expand and refine a model. Additionally, we want to stress the
need for treating consistently the units in which parameters and variables
are measured.

We can best demonstrate the process of dynamic modeling by describing
first the process that we wish to model and the parts of the model that de-
termine its dynamic behavior. Then we may want to abstract away from a
large number of details that characterize the real system, thereby concen-
trating on the main driving forces. Once these forces are modeled appro-
priately, we may gradually account for the details that we left out originally.

For example, let us consider the status of an agrarian population of 10
people on an island of unit area, who are unaccountably blessed with a
cache of food. This cache of food is their only source of nutrition and,
therefore, controls the level of their population. The wiser members of the
village realize that the cache will soon be empty and propose that the com-
munity take up the planting of seeds, which will provide them with a con-
tinuous food supply. After some years at such labor, they discover the fact
that the use of tools in their primitive agricultural process will ease the
labor on the field and make these same fields more productive. They even-
tually build factories that produce the implements for their agriculture,
changing forever some of their Auburn stalwarts into factory lads, begin-
ning the trend of the great cities of the world.

How can we possibly even begin to model the economic civilization
process of the industrial revolution? We recommend starting small and sim-
ple. Once the basic features of the agrarian village’s decision process are
captured in a simple model, we may proceed to refine that model and ex-
tend it to include the process of growing food and crafting tools.

From some of the previous very simple models, we can guess that we
need some measure of the level of the population. That level will determine
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much of what happens in the entire model. As before, we introduce a state
variable called POPULATION that is controlled by a flow into POPULA-
TION. We call this flow controller BIRTHS. The stuff from which people are
actually made, all that carbon, hydrogen, and nitrogen, are in such great
supply that we need not worry about depleting them. So they come from
the external environment, from the “cloud,” that marks the system boundary.
At this time we do not worry about the fact that people are not born fully
adult; we leave the concept of age cohorts to a later model. The specifica-
tion for the flow of BIRTHS is given as

BIRTHS = BIRTH RATE * POPULATION €))

The flow control takes its signals from several places. One of them is the
BIRTH RATE variable. The units of this variable are important, and the
lesson of checking units in these models cannot be overstressed. The units
are “new persons born per person already in the population, per year.” Here
we have decided to make this birth rate a function of the population density.
Our little island will someday be quite crowded and it surely occurs to even
the most virile that a suspension of the birth rate is needed. Let's assume that
our anthropologists have found that under such conditions, the maximum
population will be 200; the people will stop reproducing when their island
population reaches 200. The anthropologists further tell us that when space
is absolutely no problem, the birth rate is 0.1. The relationship between birth
rate and population size is shown in Figure 3.1.

FIGURE 3.1
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For simplicity, we may define or normalize the size of the island as 1.0.
Since the island area is one, the population and the density are the same—
just the units are different. Such an assumption keeps the model simpler in
form than it should be in reality.

We specified birth rates at various population densities as a graph. We
did not know more about the reproductive habits of these people so we
have sketched in the data between these two given points. This is not an
unusual case. Sometimes we have some data and the rest of it must be rea-
soned. STELLA contains a sensitivity analysis procedure and we can see
how sensitive our results of an ultimate population level will be to different
interpretations of the intermediate forms of this graph. We will do that later.

The flow control needs the BIRTH RATE information but as it is a rate
“per person,” the controller also needs to know the current level of the
POPULATION. Arrows, the tools that carry the information in the direction
of the arrowheads, must convey the information on the birth rate and the
population to the controller. Once we make the connections between
population, births, and birth rate, our model looks like Figure 3.2.

We are now ready to test our model. But first we must guess the form of
our results. What will the population dynamics reveal? First we can guess
that the population will reach a steady level of 200. If the population is to
become steady, it will not do so suddenly. Rather, the population growth
will slow gradually toward zero as it approaches the 200-person level. Yet,
with an initial population of only 10, the initial growth rate will be very
high. We expect a sigmoidal curve, approaching 200 after a long passage of
time.

Set the DT for 1 (year) and the upper bound on the time at 160 years. Se-
lect a graph and then select the POPULATION variable. Run this model and
see what you get. The results of the assumptions above lead to the dynam-
ics in Figure 3.3. We do get what we reasoned the answer to be.

Redraw the BIRTH RATE curve into a convex form and note the different
results. The intermediate results are sensitive to the shape of this curve. In
order to develop a reliable model of the population dynamics of our island
population, we therefore need to better know the values of the birth rate at
different population levels. We send our anthropologists back to the library
for more research.

POPULATI
BIRTHS ‘ON

€3

BIRTHRATE

FIGURE 3.2
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FIGURE 3.3

If you are using the Macintosh version of STELLA you can have your an-
thropologists provide you with a data set relating birth rates to various
population sizes. This data set can be made available to us in a separate
file, created, for example, with some spreadsheet software that enables data
sets to be “published,” i.e., put in a format that can be recognized by other
software. Let us assume that the data set consists of a column with birth
rates for 21 different population sizes. With the Macintosh computer we can
directly read this data set into the STELLA program for the simple agrarian
society. Double-click on the translation variable BIRTH RATE. Then click
on “Output” at the upper right-hand corner in the dialog box of the graph.
Next choose “Subscribe To” in the “Edit” pull-down menu. A new dialog
box appears that requires you to select a data set (or “edition”) to which
STELLA should subscribe. Choose “Birth Rate Publisher” as the data set of
your choice—this is the one provided by our anthropologists and it comes
with the disk for this book. The data set we are using here is, of course,
made up. Scroll along the new graph that has been created using the data
set from “Birth Rate Publisher” to see how birth rates change with increas-
ing population sizes. Now click on OK and rerun the model. Figure 3.4
shows what you should get.

In STELLA we can subscribe to data sets in order to specify graphs, as we
have done in this chapter, or to specify flows, translation variables, or in-
itialize stocks. In each case, we can subscribe to editions that contain
numbers only—graphics or equations are not permissible. For the specifi-
cation of graphs and flows the editions to which we subscribe must be in
the form of a single column. Translation variables and reservoirs, in con-
trast, require only a single initial value. Conveyors or queues—we will dis-
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FIGURE 3.4

cuss them in Chapters 17 and 35—require initial values that are separated
by commas.

If the edition you are subscribing to in your model does not conform
with the requirements for the specification of your STELLA model, STELLA
will let you know in a dialog box once you attempted to subscribe to an
edition and clicked on OK. To fix the problem, choose “Subscription Op-
tions . ..” from the “Edit” menu, click on “Cancel Subscriber,” and then
click OK.

With STELLA we can not only subscribe to editions published by other
software, we can also publish our own results in editions that are then
saved on disk. These editions may then be used as inputs into other pro-
grams. Each table created in STELLA can be a publisher of only one edition.
If you wish to publish separate editions of your data, you need to plot this
data in separate tables. To learn how to publish an edition, create, for ex-
ample, a table for the model above and plot in this table POPULATION.
Run the model, then click on the heading POPULATION in the table so that
the whole column is highlighted (or highlight several columns if you have
plotted them in the table and wish to publish them). Next go to the “Edit”
menu and select “Create Publisher,” give your edition a name and click on
“Publish.” This edition will be saved on your disk if and when you save
your model.!

While the model of the agrarian society developed above is overly sim-
plified, we have solved a nonlinear differential equation. This nonlinear

'Of course, saving your model is not possible with the run-time version of STELLA.
Nevertheless, you can access your edition within STELLA as long as the model with
which you created the edition remains open.
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differential equation is analytically intractable and can be solved only
numerically.

What is the very first step that you would take to increase the reality of
this population model? Why not consider how the people leave the island?
Since the climate here is idyllic, no one wants to leave. But people do leave
through death of course. The death process is nearly a mirror of the birth
process and is uninstructive to add alone. In the next problem, we add the
food cache and tie food availability to the death rate.

SIMPLE AGRARIAN SOCIETY

POPULATION(t) = POPULATION(t - dt) + (BIRTHS) * dt
INIT POPULATION = 10 {Individuals}
INFLOWS:

BIRTHS = BIRTH_RATE*POPULATION {Addition of
Individuals per Time Period}

BIRTH_RATE = GRAPH (POPULATION)

(2.00, 0.0995), (21.8, 0.0975), (41.6, 0.091), (61.4,
0.0855), (81.2, 0.083), (101, 0.075), (121, 0.062),
(141, 0.053), (160, 0.035), (180, 0.015), (200, 0.00)

3.2. Impacts of Per Capita Food Consumption
on Population Growth

Here we have added the flow control DEATHS, which leads to a cloud
(another system boundary) since we don’t care in this model to remember
the number of deads. Deaths are controlled by the DEATH RATE, a graph-
ical function as before except that now the death rate is controlled by the
amount of food consumed per head, EAT PER HEAD (Fig. 3.5). This vari-
able, in turn, is a function of the available FOOD PER CAPITA, the ratio of
the remaining FOOD (initially 100 units) to the current population (Fig. 3.6).
The idea here is that the leaders of our little community will begin to ration
the food according to an agreed-upon rule when the food supply gets low.

Finally, we realize that the state variable FOOD must decline as food is
eaten. The amount eaten per person times the number of people gives the
rate EAT, which is the flow control for FOOD consumed:

EAT = EAT PER HEAD * POPULATION @)

The resulting STELLA model is shown in Figure 3.7.
Build and run the model and form a graph, as before, for the state vari-
ables POPULATION and FOOD. But first, guess the graphical form for this
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FIGURE 3.5

FIGURE 3.6
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POPULATION
BIRTHS DEATHS
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BIRTHRATE

FOOD PER CAPITA

EAT PER HEAD
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FOOD

EAT PER HEAD

FiIGURE 3.7

population as our more complex model utters its revelations of the future.
Will the ultimate population be 200 or 0 or something in between? Re-
member, we have only a limited supply of food. The food variable should
monotonically decline since there is no replenishment process. If we are
running the model long enough we will see the end of our people! But not
before they rise to a great peak (less than 200 of course). Compare your
model output with ours, which is shown in Figure 3.8.

Try changing the shape of the EAT PER HEAD graph to represent differ-
ent scarcity control strategies. Suppose a very democratic regime was in

FIGURE 3.8
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control and whatever was left is shared equally. Try to model that case.
Suppose, on the other hand, that the community leaders are weak and let a
few strong members hoard food while others starve. How would a model
for this situation appear? Should the birth rate be linked somehow to the re-
maining food in an attempt to avoid the sharp collapse? Would the per cap-
ita consumption be better represented as a delayed function of the avail-
able food per capita? Try these mode extensions and try introducing a
2-year lag in the consumption response.

In reality, these people are hunter-gathers and as such they could live
from the natural larder with more or less a steady population. They would
be in tune with nature, and they would have occasional times of drought or
flood. Their population may fluctuate somewhat during these times and we
will suppose that during one such time, this particular community opted for
agriculture. This is the subject of the next part of our model for the devel-
oping society.

FOOD CONSUMPTION AND POPULATION GROWTH

FOOD(t) = FOOD(t - dt) + (- EAT) * dt

INIT FOOD = 1000 {Kilograms; reduce to eliminate the
first peak of the population.}

OUTFLOWS :

EAT = EAT_PER_HEAD*POPULATION {Kilograms per Time
Period}

POPULATION(t) = POPULATION(t - dt) + (BIRTHS - DEATHS)
* dt

INIT POPULATION = 10 {Individuals}

INFLOWS:

BIRTHS = BIRTH_RATE*POPULATION {Individuals per Time
Period}

OUTFLOWS :

DEATHS = DEATH_RATE*POPULATION {Individuals per Time
Period}

FOOD_PER_CAPITA = FOOD/POPULATION {Kilograms per
Capita}

BIRTH_RATE = GRAPH (POPULATION)

(0.00, 0.0995), (20.0, 0.0975), (40.0, 0.091), (60.0,
0.0855), (80.0, 0.083), (100, 0.075), (120, 0.062),
(140, 0.053), (160, 0.035), (180, 0.015), (200, 0.00)
DEATH_RATE = GRAPH(EAT_PER_HEAD)

(0.00, 0.1297), (0.1, 0.19), (0.2, 0.184), (0.3, 0.173),
(0.4, 0.163), (0.5, 0.147), (0.6, 0.121), (0.7, 0.095),
(0.8, 0.061), (0.9, 0.028), (1.00, 0.013)
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EAT_PER_HEAD = GRAPH (FOOD_PER_CAPITA)

(0.00, 0.00), (1.00, 0.04), (2.00, 0.155), (3.00,
0.27), (4.00, 0.385), (5.00, 0.52), (6.00, 0.63),
(7.00, 0.72), (8.00, 0.82), (9.00, 0.92), (10.0, 0.995)

3.3 Adding Agriculture

To add agriculture we must put people to work in the fields. FOOD PRO-
DUCTION draws upon the available labor and land in the population. It is
another flow control variable for the state variable FOOD. Let’s assume that
half of the people are available for food production. Our problem becomes
one of converting person-years of labor into a rate of food production. We
could just revert to a graph that converts person-hours into a food produc-
tion rate. But here we call in economists and their idea of production func-
tions. These production functions are mathematical relationships among
the inputs that are used in a production process and outputs—they are the
recipes for the production of a particular good. The total amount of land for
this population is assumed to be fixed and of variable quality. Our group
will no doubt farm the best land first and yet even as they bring more land
into production through the use of more labor, they suffer the diminishing
returns of the increasingly poor land.

In order to arrive at a mathematical description of the relationships
among inputs and outputs, economists look over the historical data of pro-
duction sectors in an economy. The economists of our simple society, for
example, may have observed over time different levels of labor input into
the agricultural production process and outputs of food. Based on these
historical records they fit the data to the following kind of function:

FOOD PRODUCTION = A*LABOR)AALPHA 3

In our case, the economists report values for the parameters A and ALPHA.
The estimates used in our model are A = 5 and ALPHA = 0.3. Additionally,
we assume that half of the population is in the labor force. Thus, LABOR is
taken as POPULATION divided by 2.

It is useful to pause here and consider how ecologists model this type of
phenomenon. In the terms of this model, they would call A the maximum
possible food production rate, the rate under ideal conditions. They would
substitute for LABORAALPHA a concave graph whose maximum value was
1 and whose minimum was 0, a graph representing the “effectiveness” of
labor. Where there are other inputs to producing food, there would be ad-
ditional such graphs, each with a maximum effectiveness of 1, each multi-
plying A. This is essentially the same approach that we are using here and
that economists commonly use.
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FIGURE 3.9

With each additional feature, the diagram of the model increases in size.
In larger models that have highly interdependent components we need to
make a large number of connections. With an increasing number of con-
nections, or information arrows, the readability of the model can be se-
riously reduced. You may end up with a model that looks more like a pile
of spaghetti than a computer program. Make use of “Ghosts” of icons to
avoid crossing arrows and increase the transparency of the model structure.
You can create a ghost, for example, of a state variable by first clicking on
the ghost icon (Fig. 3.9) in STELLA’s tool bar.

Once you clicked on the ghost icon, move it to the variable that you
want to duplicate. Click on the symbol you want to duplicate. The ghost
icon then changes its appearance into that of the symbol you clicked on.
You can now place this duplicate of the original anywhere in the diagram
and connect it with information arrows to the relevant parts of the model.

In our model, we created a duplicate, or “Ghost,” of POPULATION for
the society with agriculture (Fig. 3.10). The ghost always assumes the value
of the original. Be aware that all changes to the variable must be made to
the original, not the ghost. For example, if you wish to model emigration

POPULATION
BIRTHS DEATHS

X3

BIRTH RATE
FOOD PER CAPITA
EAT PER HEAD
S FOOD PRODUCTION
€3¢ = ( =
FOOD
EAT P
EAT PER HEAD
POPULATION
ALPHA A

FIGURE 3.10
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from our society you must draw an outflow from the original POPULATION
stock, not the ghost. Similarly, information arrows can originate from the
ghosts to connect them to other parts of the model, but it is not possible
that ghosts receive information arrows.

Our model is again ready to run and it is time to stop and guess the form
of the population response. About all that we can say now is that the popu-
lation will reach some sort of steady state, commensurate with the rate of
food production, after the effect of the initial food cache is over. We are
hard pressed to know whether the steady state level will be higher than the
previous peak population or lower. Try changing the initial level of the
food cache to make the steady state level the historical high. In this way we
can avoid the trauma of population overshoot and possibly chaos. Try var-
ying the amount of the population available as labor to see how sensitive it
is. Can you add food spoilage to the model (say 5% is lost per year)?

The results in Figure 3.11 are plotted for the same graphical relationship
EAT PER HEAD as in the previous model. As the model gets more compli-
cated, our ability to correctly guess the form of the answer decreases. Nev-
ertheless, we should always try. By trying, we improve our intuition about
such complex behavior. Wrong guesses should always be dissected to find
any flaws in reasoning. Upon more careful thinking you may perhaps find
that your reasoning was correct, and that your model has a flaw. In either
case, making educated guesses can help you significantly improve your un-
derstanding and model of a system.

Our model is still incomplete. Surely, our people would want hoes,
planting sticks, and scythes. At first they would make them from scrap ma-
terials but before long, they would organize a factory and begin to make
their agricultural implements. This is the subject of the next and final part of
the model of the industrialization of a simple agrarian society.

FiIGuRre 3.11
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ADDING AGRICULTURE

FOOD(t) = FOOD(t - dt) + (FOOD_PRODUCTION - EAT) * dt
INIT FOOD = 1000 {Kilograms; reduce to eliminate the
first peak of the population.}

INFLOWS:

FOOD_PRODUCTION = A* (POPULATION/2)“ALPHA {Kilograms
per Time Period}

OUTFLOWS:

EAT = EAT_PER_HEAD*POPULATION {Kilograms per Time
Period}

POPULATION(t) = POPULATION(t - dt) + (BIRTHS - DEATHS)
* dt

INIT POPULATION = 10 {Individuals}

INFLOWS:

BIRTHS = BIRTH_RATE*POPULATION {Individuals per Time
Period}

OUTFLOWS :

DEATHS = DEATH_RATE*POPULATION {Individuals per Time
Period}

A = 5 {1/Individuals}

ALPHA = .3

FOOD_PER_CAPITA = FOOD/POPULATION {Kilograms per
Individual}

BIRTH_RATE = GRAPH (POPULATION)

(0.00, 0.0995), (20.0, 0.0975), (40.0, 0.091), (60.0,
0.0855), (80.0, 0.083), (100, 0.075), (120, 0.062),
(140, 0.053), (160, 0.035), (180, 0.015), (200, 0.00)
DEATH_RATE = GRAPH (EAT PER_HEAD)

(0.00, 0.197), (0.1, 0.19), (0.2, 0.184), (0.3, 0.173),
(0.4, 0.163), (0.5, 0.147), (0.6, 0.121), (0.7, 0.095),
(0.8, 0.061), (0.9, 0.028), (1.00, 0.013)

EAT_PER_HEAD = GRAPH(FOOD_PER_CAPITA)

(0.00, 0.00), (1.00, 0.04), (2.00, 0.155), (3.00,
0.27), (4.00, 0.385), (5.00, 0.52), (6.00, 0.63),
(7.00, 0.72), (8.00, 0.82), (9.00, 0.92), (10.0, 0.995)

3.4 Adding Industry

To the basic model, we have added agriculture, which absorbs labor and
capital through a production function, and capital production, which ab-
sorbs labor and produces implements used in agriculture. Because we have
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both labor and implements contribute to the production process, we need
to replace the production function of the previous section with one that
shows both inputs as having influence on the food output. Our new pro-
duction function is

FOOD PRODUCTION = A * (POPULATION/4)A.3 * IMPLEMENTSA.6 ()

and it assumes that one quarter of the population participates in agriculture.

Note this form of converting labor and implements into food. It is again
called a production function. There are many alternative forms of the pro-
duction function used in economics, depending on the type of production
process, the historical data, and statistical criteria. For the type of produc-
tion function used here, there are restrictions on the exponents. These ex-
ponents should sum to less than or equal to 1.

Analogously to the previous section we specify a production function for
the manufacturing of implements as a function of labor only:

MANUFACTURING = B*(POPULATION/4)A.2 ®)

The labor used in manufacturing is here simply one quarter of the population.

The implements wear out through use and so the number of them even-
tually reaches a steady state. The wear and tear is modeled as an outflow
from the stock of implements, very much like we model the death of
people as an outflow from a population stock.

DETERIORATION = .04*IMPLEMENTS )

The rate at which implements deteriorate—the “death rate of the stock of
tools”—is for simplicity set constant, but it could depend on the rate of their
use in agriculture. The model could be further elaborated upon by finding
the optimum disposition of labor between direct agriculture and implement
production, where “optimum” is defined as the maximum food production
per capita. Without these refinements, the model looks as in Figure 3.12.

Before you run the model, guess the shape of the FOOD and POPULA-
TION stock curves. We cannot overemphasize that this sort of guessing
tends to develop your intuition about the behavior of complex dynamic sys-
tems, so it is something that you should always do before running your own
models. The results of our model assumptions are shown in Figure 3.13.

In subsequent runs of the simulation model, use at most one half of the
population for the agricultural and industrial workforce. Find the division of
labor between agriculture and industry that yields the largest steady state
population at a level larger than the initial population. Similarly, try to find
that division of labor that yields a time path for the population that is never
declining and ultimately reaches a steady state.

