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ABSTRACT 

Bajracharya, K. and Barry, D.A., 1993. Mixing cell models for nonlinear equilibrium single 
species adsorption and transport. J. Contain. Hydrol., 12: 227-243. 

A simple improved mixing cell model is shown to be more accurate than the standard mixing 
cell model when used to solve solute transport problems with a nonlinear adsorption isotherm 
included. The solution obtained from the improved model is found to agree closely with that 
calculated using a Crank-Nicolson scheme, and an exact analytical solution for solute 
transport subject to a nonlinear solute adsorption isotherm. Application of the improved 
mixing cell model was demonstrated by application to experimental data from a laboratory 
Ca-K exchange experiment in which a solution containing Ca was passed through a column 
filled with K-saturated soil. The model was used in conjunction with the experimentally 
determined nonlinear adsorption isotherm to predict the experimental breakthrough data. The 
data and the predictions agreed reasonably well, indicating that the equilibrium assumption is 
reasonable. However, it is suggested that an appropriate isotherm is necessary to describe well 
the concentration history curve. 

1. INTRODUCTION 

Various industrial processes, mining, and other anthropogenic activities 
create by-products which are capable of degrading the environment. High- 
profile debate over the desirability of industrial proposals vis-fi-vis the conco- 
mitant disposal problems is commonplace. Solute with a high migration rate 
through the soil profile may endanger groundwater supplies while a low 
migration rate may result in accumulation ofcontanfinants in the near-surface 
soil layers, and therefore have detrimental effects on terrestrial biota. The 
ability to control the fate of contaminants in the soil environment or, rather, 
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NOTATION 

List of symbols used in this paper 

K. BAJRACHARYA AND D.A. BARRY 

Symbol Description Dimension 

ai 

Ai 

C 
C 

G 
C* 

Dnurn 
D~ 
D(O) 
Do 
g 
G 
ki 
K(O) 
K, 
L 
P 
R 
S 
S* 
t 

U 

U* 

V 
z 

fl 
0 
Oi 
(p 
,u 
v 

(0 

At 
Az 

constants defined in eq. 22 (i = 1,2,3) 
arbitrary constants (i = 1,2,3) 
Courant number, VAt/Az 
normalised liquid-phase concentration 
normalised influent concentration 
boundary layer corrected normalised liquid-phase concentration 
numerical dispersion coefficient 
dispersion coefficient 
soil-water diffusivity 
value of the soil-water diffusivity at the residual water content 
function defined by eq. 29 
amplification factor 
constants defined in eqs. 23 and 24 (i = 1 ..... 6) 
hydraulic conductivity 
value of the hydraulic conductivity at the saturated water content 
length of column 
P&let number, VL/D s 
retardation factor 
normalised solid-phase concentration 
boundary layer corrected normalised solid-phase concentration 
time 
total normalised solute concentration 
boundary layer corrected total normalised solute concentration 
mean pore-water velocity 
distance below surface 
variable defined by eq. 20 
moisture content 
initial moisture content 
Fourier mode 
variable defined by eq. 31 
fitting parameter in eq. 22 
moisture tension 
weightingX factor 
time step 
spatial step 

[LT '] 

[L 2 T L] 
[L 2 T I] 
[L 2 T I] 
[L 2 T t] 

[LT I] 
[LT 1] 
[L] 

[T] 

[LT I] 
[L) 

[L] 

[T] 
[L] 

contaminant mobility, relies on understanding the basic mechanisms causing 
attenuation of contaminants in general. 

Presently, there is a wide variety of models available for predicting solute 
movement. Thorough discussions of the various numerical and analytical 
models and their attributes have been given recently by Mangold and Tsang 
(1991) and Barry (1992). Barry (1992) discusses the significant computational 
requirements of general purpose flow and transport codes. For routine use, 
simple models which are easy to code, efficient to compute, and which can be 
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linked with chemical speciation models, are valuable tools. Such an approach 
is embodied in mixing cell models. 

