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Abstract 

The systems and concepts described in this paper document the evolution of the geometric 
invariance approach to object recognition over the last five years. Invariance overcomes one of 
the fundamental difficulties in recognising objects from images: that the appearance of an object 
depends on viewpoint. This problem is entirely avoided if the geometric description is unaffected 
by the imaging transformation. Such invariant descriptions can be measured from images without 
any prior knowledge of the position, orientation and calibration of the camera. These invariant 
measurements can be used to index a library of object models for recognition and provide a 
principled basis for the other stages of the recognition process such as feature grouping and 
hypothesis verification. Object models can be acquired directly from images, allowing efficient 
construction of model libraries without manual intervention. 

A significant part of the paper is a summary of recent results on the construction of invariants 
for 3D objects from a single perspective view. A proposed recognition architecture is described 
which enables the integration of multiple general object classes and provides a means for enforcing 
global scene consistency. 

Various criticisms of the invariant approach are articulated and addressed. 

1. Introduction 

The computer recognition of objects has attracted considerable research effort over 
the last 25 years. It is now widely accepted that object recognition, in the setting of real 
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world scenes and based on a single perspective view, is a difficult problem and cannot 
be achieved without the use of object models to guide the processing of image data and 
to confirm object hypotheses. It is also accepted that the most reliable information which 

is available in a scene is derived from a geometric description of the object based on 
its projection in the form of 2D geometric image features, as opposed to, for example, 
its intensity shading. Thus, object recognition systems draw on a library of geometric 
models, which usually contain information about the shape and appearance of a set of 
known objects, to determine which, if any, of those objects appear in a given image 
or image sequence. Recognition is considered successful if the geometric configuration 
in an image can be explained as a perspective projection of a geometric model of the 

object. 
At present, 3D recognition systems generally have small modelbases containing rela- 

tively simple objects. Progress is needed on three fronts: 
l Larger modelbases: Systems should be able to deal with modelbases containing 

hundreds to thousands of models. The methods of pose consistency (reviewed in 
Section 1.1)) which are commonly used for modelbases with only a few objects, 
are infeasible for large modelbases because of the computational expense. Coping 
with such sizes clearly requires some partitioning of the modelbase. 

l More general shape models: Typically polyhedra are used, which are a poor model 
for curved objects. A direct representation for nontrivial curved objects is required. 

l Automatic segmentation and grouping: This is the process, also called figure-ground 

separation, of extracting image feature groups which correspond to individual object 
outlines without including the background and other occluding objects. The lack of 
such grouping is a significant barrier to successful recognition in current systems. 
In addition to representing the shape of 3D objects, models will have to provide 
mechanisms for their feature segmentation and grouping. 

This paper establishes a framework for the next generation of 3D model-based vision 

recognition systems which will have large modelbases, with objects partitioned into a 
number of different 3D object classes. Recognition is from single perspective images of 
scenes, where the camera is uncalibrated, the objects could be partially occluded, and 
the scene might contain objects not in the model library. The object classes are defined 
geometrically in terms of symmetry or other 3D geometric constraints. The constraint 

enables invariants of a 3D object in the class to be extracted from a single image of the 
object outline; and also generates invariant relations on the image outline that enable 

grouping. 
Although the paper concentrates on perspective images, the methods are, of course, 

applicable in weak-perspective (or “affine”) imaging situations. Weak-perspective, a 
linear approximation to perspective, is appropriate as a camera model when object relief 
is small compared to distance from the camera. A consequence is that parallel world 
lines are imaged as parallel lines. Invariants computed for perspective imaging are also 
valid for weak-perspective. 

A major constraint underlying the work presented here is that recognition is based on 
one uncalibrated view of a scene. Our motivation is that this restriction applies in many 

of the current and future applications for object recognition, such as aerial surveillance, 
image database query processing, and image-hypertext editing. Even if more images 
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are available, for example in the case of video processing, camera calibration will not 
generally be known initially. Any grouping, recognition hypothesis, or object recovered 
up to some ambiguity from a single image, can be propagated to advantage to subsequent 
views. 