The model of the simple society is becoming increasingly complicated.
Many feedback processes of various strengths interact and determine the
dynamics of the system. The relative importance or “strength” of these feed-
back processes depends to a large degree on the parameter values that we
chose for our model. It is therefore very useful to investigate the sensitivity
of our model result to small changes in the parameter values.
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We can perform such a sensitivity analysis by choosing sensitivity runs, a
convenient method provided by the STELLA software. Go to the “Run” pull-
down menu, select “Sensi Specs,” and choose the parameter B of our man-
ufacturing production function as the one on which we want to perform a
sensitivity analysis. Do three sensitivity runs, changing B between 0.05 and
0.15. Plot the three resulting curves for manufacturing production in the

FIGURE 3.13
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same graph by choosing the Graph option in STELLA’s Sensitivity Specs
menu.

How will MANUFACTURING change for different values of B? Run the
model with the S-Run command and observe the resulting graphs. What
will happen to MANUFACTURING if B is equal to 1, and what if it is greater
than 1? Suppose that instead of maximizing the long-run steady state popu-
lation, we maximized food available per capita or average lifespan. Can
you do this by modifying this model?

ADDING INDUSTRY

FOOD(t) = FOOD(t - dt) + (FOOD_PRODUCTION - EAT) * dt
INIT FOOD = 1000 {Kilograms; reduce to eliminate the
first peak of the population.}

INFLOWS:

FOOD_PRODUCTION = A* (POPULATION/4)".3*IMPLEMENTS".6
{Kilograms per Time Period}

OUTFLOWS:

EAT = EAT_PER_HEAD*POPULATION {Kilograms per Time
Period}

IMPLEMENTS (t) = IMPLEMENTS(t - dt) + (MANUFACTURING -
DETERIORATION) * dt

INIT IMPLEMENTS = 1 {Number of Objects}

INFLOWS:

MANUFACTURING = B* (POPULATION/4)".2 {Number of Objects
per Time Period}

OUTFLOWS :

DETERIORATION = .04*IMPLEMENTS {Number of Objects per
Time Period}

POPULATION(t) POPULATION(t - dt) + (BIRTHS - DEATHS)
* dt

INIT POPULATION = 10 {Number of Individuals}

INFLOWS:

BIRTHS = BIRTH_RATE*POPULATION {Number of Individuals
per Time Period}

OUTFLOWS :

DEATHS = DEATH_RATE*POPULATION {Number of Individuals

per Time Period}

A = 5 {1/(Individuals*Objects) per Time Period}
B = .1 {1/Objects per Time Period}
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FOOD_PER_CAPITA = FOOD/POPULATION {Kilogram per
Individual}

BIRTH_RATE = GRAPH(POPULATION)

(0.00, 0.0995), (20.0, 0.0975), (40.0, 0.091), (60.0,
0.0855), (80.0, 0.083), (100, 0.075), (120, 0.062),
(140, 0.053), (160, 0.035), (180, 0.015), (200, 0.00)
DEATH_RATE = GRAPH(EAT_PER_HEAD)

(0.00, 0.197), (0.1, 0.19), (0.2, 0.184), (0.3, 0.173),
(0.4, 0.163), (0.5, 0.147), (0.6, 0.121), (0.7, 0.095),
(0.8, 0.061), (0.9, 0.028), (1.00, 0.013)

EAT PER_HEAD = GRAPH (FOOD_PER_CAPITA)

(0.00, 0.00), (1.00, 0.04), (2.00, 0.155), (3.00,
0.27), (4.00, 0.385), (5.00, 0.52), (6.00, 0.63),

(7.00, 0.72), (8.00, 0.82), (9.00, 0.92), (10.0, 0.995)
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Two Independent Variables

Might it not have been better to have left the death side of nature’s
population-control to itself until we have some future policy for dealing
simultaneously with birth?

—J. S. Huxley, What Dare | Think?

4.1 Population Cohorts
4.1.1 Basic Cohort Model

The goal of this chapter is to learn how to handle two independent variables
in a STELLA model. Time is our usual independent variable and we use it to
cause the change in our models. In the first section of this chapter, we intro-
duce several stock variables to indicate various temporal aspects of the state
variable of the system. Such a disaggregation can be done, for example, for a
population into different age classes. Thus, so far we deal only with a more
sophisticated representation of essentially a single variable, population.

Disaggregation can lead to a rather complicated model. Differentiating
among people in a population by their exact age could lead to more than
100 state variables, if we model age in yearly increments, and more if we
choose smaller increments. Not only could the resulting STELLA model be
quite messy—consisting of many stocks and flows whose structure and
functioning are virtually the same—but such a model may also be far too
detailed to be of much use.

While the first section of this chapter maintains a high level of aggrega-
tion—people in the population are distinguished by only seven age
classes—Section 4.1.2 shows how the STELLA representation of that system
can be significantly simplified. Section 4.1.3 then presents an application of
the age cohort model to the United States, and we expect that what you can
learn there about population dynamics is of great use for applications to
many other countries.

In the last section of this chapter we use the same modeling method as in
the population age cohort model of this section to not only disaggregate a
system with respect to the temporal dimension of the system but also with
respect to its spatial dimension. By doing so, we model two independent
variables—space and time. First, however, let’s disaggregate a state variable
with respect to the temporal dimension.

Let us develop a population model in which the state variable population
is disaggregated into seven age cohorts. The model begins with 100 per-
sons in the cohorts of 0- to 9- and 10- to 19-year-olds. Further, there are in-
itially 75 individuals who are between 20 and 29 years old, 60 between 30
and 39 years, 50 between 40 and 49 years, 40 between 50 and 59 years, and

60

B. Hannon et al., Dynamic Modeling

© Springer Science+Business Media New York 2001



4.1 Population Cohorts 61

30 individuals of at least 60 years of age. Let us also assume that only
members in the cohort of 20- to 29-year-olds reproduce. The coefficient for
the birth rate is 0.12. We now need to model the reproductive rule such
that members in the second cohort reproduce at a rate of 0.12 persons born
per year per person of age 20 to 29 once they reach the third cohort. Also,
we need to make sure that, during the first period, members in the third co-
hort move up into the next cohort where they are no longer able to repro-
duce. We model the reproductive process by using the built-in step func-
tion to change the birth rate accordingly. Then, the birth rate coefficient of
0.12 is multiplied by the size of the 20- to 29-year-old population. The
population is moved to the next cohort by the “out-” transformers. In 10
years, nearly the whole cohort (why not the whole cohort?) is moved to the
next stage. Finally, the last cohort is moved out of the system (death) at
about age 70. The death rate varies across the cohorts. The resulting model
is shown in Figure 4.1

The sizes of the age cohorts through time are given in Figures 4.2 and
4.3. Each curve represents the number of individuals in a given age cohort.
See how long it takes to reach a steady state. A slightly modified version of
this model is provided in Chapter 14 where we model age-specific popula-
tion dynamics for the American Robin based on actual data describing age-
specific survival rates.

Total population is nearly stable after about 150 time steps. The age dis-
tributions of the cohorts at the steady state are shown in the form of bar
charts in Figures 4.4 and 4.5. To generate a bar chart, simply double-click
on an open graph pad and select “Bar.” Only a maximum of five variables
can be plotted.

Experiment with changes in the fecundity of the reproductive age group
in your model. Note the extreme sensitivity of the total with respect to the
initial birth rate coefficient. Finding such sensitivity is one of the main tar-
gets of any good modeler.

Use the cycle timing concept in STELLA. Time-stamp the variable BIRTH
RATE by checking the box in the upper right corner of its dialog box
(Fig. 4.6). Then place a transformer receiving the signal from variable OUT
6P. Call this variable LIFESPAN and define it with the CTMEAN built-in
function as

LIFESPAN = CTMEAN(OUT 6P) M

This variable now gives the mean lifespan of the people in this model. Plot
LIFESPAN and see if you can adjust the variable TIME 60 to give you a
mean lifespan of 75 years.

What are the criteria for cohort size choice? Note how the transfer coeffi-
cient is 1/cohort size. What if the age distribution within the cohort is very
uneven? This unevenness will produce errors in the growth or decline rates
for that cohort. So, cohort choice is concerned with potential age distribu-
tion within a cohort. Variation of the birth and death rates with age will also
influence the appropriate cohort choice.
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AGE20 29 BIRTH RATE COEF

TIME 45 AGES059 ?E y
7 OUTS6

TIME 56

AGE 60 PLUS OUT 6P
TIME 60

FIGURE 4.1



FIGURE 4.2

FIGURE 4.3
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FIGURE 4.5
FIGURE 4.6
POPULATION COHORTS
AGEO_9(t) = AGE0_9(t - dt) + (BIRTH_RATE - OUT_01 -

DIE_1) * dt
INIT AGEO_9 = 100 {Individuals}

INFLOWS:

BIRTH_RATE = AGE20_29*BIRTH_RATE_COEF

OUTFLOWS:

OUT_01 = AGEO_9/TIME_01 ({Individuals per Time Period}
DIE_1 = .011*AGEO_9 {Individuals per Time Period}
AGE10_19(t) = AGE10_19(t - dt) + (ouT_01 - OUT_12 -

DIE_2) * dt

INIT AGE10_19 = 100 {Individuals}

INFLOWS:

OUT_01 = AGEO_9/TIME_01 {Individuals per Time Period}
OUTFLOWS :

OUT_12 = AGE10_19/TIME 12 {Individuals per Time
Period}

DIE_2 = .01*AGE10_19 {Individuals per Time Period}
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AGE20_29(t) = AGE20_29(t - 4dt) + (OUT_12 - OUT_23 -
DIE_3) * dt

INIT AGE20_29 = 75 {Individuals}

INFLOWS:

OUT_12 = AGE10_19/TIME_12 {Individuals per Time
Period}

OUTFLOWS:

OUT_23 = AGE20_29/TIME_23 {Individuals per Time
Period}

DIE_3 = .008*AGE20_29 {Individuals per Time Period}

AGE30_39(t) = AGE30_39(t - dt) + (OUT_23 - OUT_34 -
DIE_4) * dt

INIT AGE30_39 = 60 {Individuals}

INFLOWS:

OUT_23 = AGE20_29/TIME_23 {Individuals per Time
Period}

OUTFLOWS :

OUT_34 = AGE30_39/TIME_34 {Individuals per Time
Period}

DIE_4 = .007*AGE30_39 {Individuals per Time Period}

AGE40_49(t) = AGE40_49(t - dt) + (OUT_34 - OUT_45 -
DIE_5) * dt

INIT AGE40_49 = 50 {Individuals}

INFLOWS :

OUT_34 = AGE30_39/TIME_34 {Individuals per Time
Period}

OUTFLOWS :

OUT_45 = AGE40_49/TIME_45 {Individuals per Time
Period}

DIE_5 = .008*AGE40_49

AGE50_59(t) = AGE50_59(t - dt) + (OUT_45 - OUT_56 -
DIE_6) * dt

INIT AGE50_59 = 40 {Individuals}

INFLOWS:

OUT_45 = AGE40_49/TIME_45 ({Individuals per Time
Period}

OUTFLOWS :

QUT_56 = AGE50_59/ TIME_56 {Individuals per Time
Period}

DIE_6 = .009*AGE50_59 ({Individuals per Time Period}

65
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AGE_60_PLUS(t) = AGE_60_PLUS(t - dt) + (OUT_56 -
OUT_6P) * dt

INIT AGE_60_PLUS = 30 {Individuals}

LINFLOWS:

OUT_56 = AGES50_59/ TIME_56 {Individuals per Time
Period}

OUTFLOWS :

OUT_6P = AGE_60_PLUS/TIME_60 {Individuals per Time
Period}

BIRTH_RATE_COEF = (11/100)*(1+STEP(0.2,10)) {Births
per Individuals in Age Cohort 20-30 per Time Period}
TIME_01 = 10
TIME_12 = 10
TIME 23 = 10
TIME_34 = 10
TIME_45 = 10
TIME_56 = 10
TIME_60 = 10

4.1.2 Population Cohort Array

Note how the structure of the model in the previous section is repeated for
each cohort. The stock of an age cohort has potentially two inflows—one
for the births and one for the aged individuals of a previous cohort. There
are also two outflows—one for the aging individuals and one for deaths.
The only substantive difference between cohorts is in the different numbers
that are used to initialize the stocks and in the different birth and death
rates. For example, the birth rates are, by assumption, all zero for all popu-
lation cohorts other than that of the 20- to 29-year-olds.

To capitalize on this observation of the identical structure of the model of
different age cohorts, and to economize on our modeling effort, we make
use of STELLA’s array functions. First, sketch out the stock-flow-converter
relationships that underly our model. They are shown in Figure 4.7. Then
double-click on the POPULATION stock and click in the box “Array” at the
upper left portion of the dialog box. This will specify your model as a one-
or two-dimensional array. A one-dimensional (1-D) array has stocks that
form a single row. Our population cohort model in which individuals move
unidirectionally from one cohort to another can be interpreted as such a
1-D array. In contrast, a two-dimensional (2-D) array has multiple rows and
columns of stocks that are connected with each other with movement in
two dimensions (Fig. 4.8).

Open the POPULATION stock, and specify it as an array. By default,
STELLA assumes a 1-D Array. Next, go to the Editor and give a name to the
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POPULATION

TRANSFERIN TRANSFER OUT

FIGURE 4.7

first “dimension” of your array—in our case, there is only one dimension.
Call it COHORT.

You need to name the elements in the dimension of your array. Let’s give
the first element the name AGEO 9 by typing AGEO 9 in the “Element Name/#”
field in the dialog box. Then use the arrow to navigate to a “New” element
and then type in its name and continue to do this until you named the re-
maining six stocks of the model: AGE10 19, AGE20 29, AGE30 39, AGE40 49,
AGE50 59, and AGE60 PLUS. Once you have done that, click OK to return to
the dialog in which you can specify each stock’s initial conditions. Click off

1-D Array 2-D Array

FIGURE 4.8
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the “Apply to All” check box because the initial conditions are different for the
seven stocks—one condition does not “apply to all.” Now you will notice that
you are promted with the message:

INITIAL(POPULATIONIAGEO 9] = ... {Place initial value here ...} (2)

Type in 100 to specify the initial stock of 0- to 9-year-olds. Next, navigate
with the arrows below “Apply to All” to the second element of your 1-D
array—POPULATION[AGE10 19}—and provide an initial value for POPU-
LATIONIAGE10 19]. Choose the same initial conditions as in the previous
section of this chapter. Continue this routine until all elements in the array
are named and have their proper initial conditions. Click OK and you
should have a model that now looks like Figure 4.9. The stocks and flows
are all stacked to indicate the use of arrays.

To specify the BIRTHS flow, double-click on the flow pipe and unclick
the “Apply to All” check box. Then specify for each row the proper equa-
tions. For example,

BIRTHS AGEI[O 9] = BIRTH RATE COEFF*POPULATION[AGE20 29] €))

Multiply in the other equations by zero so that no births are generated into
stocks other than that for the first cohort. For example,

BIRTHS[AGE10 19] = 0*BIRTH RATE COEF*POPULATIONIAGE10 19] (4

Similarly, specify the outflows for the deaths:

DEATHI[AGEO 9] = .011*POPULATION[AGEO 9] ®)
DEATHIAGE10 19] = .01*POPULATIONIAGE10 19] ©)
DEATHI[AGE20 29] = .008*POPULATIONIAGE20 29] @)

POPULATION

TRANSFER IN TRANSFER OUT

FIGURE 4.9
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DEATHIAGE30 39] = .007*POPULATION[AGE30 39] ®
DEATH[AGE40 49] = .008*POPULATION[AGE40 49] ©
DEATHIAGES0 59] = .009*POPULATIONIAGES0 59] (10)
DEATHIAGEGO PLUS] = .1*POPULATION[AGEGO PLUS] an

Once the births and deaths are specified, we need to model the transition
of people from stock to stock as they age. Note that the outflow from one
age cohort is equal to the inflow into the next cohort. For example,

TRANSFER OUTIAGEO 9] = POPULATION[AGEO 91/10 12
TRANSFER IN[AGE10 19] = TRANSFER OUT[AGEOQ 9] 13
and that there is no inflow into the AGEO 9 cohort from other cohorts, i.e.,
TRANSFER IN[AGEO 9] = 0*TRANSFER OUT[AGEO 9] (149

As in the model of the previous section, the birth rate coefficient is
BIRTH RATE COEFF = 11/100*(1+STEP(.2,10)) (15)

Calculate the total population with the built-in function ARRAYSUM,
which sums up the values that the elements in an array take on. Generate a
variable called TOTAL POPULATION, and draw an information arrow from
POPULATION to TOTAL POPULATION. Then double-click on TOTAL
POPULATION, select ARRAYSUM from the list of built-ins, and enter POPU-
LATION as the argument of that function. A dialog window will appear (as
shown in Figure 4.10).

The dialog window contains an asterisk, denoting “all elements in the
array,” the name of the dimension of the array, and the names of each ele-
ment. Since we want to sum up the entries of all elements, simply click on
the asterisk. The specification of TOTAL POPULATION becomes

TOTAL POPULATION = ARRAYSUM(POPULATIONI{*]) 16)

FIGURE 4.10
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FIGURE 4.11

and your STELLA model should look like the one in Figure 4.11. Create bar
charts and time series plots for each population cohort. When you define
those graphs, you will encounter the dialog window as in Figure 4.10. Se-
lect up to five individual stocks for your plots. Also, generate a plot for the
total population. This last is shown in Figure 4.12. Compare your model
output to the results of Section 4.1.1.

This graph is identical to the population growth pattern from section 4.1.1.

FIGURE 4.12
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POPULATION COHORT ARRAY

POPULATION[Age0_9] (t) = POPULATION[Age(O_9](t - dt) +
(BIRTHS[Age0_9] + TRANSFER _IN[AgeO_9] - DEATHS[Age0_9]
- TRANSFER_OUT [Age(0_9]) * dt

INIT POPULATION[Age(0_9] = 100

POPULATION[Agel0_19] (t) POPULATION[Agel0_19] (t - dt)
+ (BIRTHS[Agel0_19] + TRANSFER_IN[Agel0_19] -
DEATHS [Agel0_19] - TRANSFER_OUT[Agel0_19]1) * dt
INIT POPULATION[Agel(O_19] = 100

POPULATION [Age20_29] (t) = POPULATION[Age20_29] (t
+ (BIRTHS[Age20_29] + TRANSFER_IN[Age20_29] -
DEATHS[Age20_29] - TRANSFER_OUT[Age20_29]) * dt
INIT POPULATION[Age20_29] = 75
POPULATION[Age30_39] (t) = POPULATION[Age30_39](t - dt)
+ (BIRTHS[Age30_39] +

TRANSFER_IN[Age30_39] - DEATHS[Age30_39] -
TRANSFER_OUT [Age30_39]) * dt

INIT POPULATION[Age30_39] = 60

POPULATION [Age40_49] (t) = POPULATION[Age40_49] (t
+ (BIRTHS[Age40_49] + TRANSFER_IN[Age40_49] -
DEATHS [Age40_49] - TRANSFER_OUT[Age40_49]) * dt
INIT POPULATION[Aged0_49] = 50
POPULATION[Age50_59] (t) = POPULATION[Age50_59] (t
+ (BIRTHS[Age50_59] + TRANSFER_IN[Age50_59] -
DEATHS [Age50_59] - TRANSFER_OUT[Age50_59]) * dt
INIT POPULATION[Age50_59] = 40

POPULATION [Age_60_Plus] (t) = POPULATION[Age 60_Plus] (t
- dt) + (BIRTHS[Age_60_Plus] +
TRANSFER_IN[Age_60_Plus] - DEATHS[Age_60_Plus] -
TRANSFER_OUT [Age_60_Plus]) * dt

INIT POPULATION[Age_60_Plus] = 30

dt)

dt)

dt)

INFLOWS :

BIRTHS[Age0_9] = BIRTH_RATE_COEFF*POPULATION[Age20_29]
BIRTHS[Agel0_19] =
0*BIRTH_RATE_COEFF*POPULATION[Agel0_19]
BIRTHS [Age20_29] =

0*BIRTH_RATE_ COEFF*POPULATION[Agel0_19]
BIRTHS[Age30_39] =
0*BIRTH_RATE_COEFF*POPULATION[Age20_29]
BIRTHS [Age40_49] =
0*BIRTH_RATE_COEFF*POPULATION[Age20_29]
BIRTHS[Age50_59] =
0*BIRTH_RATE_COEFF*POPULATION [Age20_29]




72 4. Two Independent Variables

BIRTHS [Age_60_Plus] =
0*BIRTH_RATE_COEFF*POPULATION[Age20_29]
TRANSFER_IN[Age0_9] = O0*TRANSFER_OUT[Age0_9]
TRANSFER_IN[Agel(0_19] = TRANSFER_OUT[Age0_9]
TRANSFER_IN[Age20_29] = TRANSFER_OUT[Agel0_19]
TRANSFER_IN[Age30_39] = TRANSFER_OUT[Age20_29]
TRANSFER_IN[Aged4(0_49] = TRANSFER_OUT[Age30_39]
TRANSFER_IN[Age50_59] = TRANSFER_OUT[Age40_49]
TRANSFER_IN[Age_60_Plus] = TRANSFER_OUT[Age50_59]
OUTFLOWS :

DEATHS [Age(0_9] = .0l11*POPULATION[Age0_9]

DEATHS [Agel(0_19] = .01*POPULATION|[Agel0_19]
DEATHS[Age20_29] = .008*POPULATION[Age20_29]
DEATHS [Age30_39] = .007*POPULATION[Age30_39]
DEATHS[Aged40_49] = .008*POPULATION[Age40_49]
DEATHS [Age50_59] = .009*POPULATION[Age50_59]
DEATHS [Age_60_Plus] = .1*POPULATION[Age_60_Plus]
TRANSFER_OUT[Age0_9] = POPULATION[Age0_9]/10
TRANSFER_OUT[Agel0_19] = POPULATION[Agel0_19]/10
TRANSFER_OUT[Age20_29] = POPULATION[Age20_29]/10
TRANSFER_OUT[Age30_39] = POPULATION[{Age30_39]/10
TRANSFER_OUT[Aged40_49] = POPULATION[Age40_49]/10
TRANSFER_OUT[Age50_59] = POPULATION[Age50_59]/10
TRANSFER_OUT[Age 60_Plus] = 0*POPULATION[Age 60_Plus]
BIRTH_RATE_COEFF = 11/100*(1+STEP(.2,10))
TOTAL_POPULATION = ARRAYSUM (POPULATION{*])

4.1.3 U.S. Population Growth

Whole courses in demographics are used to convey the ideas behind the
model of this section. In one simple model, we address the questions of
birth, death, and imigration rates and their effects on the numbers of
people in the various age groups. We discuss the ways to calibrate a model
using both theory and real data and how to project existing data on these
rates to calculate first the known population levels of the latest census year,
and then to project these rates to allow an estimate of the future level of the
U.S. population.! We realize that we skim over some of the sophisticated
statistical models that allow a consideration of the many factors that enter
into the projection of these rates, and other such variables as census count-

'All the references are given in the model in the variable for which they provided
the data.
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ing errors and omissions. But we are sure that a major lesson in model
building and demographics is conveyed by this model.

