
Journal of Engineering Mathematics39: 345–366, 2001.
© 2001Kluwer Academic Publishers. Printed in the Netherlands.

Asymptotic analysis of the flow of shear-thinning foodstuffs in
annular scraped heat exchangers

A. D. FITT and C. P. PLEASE
Faculty of Mathematical Studies, University of Southampton, Southampton SO17 1BJ, UK (e-mail:
adf@maths.soton.ac.uk; cpp@maths.soton.ac.uk)

Received 22 February 2000; accepted in revised form 10 August 2000

Abstract. The problem of isothermal flow of a shear-thinning (pseudoplastic) fluid in the gap between two
concentric cylinders is considered. A pump provides an axial pressure gradient which causes flow down the device.
The outer cylinder is fixed and has ‘scrapers’ attached to it to cause flow mixing, whilst the inner cylinder rotates
about its axis to provide shear and thus thin the fluid. The goal is to determine the optimal distribution of power
between rotation and pumping. Although ostensibly the flow is nonlinear and three-dimensional we show that
judicious use of fairly straightforward asymptotic methods can yield a great deal of information about the device,
including cross-sectional flow predictions and throughput results. Furthermore, these results are derived for a
variety of different flow conditions. Some numerical calculations are carried out using a commercial CFD code.
These show good agreement with the asymptotic analysis.
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1. Introduction

In this study we discuss a problem connected with a process commonly employed in the food
manufacturing industry. Since the problem ostensibly concerns a non-Newtonian fluid flowing
in a complex, moving geometrical region in three dimensions, one might expect that the only
way of deriving results of any practical use would be to proceed along purely numerical lines.
We shall show, however, that by judicious use of asymptotic analysis the problemas originally
posedmay be virtually completely solved. It is the nature of real-world problems that when
questions about an industrial process are posed and answered, inevitably they lead only to
additional more detailed and difficult questions; we shall indicate how further aspects of the
problem may be examined and what mathematical and numerical tools might be utilised.

It is worth emphasising that one’s expectations of what asymptotic analysis might be able
to achieve for practical problems must be constantly tempered with experience and realism.
It would be absurd to suggest that all problems may be completely solved using asymptotic
analysis alone. In most industrial settings it will eventually be necessary to employ numerical
computation to fully analyse a process. This computation may be carried out using purpose-
designed software or ‘black box’ CFD packages. This study should therefore be thought of
as in no way belittling the role that numerical analysis has to play; rather it puts forward the
views that (i) a great deal of insight can be gained from carrying out carefully considered
asymptotic analysis and (ii) that in an ideal worlda combinationof asymptotic and numerical
analysis should be used to attack a given problem.

In order to illustrate how effective asymptotic analysis can be in tackling complicated
problems it is tempting to “invent” a superficially practical problem where all of the para-
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meter values are chosen so that asymptotic analysis succeeds in every subproblem. We have
resisted this temptation however and considered a real industrial problem as presented by a
real industrial company. Although the fluid mechanics, rheology and asymptotic analysis that
are required to make progress are not in themselves too testing, the problem provides a graphic
illustration of the power of asymptotics.

1.1. INDUSTRIAL BACKGROUND

The problem discussed below was brought to our attention during a meeting between repre-
sentatives from Crown Chemtech Ltd. (a small company based in Reading, Berkshire, UK
which makes machinery for food processing), members of the Food Sciences Group at the
University of Reading and members of the Departments of Mathematics at the Universities of
Reading and Southampton.

In its simplest form, the problem may be stated thus: a fatty oil flows in the annular gap
between two concentric circular cylinders, driven by a known axial pressure gradient: predict
the throughput for given device parameters. In the current setting, however, a number of
complicating factors arise. Firstly, the fatty fluid is to be turned (for example) into margarine.
Essentially, this is done by cooling the fluid as it progresses down the annulus, which therefore
acts as a heat exchanger. At the upstream end of the device, the product may thus truly be
regarded as a fluid, but at exit it more resembles a paste. Secondly, the fluid is non-Newtonian
and has a temperature-dependent viscosity. In particular, it is known that a good model for the
rheology of the fluid is to assume that it is a power-law shear-thinning fluid with zero yield
stress and a known shear-thinning exponent. Thirdly, the inner cylinder rotates with a given
angular velocity� and the outer cylinder has a number of ‘scrapers’ (knife blades) that are
attached normally to it.

Clearly there are many different aspects of this problem that could be studied. In the first
instance, however, our industrial partner wished to neglect altogether the impact of the heat
exchange process on the flow, and consider the whole process to be isothermal. (Details of the
thermal problem may be found in [1].) Also, it was clear that, although the present device was
concerned with the manufacture of margarine, it could also be used for a wide range of other
food products, including molten chocolate, jam, jelly and spreads such as peanut butter (all of
which may be considered to be power-law shear-thinning fluids with a zero yield stress ([2])).

The shear-thinning nature of liquid food products has an important effect on the prediction
and optimisation of device throughput, since it may be exploited to increase production. In-
deed, if the flow in such devices were to be generatedonly by a pressure gradient, it is known
that unacceptably large pressure gradients would be required to achieve the desired through-
put. The general idea therefore is to divert some energy away from the pumps producing the
pressure gradient in the annulus and use it instead to rotate the inner cylinder. Evidently by
doing this the shear in the fluid will be increased, leading to a thinning of the fluid that will
greatly ease its passage down the device.