Many papers (e.g., Schweich and Sardin, 1981; Schulz and Reardon, 1983; 
Schweich et al., 1983; Van Ommen, 1985; Rao and Hathaway, 1989; Dudley 
et al., 1991) have appeared on the use of the simple mixing cell models but 
none of them describe details of the error analysis. Such an analysis is carried 
out below with the surprising result that the inclusion of an adsorption 
isotherm in the transport equation reduces the accuracy of the model. We 
present an improved mixing cell model that does not suffer from this defect. 
The main purpose of this paper is to show the use of the improved mixing cell 
model as applied to reactive solute transport. This is done by coupling various 
typical adsorption isotherms with the solute transport equation and 
comparing the predictions of the mixing cell model with those from a Crank- 
Nicolson scheme, and analytical solutions where possible. Data from the well 
controlled K-Ca exchange experiment of Schweich et al. (1983) are used to 
illustrate the practical applicability of the improved mixing cell model. 

2. THEORY 

2.1. Transport with equilibrium reaction 

The advection-dispersion solute transport equation with reaction is given 
by (e.g., Yortsos, 1987): 

Ou 02C v~C 
- D s ~ f - f -  Oz (1) 

where 

u = C+S(C) (2) 

In eq. 2, u is the total solute concentration in the soil (symbols are collected 
in the Notation). The adsorbed phase solute concentration, S, is assumed to 
be given as an equivalent fluid-phase concentration. 

2.1.1. Boundary conditions. The boundary conditions at both ends of the 
column can affect the breakthrough curve. However, in many cases only the 
boundary condition at the column entrance affects the profile within the 
column to any extent (Parlange and Starr, 1975). An exhaustive discussion of 
boundary conditions is given by Barry and Sposito (1988). Two sets of 
boundary conditions are considered in particular. One set commonly applied 
at the entrance and exit, respectively, consists of: 

C(O,t) = Co (3) 

and 
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Condition (3)is usually applied in the case of flux concentrations (Kreft and 
Zuber, 1978). This condition implies continuity of concentration at the 
surface. Condition (4a) simply states that the solute concentration remains 
bounded for the semi-infinite column. The second set of boundary conditions 
is described below. 

In the case of resident concentrations, the boundary condition at the 
entrance is given by (Danckwerts, 1953): 

VC(O,t) - DsaZ = accw vc 

0 

At the exit, the condition imposed is: 

(5) 

which simply assumes the continuity of solute across the column exit. 
Parlange and Starr (1975, 1978) have shown that, as long as P > 4, break- 
through curves calculated using eqs. 1,4b and 5 (at z = L) can be very closely 
approximated by the solution found using eqs. 1, 3 and 4a. We will make use 
of this result while comparing an exact solution with the improved mixing cell 
model. 

2.1.2. Initial conditions. The initial normalised solute concentration in both the 
solid and liquid phases is: 

C(Z,O) = Ci (6a) 

S(Z,O) = Si (6b) 

The right-hand sides of eqs. 6a and 6b can assume zero or non-zero values, 
or vary with position, z. 

2.2. Mixing cell models 

To derive the mixing cell models, the dispersive term in eq. 1 is neglected 
and the advective transport equation given by: 

w+ w21 8 C 

at =-aZ (7) 

is solved. Mixing cell models are explicit finite-difference representations of 
eq. 7. The temporal derivative is written as a forward difference and the 
advective component is approximated by a backward difference that is a 



NONLINEAR EQUILIBRIUM SINGLE SPECIES ADSORPTION AND TRANSPORT 231 

weighted average of  two time levels, i.e.: 

C ( i j +  1 ) - C ( i j )  S(i , j+ 1 ) - S ( i d )  + = 
At At 

"" 1)-- C ( i - 1 , j +  1))+ (1--~o)( C(id)- C(i-1,j) _ _ ) ]   8a, 

where C(z,t) = C(iAzdAt) = C(id) and 0 ~<~o ~< 1. 
After some simplification, the general scheme is obtained as: 