The issue is to estimate the population of the United States in the year
2020 and compare it with the official estimates by the U.S. Census Bureau.
Before we can do that, we need to derive at least some perspective on the
projection of future birth, death, and imigration rates. But before we can do
that, we need to build a model of the historical population to ensure that
we have the right model structure and that we are using the historical data
correctly. So, let’s develop the model, initialize it with historical data, and
see how well the model does in “projecting” other historical data.

The modeling effort is divided into three parts. First, construct the model
with an arbitrarily early starting point. We choose the year 1900. The
numbers of people in the United States is rather well known for that year.
Then we need the historical birth, death, and imigration rates for the de-
cadal years beginning with 1900 and ending at 1960. This is the validation
step. If something is wrong with our model structure or the way we have
portrayed the data, this step will reveal it.

We know that the census data exist for the year 1990 but we will use those
data to examine our projection skill, begining with the year 1960 and seeing
how well we can project the three rates across these three decades. Finally,
we will set up the model with actual rate data up to the year 1990 and pro-
ject the three rates to the year 2020, allowing us to calculate the cohort and
total population in that year and compare it with Census Bureau projections.

The most elementary step of such modeling is to realize that the stocks of
populations, while based on age, are not divided up by years. This would
result in over 100 stocks, each with its own set of birth, death, and imigra-
tion rates. Instead, we note that the census takers examine the death rates
for each age and observe that the death rates are nearly the same for
groups of ages. This observation defines the cohort sizes, that is, how many
years are to be included in each grouping or cohort of the population. Our
model will contain a stock for each of these cohorts.

The first of these stocks, the AGE 0 1 stock has a major input of new
births and its own death and imigration rates. Let’s deal with the BIRTHS
first. Here we meet the first of data-model misfits. We have decided to
model both sexes together but the birth data are (logically) reported as a
number of births per 1000 women for the given year. We assume that the
sex ratio is one and so we must divide the product of the BF (Birth Frac-
tion) by 2 and by 1000.

Secondly we notice that the population is reported differently before and
after the year 1940. After 1940 the reporting is more detailed, which causes
a second problem. While the cohorts are based on the nearly constant
death rate concept, the BF categories do not match the chosen cohorts.
They are for cohorts at half the chosen size. This means that after 1940 we
must divide in the BIRTHS calculation by 2 for the sex ratio correction, by
1000 for the data correction and by 2 again to allow us to combine the the
BF into the larger cohorts.



74 4, Two Independent Variables

Note that the population stocks are reported in whole numbers. Our only
data on imigration rates (per 1000 people in the United States at the time)
was for the entire population so we simply multiplied the imigration rate by
the cohort population size and divided by 1000. In our simple model we as-
sume that the number of people in each year of age in a typical cohort
is the same and that each year, 1/cohort size ages into the next cohort. For
the first cohort whose size is a single year, all the surviving babies move to
the next cohort.

The same process is repeated for each cohort, until the final one. For the
70+ category, we used the census data on the life expectancy for this cat-
egory (the inverse of the life expectancy is the death rate). The main parts
of the final model are shown in Figure 4.13. We also calculate total popula-
tion as shown in Figure 4.14.

Actual and projected data used in this model are contained in graphical
form in two “sectors” (Fig. 4.15). These sectors are created with STELLA’s
sector symbol shown as sixth tool of your tool bar (Fig. 4.16). To create a
sector, click on the symbol, place it in the diagram and adjust its size to
cover the model components that you wish to enclose in it. To name a sec-
tor, simply overwrite the default name STELLA provides for it.

Once a sector is created, the model can be run holding the elements in a
secctor constant or updating them. Go to the Run pull-down menu and you
will see that you can specify the sectors that you wish to run along in your
model. This tool comes handy when you want to switch on or off indi-
vidual components of your model. We use sectors here simply to organize
our model and keep like things together in the same sector rather than run
them in isolation from each other.

When we run this model to “predict” the 1960 population level, we over-
shoot by about 1.25 %, not bad for amateurs (Fig. 4.17).

The second step is to extend the three rates from 1960 to 1990 and see
how well we can “predict” the 1990 level. Were we real demographers, we
would develop statistical models for these rates with the hope of revealing
their dependency on population size, on the level of real income, the degree
of uncertainty created by wars, the spread of diseases, the rate of improve-
ment in health care, and so on. For our purposes, we simply extended by
eye what appeared to be trends in these rates. And yet we did rather well at
such extension, overstating the 1990 population by only 1.6% (Fig. 4.18).

Finally, we updated the three rates for the 1960 to 1990 period with the
real data, and extended the run of the model 30 more years, to the year
2020, missing the Census Bureau’s middle-range projections by only 0.4%
(Fig. 4.19).

Of course, these projections are based on the idea that the future is like
the recent past. A view of the history of the population fluctuations shows
that the population level is influenced by a depression and a major war.

Without taking a position in the debate on imigration policy, we can ex-
amine the simple effect on the U.S. population of the absence of imigration
from the year 1900 on. Simply shut off the imigration fraction effect and we
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find that legal imigrants over the 90-year period from 1900 to 1990 have
added 60 million people to the population. These 60 million people have of
course added much more than population to the United States by way of
their unusual innovation and productivity. We show the effect of migration
on the population to demonstrate how facile such models can be.

You can use the method of step-wise forecasting and parameter adjust-
ments not only in modeling the dyanamics of a population of your choice.
The method also provides a powerful means to ensure that a dynamic
model of a system at least replicates the data for that system. An inability to
come with the model at least close to the historical system behavior is a
good sign that you missed some important driver behind the observed dy-
namics. How closely you wish to replicate past system behavior depends
on the purpose of the model and your motivation.

In the process of model calibration you will learn more about the data of
your system. You will also encounter “anomalies” that your model does not
capture. In our model, two such anomalies were the wars. Ex post we can
correct our model for their effects on population dynamics. However, it
would be virtually impossible to predict at the outset the occurrance of
such anomalies. Therefore, we often disregard them. But remember, struc-
tural changes, such as those caused by wars, changes in the political system
of a country, or major technological changes, can place bounds on the re-
liability of virtually any model of a social or economic system.

Would it improve matters to divide the model by gender? Could we have
started this model off in 1940 instead of 1900 and accomplished the same
goals? Can you explain why this model does not fit as well in the pre-1940
portion and how you would improve that fit? Can you change the birth
rates and immigration policy in an attempt to bring the U.S. population to a
steady state by 2030, while allowing the trends in death rates to continue?

US POPULATION GROWTH

HISTORICAL DATA, PARTIAL

ACTUAL_POPULATION = GRAPH(TIME)

(1900, 7.6e+07), (1910, 9.2e+07), (1920, 1.l1le+08),
(1930, 1.2e+08), (1940, 1.3e+08), (1950, 1.5e+08),
(1960, 1.8e+08), (1970, 2e+08), (1980, 2.3e+08),
(1990, 2.5e+08), (2000, 0.00), (2010, 0.00), (2020,
0.00)

DOCUMENT: Actual population of the U.S. (1900 - 1990)
Data taken from: Bureau of the Census, Statistical
Abstracts of the U.S. (1994)

IMMIGRATION_FACTOR = GRAPH (TIME)
(1900, 10.4), (1910, 5.70), (1920, 3.50), (1930, 0.4),
(1940, 0.7), (1950, 1.50), (1960, 1.70), (1970, 2.10),
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(1980, 3.10), (1990, 4.10), (2000, 4.32), (2010, 4.38),
(2020, 4.62)

DOCUMENT: Immigration fraction is the number of
immigrants per 1000 U.S. persons per year. Data was
taken from: U.S. Bureau of the Census, Statistical
Abstracts of the U.S. (1994)

PROJECTIONS DATA

HIGH_PROJECTION = GRAPH(TIME)

(1900, 7.6e+07), (1910, 9.2e+07), (1920, 1.1e+08),
(1930, 1.2e+08), (1940, 1.3e+08), (1950, 1.5e+08),
(1960, 1.8e+08), (1970, 2e+08), (1980, 2.3e+08),
(1990, 2.5e+08), (2000, 2.8e+08), (2010, 3.2e+08),
(2020, 3.6e+08)

DOCUMENT: This is the highest series for projections of
the U.S. population through 2020. The populations from
1900 to 1990 are the actual U.S. population values.
Data taken from: Bureau of the Census, Statistical
Abstracts of the U.S. (1994)

LOW_PROJECTION = GRAPH(TIME)

(1900, 7.6e+07), (1910, 9.2e+07), (1920, 1.1le+08),
(1930, 1.2e+08), (1940, 1.3e+08), (1950, 1.5e+08),
(1960, 1.8e+08), (1970, 2e+08), (1980, 2.3e+08),
(1990, 2.5e+08), (2000, 2.7e+08), (2010, 2.8e+08),
(2020, 2.9e+08)

DOCUMENT: This is the lowest series for projections of
the U.S. population through 2020. The populations from
1900 to 1990 are the actual U.S. population values.
Data taken from: Bureau of the Census, Statistical
Abstracts of the U.S. (1994)

MIDDLE_PROJECTION = GRAPH (TIME)

(1900, 7.6e+07), (1910, 9.2e+07), (1920, 1.1le+08),
(1930, 1.2e+08), (1940, 1.3e+08), (1950, 1.5e+08),
(1960, 1.8e+08), (1970, 2e+08), (1980, 2.3e+08),
(1990, 2.5e+08), (2000, 2.8e+08), (2010, 3e+08),
(2020, 3.3e+08)

DOCUMENT: This is the middle series for projections of
the U.S. population through 2020. The populations from
1900 to 1990 are the actual U.S. population values.
Data taken from: Bureau of the Census, Statistical
Abstracts of the U.S. (1994)
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Not in a sector

AGE_0_1(t) = AGE_0_1(t - dt) + (BIRTHS + IR _0_1 -
ouT_01 - DIE_1) * dt

INIT AGE_0_1 = 1836200 {Individuals}

DOCUMENT: Number of 0 - 1 year olds in 1900. Data taken
from: Bureau of the Census, Historical Statistics of
the U.S. (Colonial Times to 1970)

INFLOWS:

BIRTHS = IF(TIME<1940)

THEN ( (AGE_15_24+AGE_25_34+AGE_35_44) *BF_PRIOR_TO_1940/
2000)

ELSE( (AGE_5_14*BF_10_14+AGE_15_24*BF_15_19+AGE_15_24*BF
_20_24+AGE_25_34*BF_25_29+AGE_25_34*BF_30_34+AGE_35_44
*BF_35_39+AGE_35_44*BF_40_44+AGE_45_54*BF_45_49) /4000)
DOCUMENT: BIRTHS is the sum of the number of births per
year for each cohort.

IR_0_1 = IMMIGRATION_FACTOR*AGE_0_1/1000 {Number of
immigrants per year per cohort}

OUTFLOWS :

OUT_01 = AGE_0_1/TIME_01 ({Individuals per Time
Period}

DIE_1 = (AGE_0_1/1000)*DR_0_1 {Deaths per year}

AGE_15_24(t) = AGE_15_24(t - dt) + (OUT_23 + IR _15_24
- OUT_34 - DIE_4) * dt

INIT AGE_15_24 = 14951000 {Individuals}

DOCUMENT: Number of 15 - 24 year olds in 1900. Data
taken from: Bureau of the Census, Historical Statistics
of the U.S. (Colonial Times to 1970)

INFLOWS :

OUT_23 = AGE_5_14/TIME_23 {Individuals per Time Period}
IR_15_24 = IMMIGRATION_FACTOR*AGE_15_24/1000*0 {Number
of immigrants per year per cohort}

OUTFLOWS :

OUT_34 = AGE_15_24/TIME_34 {Individuals per Time
Period}

DIE_4 = (AGE_15_24/1000)*DR_15_24 {Deaths per year}

AGE_1_4(t) = AGE_1_4(t - dt) + (ouT_01 + IR_1_4 -
OUT_12 - DIE_2) * dt

INIT AGE_1_4 = 7344800 {Individuals}

DOCUMENT: Number of 1 - 4 year olds in 1900. Data taken
from: Bureau of the Census, Historical Statistics of
the U.S. (Colonial Times to 1970)
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INFLOWS :

OUT_01 = AGE_O0_1/TIME_01 ({Individuals per Time
Period}

IR_1_4 = IMMIGRATION_FACTOR*AGE_1_4/1000*0 {Number of
immigrants per year per cohort}

OUTFLOWS :

OUT_12 = AGE_1_4/TIME_12 {Individuals per Time
Period}

DIE_ 2 = (AGE_1_4/1000)*DR_1_4 {Deaths per year}
AGE_25_34(t) = AGE_25_34(t - dt) + (OUT_34 + IR_25_34

- OUT_45 - DIE_5) * dt

INIT AGE _25_34 = 12161000 {Individuals}

DOCUMENT: Number of 25 - 34 year olds in 1900. Data
taken from: Bureau of the Census, Historical Statistics
of the U.S. (Colonial Times to 1970)

INFLOWS:

OUT_34 = AGE_15_24/TIME_34 ({Individuals per Time
Period}

IR_25_34 = IMMIGRATION_FACTOR*AGE_25_34/1000*0 {Number
of immigrants per year per cohort}

OUTFLOWS :

OUT_45 = AGE_25_34/TIME_45 {Individuals per Time
Period}

DIE_5 = (AGE_25_34/1000)*DR_25_34 {Deaths per year}
AGE_35_44(t) = AGE_35_44(t - dt) + (0OUT_45 + IR _35_44

- QUT_56 - DIE_6) * dt

INIT AGE_35_44 = 9273000 {Individuals}

DOCUMENT: Number of 35 - 44 year olds in 1900. Data
taken from: Bureau of the Census, Historical Statistics
of the U.S. (Colonial Times to 1970)

INFLOWS:

OUT_45 = AGE_25_34/TIME_45 {Individuals per Time
Period}

IR _35_44 = IMMIGRATION_FACTOR*AGE_35_44/1000%*0
{Number of immigrants per year per cohort}
OUTFLOWS:

OUT_56 = AGE_35_44/ TIME_56 {Individuals per Time

Period}
DIE 6 = (AGE_35_44/1000)*DR_35_44 {Deaths per year}
AGE_45_54(t) = AGE_45_54(t - dt) + (0oUT_56 + IR_45_54

- OUT_67 - DIE_7) * dt
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INIT AGE_45_54 = 6437000 {Individuals}

DOCUMENT: Number of 45 - 54 year olds in 1900. Data
taken from: Bureau of the Census, Historical Statistics
of the U.S. (Colonial Times to 1970)

INFLOWS:

OUT_56 = AGE_35_44/ TIME_56 ({Individuals per Time
Period}

IR_45_54 = IMMIGRATION_FACTOR*AGE_45_54/1000*0 {Number
of immigrants per year per cohort}

OUTFLOWS :

OUT_67 = AGE_45_54/ TIME_67 {Individuals per Time
Period}

DIE_7 = (AGE_45_54/1000)*DR_45_54 {Deaths per year}

AGE_b55_64(t) = AGE_b55_64(t - dt) + (OUT_67 + IR_55_64
- OUT_78 - DIE_8) * dt

INIT AGE_55_64 = 4026000 {Individuals}

DOCUMENT: Number of 55 - 64 year olds in 1900. Data
taken from: Bureau of the Census, Historical Statistics
of the U.S. (Colonial Times to 1970)

INFLOWS:

OQUT_67 = AGE_45_54/ TIME 67 {Individuals per Time
Period}

IR_55_64 = IMMIGRATION_FACTOR*AGE_55_64/1000*0 {Number
of immigrants per year per cohort}

OUTFLOWS :

OUT_78 = AGE_b55_64/ TIME_78 {Individuals per Time
Period}

DIE_8 = (AGE_55_64/1000)*DR_55_64 {Deaths per year}

AGE_5_14(t) = AGE_b5_14(t - dt) + (OUT_12 + IR _5_14 -
OUT_23 - DIE_3) * dt

INIT AGE_5_14 = 16966000 {Individuals}

DOCUMENT: Number of 5 - 14 year olds in 1900. Data
taken from: Bureau of the Census, Historical Statistics
of the U.S. (Colonial Times to 1970)

INFLOWS:

OUT_12 = AGE_1_4/TIME_12 {Individuals per Time Period}
IR _5_14 = IMMIGRATION_FACTOR*AGE_5_14/1000*0 {Number
of immigrants per year per cohort}

OUTFLOWS :

OUT_23 = AGE_5_14/TIME_23 {Individuals per Time
Period}

DIE_3 = (AGE_5_14/1000)*DR_5_14 {Deaths per year}




84 4. Two Independent Variables

AGE_65_69(t) = AGE_65_69(t - dt) + (0OUT_78 + IR_65_69
- DIE_9 - OUT_89) * dt

INIT AGE_65_69 = 1291250 {Individuals}

DOCUMENT: Number of 65 - 69 year olds in 1900. Data
taken from: Bureau of the Census, Historical Statistics
of the U.S. (Colonial Times to 1970)

INFLOWS:

OUT_78 = AGE_55_64/ TIME_78 {Individuals per Time
Period}

IR_65_69 = IMMIGRATION_FACTOR*AGE_65_69/1000*0 {Number
of immigrants per year per cohort}

OUTFLOWS :

DIE_9 = (AGE_65_69/1000)*DR_65_69 {Deaths per year}
OUT_89 = AGE_65_69/ TIME_89 {Individuals per Time
Period}

AGE_70_PLUS(t) = AGE_70_PLUS(t - dt) + (IR_70_PLUS +
OUT_89 - 0UT_9_10) * dt

INIT AGE_70_PLUS = 1807750 {Individuals}

DOCUMENT: Number of 70+ year olds in 1900. Data taken
from: Bureau of the Census, Historical Statistics of
the U.S. (Colonial Times to 1970)

INFLOWS:

IR _70_PLUS = IMMIGRATION_FACTOR*AGE_7 0_PLUS/1000*0
{Number of immigrants per year per cohort}

OUT_89 = AGE_65_69/ TIME_89 {Individuals per Time
Period}

OUTFLOWS :

OUT_9_10 = AGE_70_PLUS/LIFE_EXPECTANCY {Individuals
per Time Period}

TIME_01 = 1

DOCUMENT: Dwell time = 1 year.

TIME_12 = 4

DOCUMENT: Dwell time = 4 years.

TIME_23 = 10

DOCUMENT: Dwell time = 10 years.

TIME_34 = 10

DOCUMENT: Dwell time = 10 years.

TIME_45 = 10

DOCUMENT: Dwell time = 10 years.

TIME_56 = 10

DOCUMENT: Dwell time = 10 years.

TIME_67 = 10

DOCUMENT: Dwell time = 10 years.

TIME_78 = 10
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DOCUMENT: Dwell time = 10 years.

TIME_89 = 5

DOCUMENT: Dwell time = 5 years.

TOTAL_POPULATION =
AGE_0_1+AGE_1_4+AGE_5_14+AGE_15_24+AGE_25_34+AGE_35_4
4+4+AGE_45_54+AGE_55_64+AGE_65_69+AGE_70_PLUS

DOCUMENT: Total population = sum of population in each
cohort.

