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ORIGINAL ARTICLE

When is simple good enough: a
comparison of the Gompertz, Baranyi,

and three-phase linear models for fitting
bacterial growth curves1

R. L. Buchanan, R. C. Whiting and W. C. Damert

The use of primary mathematical models with curve fitting software is dramatically chang-
ing quantitative food microbiology. The two most widely used primary growth models are
the Baranyi and Gompertz models. A three-phase linear model was developed to determine
how well growth curves could be described using a simpler model. The model divides bac-
terial growth curves into three phases: the lag and stationary phases where the specific
growth rate is zero (µ=0), and the exponential phase where the logarithm of the bacterial
population increases linearly with time (µ=constant). The model has four parameters: No

(Log10 of initial population density), NMAX (Log10 of final population density), tLAG (time when
lag phase ends), and tMAX (time when exponential phase ends). A comparison of the linear
model was made against the Baranyi andGompertz models, using established growth data
for Escherichia coli 0157:H7. The growth curves predicted by the three models showed
good agreement. The linear model was more ‘robust’ than the others, especially when
experimental data were minimal. The physiological assumptions underlying the linear
model are discussed, with particular emphasis on assuring that the model is consistent with
bacterial behavior both as individual cells and as populations. It is proposed that the tran-
sitional behavior of bacteria at the end of the lag phase can be explained on the basis of bio-
logical variability.  1997 Academic Press Limited

Introduction two most widely used mathematical models
are the Gompertz equation (Gibson et al.
1988, Buchanan and Phillips 1990,The use of curve-fitting software in conjunc-

tion with a primary mathematical model is Garthright 1991) and the Baranyi model
(Baranyi and Roberts 1994, Baranyi et al.increasingly being used by food microbiolog-

ists to analyze growth data. Currently, the 1995). The former is an empirical sigmoidal
relationship, and the latter is a differential
equation based in part on the concept that Received: 14 April1Originally presented at the ‘2nd International

1996Conference on Predictive Microbiology,’ Hobart, the rate of bacterial growth is controlled by
Tasmania, Australia, February 18–22, 1996. the rate of a ‘bottleneck’ biochemical reaction. USDA2 ARS2Mention of brand or firm names does not After extensive use of both equations to Eastern Regional
constitute an endorsement by the US Department Research Center,model a large body of microbiological growthof Agriculture over others of a similar nature not 600 East Mermaiddata, we were interested in determining thementioned. Lane, Wyndmoor,

PA 19038, USAcomparative performance of a simpler model.

0740-0020/97/040313+14 $25·00/0/fd970125  1997 Academic Press Limited
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of the cell population increasing linearly with
time. Once the stationary phase has been
reached, there is no net increase in popu-
lation and the specific growth rate returns to
zero (µ=0). The three phases of the model can
be described by:

Lag Phase: (1)
For t%tLAG,

Nt=No
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Exponential Growth Phase:
For tLAG<t<tMAX,Figure 1. Graphic representation of the three-

Nt=No+µ(t−tLAG)phase linear model.

Stationary Phase:
Further, we were interested in better defin- For t$tMAX,
ing the physiological basis underpinning Nt=NMAX

growth models, with the goal of developing a
conceptual framework that takes into where: Nt=Log of the population density at
account both the behavior of individual cells time t [Log(cfu ml−1)]; No=Log of the initial
and bacterial populations. In particular, population density [Log(cfu ml−1)]; NMAX=Log
there is a need to consider the impact that of the maximum population density sup-
biological variability has on bacterial growth ported by the environment [Log(cfu ml−1)]; t=
kinetics. Accordingly, the objectives of this Elapsed time (h); tLAG=Time when the lag
study were to (1) develop a simple linear phase ends (h); tMAX=Time when the maxi-
model that describes bacterial growth curves, mum population density is reached (h); µ=
(2) provide a physiological framework for the Specific growth rate [Log(cfu ml−1)]h−1.
model including assessing the significance of
biological variation, and (3) compare the This model provides a mathematical
model to the Gompertz and Baranyi models means of fitting growth curves that approxi-
using established growth data for Escher- mates the way the microbiologists have tra-
ichia coli 0157:H7. ditionally estimated growth kinetics graphi-

cally. Two-phase linear models of this type
have been used in conjunction with curve fit-
ting software to describe microbial growth inThree-phase linear model
food systems (Einarsson 1992, 1994).