In the absence of heat transfer, we shall therefore suppose that a given amount of power is
available to run the device and assume that the point at issue is one of optimisation, namely
how much of the power should be used for rotation of the inner cylinder and how much should
be invested in producing a pressure gradient from the pump. (Evidently an optimum use of
energy must exist, for whilstsomerotation of the inner cylinder is known to increase the
throughput it is clear that if all of the energy were to be used in cylinder rotation then the
throughput would be zero.)
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Figure 1. (Top) Schematic view of device (bottom) schematic view of ‘unwrapped’ device.

2. Mathematical modelling

Schematic diagrams of the device and the coordinate system that will be employed are shown
in Figure 1. The radius of the inner cylinder is denoted bya, the (linear) rotation speed of the
inner cylinder byU = �a, the length of the device byD, and the annular gap width byh.
We also denote the ‘unwrapped’ distance between two scrapers byL. Kinematic viscosity and
density are denoted byν andρ, respectively, andtR andV denote a typical residence time in
the machine and a typical speed in they-direction, respectively.
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2.1. NUMERICAL PROBLEM

We begin by stating the full problem. This would have to be solved numerically if we decided
to analyse the device without using any form of theoretical or asymptotic analysis.

The flow is governed by the three-dimensional unsteady Navier-Stokes equations

ρ
dq

dt
= div T , (1)

div q = 0, (2)

where the fluid velocity is denoted byq, T is the stress tensor and we have assumed that
there are no body forces. Following the information given, we treat the fluid as an isothermal
shear-thinning fluid with zero yield stress and use the constitutive law (see, for example [3,
p. 55]).

T = −pδij +3 | (dkldkl)m−1
2 | 2dij , (3)

wherep denotes pressure,dij is the infinitesimal rate-of-strain tensor given by

dij = 1
2(∇q +∇qT ),

m ∈ (0,1] is the ‘shear-thinning index’ (the model is still valid for shearthickeningfluids such
as corn starch wherem > 1, but we do not pursue this further here) and3 is a constant that is
usually referred to as the ‘consistency’ of the fluid (which has dimensions sm−2 kg m−1).

The full numerical problem thus consists of solving the Equations (1) and (2) with the
constitutive law (3), subject to the boundary conditions

q = 0 at r = a + h; q = Ueθ at r = a,
(whereeθ is a unit vector in theθ-direction),

q = 0 on the surface of each scraper.

To complete the problem specification, it is also necessary to prescribe suitable initial condi-
tions and to specify conditions aty = 0 andy = D.

Evidently the numerical problem is demanding. Even if we avoid consideration of start-
up and spin-down processes and examine only steady flow, the problem is essentially three-
dimensional and contains moving boundaries. The boundary conditions that must be imposed
at the endsy = 0 andy = D of the device are awkward, for though it might not be too hard to
enforce a zero stress condition aty = D, the correct condition at the inlet to the device seems
to be that the normal stress is given (in practice this is probably what would be measured as
the ‘pressure’) and the other two components of the stress are zero. At the inlet, therefore, no
velocity profiles are known. The numerical problem also involves all the usual complications
due to the convective derivative terms and the fact that the pressure occurs in the equations
only in the guise of a Lagrange multiplier. Furthermore, the nonlinearity of the fluid must be
taken into consideration. There are a number of ‘black box’ commercial codes that claim to
be able to successfully carry out calculations of this sort, but even with the power of today’s
PCs, it is doubtful whether three-dimensional runs would be able to be carried out in the sort
of execution times that would make parametric studies possible.
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As an alternative to large-scale computing, we therefore examine the problem from an
asymptotic-analysis point of view. It is worth observing that, though some previous authors
have concerned themselves with two-dimensional lubrication theory for slider bearings (see,
for example [4–7]), not much attention seems to have been given to three-dimensional prob-
lems involving shear-thinning fluid flow. The flow of a Bingham fluid in eccentric annular
geometries was studied in [8] in a case where the inner cylinder was at rest. The resulting
simple shear profile allowed mathematical progress to be made. A modification of this study
was presented in [9], where a system with concentric cylinders was examined but the inner
cylinder was allowed to rotate. Analytical progress could be made for a paradigm problem
with a one-dimensional shear dependence, but for the general problem a numerical solution
was required. Both [8] and [9] addressed the problem of the existence or otherwise of plug
flow regions.

3. Asymptotic analysis

We begin by examining the sizes of the typical problem parameters and non-dimensionalizing
(1) and (2). According to the device parameters supplied by Crown Chemtech. Ltd.,

U ∼ 2 m s−1, h ∼ 0·015 m, D ∼ 2 m, a ∼ 0·075 m,

ν ∼ 0·1 m2 s−1, ρ ∼ 800 kg m−3,

so that the cylinder circumference is about 0·47 m. Assuming (since this is the standard
configuration) that there are three scrapers, we thus have

L ∼ 0·15 m.

A typical residence timetR is about 10s and hence

V ∼ 0·2 m s−1.

We scale according tot = (L/U)t̄, x = Lx̄, y = (L/ε)ȳ, z = εLz̄, u = Uū, v = εUv̄,
w = εUw̄ whereε = h/L and the bars denote non-dimensional quantities. The scalings fort ,
u,w, x andz are straightforward, and those used forv andy (which are motivated by the fact
that the pipe is long compared to its radius) lead to a distinguished limit that is suggested by the
values of the physical parameters in the problem. We also anticipate that lubrication theory-
type analysis will be appropriate and setp = (U/h)m−1(µ0U/Lε

2)p̄ where for convenience
we have definedµo = 32(1−m)/2.