BF_10_14 = GRAPH(TIME)

(1900, 0.00), (1910, 0.00), (1920, 0.00), (1930, 0.00),
(1940, 0.7), (1950, 1.00), (1960, 0.8), (1970, 1.20),
(1980, 1.10), (1990, 1.40), (2000, 1.40), (2010, 1.23),
(2020, 1.45)

DOCUMENT: Birth fraction is the number of births per
1000 women per year in each cohort. Data taken from:
Bureau of the Census, Statistical Abstracts of the U.S.
(1963)

BF_15_19 = GRAPH(TIME)

(1900, 0.00), (1910, 0.00), (1920, 0.00), (1930, 0.00),
(1940, 54.1), (1950, 81.6), (1960, 89.1), (1970, 68.3),
(1980, 53.0), (1990, 59.9), (2000, 61.6), (2010, 64.8),
(2020, 65.2)

DOCUMENT: Birth fraction is the number of births per
1000 women per year in each cohort. Data taken from:
Bureau of the Census, Statistical Abstracts of the U.S.
(1963)

BF_20_24 = GRAPH(TIME)

(1900, 0.00), (1910, 0.00), (1920, 0.00), (1930, 0.00),
(1940, 136), (1950, 197), (1960, 258), (1970, 168),
(1980, 115), (1990, 116), (2000, 121), (2010, 124),
(2020, 126)

DOCUMENT: Birth fraction is the number of births per
1000 women per year in each cohort. Data taken from:
Bureau of the Census, Statistical Abstracts of the U.S.
(1963)

BF_25_29 = GRAPH(TIME)

(1900, 0.00), (1910, 0.00), (1920, 0.00), (1930, 0.00),
(1940, 123), (1950, 166), (1960, 197), (1970, 145),
(1980, 113), (1990, 120), (2000, 123), (2010, 126),
(2020, 128)

DOCUMENT: Birth fraction is the number of births per
1000 women per year in each cohort. Data taken from:
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Bureau of the Census, Statistical Abstracts of the U.S.
(1963)

BF_30_34 = GRAPH(TIME)

(1900, 0.00), (1910, 0.00), (1920, 0.00), (1930, 0.00),
(1940, 83.4), (1950, 104), (1960, 113), (1970, 73.3),
(1980, 61.9), (1990, 80.8), (2000, 82.2), (2010, 84.5),
(2020, 90.8)

DOCUMENT: Birth fraction is the number of births per 1000
women per year in each cohort. Data taken from: Bureau of
the Census, Statistical Abstracts of the U.S. (1963)

BF_35_39 = GRAPH(TIME)

(1900, 0.00), (1910, 0.00), (1920, 0.00), (1930, 0.00),
(1940, 46.3), (1950, 52.9), (1960, 56.2), (1970, 31.7),
(1980, 19.8), (1990, 31.7), (2000, 35.9), (2010, 38.2),
(2020, 40.2)

DOCUMENT: Birth fraction is the number of births per 1000
women per year in each cohort. Data taken from: Bureau of
the Census, Statistical Abstracts of the U.S. (1963)

BF_40_44 = GRAPH(TIME)

(1900, 0.00), (1910, 0.00), (1920, 0.00), (1930, 0.00),
(1940, 15.6), (1950, 15.1), (1960, 15.5), (1970, 8.10),
(1980, 3.90), (1990, 5.50), (2000, 6.32), (2010, 6.96),
(2020, 7.44)

DOCUMENT: Birth fraction is the number of births per 1000
women per year in each cohort. Data taken from: Bureau of
the Census, Statistical Abstracts of the U.S. (1963)

BF_45_49 = GRAPH(TIME)

(1900, 0.00), (1910, 0.00), (1920, 0.00), (1930, 0.00),
(1940, 1.90), (1950, 1.20), (1960, 0.9), (1970, 0.5),
(1980, 0.2), (1990, 0.2), (2000, 0.2), (2010, 0.18),
(2020, 0.19)

DOCUMENT: Birth fraction is the number of births per 1000
women per year in each cohort. Data taken from: Bureau of
the Census, Statistical Abstracts of the U.S. (1963)

BF_PRIOR_TO_1940 = GRAPH(TIME)

(1900, 130), (1910, 127), (1920, 118), (1930, 89.2),
(1940, 79.9), (1950, 0.00), (1960, 0.00), (1970, 0.00),
(1980, 0.00), (1990, 0.00), (2000, 0.00), (2010, 0.00),
(2020, 0.00)
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DOCUMENT: Before 1940,
number of births per 1000 women between the ages of 15
and 44. Data taken from: Bureau of the Census, Statis-
tical Abstracts of the U.S. (Colonial Times to 1970)

data could only be found for the

DR_0_1 = GRAPH(TIME)

(1900, 162), (1910, 132), (1920, 92.3), (1930, 69.0),
(1940, 54.9), (1950, 33.0), (1960, 27.0), (1970, 21.4),
(1980, 12.9), (19%0, 9.70), (2000, 6.60), (2010, 4.12),
(2020, 2.48)

DOCUMENT: Death rates are the number of deaths per year
per 1000 population.

Data is taken from: Bureau of the Census, Statistical
Abstracts of the U.S. (1963)

DR_15_24 = GRAPH(TIME)

(1900, 5.90), (1910, 4.50), (1920, 4.90), (1930, 3.30),
(1940, 2.00), (1950, 1.30), (1960, 1.10), (1970, 1.29),
(1980, 1.15), (1990, 0.98), (2000, 0.87), (2010, 0.75),
(2020, 0.69)

DOCUMENT: Death rates are the number of deaths per year
per 1000 population.

Data is taken from: Bureau of the Census, Statistical
Abstracts of the U.S. (1963)

DR_1 4 = GRAPH(TIME)

(1900, 19.8), (1910, 14.0), (1920, 9.90), (1930, 5.60),
(1940, 2.90), (1950, 1.40), (1960, 1.10), (1970, 0.84),
(1980, 0.64), (1990, 0.47), (2000, 0.3), (2010, 0.2),
(2020, 0.2)

DOCUMENT: Death rates are the number
per 1000 population.

of deaths per year

Data is taken from: Bureau of the Census, Statistical
Abstracts of the U.S. (1963)

DR_25_34 = GRAPH(TIME)

(1900, 8.20), (1910, 6.50), (1920, 6.80), (1930, 4.70),
(1940, 3.10), (1950, 1.80), (1960, 1.50), (1970, 1.59),
(1980, 1.36), (1990, 1.39), (2000, 1.17), (2010, 1.08),
(2020, 0.855)

DOCUMENT: Death rates are the number

of deaths per year

per 1000 population.

Data is taken from: Bureau of the Census,
Abstracts of the U.S.

Statistical
(1963)
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DR_35_44 = GRAPH(TIME)

(1900, 10.2), (1910, 9.00), (1920, 8.10), (1930, 6.80),
(1940, 5.20), (1950, 3.60), (1960, 3.00), (1970, 3.17),
(1980, 2.29), (1990, 2.24), (2000, 1.98), (2010, 1.65),
(2020, 1.65)

DOCUMENT: Death rates are the number of deaths per year
per 1000 population.

Data is taken from: Bureau of the Census, Statistical
Abstracts of the U.S. (1963)

DR_45_54 = GRAPH(TIME)

(1900, 15.0), (1910, 13.7), (1920, 12.2), (1930, 12.2),
(1940, 10.6), (1950, 8.50), (1960, 7.60), (1970, 7.38),
(1980, 5.90), (1990, 4.77), (2000, 3.90), (2010, 3.38),
(2020, 2.55)

DOCUMENT: Death rates are the number of deaths per year
per 1000 population.

Data is taken from: Bureau of the Census, Statistical
Abstracts of the U.S. (1963)

DR_55_64 = GRAPH(TIME)

(1900, 27.2), (1910, 26.2), (1920, 23.6), (1930, 24.0),
(1940, 22.2), (1950, 19.0), (1960, 17.4), (1970, 16.9),
(1980, 13.8), (19%0, 12.2), (2000, 10.8), (2010, 9.24),
(2020, 8.54)

DOCUMENT: Death rates are the number of deaths per year
per 1000 population.

Data is taken from: Bureau of the Census, Statistical
Abstracts of the U.S. (1963)

DR_5_14 = GRAPH(TIME)

(1900, 3.90), (1910, 2.90), (1920, 2.60), (1930, 1.70),
(1940, 1.00), (1950, 0.6), (1960, 0.5), (1970, 0.42),
(1980, 0.31), (19%0, 0.24), (2000, 0.14), (2010, 0.12),
(2020, 0.1)

DOCUMENT: Death rates are the number of deaths per year
per 1000 population.

Data is taken from: Bureau of the Census, Statistical
Abstracts of the U.S. (1963)

DR_65_69 = GRAPH(TIME)

(1900, 56.4), (1910, 55.6), (1920, 52.5), (1930, 51.4),
(1940, 48.4), (1950, 41.0), (1960, 38.2), (1970, 37.3),
(1980, 31.2), (1990, 27.4), (2000, 25.0), (2010, 22.0),
(2020, 21.0)
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DOCUMENT: Death rates are the number of deaths per year
per 1000 population.

Data is taken from: Bureau of the Census, Statistical
Abstracts of the U.S. (1963)

LIFE_EXPECTANCY = GRAPH(TIME)

(1900, 9.30), (1910, 9.10), (1920, 9.70), (1930, 9.60),
(1940, 9.95), (1950, 10.9), (1960, 11.3), (1970, 12.1),
(1980, 12.8), (1990, 13.9), (2000, 14.6), (2010, 15.2),
(2020, 16.2)

DOCUMENT: Dwell time = life expectancy for the average
70 year old.

Data taken from: Bureau of the Census, Statistical
Abstracts of the U.S. (Colonial Times to 1970)

4.2 River Toxins

In this section of our chapter on modeling two independent variables, we
apply the methods outlined in Section 4.1.1 to model not only the change of
a system over time but also how these changes manifest themselves in
space. For example, suppose that a pollutant is released into a river at one
point and we want to know how the concentration of that pollutant changes
with time AND at different points downstream of the pollution point. Time
and the distance downstream are the independent variables. How can we
design a model to keep track of distance and time simultaneously?

To solve such a problem we establish a chain of stocks of the pollutant
that represent connected sections of the river, 1, 2, 3, ..., etc., and we
connect each stock to the next one with a controlled transfer variable, F1,
F2,F3, ... ., etc. The stocks represent the volume of pollution in each sec-
tion and are measured, for example, in cubic meters of pollutants. Each of
the transfer vaiables F1, F2, ..., etc. are controlled by a dwell time, T1, T2,
T3, ..., etc., which represents how long a molecule of pollutant and of
river water stay in that particular section. The chain continues until the
length of river is described with sufficient accuracy. The stocks give the
amount of pollutant in each section at any time.,

Let us assume, without any loss of generality, that the pollutant is released
at an initial injection point FO and that there are six river sections of interest.
The purpose of the model is to find the concentration in any subsequent
section at any time. We can find the concentrations at different distances
from the point of release by dividing the amount of pollutant in a section by
the volume of water in that section. The volumes of the sections V1 and V2
are determined by the flow rate, Q1, which is the same for sections 1 and 2.
After section 2, this flow rate changes. This change may be caused, for
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example, by changes in the river bed or the presence of some levies. The vol-
umes of the sections V3, V4, V5, and V6 are determined by the flow rate Q2.

The dwell or residence time, T, in any section is just the volume of that
section divided by the flow in that section. These dwell time parameters are
used in this model analogously to the TIME 01, TIME 12, etc. parameters of
the age cohort model in the previous chapter that were required to move
the population through the different age cohorts (Figure 4.20).

The volume-flow relations are assumed to be empirically determined
and, in principle, vary over time in response to changes in the flow rates.
For simplicity of the model, however, we assume fixed values for Q1 and
Q2. Thus, the graphs that specify the volume-flow relationships are not es-
sential in our model, because if Q1 and Q2 are constant, V1, V2, V3, etc.
are also constant. Nevertheless, we included the volume-flow relations in
the model to make it easier later on to investigate the implications of
changing flow rates for pollution concentrations.

For the model, we specified volume as an increasing function of the flow
rate. The graphical relationships between the volume, V, and the flow rate,
Q, of the river employed in our model is shown in Figure 4.21 for the first
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FIGURE 4.21

section, i.e., for V1 as a function of Q1. All other graphical relationships are
very similar. You can find them on the CD ROM that accompanies this book.

Model results are shown in Figure 4.22. The concentration of pollutants
in the first section of the river has a very pronounced spike due to the re-
lease into that section. Subsequent sections of the river show increases in
concentration with time, up to a maximum, and a subsequent decline,
though the concentration never reaches zero in the long run. The further
downstream a section lies, the lower the highest concentration is, because
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of the dillution effect. Note that the concentration of pollutants in the fifth
section only appears at first glance to be larger than that of the previous
three sections, simply because we chose to plot the concentration of that
section over a different scale.

Now imagine that you are the owner of a chemical plant located in sec-
tion 3 of this river. You are the owner of a plant that is identical to the one
that is periodically polluting the river at station 1 and so you too have to rid
yourself of the same quantity of poHution. Suppose that you learned that
the Environmental Protection Agency (EPA) is setting up a pollution con-
centration measuring station at section 6 and that the EPA already has the
model for stream flow that we just developed above. You learn that the
EPA thinks that it is not your plant that is dumping pollutants in the stream
but that all the pollution is released by the plant at section 1.

As plant owner, you know that your plant is dumping its pollutants into
the river. However, the EPA does not suspect that you too release pollution
into the river. The EPA’s assumption is based on their observation that the
firm at station 1 dumps some amount of pollutants into the river and on their
measurements at section 6. You call your engineers into your office and they
reveal their method that is fooling the EPA into thinking that all the pollution
is coming from the plant at station 1. How did they do it? What are the im-
plications for water quality control by the EPA in our model?

Redo the model above but add a side stream of water that enters the
main channel at section 3. Be careful how you model the diluting effect of
this sidestream.

In a further refinement of the model, you may want to include fluctuations
of the flow rates over time to make use of the volume-flow relations specified
in our model above. Choose fluctuations of the flow rates along a sine wave
with a mean equal to the values of Q1 and Q2 chosen before. Such changes
in flow rates can be easily integrated into the model where one firm tries to
trick EPA. How do the results differ from the case with constant flow rates?

To make the model even more realistic, add a process of biological decay
of the pollutant to the model. How should the biological decay activity de-
pend on the pollution concentration? We would expect that the organisms in
our river are better able to deccompose or assimilate pollutants when con-
centrations are low, and worse, or absent, for high pollution levels.

RIVER TOXINS

FIVE(t) = FIVE(t - dt) + (F4 - F5) * dt
INIT FIVE = 0 {Cubic Meters}
INFLOWS:

F4 = FOUR/T4 {Ejects 1/T1 th of its Volume into the
Next Station at Each Time Step; Cubic Meter per Minute}
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OUTFLOWS :
F5 = FIVE/T5 {Ejects 1/T1l th of its Volume into the
Next Station at Each Time Step; Cubic Meter per Minute}

FOUR(t) = FOUR(t - dt) + (F3 - F4) * dt
INIT FOUR = 0 {Cubic Meters}
INFLOWS:

F3 = THREE/T3 {Ejects 1/T3 th of its Volume into the
Next Station at Each Time Step; Cubic Meter per Minute}
OUTFLOWS :

F4 = FOUR/T4 {Ejects 1/Tl1 th of its Volume into the
Next Station at Each Time Step; Cubic Meter per Minute}

ONE(t) = ONE(t - dt) + (FO - F1) * dt

INIT ONE = 0 {Amount of toxin in the first station;
Cubic Meters}

INFLOWS:

FO = PULSE(100,DT,1000) {Pulses toxin into the first
station at the start of the run. Injections can be made
at various stations at various times. Cubic Meters per
Minute}

OUTFLOWS:

F1 = ONE/T1 {Ejects 1/T1 th of its Volume into the
Next Station at Each Time Step; Cubic Meter per Minute}

SIX(t) = SIX(t - dt) + (F5 - F6) * dt
INIT SIX = 0 {Cubic Meters}
INFLOWS:

F5 = FIVE/T5 {Ejects 1/T1 th of its Volume into the
Next Station at Each Time Step; Cubic Meter per Minute}
OUTFLOWS :

F6 = SIX/T6 {Ejects 1/T6 th of its Volume into the
Next Station at Each Time Step; Cubic Meter per Minute}

THREE(t) = THREE(t - dt) + (F2 - F3) * dt
INIT THREE = 0 {Cubic Meters}
INFLOWS:

F2 = TWO/T2{Ejects 1/T2 th of its Volume into the Next
Station at Each Time Step; Cubic Meter per Minute}
OUTFLOWS:

F3 = THREE/T3 {Ejects 1/T3 th of its Volume into the
Next Station at Each Time Step; Cubic Meter per Minute}
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TWO(t) = TWO(t - dt) + (Fl1 - F2) * dt

INIT TWO = 0 {Cubic Meters}

INFLOWS:

Fl = ONE/T1 {Ejects 1/T1 th of its Volume into the
Next Station at Each Time Step; Cubic Meter per Minute}
OUTFLOWS :

F2 = TWO/T2{Ejects 1/T2 th of its Volume into the Next
Station at Each Time Step; Cubic Meter per Minute}

CONC_1 = ONE/V1 {Cubic Meters of Pollutants per Cubic
Meter of Water}

CONC_2 = TWO/V2 {Cubic Meters of Pollutants per Cubic
Meter of Water}

CONC_3 = THREE/V3 {Cubic Meters of Pollutants per
Cubic Meter of Water}

CONC_4 = FOUR/V4 {Cubic Meters of Pollutants per Cubic
Meter of Water}

CONC_5 = FIVE/V5 {Cubic Meters of Pollutants per Cubic
Meter of Water}

CONC_6 = SIX/V6 {Cubic Meters of Pollutants per Cubic
Meter of Water}

Q01 = 1 {Cubic Meters per Minute}

Q2 = 1.6 {Cubic Meters per Minute}

Tl = V1/01 {Dwell Time in Each Section; Minutes}

T2 = Vv2/Q1 {Dwell Time in Each Section; Minutes}

T3 = V3/Q2 {Dwell Time in Each Section; Minutes}

T4 = V4/Q2 {Dwell Time in Each Section; Minutes}

T5 = V5/Q2 {Dwell Time in Each Section; Minutes}

T6 = V6/Q2 {Dwell Time in Each Section; Minutes}

V1l = GRAPH(Q1) {Cubic Meters}
(0.00, 0.05), (0.167, 0.3), (0.333, 0.35), (0.5, 0.55),
(0.667, 1.00), (0.833, 1.80), (1, 2.80), (1.17, 4.60),
(1.33, 6.80), (1.50, 8.25), (1.67, 9.05), (1.83, 9.70),
(2.00, 9.95)

V2 = GRAPH(Q1) {Cubic Meters}
(0.00, 0.00), (0.167, 0.7), (0.333, 1.15), (0.5, 1.50),
(0.667, 1.75), (0.833, 1.95), (1, 2.15), (1.17, 2.50),
(1.33, 2.85), (1.50, 3.50), (1.67, 4.85), (1.83, 7.90),
(2.00, 10.0)

V3 = GRAPH(Q2) {Cubic Meters}
(0.00, 0.075), (0.167, 1.35), (0.333, 2.10), (0.5,
2.48), (0.667, 2.92), (0.833, 3.30), (1, 3.90), (1.17,
4.88), (1.33, 6.83), (1.50, 9.07), (1.67, 11.6), (1.83,
13.3), (2.00, 14.8)
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(1.
(1.
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(2.

V5

(0.
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= GRAPH(Q2) {Cubic Meters}
00, 0.00), (1.08, 2.02), (1.17, 3.38), (1.25, 4.72),
33, 5.92), (1.42, 6.67), (1.50, 7.80), (1.58, 8.55),
67, 9.07), (1.75, 9.90), (1.83, 12.3), (1.92, 14.0),
00, 15.0)

= GRAPH(Q2) {Cubic Meters}
00, 0.09), (0.167, 2.07), (0.333, 4.05), (0.5,

5.85), (0.667, 6.39), (0.833, 6.75), (1, 7.47), (1.17,
8.28), (1.33, 9.63), (1.50, 11.7), (1.67, 14.7), (1.83,

17.

V6

(0.
(0.
(1.
(2.

0), (2.00, 18.0)

= GRAPH(Q2) {Cubic Meters}

00, 0.1), (0.167, 1.20), (0.333, 1.40), (0.5, 2.10),
667, 2.70), (0.833, 3.80), (1, 5.40), (1.17, 8.50),

33, 11.7), (1.50, 15.4), (1.67, 17.4), (1.83, 18.2),
00, 19.8)
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5

Randomness

To me our knowledge of the way things work, in society or in nature,
comes trailing clouds of vagueness. Vast ills have followed a belief in
certainty, whether historical inevitability, grand diplomatic designs, or
extreme views on economic policy. When developing policy with wide
effects for an individual society, caution is needed because we cannot
predict the consequences.’

5.1 Flipping a Coin

In the previous model, we modeled the dynamic behavior of systems in an
almost mechanical way. Once the relationships among system components
were defined and initial conditions were specified within certain bounds,
the dynamics of the system as a whole were predetermined and can be ex-
actly repeated with each model run. Real systems are not necessarily that
predictable. Rather, some random element may determine the direction of
a system’s behavior. This case is illustrated in the model developed in this
chapter. Other sources of unpredictability of system behavior are discussed
later in the book.