The model selected is a three-phase linear
one that divides the growth curve into the
lag, exponential, and stationary growth Physiological basis for the model
phases (Fig. 1). Like the Gompertz and Bar-
anyi models, the three-phase linear model It has been long recognized by a number of

microbiologists that not all equations used todoes not consider the death phase. During
the lag phase, the cells are assumed to be describe bacterial growth are models. A con-

cise summary of the requirements for anon-replicating, as they adapt themselves to
their new environment. Accordingly, the model was recently provided by Baranyi and

Roberts (1995) who pointed out that for anspecific growth rate is zero (µ=0). Once
adapted, the cells begin to grow at a rate that equation to be considered a model and not

just a convenient relationship for empiricallyis maximal for the microorganism in the
specific environment. During the exponential fitting data, there must be a sound physio-

logical basis underlying the relationship.growth phase the specific growth rate is
assumed to be a constant (µ=k), with the log While the above model is simple in form, it
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attempts to take into account the known
physiological behavior of bacteria. Further,
the model attempts to consider and reconcile
the behavior of bacteria both as individual
cells and as populations. The following sec-
tion describes the concepts and assumptions
that support the model.

For the purpose of introducing the con-
cepts considered in developing the model, we
will use as an example, one of the most stud-
ied microbial metabolic processes, the
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sequential growth of Escherichia coli on glu-
Figure 2. Graphic representation of growth of acose and lactose as sole carbon sources. When
single bacterial cell after transfer to a new

cells are initially grown on glucose and then environment. ta represents the time needed for the
transferred to a medium that is identical in cell to express the new physiological

characteristics it needs to function in the newall attributes except that lactose is substi-
environment. tm represents the time needed fortuted as the sole source of energy, the culture
the cell to generate the energy and biologicalenters a lag phase, which is subsequently fol-
materials needed to reproduce.

lowed by a re-initiation of exponential
growth. During this lag period, the cells
adapt themselves to their new environment

tLAG=ta+tm (2)by inducing the production of lactase, the
enzyme needed to hydrolyze lactose. More

Once the original cell divides, the daughterspecifically, the process involves the presence
of lactose (and the absence of glucose) cells, which now have a complete complement

of enzymes to utilize lactose, will continue toinducing the transcription and translation of
the lac operon, a set of three genes that are generate energy and synthesize new cellular

material at the same rate. Assuming that nocoordinately regulated within E. coli. Ulti-
mately this results in the cells acquiring the other nutrient becomes limiting, tm will be

constant and equivalent to the doubling rateability to take up and metabolize this alter-
nate carbon source. (and thus proportional to the specific growth

rate µ). This implies that ta and tm can be esti-From the standpoint of a single cell (Fig.
2), the lag phase can be thought of having two mated from data fitted with the linear model

using the relationships:distinct periods. The first period is one of
adaptation; the cell senses the need for

tm=generation time (3)physiological modifications and expresses
alternative metabolic capabilities that allow

ta=tLAG−generation time (4)it to take advantage of its new environment.
This period is designated as ta. In the case of