The next task is to insert the above scalings into (1) and (2) and determine the dominant
terms in the equations. This procedure should be carried out on the full shear-thinning Navier–
Stokes equations in cylindrical coordinates. We omit the details of this as they are well-known
and simply note the result, which is that the (dimensional) leading-order problem is

0= −px + (µ0(u
2
z)

m−1
2 uz)z, (4)

0= −py + (µ0(u
2
z)

m−1
2 vz)z, (5)

0= −pz, (6)
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0= ux + wz, (7)

these equations being valid under the assumptions that

ε � 1, ε2Re� 1,

where the equivalent of the Reynolds number for shear-thinning flow is defined by

Re= LUρ

µ0

(
h

U

)m−1

.

In the interests of clarity, all subsequent equations will be presented in dimensional form.
With the parameter values suggested above, (assuming Newtonian flow withm = 1 and

µ0/ρ = ν) we find that

ε ∼ 10−1, Re∼ 3 ε2Re∼ 0·03,

thus justifying the neglect of the other terms in the full equations. Inertia is absent from (4–
7) (which apply for either steady or unsteady flow, though we shall only consider steady
flow), the leading-order balance being between viscous forces and the pressure gradient. All
centrifugal forces are absent. One other point concerning (4–7) is worthy of note: although for
convenience we have omitted the modulus signs in the viscosity terms, it is understood that
the viscosity must be positive, so that some care must be taken whenever terms such as

√
u2
z

are simplified.
We now proceed to solve (4–7) with appropriate boundary conditions. The fact thatp is

independent ofz allows (4) to be solved with little difficulty; we divide the region 0≤ z ≤ h
into two subregions[0, zc] and[zc, h] wherezc (which is to be determined) is defined so that
uz ≤ 0 for z ∈ [0, zc] anduz ≥ 0 for z ∈ [zc, h] (see Figure 2 for a typical velocity profile).
Solving thex-momentum equation (4) by integration, we impose the boundary conditions

uz(x, y, zc) = 0, u(x, y,0) = U, u(x, y, h) = 0.

This shows that

u =



(
m

1+m
)(

px

µ0

) 1
m

[(zc − z) 1+m
m − z 1+m

m
c ] + U (z ≤ zc)

(
m

1+m
)(

px

µ0

) 1
m

[(z− zc) 1+m
m − (h− zc) 1+m

m ] (z ≥ zc)
. (8)

We must also ensure thatu is continuous atz = zc; this gives(
m

1+m
)(

px

µ0

) 1
m

(z
1+m
m
c − (h− zc) 1+m

m ) = U, (9)

which we shall return to presently.
At this point, two elements are missing from the model, forpx is yet to be determined

and the effect of the scrapers has not yet been considered. The pressure gradient is easily
determined in the normal way by using the (continuity) equation (7). By integrating from
z = 0 toh, we find that, sincew is zero on bothz = 0 andz = h, we have
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Figure 2. Typical velocity profile for flow in annular gap between scrapers.

∫ h

0
ux dz = 0 (10)

and thus (using (8))(
1

1+m
)(

1

µ0

) 1
m

p
1
m−1
x pxxI0 = 0,

whereI0 is an integral which is not zero. Thuspxx = 0 and sopx is independent ofx.
Now we consider the effect of the scrapers: we assume that each scraper does not allow

flow across it (though see Section 5) and restricts the fluid between scrapers to that region. To
model the scrapers in a form suitable for lubrication theory we therefore impose the weaker
condition that∫ h

0
u dz = 0 (11)

atx = 0 andx = L. (Of course, lubrication theory is not valid in regions immediately adjacent
to scrapers; here, where the flow changes direction, the full Navier Stokes equations with the
appropriate boundary conditions must be solved. This will make no appreciable difference to
the throughput qualities of the device, however. Lubrication theory may also not be valid near
to the input and output regions of the device.) Applying (11) to (8) now gives(

m

1+ 2m

)(
px

µ0

) 1
m

[−z 1+2m
m

c − (h− zc) 1+2m
m ] + Uzc = 0 (12)

and when (9) is combined with (12), we find that

1= zc(1+ 2m)[z 1+m
m
c − (h− zc) 1+m

m ]
(1+m)[z 1+2m

m
c + (h− zc) 1+2m

m ]
.

The positionzc is thus determinedonly by the shear-thinning indexm and satisfies

1= λ(1+ 2m)[λ 1+m
m − (1− λ) 1+m

m ]
(1+m)[λ 1+2m

m + (1− λ) 1+2m
m ]

, (13)
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Figure 3. Dependence ofλ uponm (solid line) and asymptotic estimates (14) and (15) (broken lines).

wherezc = λh. It may easily be confirmed that (13) has a unique solution 1/2< λ ≤ 2/3 for
all m with 0 < m ≤ 1, and this solution may easily be located using any standard numerical
method for solving a single nonlinear equation. It is also a simple matter to determine the
behaviour ofλ whenm is close to 0 or 1 (‘asymptotics on the asymptotics’). We find that

λ = 2
3 + 1

27(1− 8
3 log 2)(1−m)+

+ 1
81(1− 4 log 2− 4

9(log 2)2)(1−m)2+O((1−m)3) (m ∼ 1),
(14)

λ = 1

2
− m

4
logm+ log 2

4
m+ 3

8
m2 logm+O(m2) (m ∼ 0). (15)

The parameterλ is shown as a function ofm along with the asymptotic estimates (14) and
(15) in Figure 3. It may also be confirmed from (8) and (9) that for a givenm, u = 0 at
z = (2λ− 1)h.