If we flip a coin repeatedly several thousand times, we see a random ten-
dency, similar to a drunk staggering right or left from a reference line, the
standard setting for the discussion of the random walk. The head and tail
rate are easy to generate and accumulate. For the generation of head and
tail in a coin toss, we create a random number between 0 and 1, using
STELLA’s built-in function RANDOM:

FLIPPER = RANDOM(0,1) @

We interpret numbers below .5 as head and above .5 as tail:
HEAD RATE = IF FLIPPER < .5 THEN 1 ELSE 0 2
TAIL RATE = IF FLIPPER > .5 THEN 1 ELSE 0 3)

We can also generate the difference between the head and tail rates and
sum that difference. The model is composed of a stock for the accumulation,
CUMULATIVE NET, and the difference between the head and tail rates, NET:

NET = HEAD RATE - TAIL RATE &)

The model and its results are shown in Figures 5.1 and 5.2, respectively. Set
up the model, run it several times and graph the CUMULATIVE NET. Note

1Arrow, K.J. 1992. I Know a Hawk from a Handsaw, in M. Szenberg (ed.) Eminent
Economists: Their Life Philosophies, Cambridge University Press, Cambridge, p. 45.
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FLIPPER TAILRATE

FIGURE 5.1

how different the graphs are from the one we have run. Run over a long
enough time, any trend thought to exist in the short run will be reversed.
Try it. Run the model for 500 flips, judge the trend and then resume the
model for the remaining 1500 flips and see if your judgment holds.

FIGURE 5.2

FLIPPING A COIN
CUMULATIVE_NET(t) = CUMULATIVE_NET(t - dt) + (NET) *
dt

INIT CUMULATIVE NET = 0 {Cumulative Number of Net Head
Tossed}
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INFLOWS:
NET = HEAD_ RATE-TAIL_RATE {Number of Net Head Tossed}

FLIPPER = RANDOM(0,1)

HEAD_RATE = IF FLIPPER < .5 THEN 1 ELSE 0 {Number of
Head}

TAIL_RATE = IF FLIPPER > .5 THEN 1 ELSE 0 {Number of
Tail}

5.2 Intoxication Model

Let us form and demonstrate a model of the path of a person who is ine-
briated to various degrees as she tries to walk from some initial position to-
ward a destination 100 feet away. Let the nominal step size be 1 meter.
After each step, this person resights the goal and takes another step. The di-
rection should have a normally distributed variation around the desired di-
rection. Analogously, the step size variation should have a normally distrib-
uted variation around the normal step size of a meter. Assume that the
standard deviation for the direction and the step size are the same value—
call it the INTOXICATION INDEX: the smaller this index, the less intoxi-
cated this person is. Show the travel patterns for various indices.

STEP SIZE can be generated by a random variable of normal distribution
with mean = 1 and standard deviation = INTOXICATION INDEX:

STEP SIZE = NORMAL(1, INTOXICATION INDEX) 6))

In order to consider the direction taken by the person, we may assume that
the person is initially situated at a point (0,0) and her goal is in the point
(0,100). The desired angle at which the person approaches her goal is

DESIRED ANGLE = IF X< 0 THEN ARCTAN ((Y-100)/X)
ELSE ARCTAN ((Y-100)/X) + PI ©)

If the person is intoxicated this will, of course, not necessarily be the angle
at which the person approaches her goal. The chosen angle is a normally
distributed random variable with mean = DESIRED ANGLE and standard
deviation = INTOXICATION INDEX:

CHOSEN ANGLE = NORMAL(DESIRED ANGLE,
INTOXICATION INDEX) @)

The actual movement towards the goal is
MOVE Y = STEP SIZE * SIN(CHOSEN ANGLE) ®
and movement away from a straight line is given by

MOVE X = STEP SIZE * COS(CHOSEN ANGLE) ®
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The flows MOVE Y and MOVE X need to be defined as biflows because
these moves can take on negative values, i.e., the person may stagger away
from her goal. The total distance covered by the person is just the accumu-
lation of all steps. Here, we have to be careful to sum up all step sizes in-
dependent of whether they lead to the goal (positive step sizes) or away
from the goal (negative step sizes).

The final part in this model requires that the person does not continue to
move if she is “close enough” to her goal. We let STELLA pause the simula-
tion run if the person is within at least half a foot in the X direction and at
least within a quarter of a foot from the goal in Y direction. Pausing STELLA
is done by the translation variable CLOSE, which we define as

CLOSE = IF (X £.5) AND (Y < .25) THEN PAUSE, ELSE 0 10)

The resulting model is shown in Figure 5.3.

Plot Y against X to show the location of the person at each step. You can
set up such a plot by moving the graph icon to the STELLA diagram and
then double-clicking on the graph. When the dialogue box appears, select
“Scatter Plot” and specify X as the “X Axis” and Y as the “Y Axis.”

When you run the model and the person is close enough to the goal,
STELLA will pause the model. You can then choose to stop it or resume the
mode run. If you resume the model, you will find that the person may tem-
porarily move away from the goal until she again comes close.

MOVEX ] DESIRED ANGLE

CLOSE

TOTAL DISTANCE

)

ABS STEP SIZE

FIGURE 5.3
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FIGURE 5.4

FIGURE 5.5
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The model runs in Figures 5.4 and 5.5 of the Intoxication Model are done
with an INTOXICATION INDEX of 0 and 1.0, respectively. Thus, each of
these pictures represents the path for increasing intoxication. We find that if
the person is not or only slightly intoxicated, i.e., INTOXICATION INDEX is
0 or close to 0, the path resembles a straight line. The higher the intoxication
index, the more the person staggers around, even moving backwards at
times, and the longer it takes to reach the destination. Run the model and
you will find that for intoxication indices greater than 0, the path will always
be different, and that with increasing intoxication the number of steps (time
length of the simulation) must be increased in order to reach the goal.

Develop a model in which a person is intoxicated and attempts to ap-
proach a car. Assume in this case that the car rolls at a constant velocity to
the right while the person approaches it. For that model, provide a sensi-
tivity analysis of some key parameter, such as the intoxication index and
the velocity, and plot a series of “walks” for alternative parameter values.

INTOXICATION MODEL

TOTAL_DISTANCE (t) = TOTAL_DISTANCE(t - dt) +
(ABS_STEP_SIZE) * dt

INIT TOTAL_DISTANCE = 0

INFLOWS:

ABS_STEP_SIZE = ABS(STEP_SIZE)

X(t) = X(t - dt) + (MOVE_X) * dt
INIT X = 0

INFLOWS:

MOVE_X = STEP_SIZE*COS (CHOSEN_ANGLE)
Y(t) = Y(t - dt) + (MOVE_Y) * dt
INIT ¥ = 0

INFLOWS :

MOVE_Y = STEP_SIZE*SIN(CHOSEN_ANGLE)

CHOSEN_ANGLE =

NORMAL (DESIRED_ANGLE, INTOXICATION_INDEX)

CLOSE = IF (X<=.5) AND (100-Y <= .25) THEN PAUSE

ELSE 0

DESIRED_ANGLE = IF X < 0 THEN ARCTAN((Y-100)/(X)) ELSE
ARCTAN((Y-100) /(X)) + PI

INTOXICATION_INDEX = 0

STEP_SIZE = NORMAL (1, INTOXICATION_INDEX)
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Positive and Negative Feedback

We are faced at every turn with the problem of Organic Unity, of Des-
creteness, of Dicontinuity—the whole is not equal to the sum of the
parts, comparisons of quantity fail us, small changes produce large ef-
fects, and the assumptions of a uniform and homogeneous continuum
are not satisfied."

6.1 The Basic Model

At the beginning of the book we discussed the importance of positive and
negative feedback processes for the dynamic behavior of systems. Much at-
tention has been given by researchers to negative feedback processes, be-
cause negative feedback processes lead systems towards equilibrium states.
In this chapter, we turn our attention to positive feedback processes. Posi-
tive feedback reinforces a given tendency of a system and can lead a system
away from equilibrium states, possibly causing quite unexpected results.
Here is a simple model of a common process with a surprising result. To
our knowledge, the first to point out this model was the economist Brian
Arthur in his article on positive feedbacks in the economy?. Brian Arthur
cites positive feedback processes as driving forces in determining which of
two (or more) alternative new technologies will come to dominate a mar-
ket. A classic example is the development of the two video technologies
VHS and Betamax. Both systems entered the market at roughly the same
time and, early on, maintained almost the same market shares. It was not
clear which of the two technologies would ultimately dominate the market.
However, if one succeeded to increase its market share slightly over the
other, its increased presence would make it more attractive for households
to buy that technology. In response, video rental businesses and stores
would carry a slightly larger amount of tapes and recorders for the respec-
tive system, which, in turn, makes it more attractive for new buyers,
thereby increasing its attractiveness to prospective buyers even further.
The forces that determine what technology increases its market share
during the first periods are often small and may appear to be random. In-
itially small differences in market shares ultimately increase until one sys-
tem is almost entirely eradicated from the market. The video-technology,
indeed, followed that trend, with VHS being the market-dominating tech-

Keynes, J.M. 1933. In D. Moggridge (ed.) The Collected Writings of Jobn Maynard
Keynes, St. Martin’s, New York, Vol. X, p. 262.

2Arthur, B. 1990. Positive Feedbacks in the Economy, Scientific American, February
1990, pp. 92-99.
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nology today. Similar developments can be observed for a number of other
technologies or products that have close substitutes that enter the market at
the same time.?

A potential application of positive feedback in ecological systems can be
found in a study of the competition of two species for shoreline space.*
Here we have the competition between two shore-water-oriented plants
that spread through root growth. If either of the two are the only plants in
an area, that plant will become the sole plant growing in that area, however
if the plants are equally present after a clear cut disturbance, either plant
may dominate but most likely, however, the plant that does the best in
shallow water will take over that area while the other will take the slightly
deeper water area adjacent to its competitor. So we have here a mixture of
positive feedback and adaptive advantage.

Brian Arthur illustrates the process of positive feedback with a simple
model. The idea here is that balls of two different colors are chosen at a
time and placed on a table. We start with one ball of each color on the
table. The rule for choosing the next color is given by a function of the frac-
tion of balls already on the table. If the fraction of balls of a given color is
larger than a random variable that lies between 0 and 1, then another ball
of that color is added onto the table. By adding another ball of that color its
fraction is increased. As a result, for the next drawing, it is even more likely
to draw another ball of the very same color . . . . Positive feedback prevails.

In our model, the balls are either blue or red. We start with one of each
color on the table. The system is described by two state variables that are
represented by the stocks BLUE and RED. From these stocks we can calcu-
late the fraction of each color.

The key equations driving the model are

ADD BLUE = IF RANDOM NUMBER < BLUE FRACTION
THEN 1 ELSE 0 )

ADD RED = IF ADD BLUE # 1 THEN 1 ELSE 0 )]

The STELLA model is shown in Figure 6.1 and the details of the calculation
are listed at the end of this section in the model equations. Before you look
them up, try to model the two-color positive feedback model yourself.

The fraction of each color oscillates wildly and then settles down to a
particular value (Fig. 6.2). However, this value is different on consecutive
runs! Such a phenomenon is thought by Arthur to be similar to a specific
technology that comes to dominate (or disappear from) the market. The
process is a matter of luck at least in part.

’For an application to the competition between two firms see Ruth, M. and B. Han-
non (1997) Modeling Dynamic Economic Systems, Springer-Verlag, New York.
“Grace, J. 1987. The Impact of Preemption on the Zonation of Two Typha Species
Along Lakeshores, Ecological Monographs, Vol. 57, pp. 283-303.
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FIGURE 6.1

Set up a sensitivity run for the blue fraction: 20 runs with the initial values
of the BLUE and RED always the same, at 1. Do you see a trend? Now do
the whole analysis over with the initial value in both colors set at 10. Now
do you see a trend? What is going on here? Note that the initial ratio is the
mean value of the fixed fractions, and the number of initial balls sets the
standard deviation on the distribution of the fixed fractions.

FIGURE 6.2
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TWO-COLOR POSITIVE FEEDBACK MODEL

BLUE(t) = BLUE(t - dt) + (ADD_BLUE) * dt
INIT BLUE = 1 {Numbers of Balls}
INFLOWS :

ADD_BLUE = IF RANDOM NUMBER < BLUE_FRACTION THEN 1
ELSE 0O

{< means positive feedback with many fixed points of
red/blue fraction.

> means negative feedback and the fractions always go
to 0.5.

measured in Balls per Draw)}

RED(t) = RED(t - dt) + (ADD_RED) * dt
INIT RED = 1 ({Numbers of Balls}
INFLOWS :

ADD RED = IF ADD_BLUE <> 1 THEN 1 ELSE 0 {The < in the
add_blue variable means: the blue fraction is the
probability that a blue ball will be drawn and if it is
greater than random, it will be drawn, if not the red
ball is drawn; measured in Balls per Draw}

BLUE_FRACTION = BLUE/TOTAL {Number of Balls per Total
Number of Balls}

RANDOM_NUMBER = RANDOM(O0,1)

RED_FRACTION = RED/TOTAL {Number of Balls per Total
Number of Balls}

TOTAL = BLUE+RED {Number of Balls}

6.2 Positive Feedback with Fixed Points®

In the model of the previous section, the relationship between the BLUE
FRACTION and the probability was a linear one. That is, the BLUE FRAC-
TION was a substitute for the probability that the next choice would be
blue. The higher the BLUE FRACTION, the greater the chance that a blue
ball would be picked next. However, that linear choice is somewhat arbi-
trary. It could be any sort of realtionship. Here is a nonlinear connection:

ADD BLUE = IF RANDOM NUMBER < BLUE PROBABILITY
THEN 1 ELSE 0 3

where BLUE PROBABILITY is defined by the graph in Figure 6.3.

See Arthur, B., Y.M. Emmoliev, and Y.M. Kaniovski. 1994. Path-Dependent Processes
and the Emergence of Macrostructure, in B. Arthur, Increasing Returns and Path De-
pendence in the Economy, University of Michigan Press, Ann Arbor, MI, pp. 33-48.
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FIGURE 6.3
BLUE FRACTION
ADD BLUE
¢ = 2%
BLUE
BLUE PROBABILITY
RANDOM NUMBER TOTAL
BLUE FRACTION
¢ D ¢
RED
ADD RED
RED FRACTION

FIGURE 6.4
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The complete model is shown in Figure 6.4. Note that the sort of connec-
tion established now produces fixed points for the long-term BLUE FRAC-
TION rather than the random long-term behavior seen in the previous sec-
tion of this chapter. These fixed points are determined by the intersection of
the curved line in BLUE PROBABILITY and the 45 degree line going from
0,0 to 1,1 in Figure 6.3. There are three such intersections. When the inter-
secting curve comes from above the 45 degree line, a stable fixed point is set
for the long-term BLUE FRACTION. There are two such fixed points in the
model now. The other intersection point comes from below the 45 degree
line, establishing an unstable fixed point that is never seen as a solution.

You may visualize this stable/unstable relationship as follows: When the
curve is above the 45 degree line, the chances are greater than usual that a
blue ball will be picked next and the tendency is to increase the BLUE
FRACTION. When the curve is below, there is a less than usual chance of
picking a blue ball on the next round of choice, so the BLUE FRACTION
decreases.

So, the positive feedback problem becomes determinant in the long run
if the BLUE PROBABILITY function is nonlinear, depending on the location
of the stable fixed points. The BLUE PROBABILITY curve could of course
crisscross the 45 degree line many times, creating many stable fixed points
and then this model becomes increasingly indeterminant. Try different
sketches of the BLUE PROBABILITY, figure out where the stable points are,
and see how predictable the solutions are. The results of our model with
the specification of the BLUE PROBABILITY as in Figure 6.3 is shown in
Figure 6.5.

FIGURE 6.5
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POSITIVE FEEDBACK WITH FIXED POINTS

BLUE(t) = BLUE(t -~ dt) + (ADD_BLUE) * dt
INIT BLUE = 1 {Numbers of Balls}
INFLOWS:

ADD_BLUE = IF RANDOM_NUMBER < BLUE_PROBABILITY THEN 1
ELSE O

{< means positive feedback with many fixed points of
red/blue fraction.

> means negative feedback and the fractions always go
to 0.5.
measured in Balls per Draw}

RED(t) = RED(t - dt) + (ADD_RED) * dt
INIT RED = 1 ({Numbers of Balls}
INFLOWS:

ADD_RED = IF ADD_BLUE # 1 THEN 1 ELSE 0 {The < in the
add_blue variable means: the blue fraction is the
probability that a blue ball will be drawn and if it is
greater than random, it will be drawn, if not the red
ball is drawn; measured in Balls per Draw}

BLUE_FRACTION = BLUE/TOTAL {Number of Balls per Total
Number of Balls}

RANDOM_NUMBER = RANDOM(0,1)

RED_FRACTION = RED/TOTAL {Number of Balls per Total
Number of Balls}

TOTAL = BLUE+RED {Number of Balls}

BLUE_PROBABILITY = GRAPH (BLUE_FRACTION)

(0.00, 0.14), (0.1, 0.105), (0.2, 0.12), (0.3, 0.165),
(0.4, 0.27), (0.5, 0.5), (0.6, 0.68), (0.7, 0.82),
(0.8, 0.88), (0.9, 0.89), (1, 0.85)

6.3 Elaborations

To see what negative feedback will do, reverse the inequality between the
random number and the blue fraction in the model of Section 6.1. The end
result is always 1/2. This is what we mean above when we say that neg-
ative feedback processes are an equilibrating force. Now return to the prob-
lem of positive feedback and add a third color. The results are similar to
those found earlier. But note how much harder it is to write the correct
conditions for adding the various colors. Try it yourself before checking the

list of equations at the end of this section.
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FIGURE 6.6

The model of the three-color positive feedback is shown in Figure 6.6
and the results of one model run are plotted in Figure 6.7.

Now try to combine the effects of both kinds of feedback. Can you show
the results of such a combination where the relative strength of the negative
feedback is four times as great as the strength of the simultaneously occur-
ring positive feedback?

FIGURE 6.7
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This little example should make clear the nature of feedback. Try to create
examples of three-color positive and negative feedback. For example, try to
make the effect of the feedback nonlinear, e.g., the number of balls added is
a function of that ball’s fraction of dominance, first proportionally and then

inversely.

Now, return to the two-color model of positive feedback and find a mod-
ified IF statement that enables you to model the dynamics of the two shore-
water-oriented plants that spread through root growth. As discussed above,
that model should exhibit a mixture of positive feedback and adaptive

advantage.
THREE-COLOR POSITIVE FEEDBACK MODEL
BLUE(t) = BLUE(t - dt) + (ADD_BLUE) * dt
INIT BLUE = 1 {Number of Balls}
INFLOWS:

ADD_BLUE = IF RAND < BLUE_FRACTION THEN 1 ELSE 0 {<
means positive feedback with many fixed points of
red/blue fraction. Number of Balls per Draw}

GREEN(t) = GREEN(t - dt) + (ADD_GREEN) * dt
INIT GREEN = 1 {Number of Balls}
INFLOWS:

ADD_GREEN = IF (ADD_BLUE = (0) AND (ADD_RED = 0) THEN 1
ELSE 0 {Number of Balls per Draw}

RED(t) = RED(t - dt) + (ADD_RED) * dt
INIT RED = 1 {Number of Balls}
INFLOWS:

ADD_RED = IF (RAND >= BLUE_FRACTION) AND (RAND <
(BLUE_FRACTION + RED_FRACTION)) THEN 1 ELSE 0 {Number
of Balls per Draw}

BLUE_FRACTION = BLUE/TOTAL {Number of Balls per Total
Number of Balls}

GREEN_FRACTION = GREEN/TOTAL {Number of Balls per
Total Number of Balls}

RAND = RANDOM(O0,1)

RED_FRACTION = RED/TOTAL {Number of Balls per Total
Number of Balls}

TOTAL = BLUE + RED + GREEN {Number of Balls}
TOTAL_FRACTIONS =
GREEN_FRACTION+RED_FRACTION+BLUE_FRACTION {Number of
Balls per Total Number of Balls}




/

Derivatives and Lags

Honour, ‘Tis a derivative from me to mine, And only that | stand for.
—William Shakspeare, The Winter’s Tale

7.1 Introduction

STELLA is designed to incrementally add a rate variable to a stock, a
process that is called integration. This is very important in finding the solu-
tions to rate or differential equations. However, often we need to do just
the opposite, to differentiate or find the slope of a curve or rate of change
of a variable. The main reason that we would want to find a rate of change
in STELLA is to be able to identify the maximum or minimum value of a
variable. We may be generating a stream of numbers that represent the way
in which some variable is changing in time, but how do we find the largest
or smallest of this stream as these numbers are calculated? We find the de-
rivative of the variable and we keep track of this value. When it goes to
zero, the variable has reached a maximum or minimum value. Such an
event is used as a trigger to tell the rest of the program to stop changing be-
cause the desired condition has been found. For example, we may be mod-
eling a firm that attempts to maximize its profits. We will start the firm off
with a low output per time period and calculate the corresponding profit.
Then, we incrementally increase output over time, thereby increasing reve-
nues from sale of that output but also production costs. With increasing
output, revenues increase steadily but profits increase at a decreasing rate
because costs increase, too. At the point at which the profit function
reaches a maximum, production should be kept constant so that the firm
continues to produce at the maximum profit level.