The values for ta and tm are specific for anythe example, this is the period when the
initial lactose molecules are detected by the combination of culture and environmental

conditions. In the case of ta, the duration ofcell, the lac operon is transcribed and trans-
lated, and the newly formed β-galactosidase, the adaptation period will be dependent on

the cell’s metabolic status in relation to itsβ-galactoside permease, and β-thiogalacto-
side acetyltransferase are placed their appro- new environment, with this being a function

of the cell’s cultural history. This can bepriate cellular sites and activated.
The second period, tm, is time needed for viewed as being equivalent to the ‘adjustment

function’ postulated by Baranyi and Robertsthe metabolic machinery of the cell to gener-
ate sufficient energy and then use that (1994). The more drastic the change in cul-

tural conditions, the more extensive (andenergy to produce the array of biological com-
ponents that are needed for cell replication. likely more time consuming) will be the modi-

fications that the cell has to undergo to adaptThus, the lag phase is given by:
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to its new environment. The duration of ta cell exists for some period of time, followed by
a brief transition after which there are twowill also be dependent on the overall meta-

bolic rate of the cell. For example, it could be cells. If this process is observed further, the
two daughter cells divide after a set period ofanticipated that cells transferred from a low

temperature environment to a higher tem- time, becoming four cells. Accordingly, repli-
cation of individual cells can be physiologi-perature would have a shorter ta than shift-

ing from a high temperature to a lower tem- cally described as an exponentially-increas-
ing step function. This can even be observedperature, even though the differential

between the temperatures was the same. culturally for a few divisions by inducing a
state of synchronous growth.This would reflect the fact that transcription

and translation of new genes take place more If the growth of individual cells is a step
function, then why do growth curves containrapidly at the higher temperature.

For tm, the specific value will be a function a curvilinear segment during the transition
period between the lag and exponentialof how quickly the cell can generate the

energy to carry out the anabolic processes phases? This has been interpreted previously
as being a period during which the growthneeded for replication and the other factors

associated with maintenance of cellular rate increases over time until µ is reached
(Buchanan and Cygnarowicz 1990, Baranyiintegrity that are competing for that energy.

The energy balance within a cell can be and Roberts 1994). However, it is proposed
that this interpretation is inconsistent withdefined as:
the behavior of individual bacterial cells as
described above. A transitional µ valueET=∆EC−∆ER−∆EH (5)
implies that the cells are dividing at a rate
that is less than their maximum rate. It isWhere: ET=Overall energy status of the

cell; EC=Energy generated by catabolism; difficult to justify a transitional µ value when
it is based on only a portion of the populationER=Energy used to repair damage to the cell;

EH=Energy used to maintain homeostasis having undergone a single division. We pro-
pose an alternate explanation that this tran-within the cell (e.g., pH gradients,

osmolarity). sition period actually reflects the biological
variation among the individual cells of the

If ET is positive, then the cell has energy bacterial population. Even when working
with cultures of isogeneic clones, some degreefor anabolism and will ultimately replicate.

Alternatively, if the balance is negative, then of variation in the physiological state of the
cells must be anticipated. This biologicalthe number of cells will begin to decline. For

example, it can be anticipated that increasing variability must be considered when
developing primary models in order to con-the incubation temperature from suboptimal

to optimal values would increase overall ceptually reconcile microbial behavior as
individual cells and as populations.metabolic rate and thus decrease tm. Con-

versely, elevating the incubation tempera- Returning to the example of the lac
operon, what would happen to 100 E. coliture above the cell’s optimum would increase

the amount of energy needed to facilitate cells that had a ta=4 h and a tm=2 h? If there
was no variability associated with thesecellular repair and thus increase tm. Simi-

larly, the addition of elevated levels of values, the cells would be synchronous and 6
hours after being transferred to the lactosesodium chloride would require the cell to

devote a greater portion of its energy pro- containing medium, the 100 cells would
abruptly become 200 cells (Fig. 3). However,duction to pumping Na+ ions out of the cells

and thus extend tm. if a distribution of tm values among the 100
cells is assumed, then a transition periodThere have been few attempts to rational-

ize growth kinetics in terms of the known would be observed (Fig. 3) when the growth
of each cell is followed and the number ofbehavior of individual cells. If the replication

of a single cell is followed, one encounters a cells summed. Its similarity to a ‘traditional’
growth curve becomes even more evidentdiscontinuous function where initially the
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The likely impact of variability in ta and tm

were explored further by performing latin
hypercube simulations (McKay et al. 1979)
using the program @RISK (Palisade Corp.,
Newfield, NY, USA). Growth curves were
generated by summing the individual step
functions for 100 single-cell simulations. The
individual step functions were generated
using the equation:

if t%tLAG, the number of cells=1 (6)

if t>tLAG, the number of cells=2n=2(t−tLAG)/tm

where n=number of divisions.