(1 + oJC,)C(i,j+ 1) + S(i , j+ 1) = [C(id) + S(ij)] 

+ Cr[OJC(i- 1 , j+  1)+(1 - oJ){C(i-  1 , j ) -  C(id)}] (8b) 

where 

VAt 
C r -  Az (9) 

is the Couran t  number .  The solid-phase concentrat ion is given by: 

S(i , j+ 1) = J[C(i,j+ 1)] (10) 

and hence eq. 8b reduces to a single (usually nonlinear) equat ion in C(i, j +  1) 
which can be easily solved numerically. When  ~o = 0, the scheme (8b) becomes 
the s tandard  mixing cell model  used by Van O m m e n  (1985). Eq. 8b reduces 
to the scheme used by Dudley et al. (1991) when ~o takes the value 1. The 
scheme becomes the improved mixing cell model  when ~o assumes the value 
i the case considered in detail in this study. 

2.2.1. Consistency analysis. Using Taylor  series expansions about  C(ij )  in eq. 
8a, we find: 

0u At ~2u DC V A z  0 2 C 0 2 C 
V~_ -~- + - -  - -  -o~VAt~-7~-- + O(AzAt,Az2,At 2) (11) 

0t -~ 2 &2 - 0z 2 &2 Of OZ 

Differentiating eq. 11 with respect to t and dropping  terms higher than first 
order we have: 

~2 u 

m 
Ot 2 -&z \--~-t- ) + O(Az,At) (12) 

Differentiating eq. 11 again but  with respect to z and not ing eq. 2, we get: 

Oz\ Ot ] = - V oz 2 -~zz\-~-~ j+O(Az ,A t )  (13) 

The combina t ion  of  eqs. 11, 12 and 13 gives: 
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#u VAz ~3 2 C 0 2 S 
~t . . . . .  ~ [1 2Cr(1-09)]~7-z2 VD0-- ~ VAt(½ 09)~z& +O(AzAt'Az2'At2) 

(14a) 

If S(C) = 0 then the scheme (8b) has a truncation error of  O( Az2,At2 ). 
Since adsorption is to be considered, the error of  scheme (8b) is O(Az2,At) if 
094: 1. For  the special case of  a linear isotherm, u = RC, the equivalent 
equation to eq. 14a is: 

R ~C VAz- 1 0t - ~ [ - 2Cr( 1 - 0 9 ) ] ~ z  ~ - V~?-~ z +O(AzAt,Az2,At 2) (14b) 

Thus, for S(C) = 0 or S(C) = (R-1 )C ,  the mixing cell models are always 
accurate to second order, for any choice of  09. This method will introduce a 
numerical dispersion coefficient, D, .... given by: 

VAz 
Onu'n -- 2 [l -- 2Cr(½-09)] (15) 

When the advective-dispersive transport  equation (1) is to be solved using the 
mixing cell model, i.e. eq. 8b, the relation Ds = O n u  m is imposed. This fixes the 
relationship between optimal step lengths and time intervals. From eq. 1 5, it 
is evident that we must have Az > ,  = , or < 2D S/V according to whether 09 
~ 0 ,  1 ~-, or 1, respectively. 

Peaceman (1977) considers a hyperbolic equation mathematically identical 
to eq. 7. However, his analysis is based on the linearised version of eq. 7, i.e. 
he considers S to be linear in C as we did to arrive at eq. 14b. For  that case, 
as we have seen, choosing 09 is inconsequential insofar as the truncation error 
is always O(Az2,At2), and provided that the numerical dispersion term is 
equated to Ds. The present analysis, by contrast, reveals the intriguing result 
that 09 = ½ maintains the truncation error regardless of  whether S is a linear 
or nonlinear algebraic function of  C. 