To find the derivative of a variable, we can use the derivative function
provided by STELLA in the built-in list, or we can take the value of the
function less its value one small time step, DT, in the past and divide this
difference by DT: this period’s value minus last period’s value (corrected
for the size of DT) is just the rate of change within one entire time interval.

Develop a model of the integral of a function of time. Integration over
time means that we calculate a stock that increases incrementally with time.
The flow into the stock is just that function of time. For simplicity, assume
that function is

F(T) = (TIME)A2 €))

Take the derivative of the integral. In STELLA, that derivative is just the dif-
ference between the delayed value of the stock and the value of the stock
in time period t, divided by DT. Calculate the delayed value of the integral
111
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of F(T) with the built-in function DELAY. The DELAY built-in requires that
you specify the variable you wish to delay, and how long that delay should
be. In our case, the delay should be only one small time step, DT, so:

DELAY INTEGRAL F OF T = DELAY(INTEGRAL F OF T,DT) @)
Consequently, the derivative of the integral of F(T) is

DERIVATIVE INTEGRAL OF F(T) = (INTEGRAL F OF T
— DELAY INTEGRAL F OF T)/DT (3)

Note again that we need to divide by DT to correct for the size of the time
step.

DELAY INTEGRALFOFT

DERIVATIVE INTEGRAL OFFOF T

INTEGRALFOFT

FOFT ERROR
FIGURE 7.1
1: ERROR
0.00 »
//——1
/’1
-0.50
i
-1.00
0.00 3.00 6.00 9.00 12.00
Time

FIGURE 7.2
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The percentage error caused by using the numerical solution for the inte-
gral instead of the analytical one can be calculated by comparing the value
of the derivative calculated by STELLA with the actual value of the flow
(Fig. 7.1). Note how smaller DTs reduce that error. In the next section, we
provide some simple illustrations and applications of derivatives and lags.

The graph in Figure 7.2 shows that, in absolute terms, the error is initially
very large (minus infinity, to be precise). Subsequent calculation lead to
smaller errors, expressed as a percentage of the growing state variable F of T.

INTEGRATION MODEL

INTEGRAL_F_OF_T(t) = INTEGRAL_F_OF_T(t - dt) +
(F_OF_T) * dt

INIT INTEGRAL_F_OF_T = 0

INFLOWS:

F_OF_T = TIME"2

DELAY_INTEGRAL_F_OF_T = DELAY(INTEGRAL_F_OF_T,DT)
DERIVATIVE_INTEGRAL_OF_F_OF_T = (INTEGRAL_F_OF_T -
DELAY_INTEGRAL_F_OF_T) /DT

ERROR = IF TIME > 0 THEN
(DERIVATIVE_INTEGRAL_OF_F_OF _T-F_OF_T)/F_OF_T

ELSE O

7.2 Applications of Derivatives and Lags
7.2.1 Simple Population Model

The basic function performed by programs such as STELLA is integration,
the summing of incremental changes to a state variable. The derivative is an
undoing of integration, and derivatives of generated results can also be cal-
culated with STELLA.

The derivative is useful in finding the extremes of the range of a variable.
The built-in function DELAY is used to calculate the delayed, or lagged,
value, which in turn is used to calculate the derivative as the difference be-
tween the actual and the delayed value. Here are two cases for the identifi-
cation of extrema using the DELAY function. The first is a switch (0-1) that
signals the peak growth rate in a population model. The population model
is very similar to the ones developed earlier. The variable SWITTCH is cal-
culated as the difference between the value of BIRTHS at time period t and
BIRTHS at time period t-DT. If this difference is positive, we know that the
present number of births exceeds that calculated for the time period one
DT earlier. Thus, we did not yet encounter the maximum in BIRTHS. If the
difference is smaller than zero, then a peak must have occurred and the
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variable SWITTCH should signal the presence of that peak. The variable
SWITTCH is set up to do exactly that. We deliberately spelled its name differ-
ently from the built-in function “SWITCH,” which serves some other purpose.

In our model, the carrying capacity is set to 500, the initial population
level is 10, and the birth rate is set constant at .0006. The number of births
is calculated as

BIRTH = BIRTH FRACTION * POPULATION
* (CARRYING CAPACITY-POPULATION) 4

The switch is defined to generate a number 1 if the difference between cur-
rent and delayed births is zero or less, and a number 0 as long as current
births exceed the births in the previous period:

SWITTCH = IF ((BIRTHS-DELAY(BIRTHS,DT))<0)
AND (TIME>1) THEN 1 ELSE 0 3)

Note also that the switch is only activated after the first period, or it could
go off at the model outset just because there is no history to the model that
would allow us to calculate the delayed value for the births.

The complete model is shown in Figure 7.3 and the results are depicted
in Figure 7.4. Births rise to a peak at which the switch signals the reversal
in the slope of the curve of births through time. Experiment with alternative
model specifications (for example, set up a goal-seeking model for the
population) and ensure that your switch accurately picks up the peak in the
number of births per time period.

POPULATION MODEL

POPULATION(t) = POPULATION(t - dt) + (BIRTHS) * dt
INIT POPULATION = 10 {Organisms per Unit Area}
INFLOWS:

BIRTHS = BIRTH_FRACTION*POPULATION* (CARRYING_CAPACITY-
POPULATION)

{Organisms per Unit Area per Time Period}

BIRTH_FRACTION = .0006 {Organisms Born per Number of
Organisms Present per Unit Area per Time Period}
CARRYING_CAPACITY = 500 {organisms per unit area}
SWITTCH = IF ((BIRTHS-DELAY(BIRTHS,DT))<=0) AND
(TIME>1) THEN 1 ELSE 0

7.2.2 Two-Population Model

This problem reveals a more complicated switch than the one discussed
above. Here, we have two populations with different birth rates. The model
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BIRTHS
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BIRTH FRACTION SWITTCH

FIGURE 7.3

enables us to find numerically when the peaks for the entire population
occur. There are clearly two peaks, provided we started with small initial
populations.

The SUM BIRTH variable calculates the total number of births in each pe-
riod, and DELTA SUM BIRTHS calculates the change in total births over the
time frame t-DT:

DELTA SUM BIRTHS = SUM BIRTHS — DELAY(SUM BIRTHS,DT,®) (&)

This is then used to generate a value of 1 in the SIGNAL variable every time
a peak in the number of births per time period is reached or passed:

SIGNAL = IF DELTA SUM BIRTHS < 0 THEN 1 ELSE 0 @D

FIGURE 7.4
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FIGURE 7.5

COUNT generates a value based on the SIGNAL that is corrected for the
length of DT:

COUNT = IF SIGNAL — DELAY(SIGNAL,DT) > 0 THEN 1/DT ELSE0 (8

PEAK COUNT keeps track of the number of peaks that occurred (Fig. 7.5).
Thus, this model can easily be expanded to accommodate multiple peaks
and model runs with different time step lengths. Figure 7.6 shows for the
results of the two-population case.

FIGURE 7.6
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TWO POPULATION MODEL

PEAK_COUNT(t) = PEAK COUNT(t - dt) + (COUNT) * dt
INIT PEAK _COUNT = 0 {Total Number of Peaks up to the
Current Time Period}

INFLOWS:

COUNT = IF SIGNAL - DELAY(SIGNAL,DT) > 0 THEN 1/DT
ELSE 0 {Number of Peaks per Time Period up to the
Current Time Period}

POPULATION(t) = POPULATION(t - dt) + (BIRTHS) * dt
INIT POPULATION = 10 {Organisms per Unit Area}

INFLOWS:

BIRTHS = BIRTH_FRACTION*POPULATION* (CARRYING_CAPACITY-
POPULATION) {Organisms per Unit Area per Time Period}
POPULATION_2(t) = POPULATION_2(t - dt) + (BIRTHS_2) *
dt

INIT POPULATION_2 = 10 {Organisms per Unit Area}
INFLOWS:

BIRTHS_2 =

BIRTH_FRACTION_2*POPULATION_2* (CARRYING_CAPACITY_ 2-
POPULATION_2) {Organisms per Unit Area per Time
Period}

BIRTH_FRACTION = .0006 {Organisms Born per Unit Area
per Time Period per Number of Organisms Present}
BIRTH_FRACTION_2 = .005 {Organisms Born per Unit Area

per Time Period per Number of Organisms Present}
CARRYING_CAPACITY = 500 {Organisms per Unit Area}
CARRYING_CAPACITY_2 = 500 {Organisms per Unit Area}
DELTA_SUM_BIRTHS = SUM_BIRTHS-DELAY (SUM_BIRTHS,DT,0)
{Organisms per Unit Area per Time Period}

SIGNAL = IF DELTA_SUM_BIRTHS<=0 THEN 1 ELSE 0 {Number
of Peaks}

SUM_BIRTHS = BIRTHS+BIRTHS_2 {Organisms per Unit Area
per Time Period}
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3
The Law of Mass Action

No, no, no. Not love: we know better than that. Let's call it chem-
istry . ..
—George Bernard Shaw, You Never Can Tell

8.1 Breakdown of Nitrogen Dioxide
into Nitrogen Oxide and Oxygen

The atmosphere consists of several layers that are distinguished by chemi-
cal composition, temperature, and pressure. About 99% of the volume of
clean dry air in the innermost layer, the troposphere, consists of two gases:
nitrogen (78%) and oxygen (21%). The remaining air in the troposphere has
slightly less than 1% argon and about 0.035% carbon dioxide. Air in the
troposphere also holds water vapor in amounts varying from 0.01% by vol-
ume at the frigid poles to 5% in the humid tropics.

The second layer of the atmosphere, extending from about 10 to 50 kilo-
meters above the earth’s surface, is called the stratosphere. It contains small
amounts of gaseous ozone (O,) that filters out about 99% of incoming
harmful, ultraviolet (UV) radiation. This filtering action by the thin gauze of
ozone in the stratosphere protects us from increased sunburn, skin cancer,
eye cancer, and eye cataracts. This global sun screen also protects plants
and aquatic organisms.

By filtering out high-energy UV radiation, stratospheric ozone also keeps
much of the oxygen in the troposphere from being converted into toxic
ozone. The trace amounts of ozone that do form in the troposphere as a
component of urban smog damage plants, the respiratory system of people
and other animals, and materials such as rubber. Thus, our good health and
that of many other species depends on having enough “good” ozone in the
stratosphere and as little as possible “bad” ozone in the troposphere. Un-
fortunately, human activities increase concentrations of ozone in the tropo-
sphere and decrease ozone concentrations in the stratosphere. Let us model
these two processes separately. First, we turn our attention to the workings
of the chemical processes that lead to an increase of “bad” ozone in the
troposphere. In the following section we will then model the depletion of
ozone in the stratosphere. Both models illustrate a fundamental principle of
chemical processes, the law of mass action.

Ozone (O,) is a photochemical oxidant that is the most important com-
ponent of photochemical smog. Naturally occurring ozone may sometimes
significantly contribute to urban smog. Frequently, however, tropospheric
ozone is created by the breakdown of the anthropogenic pollutant nitrogen
dioxide (NO,). Sunlight contributes to the formation of photochemical
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smog by triggering the breakdown of NO,. This process happens, simpli-
fied, as follows: Sunlight causes nitrogen dioxide to break down into ni-
trogen oxide and monatomic oxygen, O. This O-atom combines then with
O, to form O;;:

NO, > NO + 0; O + 0, - O, M

A STELLA model of this chemical reaction requires an initial stock of NO,
that is depleted in a reaction at a rate that depends on the concentration of
NO, and a given rate constant. The buildup of the O, and NO stocks occurs
of course at this same rate, depending specifically on the amounts of these
compounds that are available in the reactant NO,. A second chemical
process is linked to the first one. It involves the creation of ozone from the
monatomic oxygen released in the NO, breakdown and the oxygen in the
troposphere.

Let us develop a model for the first part of this reaction, the breakdown
of nitrogen oxide. This problem reveals the basic idea in chemical kinetics
called the law of mass action. It is an empirical rule that states that reaction
speeds are proportional to the concentration(s) of the initial ingredients.
For the case of two reactants at concentrations R1 and R2 that form one
product at concentration P, the law of mass action is

P=Lk*R1l*R2 @

with k denoting the reaction rate constant. We will use this law in the fol-
lowing problems in a simplified form and revisit it again in the model of an
epidemic that we develop in Chapter 19.

The model of the breakdown of NO, is shown in Figure 8.1 for hypo-
thetical data. It contains the law of mass action in the following forms:

INCREASE IN O CONCENTRATION

= O PER NO2 * REACTION VELOCITY 3
INCREASE IN NO CONCENTRATION
= REACTION VELOCITY * NO PER NO2 4)

DECREASE IN NO2 CONCENTRATION = REACTION VELOCITY (5)

We begin the model with an initial concentration of 2 moles of NO, per
cubic meter of air. The stocks of nitrogen and oxygen are normalized to
zero. The reaction rate constant is arbitrarily set to 0.1.

Before you model the changes in the concentrations of NO,, NO, and O,
make a guess about the shape of the resulting curves. Run the model for al-
ternative values of the REACTION RATE CONSTANT. Then, run the model
with a modified mass action law. In order to do this, introduce an exponent
for NO2 CONCENTRATION in the REACTION VELOCITY equation. Such
an exponent may reflect the temperature dependence of a chemical reac-
tion. For example, the higher the temperature, the faster the reaction takes
place, the less of the original substance is left at the next time step, and the
lower the increase in temperature will be for subsequent reactions.
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INCREASE IN O CONC INCREASE IN NO CONC
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O CONCENTRATION NO CONCENTRATION

REACTION VELOCITY NO PER NO2

O PER NO2
REACTION RATE CONSTANT
NO2 CONCENTRATION
‘ D
DECREASE NO2 CONCENTRATION
FIGURE 8.1

The model is run here with an assumed reaction rate constant that does not
necessarily reflect the actual breakdown of NO, in the troposphere (Fig. 8.2).
Try to find data in a chemistry or environmental chemistry textbook that en-
ables you to better quantify the speed at which NO, breaks down under the in-
fluence of solar radiation. Then try to introduce seasonal fluctuation, reflecting
the fact that NO, decay has its most severe implications in the summer months.

Now introduce the second part of the chemical reaction that takes place
in the creation of photochemical smog. Introduce a new stock of O, that is
large enough to provide a sufficient number of oxygen molecules to react

FIGURE 8.2
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with all monatomic oxygen that is created in the breakdown of NO,. Again,
introduce seasonal fluctuation into the model.

A related reaction is the breakdown of N,O, into NO, and O,. You can
fairly quickly create a model of this and similar chemical reactions, follow-
ing the model above.

NO2 DECAY MODEL

NO2_CONCENTRATION(t) = NO2_CONCENTRATION(t - dt) + (-
DECREASE_NO2_CONCENTRATION) * dt

INIT NO2_CONCENTRATION = 2 {Moles per Cubic Meter}
OUTFLOWS :

DECREASE_NO2_CONCENTRATION = REACTION_VELOCITY
{Decrease in NO2 concentration; simple first-order
reaction; measured in Moles per Cubic Meter per Second}

NO_CONCENTRATION(t) = NO_CONCENTRATION(t - dt) +
(INCREASE_IN_NO_CONC) * dt

INIT NO_CONCENTRATION = 0 {Moles per Cubic Meter}
INFLOWS:

INCREASE_IN_NO_CONC = REACTION_VELOCITY*NO_PER_NO2
{Increase in NO concentration as a result of NO2 decay;
measured in Moles per Cubic Meter per Second}

O_CONCENTRATION(t) = O_CONCENTRATION(t - dt) +
(INCREASE_IN_O_CONC) * dt

INIT O_CONCENTRATION 0 {Moles per Cubic Meter}
INFLOWS:

INCREASE_IN_O_CONC = O_PER_NO2*REACTION_VELOCITY
{Increase in 0 concentration as a result of NO2 decay;
measured in Moles per Cubic Meter per Second}

NO_PER_NO2 = 1 {Moles NO produced per Mole NO2
Decomposed - from stoichiometry of reaction}
O_PER_NO2 = 1 {Moles O produced per Mole NO2
Decomposed - from stoichiometry of reaction}
REACTION_RATE_CONSTANT = .1 {1/Second}
REACTION_VELOCITY =
REACTION_RATE_CONSTANT*NO2_CONCENTRATION

8.2 Stratospheric Ozone Depletion

As we briefly discussed above, ozone in the stratosphere protects life on
earth from harmful solar radiation. Were ozone levels to fall only 10%, the



8.2 Stratospheric Ozone Depletion 125

increase in ultraviolet rays would be 20%. The National Academy of
Sciences has estimated that every 3% reduction in O, would result in 20,000
more skin cancer sufferers annually in the United States alone.

Depletion of stratospheric ozone is primarily caused by accumulation of
CFCs (chlorofluorocarbons) and to some minor degree by nitrogen oxides.
Major sources of CFC release are leaking air conditioners and refrigerators,
evaporation of industrial solvents, and production of plastic foams. One of
the properties that makes CFCs so useful in a variety of industrial applica-
tions is that they are chemically fairly inert and therefore very stable. Un-
fortunately, that property also influences their adverse effect on the atmo-
sphere as they remain intact. CFCs can remain in the atmosphere for more
than 100 years depending on the type. This stability allows them to reach
the stratosphere, where they are broken down by intense solar radiation,
and their components enter into other chemical reactions. One of these re-
actions results in the depletion of ozone in the stratosphere. The products
of this reaction lead to a chain of reactions which, in turn, decrease ozone,
following the steps in Table 8.1.

This chain reaction is catalytic, since the chlorine reactant, which initiates
the reaction in Step C, is not permanently removed but appears as a prod-
uct from Step D, ready to repeat the process over and over again. These
chemicals stay in the atmosphere until the final rainout occurs, usually after
a year or two, during which each chlorine atom destroys approximately
100,000 molecules of ozone. Ozone depletion by humans attains signifi-
cance on a global scale as the ultimate consequence of the yearly emission
to the atmosphere of almost one million tons of CFCs, which translates into
an ozone loss 100,000 times larger.

The model shown in Figure 8.3 captures the dynamics of this autocata-
Iytic process of ozone depletion in the presence of CFCs. The values for the
reaction constants are assumed, and you may want to change them to in-
vestigate the sensitivity of the model results. Additionally, you may want to
modify the mass action equation as in the example before, introducing ex-
ponents for some of the reactants. Consult an environmental chemistry text-
book to support your assumptions about the mass action equation and to
find realistic reaction rate constants under alternative assumptions on atmo-
spheric temperature.

The model developed here does not explicitly trace the intermediate
product of free oxygen atoms that you may want to integrate into the
model together with step A of the reaction process. In contrast to the other

TABLE 8.1.

Step Reactants Products
A 0+0, - o,

B CFCl, - CFCl, + Cl
C cl+ 0, - clo + 0,
D clo + 0 - cl+ 0,
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FIGURE 8.3

steps of the chain of chemical reactions, Step A is typically significantly
slower. Find a reaction rate constant for the formation of ozone that would
be required to offset the depletion that takes place in your model system.
We also do not keep track here of the CFCI, since it does not enter any
other reaction that is of interest for the model.

As you can see from Figure 8.4, the concentrations of O, and CFCL, de-
cline while the concentration of Cl and ClO stabilize over the modeled time
horizon. Note that these results are derived for the case in which no new
CFCl, enters the atmosphere. How would the results be affected if the con-
centration of CFCl, were held constant or increased due to continued emis-
sions? Make an educated guess, and then model these new assumptions
and observe their consequences.
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FIGURE 8.4

In this model we did not yet consider the fact that the chlorine atom stays
in the atmosphere for 1 to 2 years and is removed steadily by rain. As a re-
sult of this deficiency in our model, the reactions continue until all ozone is
depleted. To make the model more realistic, add the removal process.

STRATOSPHERIC OZONE DEPLETION

CFCL3_CONC(t) = CFCL3_CONC(t - dt) + (-
DECREASE_CFCL3_CONC) * dt

INIT CFCL3_CONC = 2 {Moles per Cubic Meter}

OUTFLOWS :

DECREASE_CFCL3_CONC = REACT_VELOC_1 {Decrease in NO2
concentration; simple first-order reaction; measured in
Moles per Cubic Meter per Time Period}

CLO_CONC(t) = CLO_CONC(t - dt) + (INCREASE_CLO_CONC -
DECREASE_CLO_CONC) * dt

INIT CLO_CONC = 0
INFLOWS:
INCREASE_CLO_CONC
OUTFLOWS :
DECREASE_CLO_CONC

REACT_VELOC_2

REACT_VELOC_3

CL_CONC(t) = CL_CONC(t - dt) +
(INCREASE_IN_CL_CONC_STEP_C + INCREASE CL_CONC_STEP_D
- DECREASE_CL_CONC) * dt
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INIT CL_CONC = 0 {Moles per Cubic Meter}

INFLOWS:

INCREASE_IN_CL_CONC_STEP_C =
REACT_VELOC_1*CL_PER_CFCL3 {Increase in NO
concentration as a result of NO2 decay; measured in
Moles per Cubic Meter per Time Period}
INCREASE_CL_CONC_STEP_B = CL_PER_CLO*DECEASE_CLO_CONC
OUTFLOWS:

DECREASE_CL_CONC = REACT_VELOC_2

O3_CONC(t) = O3_CONC(t - dt) + (- DECREASE_O03_CONC) *
dt

INIT O3_CONC = 100

OUTFLOWS :

DECREASE_O3_CONC = O_PER_O3_FOR_CLO*REACT_VELOC_2

CL_PER_CFCL3 = 1 {Moles NO produced per Mole NO2
Decomposed - from stoichiometry of reaction}
CL_PER_CLO =1

O_PER_O3_FOR_CLO =1

REACT RATE_CONST_1 = .01 {1/Time Period}
REACT_RATE_CONST_2 .1

REACT_RATE_CONST_3 .05

REACT_VELOC_1 = REACT_RATE_CONST_1*CFCL3_CONC
REACT_VELOC_2 REACT_RATE_CONST_2*CL_CONC
REACT_VELOC_3

I
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Chance-Cleland Model
for Enzyme-Substrate Interaction

Shelley called poets the unacknowledged legislators of the world, and
the epithet was well chosen. The catalyst is unchanged, unabsorbed; its
activity therefore not acknowledged.