In these hypothetical examples, ta and tm

were assumed to be normally distributed
with mean values of 4 and 1, respectively.
The individual contributions of ta and tm were
evaluated by rerunning the simulations after
altering the variance of one term while hold-
ing the variance of the second term constant.

When the variance of ta is small, the tran-
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sition between the lag and exponential
Figure 3. A hypothetical example of the effect phases is abrupt, while the transition is more
that a distribution of tm values (mean=2) would gradual when the variance is large (Fig. 5).
have on the initial replication of 100 bacterial As would be expected, the growth rate iscells. ta was held constant at 4 h. The insert

unaffected since it is a function of tm. Whendepicts the distribution of tm values that was
the variance of tm was modified while holdingassumed.

(e without biological variation, s with biological ta constant, there was relatively little impact
variation, dotted line represents midpoint on the growth curves as long as the variance
population values during replication). was small to moderate (Fig. 6). However,

when the variance became relatively large,
an increase in the growth rates was evident.when the population levels are expressed as

log numbers. This represents the likelihood that there are
a sufficient number of individual cells withAssuming that tm is relatively small com-

pared to ta, the variances associated with the substantially shorter tm values that would
outstrip the growth of the other cells andtwo segments of the lag phases (σ(ta) and

σ(tm)) make it unlikely that the second ‘step’ become the predominant source for most of
the population. This behavior is based on theof replication would be observed experimen-

tally. Instead, it is assumed that there is a assumption that the variation associated
with tm is related to a heritable character-smooth transition into the exponential por-

tion of the growth curve. Biological varia- istic. It can be assumed that there is also
non-heritable variation among a populationbility also produces a distinct smoothing of

the curve during exponential growth. Inte- of cells. With non-heritable variation, an
alternate assumption is that the variabilitygration of the individual exponentially-

increasing step functions generates the linear in tm for the daughter cells is independent of
the tm value of the parent cell. In that case,relationship between the log of the popu-

lation density and time that is commonly the generation-to-generation variation would
tend to cancel out and the growth rate (butused to describe µ. This is apparent when the

example in Fig. 3 is extended to include the not the lag phase) would be unaffected by the
variance of tm. It is likely that both situationsearly exponential growth phase (Fig. 4).
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Figure 4. Extension of example depicted in Figure 3 to include a portion of the exponential growth
phase.
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Figure 5. An example of the effect that
Figure 6. An example of the effect thatdifferent variances associated with ta would have
different variances associated with tm would haveon bacterial growth. Curves represent summation
on bacterial growth. Curves represent summationof 100 †Risk simulations of individual bacterial
of 100 †Risk simulations of individual bacterialcells where ta (mean=4 h) were assumed to be
cells where tm (mean=1 h) was assumed to benormally distributed. In all simulations the tm
normally distributed. In all simulations the tavalues was assumed to be normally distributed
values were assumed to be normally distributedwith a mean of 1 h and a variance of 0·1.
with a mean of 4 h and a variance of 0·5.(h σ=0·01, s σ=0·1, d σ=0·5, j σ=1·0).
(h σ=0·01, s σ=0·05, d σ=0·1, j σ=0·2, e σ=0·3).

ation. In this instance, growth curves similarwould be encountered in food microbiology.
For example, mixtures of bacterial species to those depicted in Fig. 5 would be expected.

The following assumptions were made inwhere there are substantial heritable differ-
ences among the species would be expected to proposing the three-phase linear model.