2.2.2. Stability analysis. The von Neumann  stability method (Noye, 1982) is 
used to check that eq. 8b is stable. The method relies on linearity of the scheme 
investigated, and so cannot  be applied for nonlinear adsorption isotherms. 
Upon applying the method to the error equation, without considering the 
solid-phase concentration, we see that the error amplification factor G is given 
by: 

1 +(1 -- 09)Cr(1 --COS (p)-- x / ~  1(1 -09)Crsin ~0 
= (16) 

G 1 + 09Cr(1 --cos ~o)+xf ~- 1 09Cr sin q> 

For  stability, we must have ]GI 2 ~< 1 and so eq. 16 yields: 

1 - - C r ( 1 -  209) ~ 0 (17) 
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which is always true for co ~> ½ and hence the scheme is unconditionally stable 
for those schemes with co satisfying this condition. For co = 0, the scheme is 
stable for Cr ~< 1. When a linear isotherm is considered this scheme is stable for 
Cr ~< R. Of course, condition (17) only provides an indication of the stability 
behaviour of the scheme. However, the scheme was checked numerically using 
different nonlinear isotherms. In all cases the results were found to agree with 
condition (17). 

2.2.3. Boundary layer correction. The effect of eq. 4b is to increase solute 
concentration in the profile in the region z ~ L (Parlange and Starr, 1978). For 
P > 4, corrections can be applied to the solutions obtained for semi-infinite 
systems to approximate the solution for a finite length profile. The procedure 
to obtain such a correction is given by Barry et al. (1986). A similar approach 
is used to obtain the following relation: 

2Dsexp\  2 ~ s  (18) 
C* ( z , t )  = C ( z , t ) -  l i f t  ~_ ~ L 

where C(z,t) is the solution obtained for a semi-infinite column and: 

u* = C*+S*(C*) (19) 

The parameter fl in eq. 18 is given by: 

fl = 1 + 1 - - - V - ~ z z ~ l n ~ -  z (20) 

Below, the correction (18) is applied to an exact solution of eqs. 1, 4a and 
5, with the nonlinear isotherm given by eq. 22, to obtain the approximate 
solution for a finite column. 

3. COMPARISON WITH OTHER SOLUTIONS 

The mixing cell models are first compared by considering a linear isotherm. 
The improved mixing cell model is then compared with an exact nonlinear 
solution with the boundary layer correction. The improved mixing cell model 
is also compared with a more accurate Crank-Nicolson numerical solution 
considering two types of nonlinear isotherms to show the effect of the nature 
of isotherm on the shape of the breakthrough curve. This effect is also 
apparent in Section 4, where laboratory data are simulated. 

3.1. Linear isotherm 

The mixing cell models are compared with the exact analytical solution in 
which a linear isotherm, S = ( R - 1 ) C ,  is assumed. The exact analytical 
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Fig. I. Compar i son  of  s tandard (co = 0) mixing cell model (VAz/D~ = 2.5, thin line), improved (~o = ½) 
mixing cell model (VAz/D~ = 2, dashes), fully implicit (oJ = 1) mixing cell model (VAz/D~ = 1.43, solid 
circles) and exact (thick line) solutions for a linear isotherm (R = 20, P = 20). 

solution for eqs. l, 3 and 4a for this isotherm is given by (e.g., van Genuchten 
and Alves, 1982): 

C(z,t) l [ e r f c ( R z - V t )  (VZ)er fc (Rz+Vt]]  
- exp - -  (21) 

Co 2 \ ~  / + D~ J \ ~ / ]  

The simulations of  breakthrough curves have been done for R = 20 and 
P = 20. The retardation factor is relatively large, and simulates a strongly 
adsorbed solute. It is evident from Fig. 1 that the improved mixing cell 
solution (co = ½) is more accurate than the standard mixing cell (m = 0) and 
the fully implicit mixing cell solution (~o = 1). We observe (simulations not 
shown) that for co = 0, as the spatial step increases the error increases. On the 
other hand, for co = 1, increasing the spatial step tends to improve the 
solution. Because Cr disappears from condition (15) for ~ = ½, At can be 
chosen independently, and so the improved mixing cell allows the use of a 
greater time step than the other mixing cell models while maintaining greater 
accuracy. Note that for o ~  1 condition (15) was used to fix the spatial and 
temporal steps in the simulation of  breakthrough curves by the mixing cell 
models. The simulations done in the following are all by the improved mixing 
cell model. 