Onceλ is known,px is determined for a givenU by (12) (and is a constant). We find that

px = µ0

h1+m

(
(1+ 2m)Uλ

m[λ 1+2m
m + (1− λ) 1+2m

m ]

)m
. (16)

Having determinedu, we may now turn to they-momentum equation (5). We must solve

py = (µ0(u
2
z)

m−1
2 vz)z

with v = 0 at z = 0 andz = h, and once again this may be accomplished by simple inte-
gration. Again we solve separately for the two regions 0≤ z ≤ zc andzc ≤ z ≤ h and use the
boundary conditionsvz = 0, v continuous atz = zc. This gives
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v =



mpyp
1−m
m

x [(zc − z) 1
m (−(z − h)(h− zc) 1

m − zz 1
m
c )− hz

1
m
c (h− zc) 1

m ]
(1+m)µ 1

m
o h

1
m [λ 1

m + (1− λ) 1
m ]

(z ≤ zc)

mpyp
1−m
m

x [(z− zc) 1
m ((z − h)(h− zc) 1

m + zz 1
m
c )− hz

1
m
c (h− zc) 1

m ]
(1+m)µ 1

m
o h

1
m [λ 1

m + (1− λ) 1
m ]

(z ≥ zc)
.

The throughputT 1 (measured in kg m−1 s−1) may now be found. (Here and henceforth we
work, unless otherwise stated, in terms of the throughput due to the portion of the device
between two scrapers. This value should be multiplied by the number of scrapers and the
distance between adjacent scrapers to determine the total device mass flux (kg s−1).) We have

T1 = ρ
∫ h

0
v dz

and, after some calculation, we find that

T1 = −ρpyh
2+mU1−m

µ0
f1(λ,m), (17)

wheref1 (which depends only onm andλ) is defined by

f1(λ,m) = mmλ1−m[m20(λ2+1/m + (1− λ)2+1/m)+ (1+ 2m)λ1/m(1− λ)1/m]
(1+ 2m)m(1+m)20[λ2+1/m + (1− λ)2+1/m]1−m

and

0 = λ1/m + (1− λ)1/m.
The quantityT1 depends on the problem parameters in a revealing manner; the dependence

onU becomes more greatly pronounced asm decreases (and so the fluid ‘shear-thins’ by a
greater amount) but otherwiseT1 depends linearly onρ and the pressure gradient.

3.1. NEWTONIAN CASE (m = 1)

A partial check of the results derived so far is provided by settingm = 1 in the results derived
so far to retrieve the Newtonian version of the flow. We find that

u = U(h− 3z)(h− z)
h2

, v = pyz(z− h)
2µ0

,

zc = 2h

3
, px = 6µ0U

h2
, T1 = −pyρh

3

12µ0
.

Naturally in this limit the throughput is independent ofU since now rotating the inner cylinder
cannot change the fluid viscosity.

3.2. OPTIMIZATION PROBLEM

We may now address (at least, in principle) the optimization problem that was the original
focus of this study. We know that

T1 ∝ (−py)U1−m
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and we must chooseU and−py = 4P say to maximize this quantity subject to the total
power expenditure being fixed. There are many alternative, but essentially equivalent ways of
formulating the optimization problem; we adopt the simplest and assume that the total power
expended (measured in W = kg m2 s−3) is composed of (a) a component due to the rotation
of the inner cylinder and (b) a component due to the maintenance of a pressure gradient via
a pump. Using elementary engineering correlations (other more accurate formulae may be
found in the literature; see, for example [10]), we now assert that
Pp = pump power= (Volume flow rate)(Pressure difference)

and
Pr = rotation power= (Torque)(Angular velocity).
The total volume flow rate (for a device with three scrapers) is given by 3LT1/ρ, whilst

the pressure difference down the device isD1P . Thus

Pp = 3L(4P)2h2+mU1−mD
µ0

f1(λ,m).

As far as the torque is concerned, the shear stressτ may easily be calculated to be given by

τ = µ0(u
m
z )z=0 = pxzc.

With a three-scraper device the force is thus 3LpxzcD and the torque is therefore 3LapxzcD
wherea is is the radius of the inner cylinder. The power is thus given by 3LUpxzcD, and
using (16) now gives

Pr = 3LU1+mDh−mλµ0g(λ,m),

where

g(λ,m) = λm(1+ 2m)m

mm[λ2+1/m + (1− λ)2+1/m]m .

We now seek to maximise4PU1−m subject to

Pr + Pp = Pt , (18)

wherePt is the prescribed total available power. Perfect power transmission has been assumed
in (18); in reality, for most devices it is reasonable to assume that the ratio of actual power
delivered to the power input is a constant, usually known as the efficiency (which may be
as low as 0·1 or 0·2; see, for example [11] or [12]). We do not include efficiencies here, but
obviously they could easily be incorporated if they were known.

To maximise4PU1−m subject to

K1U
1+m +K2(4P)2U1−m − Pt = 0,

where

K1 = 3LDh−mµoλg(λ,m), K2 = 3Lh2+mDf1(λ,m)

µ0
;

we introduce a Lagrange multiplierφ and instead maximize

4PU1−m − φ(K1U
1+m +K2(4P)2U1−m − Pt).
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The three equations to be solved are thus

0= U1−m − 2φK24 PU1−m, (19)

0= (1−m)4 PU−m − φ[(1+m)K1U
m + (1−m)K2(4P)2U−m], (20)

0= K1U
1+m +K2(4P)2U1−m − Pt . (21)

Solving (19) and (20), we find that

4P = 1

2K2φ
, U =

(
1−m

4φ2(1+m)K1K2

) 1
2m

.