Starting with the lag phase, it was assumedproduce growth curves similar to those
depicted in Fig. 6. However, if one is working that the variances associated with ta and tm

(and thus the variance for tLAG since tLAG=with a single strain of a species, heritable dif-
ferences would be minimal and non-heritable ta+tm) are small. This assumption is based on

the fact that much of the experimental workdifferences will be the major source of tm vari-
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done uses single strains grown under highly under consideration. The upper limit is gen-
erally in the range of 108–1010 cfu ml−1, butcontrolled, homogeneous conditions. Further,

the routine practice of using inocula that this is dependent on both the specific
environment and species being considered.have been pre-cultured one or more times in

microbiological media further decreases bio- Typically, as a bacterial culture approaches
its NMAX, there is a transition period betweenlogical variation. Passaging the microorgan-

ism in this manner would result in any sub- the exponential and stationary growth
phases when the apparent µ begins toclones that had significantly shorter ta or tm

values rapidly becoming the predominant decline. While there have been numerous
hypotheses proposed to explain why a bac-genotype, thus reducing the variance within

the population. The assumption that the vari- terial culture has a maximum population
density, it is generally accepted that theance associated with cell replication is small

is supported by the biological variability availability of a limiting nutrient(s) plays an
important role (Stanier et al. 1976). We pro-observed with studies of bacterial cell cycle

regulation, though both normal and posi- pose that this period represents the time
when the assumption that all nutrients aretively skewed distributions have been

reported (Kubitshek 1966, Harvey et al. available in excess begins to no longer hold,
and the time it takes that nutrient to diffuse1967, Bremer 1982, Trueba et al. 1982, Koch

and Higgins 1982, Keasling et al. 1995). to the cell begins to have an effect. This
would be most evident when considering theIf the variances are small, then the tran-

sition between the lag and exponential growth of bacteria in a solid matrix, where
the cells grow as microcolonies. Ultimately, aphases is abrupt and appropriately modeled

by the three-phase linear model. It should be point is reached where the rate at which the
limiting nutrient diffuses to the microcolonynoted that if the variability of ta and tm were

large, there is a distinct likelihood that a falls to such a value that cells cannot gener-
ate or process energy rapidly enough to meetsingle cell would initiate growth well before

other members of the population. In this the demands for growth. Then cells would
either become dormant or begin to recycleinstance, an abrupt transition would be

expected because the situation reverts to con- nutrients from cells that have expired. In
either case, µ=0.sideration of a single cell. It is only when ta

and/or tm have intermediate degrees of bio- However, in the three-phase linear model,
we have opted to ignore this transition periodlogical variability that there would be an

extended transition period between the lag for two reasons. The first is based on the fact
that much of the experimentation done inand exponential growth phases.

The assumptions that the biological vari- microbiological modeling uses homogeneous
liquid systems. Furthermore, these systemsation associated with tm is small and nor-

mally distributed also affects the growth have often been agitated which increases the
homogeneity of the environment and ensurescurve during the exponential growth phase.

If No is large (103 to 104 cells ml−1), the that the population grows as individual cells
and not microcolonies. In such systems, theexponential growth phase is appropriately

described as a linear relationship between need to consider a diffusion term becomes
much less important due to the constant mix-the log of the population density and incu-

bation time. As long as all nutrients needed ing of the cultures. Instead, the cultures are
more likely to face a situation where there isfor the generation of energy and the syn-

thesis of new cellular material are in excess, a threshold concentration below which the
cells cease replication. It has been our obser-µ will be constant and the exponential growth

phase is appropriately described by a linear vation that liquid cultures, particularly when
they are agitated, have rather rapid tran-model.

Ultimately, bacterial numbers reach an sitions between exponential and stationary
growth. The second reason for selecting aupper number which represents the maxi-

mum population density that can be sup- simple, abrupt transition between
exponential and stationary growth is theported by the specific cultural environment
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pragmatic realization that most food micro-
biology applications are not overly interested
in the stationary phase. In reality, if the
stationary phase is reached, the food is either
spoiled if the microorganism is non-patho-
genic or a threat to public health if it is a
pathogenic species.