3.2. Comparison with an exact solution using a nonlinear isotherm 

Barry and Sander (1991) have given an exact solution for a nonlinear 
isotherm derived from the correspondence of the infiltration equation with the 
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Fig. 2. Comparison of  improved mixing cell model and exact solution with boundary layer correction for 
the nonlinear isotherm eq. 22 shown in Fig. 5 (P = 35). 

solute transport equation. Their isotherm is of the form: 
2 

aiC i 

S(C)  = ,=0 (22) 
K,.A2(v - 1) - A2A3v - a 2 C  

It should be noted that their solution is for a semi-infinite column and 
satisfies boundary condition (5). Fig. 2 shows the exact solution with 
boundary layer correction (18) and the solution using improved mixing cell 
model with the above isotherm. The entrance boundary condition used in 
improved mixing cell is eq. 3. We observe that the mixing cell model prediction 
is quite close to the exact solution. The Crank-Nicolson solution (see below) 
with boundary condition (5) produces an identical fit with the exact solution 
and is not shown in the figure. 

3.3. Comparison with a Crank-Nicolson scheme 

The reactive solute transport equation (1) is also solved by the Crank-  
Nicolson method which has an error of O(Az 2,At2). This is a common way to 
solve eq. 2 numerically. Barry et al. (1983, 1987) solve eq. 1 for an isotherm, 
S(C),  that is linear in C, but explicitly nonlinear in z and t. Except for this 
difference, the problem solved is identical to the case of interest here and so 
the latter is solved by the same approach. 

Sposito (1989) categorises four classes of adsorption isotherm observed 
commonly in soil research. Two different types of isotherm are considered to 
indicate the effect on the shape of the breakthrough curve, an S-curve and a 
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Freundlich isotherm. Barry (1992) has given an S-shaped isotherm which is of 
the form: 

S = k4[1 - { 1  -}-(k2C) k' }k3 I (23) 

The Freundlich isotherm is: 

S -- ksC k~ (24) 

Fig. 3a shows the S-curve and Freundlich isotherms used for the purpose 
of comparison (constants used to calculate the isotherms are given in the 
figure caption). Fig. 3b shows the breakthrough curves for S-curve isotherm 
as simulated by Crank-Nicolson scheme and the improved mixing cell model. 
In Fig. 3c we show the breakthrough curves for Freundlich isotherm as 
simulated by the Crank-Nicolson scheme and the improved mixing cell 
model. In each case the mixing cell model prediction is very close to the 
Crank-Nicolson scheme. Also mixing cell solution was observed to be much 
faster than the Crank-Nicolson scheme. Note that the boundary conditions 
used in Crank-Nicolson scheme are identical with those of the improved 
mixing cell model. 

It is clear from Fig. 3b and c that the type of isotherm has a profound effect 
on the shape of the breakthrough curve. At lower concentrations, the S-curve 
produces little adsorption and, as a result, the concentration rise is earlier. In 
case of the Freundlich isotherm, adsorption is quite high at lower concen- 
trations as compared with the S-curve, resulting in a delayed rise in concentra- 
tion. Also the isotherm slope, dS/dC, decreases with C for the Freundlich 
isotherm whereas, for the S-curve, the slope initially increases with C, reaches 
a maximum and then decreases. In the latter case (Fig. 3b) the initial increase 
in slope has flattened the breakthrough curve and the decrease has sharpened 
it later. For an increasing slope, the breakthrough curve flattens or shows a 
tailing effect. The extent of flattening or sharpening is again dependent on the 
rate of increase or decrease in the slope, dS/dC. 