From (21) we therefore find thatφ satisfies the nonlinear algebraic equation

K1

(
1−m

4φ2(1+m)K1K2

) 1+m
2m

+ 1

4φ2K2

(
1−m

4φ2(1+m)K1K2

) 1−m
2m

= Pt (22)

and the optimization problem is, in principle solved, once (22) is solved.
In a real industrial device the key parameters may take a range of values; here we analyse

the predictions of (22) to calculate the optimum values ofU and4P for a typical industrial
device specification. Assuming thatm = 2

3 (a value typical for margarine, jam and peanut
butter) we first solve (13) to giveλ ∼ 0·65250 whencef1(λ,m) ∼ 0·09793 andg(λ,m) ∼
4·37993. Now we take typical valuesρ = 800 kg m−3, h = 0·015 m,L = 0·15 m,D = 2 m
and also assume thatµ0 = 10·0 (this value may vary for different food products, but certainly
the order of magnitude of this figure is correct). We now have to give a value for the total
powerPt ; we takePt = 2·5 kW (a typical value for a medium-sized device that might be used
in a factory for food processing). Solving (22), we find thatφ ∼ 31·4953 and the throughput
is thus maximised whenU ∼ 0·9911 m s−1 and4P = 131620·4 Pa, the associated volume
flow rate being 3LT1/ρ = 0·007914 m3 s−1. Although detailed information for a range of
devices and food products is not available, it may be confirmed that the figures forU and4P
are really rather close to the values that have been found by trial and error in factories.

Of course, the real advantage of the current asymptotic formulation is the amount of
parameter-dependence information that may be gleaned from (17) and (22). For example,
Figure 4 shows the optimal volume flow rate (in m3 s−1) as a function ofm for the parameters
ρ = 800 kg m−3, Pt = 2·5 kW, h = 0·015 m,L = 0·15 m,D = 2 m andµ0 = 10·0. As
m decreases and the fluid shear-thins to a greater extent, it is clear that the optimum volume
flow rate increases dramatically. It may also be confirmed that, as expected, decreasingm also
decreases the optimal pressure gradient and increases the value of the optimal rotation speed
as it becomes more worthwhile to expend greater amounts of energy in thinning the fluid.

4. Analysis for other orders of magnitude ofU

Though the analysis of the previous section has covered the case that we believe is of most
relevance as far as the currently-operated industrial process is concerned, the framework that
has been set up to examine the problem allows some other limits to be considered. These are
now briefly analyzed for the sake of completeness.
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Figure 4. Optimum volume flow (m3 s−1) as a function of shear-thinning exponentm.

4.1. ANALYSIS FOR SMALL ROTATION RATES

When the rotation rate is very small so thatU is not large enough to contribute to the leading
order flow, we scale in an identical manner to that discussed at the beginning of Section 3,
save for the fact that we setv = (U/ε)v̄ and

p = µ0U

Lε4

(
U

εh

)m−1

p̄.

Essentially this scaling may be thought of as one that preserves the previous orders of magni-
tude ofv andpy for smallU . The (dimensional) leading-order equations now become

0= −px, 0= −py + (µ0(v
2
z )

m−1
2 vz)z,

0= −pz, ux + vy + wz = 0

and hence the problem reduces to that of determining Poiseuille flow for a shear-thinning
fluid. The quantitypy is therefore a function ofy alone (and for the sake of definiteness we
will assume here and henceforth thatpy is negative so that flow takes place in a positive
direction along they-axis) and we must solve

py = (µ0(v
2
z )

m−1
2 vz)z

with v = 0 atz = 0 andz = h. The flow is evidently symmetrical in the regions 0≤ z ≤ h/2
andh/2≤ z ≤ h and may be easily confirmed to be given by
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v =



(
m

1+m
)(−py

µ0

) 1
m

[(
h

2

) 1+m
m

−
(
h

2
− z

) 1+m
m

]
(0≤ z ≤ h/2)

(
m

1+m
)(−py

µ0

) 1
m

[(
h

2

) 1+m
m

−
(
z− h

2

) 1+m
m

]
(h/2≤ z ≤ h)

.

A ‘scraper condition’ may be imposed as before to show that the quantitypy is a con-
stant, however to fully determineu andw it is necessary to consider a higher-order problem.
Notwithstanding this, the throughputT2 may be established; we find by simple integration that

T2 = 2ρm(−py)1/mh2+1/m

(1+ 2m)µ1/m
0 22+1/m

and we note that, in contrast to the case considered in the previous section, the throughput is
now independent ofU , and depends on the(1/m)th power of the quantity−py/µ0.

Finally for this case, we note that settingm = 1 to retrieve the Newtonian case once again
gives the familiar Poiseuille flow results

v = −py
2µ0

z(h− z) (0≤ z ≤ h),

T2 = −pyρh
3

12µ0
.

4.2. ANALYSIS FOR LARGER SMALL ROTATION RATES

WhenU is too small to contribute to the leading-order flow, but large enough to play a role
in the shear, an “intermediate case” arises which may be analyzed (and is the distinguished
limit containing both of the previous cases). For this case, the relevant scalings are identical
to those used at the beginning of Section 3, save for the fact that we setv = Uv̄ and

p = µ0U

Lε3

(
U

h

)m−1

p̄.