Fitting experimental data using
three-phase linear, Gompertz, and

300

10

2
0

Time (h)

P
op

u
la

ti
on

 d
en

si
ty

 [
L

og
(c

fu
/m

l)
]

8

6

4

100 200

Baranyi models
Figure 7. Example of the fits achieved when
fitting experimental data using the Baranyi,The three-phase linear model was evaluated
Gompertz, and three-phase linear models.by assessing its fit of experimental data for
(—— linear model, - - - - Gompertz model, -·-·-·-Escherichia coli 0157:H7 (Buchanan and
Baranyi model).

Bagi 1994). The data were also fitted using
the Gompertz and Baranyi models, and the
growth kinetics derived using the three mod- lation density term or the initial and maxi-

mum population density terms was investi-els were compared. The 18 growth curves
(Table 1) used were selected to provide an gated (analyses not shown). This may be

necessary with some data sets to get fits thatarray of growth conditions and data quality
that allowed assessment of the impact of hav- yield realistic growth kinetics values. In gen-

eral, fixing the variable values had a greatering a variety of growth rates and lag phase
durations, varying numbers of data points, impact on the Gompertz and Baranyi models.

The growth kinetics and RMS valuesand varying distributions of the data points
among the three growth phases. obtained with the three primary models are

summarized in Table 2. An example of typicalThe growth data were fitted to the three
models using ABACUS, a curve-fitting pro- fits achieved when there is a small to moder-

ate number of data points that are well dis-gram that employs a Gauss–Newton iteration
process (Damert 1994). In the case of the tributed among the three growth phases is

depicted in Fig. 7. In this example all threethree-phase linear model, the parameters fit-
ted were tLAG, tMAX, No, and NMAX. The µ models fit the experimental data well, with

the largest differences being observed duringvalue was then calculated using the equation:
the transition period between the exponential
and stationary growth phases. Comparison ofµ=(NMAX−No)/(tMAX−tLAG) (7)
the RMS values (Table 2) indicated that none
of the models consistently provided the ‘best’The data were fitted both without fixing

any of the models’ variables (see below). An fit for all the cultures. Overall, the Gompertz
model tended to have the highest RMSexception was the Baranyi M-term which is

routinely fixed at 1·00 (Baranyi and Roberts values, whereas the Baranyi model tended to
have the lowest values. The differences in1995). This reduces the Baranyi model to a

five-parameter model, whereas both the RMS values between the linear and Baranyi
models were small. Neither the Baranyi norGompertz and three-phase linear models

have four-parameters. The goodness of the fit the Gompertz model would fit the data for
culture 4, and the Baranyi model would notwas assessed by determining root mean

square (RMS) values: fit cultures 13 and 14. Also, the v-values for
the Baranyi model had to be fixed before it

[oi(xi,calc−xi,experiment)2/n]0·5 (8) would fit the data for cultures 3, 7, 9, 15, and
16. Personal experience with the Baranyi

where n is the number of data points. model with curve-fitting software has shown
that the model is sensitive to the number ofThe effect of fixing either the initial popu-
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data points and their distribution. In such slope through the curve’s inflection point
(Baranyi and Roberts 1994).instances, the curve-fitting routine employed

would not converge unless a pair of v or q The three-phase linear and Baranyi mod-
els predicted similar maximum populationvalues that provided reasonable growth kin-

etics values were estimated and either the v densities. These values were typically
smaller than the values provided by the Gom-or q value was fixed. This sensitivity appears

to be reduced by a recently proposed repar- pertz model (Table 2). The Gompertz model
tends to overestimate the maximum popu-ameterization of the model (Baranyi et al.

1995). As might be expected from a simpler lation density, particularly when the number
of data points during the stationary phase ismodel, the three-phase linear model proved

to be more ‘robust’ than the other models limited. Like the Baranyi model (Baranyi and
Roberts 1995), the linear model can be usedwhen used with ABACUS. It had distinct

advantages compared to the other models effectively in the absence of stationary phase
data. In this case a reasonable value for Nmaxwhen the data set had a limited number of

data points or when the data points were not is inputted and fixed. Since µ is constant, diff-
erent combinations of Nmax and tmax will notdistributed evenly among the three growth

phases. Overall, the performance of the affect the values derived for tL or µ.
three-phase linear model was comparable to
the other two primary models.