—Henry Read, Politics of the Unpolitical

Let us next develop a model of a chemical reaction in which an enzyme, E,
behaves like a catalyst. There is an initial stock of this enzyme available,
some of which will be temporarily tied up due to the production of an in-
termediate substance, C. Ultimately, the enzyme is released again in un-
changed form as some product, P, is formed from the substance C. An ad-
ditional substance active in this process is the substrate S, which is
converted into the product P. Think of the substrate S as dextrose and the
product P as fructose: the enzyme E mechanically locks onto the substrate
molecule, breaks it into a new molecule, fructose, and is released again
after the chemical reaction occurred.!

For simplicity, let us denote the reaction rate constants as K1, K2, and K3.
With this notation, the basic reaction equation is:

E+S-Kl= «<K2-C-K3—-5E+P €))

The four basic differential equations that define the rate expressions, or
flows, are:

ds/dt = K1*S*E — K2*C @
dC/dt = K1*S*E — (K2 + K3)*C 3
dE/dt = dC/dt @
dp/dt = K3*C ©))

In this model, we treat all substances that occur in the chemical reactions as
concentrations. We denote the change in these concentrations as S RATE, C
RATE, E RATE, and P RATE, and define them as the differential equations
above. The basic assumption for the model is that the product of the concen-
trations is linearly proportional to the reaction rate, the “law” of mass action.

Rather than trying to simply program the differential equations, sketch
out your model as a series of four stocks that are filled and emptied

See Spain, J.D. 1982. BASIC Microcomputer Models in Biology, Addison-Wesley,
Reading, MA.
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130 9. Chance-Cleland Model for Enzyme-Substrate Interaction

according to the chemical equations. You should find this a less compli-
cated procedure. Then compare your model to that in Figure 9.1. Make an
educated guess of the dynamics that will result, run your model and see
whether its behavior coincides with the results in Figure 9.2.

Can you make this model with fewer stocks, say just ones for C and P? Try
to remove P at a constant rate. Assume that the enzyme is lost along with P
at a rate that is in proportion to the E concentration (e.g., 0.01*E). Figure out
how fast E and S must be added to the reaction to maintain the removal of

S CONC K1

S CONC

E CONC C CONC

K1

FIGURE 9.1
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FIGURE 9.2

P and the loss of E. The idea here is to find a steady state solution. You can
find the steady state substrate addition rate by adding the inputs and losses
symbolically to the above differential equations and then setting the deriva-
tives equal to 0, and solving for the steady state add rate for S.

ENZYME-SUBSTRATE REACTION

C_CONC(t) = C_CONC(t - dt) + (C_RATE) * dt
INIT C_CONC = 0 {Moles per Cubic Meter}
INFLOWS:

C_RATE = K1*S_CONC*E_CONC-(K2+K3)*C_CONC {Moles per
Cubic Meter per Time Period}

E_CONC(t) = E_CONC(t - dt) + (- E_RATE) * dt
INIT E_CONC = 10 {Moles per Cubic Meter}
OUTFLOWS:

E_RATE = K1*S_CONC*E_CONC- (K2+K3)*C_CONC {Moles per
Cubic Meter per Time Period}

P_CONC(t) = P_CONC(t - dt) + (P_RATE) * dt
INIT P_CONC = 0 {Moles per Cubic Meter}
INFLOWS:

P_RATE = K3*C_CONC {This is the Michaelis-Menten
enzyme model; P_Rate measured in Moles per Cubic Meter
per Time Period}
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S_CONC(t) = S_CONC(t - dt) + (- S_RATE) * dt
INIT S_CONC = 100 {Moles per Cubic Meter}
OUTFLOWS :

S_RATE = K1*S_CONC*E_CONC-K2*C_CONC {Moles per Cubic
Meter per Time Period}

K1 = .005 {1/Time Period}
K2 = .005 {1/Time Period}
K3 = .1 {1/Time Period}
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The Olsen Oscillator

The sightless belfry clock . . . had . . . rung, vibrate with triumph.
—Tait’s Mag. XVLI. 9

In this chapter we build on the law of mass action that we applied in Chap-
ters 8 and 9 to model a chemical oscillator known as the Olsen oscillator.
Chemical oscillators are unique in that they do not necessarily reach a sin-
gle equilibrium state for a given set of initial conditions; rather, they seem
to oscillate between two or more bounds of stability.

Chemical oscillators are generally quite complicated and, as of yet, often
not fully understood. However, some general requirements to produce os-
cillatory behavior are known. First, the system must be nonlinear. This re-
quires that certain reaction intermediates must appear as second-order (or
higher) terms in the elementary rate expressions. A second requirement is
that the system is open; that is, at least one component (oxygen, for in-
stance) must be able to enter and/or leave the system. Thirdly, the initial
concentrations must put the system far from equilibrium.

The Olsen oscillator does indeed exhibit all of these characteristics. It is a
“simple” system, consisting of only four substances, which we name, for
simplicity, A, B, X, and Y. The actual mechanism, however, is not nearly
so simple, consisting of at least 26 different intermediates and about 28
steps. However, we abstract from many of these processes, yet capture the
main features of the oscillator.

The rate expressions for the products of the reactions can be determined
according to the law of mass action, just like we did for the simple kinetic
models of the previous chapter. The rate constants in this problem are de-

noted by K1, K2, ..., K9. The rate expressions, explaining the change in
the substances A, B, X, and Y, are given as follows:
A: dA/dt = K7*(1-A) — K3*A*B*Y 6))
B: dB/dt = K8 — KI*B*X — K3*A*B*Y — K9*B @
X: dX/dt = K1*B*X + 3*K3*A*B*Y + K6 — 2*K2*XA2 — K4*X 3
Y: dY/dt = 2*K2*XA2 — K3*A*B*Y - K5*Y (€Y)

The nonlinearity required for the oscillation is present in equations 3 and 4
by raising the concentration of X to the power 2.

The model of the Olsen oscillator is shown in Figure 10.1. The flows are
specified using the differential equations 1 to 4 above. Those terms that
have a positive sign are used in the FORM ... inflows into the respective
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134 10. The Olsen Oscillator

A
R K7 DESTROY A
q
FORM A
Y
B
K3
Y
FORM Y DESTROY Y
=— =——0)
B
X
K2
A K3 K5
FORMB ——— DESTROY B b@
B
K8 K3 K9 K1 X
A Y
6 FORM X DESTROY X

K2

k3 Kl B A Y

FiGure 10.1
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stock, the ones with negative signs define the DESTROY outflows from the
stocks. For example,

FORM A = K7*(1 — A) 6))
DESTROY A = K3*A*B*Y ©)

Let us get back to the workings of the model itself. This is a nonlinear
system that yields oscillation of some periodicity. As theory and exper-
imentation show us, we can observe the phenomenon of period doubling
when we change one of the oscillating variables within certain bounds. If
these oscillating variables are changed further, we will eventually observe
chaotic behavior of the system. This was, in fact, observed. The original in-
vestigators of the Olsen oscillator chose to study changes in A that would
oscillate between 0 and 1. K8 and K9, two variables influential in the crea-
tion of the oscillation, can be physically changed in an actual system. K8
can be changed by changing the influx of substance B into the system, and
K9 can be changed by changing the concentration of some of the sub-
stances added to the system.

After setting up the model as in Figure 10.1, experiment with the time step
and the integration method to get the model running. For our model run in
Figure 10.2, we chose a time step of DT = 0.01 and Euler’s method as the
integration technique. We also set the reaction rate constants as follows:

K1 = 3.28 K6 = 1.25-10°°
K2 = 2000 K7 =1

K3 =224 K8 = .1030125
K4 = 20 K9 = .001

K5 = 5.35

FIGURE 10.2
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and our initial conditions A = 1-10% B = 0, X = 1107 and Y = 1-1072.
Change the DT and the integration method and note the significant changes
in the results.

With this model, we can show that the form of the oscillations is depen-
dent on the choice of the reaction constants (Figs. 10.2 and 10.3). In the
Olsen oscillator, some of these constants depend on the concentrations of
the substances being used. Let us first evaluate impacts of the choice of K9
on the oscillation.! For this purpose, fix the values for the other parameters
and vary K9. Keep all parameter values as above and then set for sub-
sequent runs of the model K9 = .0001; K9 = .01; and K9 = .05. It becomes
readily apparent that the period of the oscillations is dependent on the
value of K9, such that a larger K9 gives a longer period of oscillation. For
K9 = .05, the system no longer oscillates.

Next, determine whether the form of oscillations is dependent on KI.
Choose K1 = 2.8 and keep the other reaction constants the same. Choose
as alternative values for K9 once K9 = .003, then K9 = .001, and finally K9
= 0. The trend here is now toward chaos. The period of oscillation doubles
as we change K9 from K9 = .003 to K9 = .001. Chaos is observed at K9 =
0. We will discuss chaos in more detail in Chapter 37, but you should be al-

FIGURE 10.3

The parameter values chosen for the simulation runs in the following figures are
listed in the equation pad at the end of this chapter.
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ready aware of the possibility of “strange” model behavior as some param-
eter value is slightly altered.

Finally, determine if the system is sensitive to K8. Choose the values K1
= 2.8 and K9 = .0001, then vary K8 for subsequent runs: K8 = .08; K8 =
.15; and K8 = .20. Plot the corresponding graphs and note how they differ
from the others. These marked differences indicate that the system is very
much dependent on values assumed by the parameter K8. In fact, for K8 =
.20, there is a damping effect that eventually brings the system to equilib-
rium. In this case there are no more oscillations!

OLSEN OSCILLATOR

A(t) = A(t - dt) + (FORM_A - DESTROY_A) * dt
INIT A = 1E-6

INFLOWS :

FORM_A = K7*(1-A)

OUTFLOWS :

DESTROY_A = K3*A*B*Y

B(t) = B(t - dt) + (FORM_B - DESTROY_B) * dt
INIT B = 0

INFLOWS:

FORM_B = K8

OUTFLOWS :

DESTROY_B = (K1*B*X)+ (K3*A*B*Y)+ (K9*B)

X(t) = X(t - dt) + (FORM_X - DESTROY_X) * dt
INIT X = 1E-12

INFLOWS:

FORM_X = KL1*B*X+3*K3*A*B*Y+K6

OUTFLOWS :

DESTROY_X = 2*K2*X"2+K4*X

Y(t) = ¥Y(t - dt) + (FORM_Y - DESTROY_Y) * dt
INIT Y = 1E-12

INFLOWS:

FORM_Y = 2*K2*X"2

OUTFLOWS :

DESTROY_Y = K3*A*B*Y+K5*Y

K1 = 3.28
K2 = 2000
K3 = 2.24

K4 = 20
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K5 =

K6
K7
K8
K9
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5.35
1.25E-6
.1
.1030125
.001
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11
Mating of Alleles

Since the struggle for existence is chiefly the struggle for subsistence, a
careful comparative account of the food of various competing species
and genera at different places and seasons and at all ages of the indi-
vidual . .. cannot fail to throw much light upon the details, causes and
effects of the struggle.

—S. Forbes, The Lake as Microcosm

11.1 Heterozygosity and Disease Resistance

Genetic theory is used in two basic commercial ways today: animal and
plant breeding in agriculture and in the field of conservation biology. In the
former, the basic strategy is to identify and eliminate undesirable, suscepti-
ble alleles by selective breeding. The susceptibility can be to a particular
disease or perhaps it is manifested as a structural problem, such as weak
anchor roots in corn plants.

Selection for particular alleles for agricultural purposes may decrease sus-
ceptibility to a particular disease or overcome some structural deficiency.
However, such a selection process may also mean loss of some allele that
was necessary to cope with some other problem. Thus, selective breeding
may enhance susceptibility with regard to one problem but remove the
ability to cope with another one. Conservation biologists see this path as
one of walking the knife edge. Rather than increase the specialization of a
plant or animal population, conservation biologists take just the opposite
track. They want to maximize allele diversity in a locale of plants or herd of
animals.

Let us distinguish two alleles, A and B. Suppose that the whole popula-
tion was half AA and half BB. Then suppose that some disease hit this
population and killed off the AA types. Half of the genetic history of the
population would be gone. The same disease would not have so strongly
affected the population had it also contained individuals of AB type, so-
called heterozygotes. Not only does heterozygosity increase a population’s
ability to cope with a variety of environmental influences, such as diseases,
but a population is also more genetically adaptable in the face of an envi-
ronmental challenge than are the AA or BB populations. More genetic in-
formation is retained in the heterozygote population, as a result of its his-
tory of natural selection, and therefore it is less prone to adverse conditions
imposed by an altered environment.

Generally, conservation biologists want to maximize the number of AB
type individuals because it increases the diversity and resilience of the
population.
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142 11. Mating of Alleles

11.2 The Mating of Two Alleles into a Genotype:
Proving the Hardy-Weinberg Law

Let us now model the process of genotype mixing, given two alleles, the
fundamental experiment in genetics. In the next chapter we will then
model the process of natural selection and mutation.

The process of genotype mixing can be illustrated for two alleles, A and
B, which are drawn randomly from a pool of 100 A alleles and 200 B al-
leles. Each time step in the model is a drawing of an allele: we have 300 al-
leles so the total time for the mating process is 300 time steps (actually, 302
steps are needed to clear the very last allele choice into a genotype). The
300 steps represent a generation that resulted from a mating process in
which the alleles were joining simultaneously. In STELLA, we could have
chosen a time step of 1/300 so thatt = 1, 2, 3, ... would represent 1, 2, 3,
... generations. The real time required for the run would not be shorter,
of course. In this simple mating process, the genotype mix is set at the end
of the first generation and remains fixed for all further ones.

The results of mating two alleles are explained by the Hardy-Weinberg
law. This law states that the genotype frequencies are determined in a ran-
dom mating process in the first generation. These genotype frequencies are
for AA, pA2; for AB, 2*p*q; for BB, A2, where p and q are the A and B
allele frequencies, respectively. In our sample problem, p = 100/300 or
approximately 0.3333 and q = 200/300 or approximately 0.666667. From
300 alleles we can have 150 genotypes, so the Hardy-Weinberg law tells
us that we should end up with 0.33333*0.33333*150 or 16.7 AA geno-
types, 2*0.3333*0.666667*150 or 66.7 AB genotypes and finally,
0.66667*0.66667*150 or 66.7 BB genotypes.

There is another way to look at the problem of genotype mixing. If the
A and B alleles were of equal frequency of occurrence, the chance of an
AA genotype is .25. Since in our problem, the chance of an A choice is 0.33,
the AA genotype frequency is .25*.33333, or 1/12. The AB frequency is
2*.25".66667, or 1/3. The relative frequency of AB to AA is therefore 4. We
can check for the validity of this relationship in a graph generated by our
model on the mating of two alleles.

To construct the model, we must set up a stock of 100 A alleles and
another stock of 200 B alleles (Fig. 11.1). We use a random number gener-
ator to pick a number between 0 and 1 so that we can compare it to the
frequency of the A allele in the total stock of alleles remaining to be
chosen. Let’s call that random number RAND.

The A frequency is just A/(A + B) and we make an initial and a running
calculation of it in the variable A FREQ:

A FREQ = A/(A + B) €))

If an A is randomly chosen we “store it” in a separate stock called A HOLD
by adding a 1 to that stock:
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A ACHOSEN AHOLD AA GENOTYPE

=0 Lo Lo

FLOW1
AB GENOTYPE
RAND
AFREQ
2N
FLOW 2
,B /‘ BAMATE BB GENOTYPE
q d
: B HOLD
B CHOSEN BB MATE FLOW3
AAGENOTYPE  ABGENOTYPE BB GENOTYPE
q [«
O ( 0
TOTAL GENOTYPE BB FREQ
AAFREQ AB FREQ
AAGENOTYPE  ABGENOTYPE BB GENOTYPE
G [«
o G o 4
TOTAL GENOTYPE BB FREQ
AA FREQ AB FREQ
FIGURE 11.1
A CHOSEN = IF (RAND <= A FREQ)
AND ((A > 0) AND (B >= 0)) THEN 1 ELSE 0 )

If an A is chosen next, we add another 1 to the A HOLD. Now two As have
been chosen sequentially, and they can be used to form an AA genotype.
In this case, we wish to remove the two 1s from the A HOLD stock, and
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mate them to form an AA GENOTYPE. To capture this allele mating
process, the model (see Fig. 11.1) is set up so that AA MATE realizes that A
HOLD has reached 2 and dumps A HOLD into the stock called AA GENO-
TYPE, leaving 0 in A HOLD and 2 in AA GENOTYPE. Since the number of
genotypes is equal the number of pairs of alleles, we must subtract one
from A GENOTYPE every time AA MATE dumps A HOLD into AA GENO-
TYPE. This subtraction is accomplished by FLOW1:

FLOW 1 = IF AA MATE > 0 THEN 1 ELSE 0 €))

If instead of A, our second allele choice had been a B, then a one is sent to
B HOLD by B CHOSEN:

B CHOSEN = IF (RAND > A FREQ)
AND ((B > 0) AND (A >= 0)) THEN 1 ELSE 0 @

Once we have chosen an A and a B in subsequent draws, both AB MATE
and BA MATE dump a 1 into AB GENOTYPE:

AB MATE = IF (A HOLD = 1) AND (B HOLD = 1) THEN 1 ELSE 0 )
BA MATE = IF (A HOLD = 1) AND (B HOLD = 1) THEN 1 ELSE 0 ©®)

The variable FLOW2 senses the AB MATE action and removes a 1 from AB
GENOTYPE. The same steps that occur for the A HOLD process, occur for
the B HOLD process.

In this way 300 alleles are converted into 150 genotypes. How does the
result compare with the Hardy-Weinberg law? Run the model several times
and see what you get. Compare your results with one of our runs shown in
Figures 11.2 and 11.3. Could the variability of the results among your vari-
ous model runs and between yours and ours be due to the small sample

FIGURE 11.2



11.2 The Mating of Two Alleles into a Genotype 145

FIGURE 11.3

size? Try doubling the sample size and keep the initial frequency the same.
You must also double the number of time steps (plus 2) to allow all the
mating to take place. Try tripling the initial number of alleles. You should
find that the larger the number of initial alleles, the closer we come to re-
peating the Hardy-Weinberg prediction. Set up a model that does not have
a fixed supply of the alleles but calls them from an infinite source and ob-
serve the long-term convergence on the Hardy-Weinberg predicted result.

What can we learn from this experiment? First we have shown how the
Hardy-Weinberg law is derived and we have learned a little more dynamic
programming. We have also learned that an analytic result can be useful in
cutting down on programming time and effort. As we shall see in ensuing
problems where many generations are required to reach equilibrium due to
differential survival rates, mutation, etc., the computer time grows to intol-
erable levels and begins to obscure the point of the exercise. So this dy-
namic programming business can be usefully complimented by analytic re-
sults, but not before we understand the underlying principles.