4. COMPARISON WITH EXPERIMENTAL RESULTS 

Results of Ca-K exchange during soil column miscible displacement 
experiments reported by Schweich et al. (1983) are considered here. The 
column was filled initially with K-saturated soil and was subjected to an 
influent solution containing Ca at a fixed normality under the condition of 
steady flow. They also carried out a miscible displacement experiment where 
Ca in the influent solution was exchanged on a Ca-saturated soil. The break- 
through curve from this experiment can be analysed as for a tracer displace- 
ment experiment. 

The tracer data are reproduced in Fig. 4. The improved mixing cell model 
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Fig. 3. a. S-curve isotherm (k t = 3, k 2 = 1.5, k 3 = - 2 ,  k 4 = 1.5299) and Freundlich isotherm (k 5 = 
1.3572, k 6 = 0.4560). 
b. Compar ison of  improved mixing cell model with Crank-Nicolson scheme for the S-curve shown in 
(a) ( e  = 35). 
c. Comparison of improved mixing cell model with Crank-Nicolson scheme for the Freundlich isotherm 
shown in (a) ( e  = 35). 

fits the data very well and is shown in the same figure. It is found that a good 
fit was obtained with P = 35. The analytical solution (eq. 21 with R = 1) 
produces a similarly good fit for the same P6clet number (not shown in the 
figure). Note  that P >> 4 so that the breakthrough curves calculated at the 
column exit from the solution of  eq. 1, with eqs. 3 and 4a as the entrance and 
exit boundary conditions,  approximates the breakthrough curves calculated 
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Fig.  4. I m p r o v e d  mix ing  cell model simulation of the tracer d a t a  o f  Schweich et al. (1983) for  P = 35. 

from the solution of eq. 1 for a finite column (with eq. 5 as the entrance 
boundary condition and eq. 4b applying at the column exit). 

The experimental isotherm used by Schweich et al. (1983) is graphically 
shown in Fig. 5. The data from their batch experiments are also shown in the 
figure. Note that, in the figure, the solid-phase concentration has been 
converted to the normalised solution-phase concentration scale. The 
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Fig.  5. Experimental column isotherm, fitted nonlinear isotherm equation (24) ( a  I = - 0 . 2 0 8 3 ,  rd 2 - -  

- 1 . 3 3 2 9 ,  a 3 - 0 .2775,  A] = 0.2594,  A 2 = 0.3295,  A 3 = 0.3124,  K S = 2.1257,  v = 0.0473) a n d  

experimental batch d a t a  o f  Schweich et al. (1983). (The vertical and horizontal segments for each point 
indicate the error range of the measurement.) 
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Fig. 6. Improved mixing cell model simulations of breakthrough data (+)  of Schweich et al. (1983) using 
experimental isotherm (line) and fitted nonlinear isotherm (dashes) for P = 35 (isotherms shown in Fig. 
5). 

isotherm, eq. 22, was fitted to the experimental isotherm. This fit is also shown 
in the same figure. 

Fig. 6 shows the predictions of the improved mixing cell model for the two 
isotherms shown in Fig. 5 and the experimental data collected by Schweich et 
al. (1983, fig. 4). The prediction using the fitted isotherm (eq. 22) for P = 35, 
does not replicate the spreading of the breakthrough curve. It should be borne 
in mind that the nature of the isotherm affects the shape of the breakthrough 
curve as was shown in Fig. 3b and c. The simulation of the breakthrough 
curve for the experimental isotherm using mixing cell model predicts the data 
quite well. However, the lower portion is still not well described. 