While growth kinetics obtained with each Conclusions and implications for
future researchof the models were similar, there were some

systematic differences among the models.
The linear model consistently gave lag phase The three-phase linear model proved to be a

simple, robust primary model that comparedduration values that were shorter than the
other models. While the values provided by well with established models. It gave growth

kinetics values that were similar to thosethe three models are similar, they are math-
ematically describing different things derived using the Gompertz and Baranyi

models, and the ‘goodness of fits’ of the three(Garthright 1991, Baranyi and Roberts
1994). In the case of the three-phase linear models were similar. Its simplicity and flexi-

bility appears to offer a number of advan-model, the lag-phase duration can be con-
sidered the mean time it takes a population tages, when the assumptions underlying the

model (e.g. variances associated withof bacterial cells to undergo their first div-
ision. Considering that there is no generally microbial population are small) are valid for

the growth data being considered.accepted quantitative definition for the
boundary between the lag and exponential The model was developed on the basis of

known physiological and culture behaviorgrowth phases, that assumed by the linear
model appears reasonable and justifiable. and offers a conceptual framework around

which this and other models can be assessed.The generation times obtained from the E.
coli data sets using the three-phase linear The model introduces two factors, the import-

ance of accounting for biological variationmodel were on average 22 and 32% greater
than values of the Gompertz and Baranyi and the subdivision of the lag period into two

periods, that help reconcile the knownmodels, respectively. This reflects the fact
that the linear model assumes that the behavior of bacteria as individual cells and as

populations. It should be possible to evaluategrowth rate is constant over the course of the
exponential growth phase. With the Gom- experimentally the significance of both

hypotheses. In the case of biological vari-pertz model, the growth rate changes with
time, and the µ is described using the maxi- ation, it is possible to estimate the variance of

tLAG and µ by direct observation of individualmum value that is associated with the sig-
moidal curve’s inflection point (Garthright cells. In fact, Kelly and Rahn (1932) micro-

scopically observed the growth of individual1991). While the Baranyi model approaches a
linear relation, unless it is assumed that µ is cells of several bacteria and found growth

rates to be normally distributed, with thea constant, the specific growth rate µmax is the
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growth rate of the daughter cell being inde- dictive food microbiology should be to explore
how the primary models currently being usedpendent of the parent. This technique and

other means of segregating cells on the basis can be conceptually integrated with the mod-
els that are being developed by bacterialof size have been used since to study the

relationship between cell size and generation physiologists to describe cell cycle regulation
(Keasling et al. 1995).times. An alternate approach to determine

variances in µ is the use of cultures that have The summary, the three-phase linear
model appears to be a simple, effective pri-been diluted to contain a single cell.

Unlike the Gompertz and Baranyi models mary model that can be used readily with
curve fitting software to estimate bacterial(but like the reparameterization of the Gom-

pertz model by Zwietering et al. (1990)), the growth kinetics. Further, the model advances
the goal of developing more physiologicallythree-phase linear model has a specific term

for tLAG. This offers distinct advantages in based models by introducing the importance
of both considering biological variability andterms of accounting for the effect of culture

history on this period of adaption. As func- establishing the need to reconcile the growth
characteristics of bacterial populations withtions are identified that describe for the effect

a cell’s previous environment has on this the known behavior of individual cells. We
are currently exploring the development of agrowth parameter, they can be readily substi-

tuted into the model, i.e., tLAG=F(x). For more sophisticated version of the model that
includes appropriate terms for the variances,example, it is possible that the adjustment

function proposed by the Baranyi model can thereby more accurately describing the tran-
sition between lag and exponential growthbe interpreted as the distribution of lag

times. The systematic differences observed in phases.
predicted lag time values with the three mod-
els highlight the fact that there is currently
no generally accepted definition for lag phase
that is based on physiological events occur- References
ring in the bacterial population. The separ-
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