PROVING THE HARDY-WEINBERG LAW

A(t) = A(t - dt) + (- A_CHOSEN) * dt
INIT A = 100 {Initial A number of alleles.}
OUTFLOWS :

A_CHOSEN = IF (RAND <= A_FREQ) AND ((A > 0) AND (B >=
0)) THEN 1 ELSE 0 ({Process of randomly chosing A based
on its intial frequency. Other conditions prevent
negative A. }
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AA_GENOTYPE(t) = AA_GENOTYPE(t - dt) + (AA MATE -
FLOW1l) * dt

INIT AA_GENOTYPE = (0 {This counter receives 2 alleles
for each genotype and therefore a 1 must be subtracted
each time the 2 alleles are added. This is done by
flowl.}

INFLOWS:

AA_MATE = IF A_HOLD = 2 THEN 2 ELSE 0 {This mating
step occurs when second A is chosen. It empties A_hold
and sends 2 to the AA genotype counter.}

OUTFLOWS:

FLOW1 = IF AA_MATE > 0 THEN 1 ELSE O

AB_GENOTYPE(t) = AB_GENOTYPE(t - dt) + (AB_MATE +
BA_MATE - FLOW_2) * dt

INIT AB_GENOTYPE = 0 {This counter receives 2 alleles
for each genotype and therefore a 1 must be subtracted
each time the 2 alleles are added. This is done by
flow2.}

INFLOWS:

AB_MATE = IF (A_HOLD = 1) AND (B_HOLD = 1) THEN 1 ELSE
0 {This mating step occurs when a single A is stored in
A_Hold and a B is chosen. It empties A_hold and B_Hold
& sends 2 to the AB genotype counter.}

BA_MATE = IF (A_HOLD = 1) AND (B_HOLD = 1) THEN 1 ELSE
0 {This mating step occurs when a single B is stored in
B_Hold and an A is chosen. It empties A_hold and B_Hold
& sends 2 to the AB genotype counter.}

OUTFLOWS :

FLOW_2 = IF AB_MATE > 0 THEN 1 ELSE O

A_HOLD(t) = A_HOLD(t - dt) + (A_CHOSEN - AA_MATE -
AB_MATE) * dt

INIT A_HOLD = 0 {an intermediate variable = to the
number of A chosen. One generation = A + B time steps.
If next choice is A, then AA genotype is formed; if B,
the AB is formed}

INFLOWS:

A_CHOSEN = IF (RAND <= A_FREQ) AND ((A > 0) AND (B >=
0)) THEN 1 ELSE 0 {Process of randomly chosing A based
on its intial frequency. Other conditions prevent
negative A. }

OUTFLOWS :
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AA_MATE = IF A_HOLD = 2 THEN 2 ELSE 0 {This mating
step occurs when second A is chosen. It empties A_hold
and sends 2 to the AA genotype counter.}

AB_MATE = IF (A_HOLD = 1) AND (B_HOLD = 1) THEN 1 ELSE
0 {This mating step occurs when a single A is stored in
A_Hold and a B is chosen. It empties A_hold and B_Hold
& sends 2 to the AB genotype counter.}

B(t) = B(t - dt) + (- B_CHOSEN) * dt

INIT B = 200 {Initial number of B alleles.}

OUTFLOWS :

B_CHOSEN = IF (RAND > A_FREQ) AND ((B > 0) AND (A >=
0)) THEN 1 ELSE 0 {Process of randomly chosing B based
on its initial frequency. }

BB_GENOTYPE (t) = BB_GENOTYPE(t - dt) + (BB_MATE -
FLOW3) * dt

INIT BB_GENOTYPE = 0 {This counter receives 2 alleles
for each genotype and therefore a 1 must be subtracted
each time the 2 alleles are added. This is done by
flow3.}

INFLOWS:

BB_MATE = IF B_HOLD = 2 THEN 2 ELSE 0 {This mating
step occurs when second B is chosen. It empties B_hold
and sends 2 to the BB genotype counter.}

OUTFLOWS :

FLOW3 = IF BB_MATE > 0 THEN 1 ELSE 0

B_HOLD(t) = B_HOLD(t - dt) + (B_CHOSEN - BB_MATE -
BA_MATE) * dt

INIT B_HOLD = 0

INFLOWS:

B_CHOSEN = IF (RAND > A_FREQ) AND ((B > Q) AND (A >=
0)) THEN 1 ELSE 0 {Process of randomly chosing B based
on its initial frequency. }

OUTFLOWS :

BB_MATE = IF B_HOLD = 2 THEN 2 ELSE 0 {This mating
step occurs when second B is chosen. It empties B_hold
and sends 2 to the BB genotype counter.}

BA_MATE = IF (A_HOLD = 1) AND (B_HOLD = 1) THEN 1 ELSE
0 {This mating step occurs when a single B is stored in
B_Hold and an A is chosen. It empties A_hold and B_Hold
& sends 2 to the AB genotype counter.}
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AA_FREQ = IF AA_GENOTYPE > 0 THEN
AA_GENOTYPE/TOTAL_GENOTYPE ELSE 0

AB_FREQ = IF AB_GENOTYPE > 0 THEN
AB_GENOTYPE/TOTAL_GENOTYPE ELSE 0

A_FREQ = A/(A + B) {Tracks the randomly changing A
allele frequency. This tells us the probability that an
A allele will be chosen by the random drawing from the
A,B allele pool.}

BB_FREQ = IF BB_GENOTYPE > 0 THEN
BB_GENOTYPE/TOTAL_GENOTYPE ELSE 0

RAND = RANDOM(0,1) {A random number genrator which
gives a number between 0 and 1.0. This number allows us
to randomly choose from the A, B allele pool.}
TOTAL_GENOTYPE = AA_GENOTYPE+AB_GENOTYPE+BB_GENOTYPE
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Natural Selection and Mutation

Each organic being is striving to increase in a geometrical ratio. . . .

each at some period of its life, during some season of the year, during each

generation or at intervals has to struggle for life and to suffer great destruc-
tion . . . .The vigorous, the healthy, and the happy survive and multiply.

—Charles Darwin, On the Origin of the Species

by Means of Natural Selection

The problem of this chapter is an extension of the genetics model of the
previous chapter. Given the frequency of appearance of two alleles, A and
B, the previous model randomly selected and combined these alleles into
three possible genotypes: AA, AB, and BB, whose frequency of appearance
is predicted by the Hardy-Weinberg law. In this chapter, we incorporate the
law directly and then allow the three genotypes to break up into alleles
again, after the genotypes each are prone to specific fertility and survival
rates. Each allele also has a tendency to mutate into the other type before
recombining into the new genotypes. The survival and fertility rates com-
bine to form a fitness measure and these two effects consort to give the
new genotype frequencies.

The model is made up of three parts, each connected through the use of
“ghosts.” One part of the model calculates the addition of alleles dependent
on the survival rates of the genotypes and their fertilities (Fig. 12.1). To cal-
culate the “generation” of a new A allele, we multiply the number of alleles
in a genotype by that genotype’s fertility and survival rates:

NEW A = 2 * AA GENOTYPE * AA FERT * AA SURVIVE RATE
+AB GENOTYPE * AB FERT * AB SURVIVE RATE ¢))

NEW B = 2 * BB GENOTYPE * BB FERT * BB SURVIVE RATE
+ AB GENOTYPE * AB FERT * AB SURVIVE RATE @

This part of the model (see Fig. 12.1) also captures mutation, shown as a
random process. For simplicity of exposition, the model is set to allow for
only one direction of mutation (A to B) on any model run. To revert the di-
rection, simply remove the multiplication by zero in the first line of the
MUTATION equation and instead multiply the second line by zero.

MUTATION = .3 * B ALLELES*RANDOM(0,1) * 0
+ .03 * A ALLELES * RANDOM(0,1) 3

The second part of the model (Fig. 12.2) captures the mating process,
based on the Hardy-Weinberg law. For example, the rate at which AA
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TOTAL ALLELES B ALLELES

AA GENOTYPE ,
AA SURVIVE RATE AA FERT
A ALLELES
) N ALOSS
MUTATION

AB GENOTYPE

® 1
B ALLELES\JO

BB FERT

BB GENOTYPE
BB SURVIVE RATE
FIGURE 12.1

genotypes are formed is specified by the relative frequency of A alleles in
the population:

AA RATE = TOTAL ALLELES/2 * A FREQA2 “

The third part of the model (Fig. 12.3) simply calculates the frequencies of
each genotype. These frequencies enter the Hardy-Weinberg law used in
the second part of the model.

This model needs to be run at a DT less than 1 in order to update stocks
frequently enough. If stocks are not updated frequently enough, some of
them may become 0 at times, leading to a division by 0 in the calculation of
the genotype frequencies. What does a DT < 1 imply for the interpretation
of the model’s behavior over time with regard to “generations”?
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FIGURE 12.2

The graph in Figure 12.4 shows a randomly varying A frequency that
stays near to the original frequency of 0.33333. Open the mutation circle
and set both mutation rates to 0. Run the model again to see that A is domi-
nant with the current six fertility and survival rate settings. Thus, the muta-
tion from A to B effectively destroys the dominance of the A allele. Run the
model with various settings to see the effect of different rates. You should

AB GENOTYPE

AA GENOTYPE
BB GENOTYPE

TOTAL GENOTYPE BB FREQ

AA FREQ
FIGURE 12.3
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find that the fertility and survival rate can be thought of as a single fitness
parameter, and that the relative sizes of these parameters is all that matters
in the determination of surviving genotype frequencies. Try to keep the
genotype growth rate from being exponential. Can you rig a connection be-
tween the survival rate or fertility rate and the genotype frequency to bring
the number of genotypes to an eventual steady state?

There is a heresy afoot in evolutionary biology. Its adherents claim that at
least in part, mutation is not random.! The mutation rates of bacteria in
some experiments seem to speed up and produce a greater fraction of mu-
tants that are most suited to the new environmental stress (e.g., a rise in
ambient temperature makes the current genotype distribution less than op-
timal). Can you arrange such a model?

Another interesting question concerns the issue of human-caused selec-
tion versus conservation. This question arises, for example, out of the work
of David Hopcraft of the Hopcraft Wildlife Ranch, on the Athi River in
Kenya. Hopcraft has given up his ancestor’s ways of raising English and
Scottish cattle on the hot, dry African planes. He instead is able to make
greater income by harvesting the “extra” males from the animal herds on
his ranch, after the dominant male has been established in the breeding
groups. His observations of such herds showed that the “natural” assem-

! Hall, B.G. 1990. Spontaneous point mutations that occur more often when advan-
tageous than when neutral, Genetics, Vol. 126, pp. 5-16. Cairns, J., J. Overbaugh,
and S. Miller. 1988. The origin of mutants, Nature, Vol. 335, pp. 142-145. Mittler, J.E.
and RE. Lenski. 1990. New data on excisions of Mu from E. Coli MCS2 cast doubt
on directed mutation hypothesis, Nature, Vol. 344, pp. 173-175.
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blage contained many nonbreeding males at any given time. These animals
were just consuming grass that could have gone to greater populations of
producing females. He harvests from this large, youngish male population.
In one sense, he is cleverly farming the nutrient base and the Kenyan sun-
light.

Closer observation shows that the “extra” males are actually part of the
breeding population. The dominant male may account for, say, half of the
offspring in any given year, the rest coming with the help of the “extra”
males. Also, it is not necessarily the case that a dominant male this year will
also be one in the next mating season if the extra males are still around.

We tend to think of the dominant male as doing all the breeding since
that process leads to healthier offspring. But it would also lead to fewer
“ABs” in the natural population, and thus the natural population would be
at a greater than necessary risk of demise. Thus, the theories of dominance
and territoriality at their extreme are significantly flawed with regard to
maintaining genetic diversity in a population.

In real populations, the complete defense of a harem by the male is ap-
parently so difficult and the drive to breed on the part of the “extra” males
is so great, that the harem defenses are significantly breached, thereby in-
creasing genetic diversity. As a result, the genetic contribution of the non-
dominant males may increase the stability of the overall population.

So, nature seems to be creating a tension of two opposing forces in the
breeding populations of wild animals at least. One force is seen in the selec-
tion by females of strong, large, symmetrically-built males, a force surely pro-
ducing size, speed, and general health that allows the herd to minimize loss
to predators. The counterforce, the allowance of nondominant male breeding
produces diversity, stability of population size, and resistance to unpredicta-
ble challenge, from disease for example. So is the Hopcraft method really
that crafty? It seems to be much better than allowing imported cattle to stum-
ble around inappropriate terrain, but is such selective removal of the extra
males leaving the future herd unstable in the face of genetically based chal-
lenge? To answer these questions, you can mimic the Hopcraft situation and
its possible consequences and cures with a STELLA model based on insight
from the previous chapters. In your model you may find that it is advanta-
geous to distinguish the population of animals by age classes. We will show
in the following three chapters some use of age cohort models.

NATURAL SELECTION AND MUTATION

AA_GENOTYPE(t) = AA_GENOTYPE(t - dt) + (AA_RATE -
AA_REMATE) * dt

INIT AA_GENOTYPE = 0

INFLOWS:

AA_RATE = TOTAL_ALLELES/2*A_FREQ"2 {Using the Hardy-
Weinberg result to obtain the genotype frequencies.}
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OUTFLOWS :

AA REMATE = AA GENOTYPE {This flow represents the
conversion of the genotype to alleles, representing the
generation change.}

AB_GENOTYPE(t) = AB_GENOTYPE(t - dt) + (AB_RATE -
AB_REMATE) * dt

INIT AB_GENOTYPE = 0

INFLOWS:

AB RATE = 2*TOTAL_ALLELES/2*A_FREQ* (1 - A_FREQ) {Using
the Hardy-Weinberg result to obtain the genotype
frequencies.}

OUTFLOWS :

AB_REMATE = AB_GENOTYPE {This flow represents the
conversion of the genotype to alleles, representing the
generation change.}

A_ALLELES(t) = A_ALLELES(t - dt) + (NEW_A + MUTATION -
A_LOSS) * dt

INIT A_ALLELES = 100

INFLOWS:

NEW_A = 2*AA_GENOTYPE*AA_ FERT*AA_SURVIVE_RATE
+AB_GENOTYPE*AB_FERT*AB_SURVIVE_RATE {This is the way
that genotypes break up into alleles again, after a
generation of time has passed.}

MUTATION = .3*B_ALLELES*RANDOM(0,1)*0 -+
.03*A_ALLELES*RANDOM(0, 1)
OUTFLOWS :

A_LOSS = A_ALLELES {This flow represents the converson
of the alleles into genetypes.}

BB_GENOTYPE (t) = BB_GENOTYPE(t - dt) + (BB_RATE -
BB_REMATE) * dt

INIT BB_GENOTYPE = 0

INFLOWS:

BB_RATE = TOTAL_ALLELES/2*(1 - A_FREQ)"2 {Using the
Hardy-Weinberg result to obtain the genotype
frequencies.}

OUTFLOWS :

BB_REMATE = BB_GENOTYPE {This flow represents the
conversion of the genotype to alleles, representing the
generation change.}
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B_ALLELES(t) = B_ALLELES(t - dt) + (NEW_B - B_LOSS -
MUTATION) * dt

INIT B_ALLELES = 200

INFLOWS:

NEW_B = 2*BB_GENOTYPE*BB_FERT*BB_SURVIVE_RATE +
AB_GENOTYPE*AB_FERT*AB_SURVIVE_RATE {This is the way
that genotypes break up into alleles again, after a
generation of time has passed.}

OUTFLOWS:

B_LOSS = B_ALLELES {This flow represents the converson
of the alleles into genetypes.}

MUTATION = .3*B_ALLELES*RANDOM(0,1)*0 +

.03*A ALLELES*RANDOM(0,1)

AA FERT = 2 {Fraction per time step of one.}

AA_FREQ = IF TIME > 0 THEN AA_GENOTYPE/TOTAL_GENOTYPE
ELSE 0

AA_SURVIVE_RATE = .9 {Fraction per time step of one.}

AB_FERT = 2 {Fraction per time step of one.}

AB_FREQ = IF TIME > 0 THEN AB_GENOTYPE/TOTAL_GENOTYPE
ELSE 0

AB_SURVIVE_RATE = 1 {Fraction per time step of one.}
A_FREQ = A_ALLELES/ (A_ALLELES+ B_ALLELES)

BB_FERT = 2 {Fraction per time step of one.}

BB_FREQ = IF TIME > 0 THEN BB_GENOTYPE/TOTAL_ GENOTYPE
ELSE 0

BB_SURVIVE_RATE = .9

TOTAL_ALLELES = A ALLELES + B_ALLELES

TOTAL_GENOTYPE = AA_GENOTYPE+AB_GENOTYPE+BB_GENOTYPE
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Artificial Worms

Any intelligent fool can make things bigger, more complex, and more
violent. It takes a touch of genius—and a lot of courage—to move in the
opposite direction.

—Albert Einstein, Ideas and Opinions

Natural selection works in the presence of chance or randomness. As ran-
dom mutations take place, the form or function of organisms changes. With
changes in the “appearance” of individual organisms may come an en-
hanced ability to survive and to pass on the respective traits to subsequent
generations. However, because mutations continue to take place, and be-
cause the environment within which natural selection occurs is not con-
stant, it is not automatic that the fitness of offspring increases from one gen-
eration to the next.

The following model illustrates the workings of natural selection and ran-
domness for a population of six worms of different lengths. Each individual
worm can, in principle, mate with any one of the others. The decision of
who mates with whom is randomly made. Of the three randomly chosen
pairs of mating worms, only the longer one of the two will survive to bear
exactly two offspring. The offspring, in turn, are either shorter or longer
(randomly decided) than their parent. Their actual length is determined by
a coin toss. If the coin shows head, one of the offspring will be exactly 1
unit longer than the parent, and the other one will be exactly 2 units longer
than the parent. In the case that the coin shows tail, the two offspring are,
respectively, 1 and 2 units shorter than the parent. The moment the off-
spring are generated, the parent dies.! As a result, a total of six new worms
are present whose lengths may differ from those of their six parents. Will
the lengths of the new generations of worms be similar to those of their
parents, or over generations, will worms get longer or shorter?

Because of the randomness that determines the choice of mating partners
and the randomness that determines the length of the offspring we do not
know in advance how long each of the next generation worms will be.
What we do know, however, is that of the pairs that mate, only the longer
one survives. So, a mechanism is built in to the dynamics of this artificial,
evolutionary process that favors longer worms, and we would therefore ex-
pect that as time passes, later-born worms are on average longer than their
predecessors.

In order to model the evolution of our worms, note that we need to solve
three interrelated problems. First, we need to randomly pair the worms.

'This is the worm growth model briefly mentioned in Cohen, J. and I. Stewart. 1994.
The Collapse of Chaos, Penguin Books, New York, pp. 105-106.
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Then we need to decide who in each pair is longer, and “kill” the shorter
ones off. Third, we need to toss a coin to determine the length of the off-
spring and add these new worms to our system while we remove the in-
formation about their parents, i.e., let the remaining three parents die.

The first of these three modeling problems can be solved by assuming
that we cast six dice such that at the end all six dice show a different
number. Then we always pair the same dice—the first die with the second,
the third with the fourth, and the fifth with the sixth. For example, if the
dice give the numbers 2, 4, 1, 6, 3, 5, then we take this to mean that we
should mate WORM 2 with WORM 4, WORM 1 with WORM 6, and WORM
3 with WORM 5. To make things easier, we may actually fix one die—say
the first one—and cast only the other five die. That little trick still leaves the
process perfectly random, because any time five die are cast such that their
numbers are different from each other, the number for the sixth is automat-
ically determined anyway. We may as well start with that one. Here, we ar-
bitrarily set it to 1.

Once all dice have been cast such that they each show a different
number, their sum is 21 (1+2+3+4+5+6=21). At that time, the worms are
officially paired and can begin their fight to the death (with the winner re-
producing). Then the system is reset and the stocks, which contain the re-
sults of the round of casting the dice, are emptied, and the dice are cast
anew.

The dice of this model are represented as stocks named STOCK 1,
STOCK 2, etc., whose contents are held constant until all dice show random
numbers between 2 and 6, and all are different from each other. The ex-
ception is the first die, STOCK 1, whose value is fixed at 1.

Take, for example, the second die. The converter DIE 2 in Figure 13.1
generates a random number between 1 and 7:

DIE 2 = INT(RANDOM(1,7)) )

By only taking the integer of the random number we generate a string of
numbers between 1 and 6. The odds that exactly a 7 is generated are mi-
nuscule. Next, we need to make sure that we only accept a number that has
not already been cast by another die—we want to avoid mating one worm
with itself. We do this, for example for DIE 2, with the following con-
ditional statement that states that as long as STOCK 2 is zero and as long as
DIE 2 shows a different number from those recorded in the other stocks,
we can accept that die’s number. If not, we continue to cast that die until its
number differs from any of the others, and we then add it to the stock.

RAND 2 = [F (STOCK 2 = 0 AND DIE 2 # STOCK 1 AND DIE 2 # STOCK 3
AND DIE 2 # STOCK 4 AND DIE 2 # STOCK 5
AND DIE 2 # STOCK 6
AND DIE 2 # DIE 6 AND DIE 2 # DIE 5 AND DIE 2 # DIE 4
AND DIE 2 # DIE 3)
THEN DIE 2 ELSE 0 @3]
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Once all dice have been cast such that they each show a different
number, their sum is 21. We calculate that sum in the ALL DICE converter,
using STELLA’s “Summer” option. Once all dice show a different number all
worms are randomly, yet unambiguously, paired with each other to begin
their fight to the death. The system is reset by emptying STOCK 2, STOCK
3 etc., and the dice are cast anew.

STOCK 2 OUT = IF ALL DICE = 21 THEN STOCK 2 ELSE 0 3

So far, we have only concerned ourselves with the means by which we
can randomly pair up the six worms. But what about their lengths? To keep
track of worm length, we generate six new state variables, and we assign
them some arbitrary initial values for the lengths of the worms. For simplic-
ity, we set here the initial values of WORM 1 = 1, WORM 2 = 2, WORM 3
= 3, and so on.

Note in Figure 13.2 how we set up the model structure such that we al-
ways update the same pair of stocks for the worms. Who these worms are,
however, is determined by casting the dice—it is not as fixed as the graph-
ical model representation may suggest. For example, WORM 3 and WORM
4 are always those worms that were identified as the first and second
worms in the second pair of worms that is formed for the mating process,
but from one round of casting dice to the next, these are different worms
whose lengths may differ from those of their parents.
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