As usual, to leading orderp cannot depend uponz, but in this case we also find thatp is
independent ofx. Hence the correct expansion forp is p = p0(y) + εp1(x, y) +O(ε2). The
dimensional pressure gradients in thex andy directions are thus comparable for this interme-
diate case. If this expansion for the pressure is used the (dimensional) equations governing the
leading-order velocities are

0= −px + (µ0(u
2
z + v2

z )
m−1

2 uz)z, (23)

0= −py + (µ0(u
2
z + v2

z )
m−1

2 vz)z, (24)

0= −pz, (25)

0= ux + wz. (26)
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The major difference between this case and the previous cases that have been discussed is
that it is now easy to see thatuz andvz change sign at distinct positions, which we shall denote
by z = zc andz = zb, respectively. We shall also assume, as usual, thatpx > 0 andpy < 0.
Integration of (23) and (24) now gives

uzµ0(u
2
z + v2

z )
m−1

2 = (z− zc)px, (27)

vzµ0(u
2
z + v2

z )
m−1

2 = (z− zb)py (28)

and thus

vz = uz

g

(
z− zb
z− zc

)
,

where

g = px

py
(< 0).

This expression forvz may now be used in (27) to yield an equation foruz. It is simplest to
solve this equation separately in the regionsz ≥ zc andz ≤ zc. We find that

u =



(
px

µ0

) 1
m

(−g)m−1
m [fc(z)− fc(0)] + U (z ≤ zc),

(
px

µ0

) 1
m

(−g)m−1
m fc(z) (z ≥ zc),

where

fc(z) =
∫ z

h

s − zc
[g2(s − zc)2+ (s − zb)2]m−1

2m

ds.

The condition thatu is continuous atz = zc now yields

U = fc(0)
(
px

µ0

) 1
m

(−g)m−1
m ,

and the mass flow condition∫ h

0
ux dz = 0

imposed by the scrapers once again confirms the hypothesis thatpx is constant, and is given
by

px = µ0(Uzc)
m

(−g)m−1
(
zcfc(0)−

∫ h
0 fc(z) dz

)m .
Now thatu has been determined,v may be found in a similar fashion. We find that

v =



(−py
µ0

) 1
m

fb(z) (z ≤ zb)
(−py
µ0

) 1
m

[fb(z)− fb(h)] (z ≥ zb)
,
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where

fb(z) =
∫ z

0

zb − s
[g2(s − zc)2+ (s − zb)2]m−1

2m

ds

and the condition thatv is continuous atz = zb requires thatfb(h) = 0. The problem is now,
in principle, solved. For a given imposed pressure gradientpy we must solve

U =
(∫ 0

h

s − zc
[g2(s − zc)2+ (s − zb)2]m−1

2m

ds

)(
px

µ0

) 1
m
(
px

−py
)m−1

m

, (29)

px = µ0(Uzc)
m

(−g)m−1
(
zcfc(0)−

∫ h
0 fc(z) dz

)m , (30)

0=
∫ h

0

zb − s
[g2(s − zc)2+ (s − zb)2]m−1

2m

ds (31)

to determinepx , zb andzc; the throughputT3 is then given by

T3 = ρ
∫ h

0
v dz = ρ

(−py
µ0

) 1
m
[∫ h

0
fb(z) dz

]
. (32)

Each of (29–31) and (32) may be simplified: when we setzb = λbh andzc = λch, change the
order of integration in (30) and (32) and use some elementary properties of the functionsfb
andfc, some straightforward algebra reveals that in the most convenient formulation of the
problem the throughputT3 may be expressed as

T3 = ρλbUh

(−g) ,

whereg, λb andλc satisfy the nonlinear equations∫ 1

0

s(s − λc)
[g2(s − λc)2+ (s − λb)2]m−1

2m

ds = 0, (33)

∫ 1

0

λb − s
[g2(s − λc)2+ (s − λb)2]m−1

2m

ds = 0, (34)

∫ 1

0

λc − s
[g2(s − λc)2+ (s − λb)2]m−1

2m

ds = α

(−g) (35)

and

α =
(
µ0

−py
) 1

m U

h
1+m
m

. (36)

Unlike the previous two cases that were considered, the parametersλb andλc are not now
determined solely bym; the intimate coupling ofu andv now means that even for fixedm the
flow will be different for each value ofα.
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Equations (33–35) may be presented in various different forms (for example, judicious
combination of (34) and (35) allows a transcendental equation forλb, λc andg to be derived)
but in general it is impossible to avoid the need to solve nonlinear equations that involve
integrals. This may be accomplished in an efficient manner by using library routines. For
the results presented below, the NAG quadrature routine D01AHF (Patterson’s method) was
used to evaluate the integrals and the nonlinear equation solver C05NBF (which uses the
MINPACK routine HYBRD1; for details see [13]) was used to solve the equations. In all
cases solutions to (33–35) proved to be quick to determine, though for values ofm near to
zero a good initial guess (best provided from computed results for nearby smallm-values) is
required.