5. DISCUSSION 

In a previous study (Barry et al., 1991), the isotherm equation (22) was 
fitted to the experimental isotherm and the breakthrough curve obtained by 
exact solution was compared with the breakthrough data. Their result (dashed 
curve in Fig. 6) has been reproduced making use of the mixing cell model. 
Clearly, the results do not agree well with the experimental data for P = 35. 
The main difference is that the experimental data show more enhanced 
spreading of the breakthrough curve. It is seen that when the experimental 
isotherm is used, the same mixing cell scheme yields a reasonably good fit. The 
results suggest that a local equilibrium model is a valid assumption for most 
of the adsorption process taking place. The simulation by the Crank-Nicol- 
son solution (not shown in Fig. 6) also gives the same results with the same 
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experimental isotherm. Therefore, the Ca-K ion exchange, as modelled by the 
experimental isotherm, produces the enhanced spreading of the upper portion 
of the breakthrough curve. Clearly, the type of isotherm is very important in 
determining the shape of the breakthrough curve. In Fig. 5, the slope dS/dC 
of the fitted isotherm (eq. 22) is decreasing with C whereas in the experimental 
isotherm, the slope first decreases and then increases with C. It is likely that 
this increase in slope dS/dC is responsible for the tailing of the breakthrough 
c u r v e .  

We observe in Fig. 6 that the breakthrough curve obtained using the 
experimental isotherm of Schweich et al. (1983) fails to predict the lower limb 
of the breakthrough curve. This shows that the isotherm used is still not an 
appropriate one at lower concentrations. The early rise initially in the experi- 
mental breakthrough curve (~  1.5 pore volumes) is possibly due to lesser 
adsorption at lower concentrations than given by the experimental isotherm. 
In Fig. 5 we have included the experimental batch data of Schweich et al. 
(1983). A thorough comparison is hindered by the lack of data at lower 
concentrations. At higher concentrations, however, the isotherm is appro- 
priate and hence the upper part of the breakthrough is well described. This 
example demonstrates again the importance of the isotherm in determining 
the shape of the breakthrough curve. 

5.1. Mixing cell solution for Richards' equation 

The improved mixing cell model can be used to solve the unsaturated flow 
equation (Richards, 1931): 

~0 _ ~z(D(O)~z --K(O)) (25) 

subject to the conditions: 

O(z,O) = 0~ (26) 

O(O,t) = 00 (27) 

and 

O0(z,t) ~-~ 
c3z = 0 (28) 

Physically, this models unsaturated fluid flow into a semi-infinite soil profile 
with an initial moisture content, 0~, with 0 = 00 at the soil surface. We 
transform eq. 25 using the Kirchhoff prescription: 

g = (0')d0' (29) 
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Eq. 25 becomes: 

~0 ¢32g 0g 
- 

0t 

where 

(3o) 

1 dK(0) 
- D(O) dO (31) 

Eq. 29 gives g uniquely in terms of 0 and so, conversely, we have O(g). For 
any O(g), we can write: 

O(g) = g + f(g) (32) 

in which case eq. 30 has the form of the solute transport model, eq. 1. The 
initial and boundary conditions used in the solution of eq. 30 can easily be 
determined from eqs. 26-28 and 32. If # defined in eq. 31 is constant, then the 
mixing cell model presented in this paper can be used immediately to solve eq. 
30. The condition of # constant is not as restrictive as first appears. Parlange 
(1980), for example, uses # constant near saturation to derive a formula for 
cumulative infiltration as a function of time. This assumption represents a 
limiting case of soil behaviour (Parlange, 1980). Eq. 31 states that this 
condition is assumed to hold for all 0, not just near saturation, and thus 
represents a particular soil type. Indeed, for # constant, since: 

D(O) = K ( O ) ~  0 

eq. 31 implies: 

K(~) oz exp (/t~) (33) 

Eq. 33 was first presented by Gardner (1958). 

6. CONCLUSIONS 

The main purpose of this paper was to show the use of a simple improved 
mixing cell model for predicting solute transport subject to a nonlinear 
equilibrium adsorption isotherm. It is found that the improved mixing cell 
model (~ = ½) is more accurate than the mixing cell models with (~ = 0, 1) 
while involving a similar computational load. The scheme compares 
favourably in terms of accuracy with a corresponding Crank-Nicolson 
solution. Various applications of the mixing cell model showed that the shape 
of the breakthrough curve is affected by the nature of the adsorption isotherm. 
Finally, we showed that unsaturated flow in soils described by Gardner (1958) 
formulation of the unsaturated hydraulic conductivity can also be described 
by the mixing cell model. 
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