4.3. UNIFIED THROUGHPUT LAW

Although the optimization problem that is most relevant to the the real industrial problem has
already been solved in Section 3.2, it is of some interest to gather together the throughput laws
for each of three asymptotic cases that have been considered. The most informative way to plot
throughput against pressure gradient and rotation speed is to plot the normalised throughput
T̄ , defined by

T̄ = T (µ0)
1
m

ρ(−py) 1
m h

1+2m
m

againstα as defined in (36). In Figure 5, the quantities

T̄1 = f1(λ,m)α
1−m, T̄2 =

(
m

1+ 2m

)
2−1−1/m, T̄3 = λbα

(−g)
are plotted againstα for m = 0·3 (broken line) andm = 0·6 (dot-dashed line). In each case
the horizontal line denotesT2 which is independent ofα. (The solid line shows the throughput
for the Newtonian case for purposes of comparison; of course, whenm = 1, T1, T2 andT3

are identical.) For bothm = 0·3 andm = 0·6 the higher of the two non-constant throughput
curves corresponds toT3 and the lower toT1; whenα � 1 the quantityT1 tends to zero,
rather than the correct valueT2. The asymptotics give us a great deal of information about the
throughput of the device; the parametric dependence is rather subtle, and may be too involved
to be detected by all but the most careful experimental or numerical studies.

5. Enhanced modelling of scrapers

Thus far we have assumed that the scrapers located on the outer cylinder allow no fluid to
pass through them. Though it is true that such scrapers reallyare designed to literally scrape
the inner cylinder clean of any material (and thus contact with the inner cylinder is constantly
maintained), for design reasons it is sometimes necessary to manufacture scrapers that contain
holes. If we wished to analyse such a device, the models presented above could easily be
modified by altering the scraper condition (10). The simplest way of modelling perforated
scrapers would be to use a scraper condition of the form∫ h

0
ux dz = Q,
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Figure 5. Non-dimensional throughputsT1, T2 andT3 for m = 0·3 (broken line) andm = 0·6 (dot-dashed line)
(see text).

whereQ is the mass loss through a scraper, which we assume in known. More elaborate
models might also be posed in whichQ depended on the pressure drop across a scraper.
The main change to the analysis presented above would be thatpx would now no longer be
constant; apart from this, however, our previous analysis would carry through in more or less
the same form.

As far as asymptotic analysis is concerned, there is also scope for further treatment of the
scrapers. Near to a scraper, it is clear that the flow adjacent to the inner cylinder amounts to the
classical ‘driven flow in a corner’ problem where flow is produced by moving a wall parallel
to itself. It has long been known that for Newtonian flow (m = 1) a simple exact solution
is available (see, for example [14]). Recently, it was shown ([15]) that the problem could
be solved for a shear-thinning fluid in the limitm → 0. Moreover, the resulting predictions
remained remarkably accurate even for values ofm quite close to 1. (See also [14].) It could
therefore reasonably be observed that asymptotic methods have succeeded for this part of the
problem also.

In the region near to a scraper but adjacent to the wall of the outer cylinder, we may expect
to observe recirculating eddies. For a Newtonian flow, this problem was solved completely in
[16]; at present, however, little progress appears to have been made in solving this problem
for shear-thinning flows (though see, for example, [14] and [17]).
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6. Numerical calculations

We have already seen that some of the details of the parametric dependence of the throughput
etc. are rather subtle and involved. Is it therefore possible that the results of all the asymptotic
work described above could be predicted solely by a numerical attack on the problem? Let us
consider what sort of numerical work could be undertaken. First, we could produce made-to-
measure codes to examine various aspects of the problem. This would allow us to carry out
careful and accurate numerical calculations to determine the throughput, find what the flow
in a cross-section looks like, examine the flow near a scraper, etc. The disadvantage of an
investigation of this sort is that many different codes will have to be written, as different
numerical schemes may have to be used in different parts of the flow. If the company is
question is NASA and the product is the space shuttle, then detailed investigation of this
sort may be feasible. For a small industrial concern, however, a second option is more viable:
to use a commercial code.

To remain true to the industrial background of this problem, we have therefore used an
off-the-shelf package to perform numerical calculations. We chose to use FASTFLOTM (see,
for example [18]) because rather than being a ‘black box’ CFD code it is essentially a finite–
element partial differential equation solver. This allows the user to take more control of the
calculations by specifying the mesh, method and tolerances that are to be used. It is worth
pointing out that although we decided to solve the full problem (i.e. with inertia included)
some numerical simplifications may result if only the slow flow problem is tackled.

For all the calculations below, an Augmented Lagrangian Method (ALM) was coded into
FASTFLOTM. The ALM method (for a full explanation see, for example [19] or standard CFD
texts) solves the (Newtonian) non-dimensional Navier–Stokes equations

Re(q̄.∇̄)q̄ = −∇̄p̄ + ∇̄2q̄, ∇̄.q̄ = 0

by using the iterative procedure

−Pen∇̄(∇̄.q̄n)+ ∇̄p̄n−1− ∇̄2q̄n + Req̄n−1.∇̄q̄n = 0, (37)

p̄n = p̄n−1− Pen∇̄.q̄n
for n = 0,1, . . . where Pen is a ‘Penalty parameter’ and we denote non-dimensional variables
as usual using an overbar. The method is more accurate and reliable than the popular ‘penalty’
method as there are no restrictions on the size of the penalty parameter. Also, in contrast to the
penalty method, the algorithm (if it converges) introduces no further errors into the calculation
and provides a solution for the pressure. The alterations that must be made to the algorithm for
shear-thinning flow are of a fairly minor nature: in addition to the inclusion of the nonlinear
terms in (37) an initial estimate for the viscosity must be provided. All of the calculations
detailed below were carried out on a P200 microcomputer running the LINUX version of
FASTFLOTM.

6.1. CROSS-SECTIONAL FLOW COMPARISONS

We first used FASTFLOTM to make numerical/asymptotic comparisons for the cross-sectional
flow between two scrapers. Computations were performed in a box of aspect ratio 1:10, the
bottom wall moving with a speed of 1 parallel to itself. The finite-element mesh was composed
of six-noded triangles (quadratic element) and had 500 corner nodes. The penalty parameter
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Figure 6. Numerical results (arrow plot, streamline plot) form = 2
3.

Figure 7. Ordinatey0 where horizontal velocityu is zero. Numerical results (symbols) and asymptotic predictions
(solid line)vs.m.

was taken to be Pen= 200. Computations typically converged in 10–20 iterations (using about
a minute of CPU time) and the usual convergence checks were made by ensuring that as the
number of mesh elements increased the converged solutions became indistinguishable.

Figure 6 shows typical numerical results (in the form of a velocity arrow plot and a stream-
line plot) form = 2

3. Although there are some inherent problems in presenting results for a
flow region with a 10:1 aspect ratio and individual arrows are hard to distinguish, we note that
the flow seems to be independent ofx except for regions near to the edges of the box. For
the vast majority of the flow, therefore the asymptotic results should be accurate. Both of the
plots in Figure 6 also clearly indicate the region where the horizontal velocity changes sign.
A quantitative comparison between the numerical and asymptotic results may be carried out
by comparing the positionsy0 whereu = 0 for differentm.
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Figure 8. Numerical results (streamlines) for four-scraper device with inner cylinder rotating anti-clockwise with
non-dimensional speed̄u =100. (Left-hand: Newtonian, right-hand:m = 2

3).

In Figure 7y0 is plotted for variousm for the same 10:1 aspect ratio box and the same
numerical parameters that were used to produce Figure 6. The symbols denote numerically
calculated points, and the solid line is the asymptotic theory developed in Section 3. We note
that for most values ofm the agreement between the symbols and the asymptotic results
is excellent. It is no surprise that for small values ofm, the numerical results seem to be
rather unreliable; the computation of shear-thinning flow for small values of the shear-thinning
parameter is a notoriously difficult problem. In any case, whenm � 1 there is no guarantee
that the asymptotic results are correct anyway, asm is now an additional small parameter
in the problem and there are a number of different distinguished limits that may be relevant.
Some further numerical experiments (not shown here) are revealing. The slightly larger values
of y0 that are predicted by the numerical code do not seem to be a result of the discretization,
but are rather a consequence of the regions near to the scrapers where the full Navier-Stokes
equations apply. Although it is virtually impossible to tell from Figure 6, the effect of these
end regions seems to be to slightly increase the value ofy0 near to the centre of the flow
region, whilst slightly decreasing it closer to the edges of the flow region.

6.2. NUMERICAL RESULTS FOR MORE COMPLICATED FLOW CONDITIONS

Although we have tackled many aspects of the problem successfully using asymptotic analy-
sis, there are inevitably some cases where asymptotic analysis does not seem appropriate. As
discussed in the introduction, we have to be realistic about what asymptotics can accomplish
for us, and there are some device configurations where numerical analysis is our only hope.
Figure 8 shows numerical results (streamlines) for a (symmetrical, two-dimensional) four-
scraper device where there is a small gap beneath each scraper. The inner cylinder rotates
with a non-dimensional speed of 100, so that inertia is no longer negligible. Clearly in this
case the shear-thinning nature of the fluid is crucial and changes the flow structure a good
deal.
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7. Conclusions and further work

In this study we have examined only the simplest possible incarnation of the problem of
determining the flow of shear-thinning foodstuffs in annular scraped heat exchangers. The
geometry of the device clearly allows many simplifications if an asymptotic approach is used,
and though the parametric dependence of the throughputs in the three different regimes could
no doubt have been determined by moread hocmethods, the detailed description of the flow
that an asymptotic approach provides is likely to prove invaluable for further studies.

Of course, not all of the asymptotic possibilities of the problem have been exploited. For
example, a regular perturbation scheme could easily be employed to consider the casem = 1−
ε (ε � 1) to determine the details of ‘nearly Newtonian’ flow. Although from a mathematical
point of view this leads only to some very standard analysis, the results would be of practical
importance to the device manufacturers as they would allow corrections to be made to flow
rate predictions for foodstuffs withε � 1. As discussed above, corner solutions could also be
examined to determine the local details of the flow near a scraper, and many other asymptotic
limits might usefully be pursued.

In particular, we note that, although for the case of the flow of margarine the shear-thinning
index is normally greater than 0·5, in previous work we have been interested in the flow of
materials where the shear-thinning index tends to zero (see, for example [20] and [15]). The
cases studied above could also be looked upon from anm → 0 perspective. As usual, we
see that in this limit the flow details are very sensitive to the value ofm; in particular the
throughput can change by an order of magnitude when other flow parameters change only by
an order one amount. There is clearly scope for further work here.

The main simplifying assumption in the work presented above, namely isothermality, con-
stitutes a serious shortcoming and needs to be remedied when further work is carried out.
A local analysis will be required, and this will eventually have to be coupled in to the full
model. It should be noted, however, that a ‘rough and ready’ approximation to the case where
temperature dependence is included may be obtained by allowingµ0 to be a given function
of y, thereby assuming that the temperature in the heat exchanger is known and depends only
only the distance down the apparatus.
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