A central question explored in this paper is the nature of the shape representation nec- 
essary for recognition. Euclidean (metric) representations are routinely used in many 
existing recognition systems. However, under the most general imaging conditions, struc- 

ture is recovered up to a projective transformation (i.e., a more general transformation 
than Euclidean). We demonstrate that projective representations are adequate for recog- 

nition. A stratification of representations is provided by the hierarchy of transformation 

groups: projective, affine, similarity (scaled Euclidean), and Euclidean. This represen- 

tation hierarchy is progressively more restrictive; for example, two objects that are 
projectively equivalent need not be affine or similarity equivalent. We will be primarily 
concerned with the projective stratum, since this covers the “worst-case” ambiguity. The 

other strata will be used to advantage at particular stages of the recognition process. 
A related area is the use of quasi-invatiants [4]. A quasi-invariant is an object 

property or relation that is not invariant to projective transformations, but is stable 
over a useful range of views. Invariants of other transformation groups in the hierarchy 

given above are sometimes quasi-invariants [5]. Quasi-invariants can be very effective 

in grouping and partial indexing even though they vary under perspective projection. 

Examples of quasi-invariants are given in the paper. 
Our geometric notion of class differs from the more usual functional one. For example, 

in our definitions, a vase is considered as a surface of revolution as opposed to a container 

for flowers and water. A geometric class is not specific to a particular object but instead 
describes a family of objects which are unified by their common 3D constraint relations. 

A number of examples of these 3D object classes are given in Section 3. 
We have defined a recognition architecture which integrates these ideas. Class influ- 

ences each level of the architecture, from image grouping through to organisation of 
the modelbase and 3D scene constraints. Recognition is class-based, proceeding first 

by a classification based on image curves, and subsequently the identification of a par- 
ticular model within the class using values of geometric attributes. This contrasts with 

many existing recognition systems where a particular object is directly identified. The 
architecture, combined with the success of existing implementations, demonstrates that 
a large-scale system implementation based on an invariant framework is now warranted. 
This effort will culminate in an object recognition system that can recognise a broad 

class of 3D structures with thousands of individual object instances in the model library. 

1.1. Related approaches to object recognition 

Recognition is the establishment of a correspondence between image and model 
features. Most recent approaches to recognition have been implemented in three stages 
(similar to those defined in [ 271) : grouping, indexing, and verification. 

The aim of grouping (also called perceptual organisution [ 371, selection, or $gure- 
ground discrimination) is to provide an association of features that are likely to have 
come from a single object in a scene. Features are typically grouped together using 



242 A. Zissermun CI ul. /Artificial Intelligence 78 (1995) 239-288 

cues such as proximity, parallelism [ 3,371 collinearity, and approximate continuity in 
curvature [ 12,611. The indexing stage hypothesises an association between the grouped 

image features, and features on a model in the library. The final stage, verification, 

determines the consistency of this hypothesis with the image data. The image-model 
match is used to project the model onto the image, and to test the validity of the model 

hypothesis and model-to-image feature correspondences determined by measuring image 
support. 

There are three distinct categories of algorithm that have been used to compute 
correspondence: 

( I ) Interpretation trees frame the model-to-image correspondence task as a search 

tree to allow all possible model and image feature associations, and then control 
and prune this search process. Although inefficient, this has proved reliable 
for planar object recognition for a small modelbase when single images are 

used [28], and has been extended by Ettinger to include useful notions about 
how hierarchical object descriptions can be realised [ 141. However, interpretation 

trees are not generally able to work with single images of three-dimensional 
objects (though effective when 3D data is provided as direct input to the system 
[ 2,28,47,48,5 l] ). Interpretation trees are not restricted to rigid objects; the 

sup-inf framework for geometric reasoning used in ACRONYM [ 81 allows the 

interpretation tree to account for tolerance interval constraints on parameterised 

objects. Brooks’ work has been extended by both Fisher [ 191 and Reid [53] 
for different types of sensor and constraint framework. Other ways to treat 
parameterisations have been suggested by Grimson [ 271. 

(2) Hypothesise and test, also called alignment, first aligns a model to image fea- 
ture [ 3 I] to yield an initial estimate of pose. This hypothesised alignment is 
tested by searching for other model-to-image correspondence predicted by the 
model pose (verification). This algorithm has been implemented for a variety 

of data formats and feature types [ I, 6, 16,24,38,68]. In fact, extensions to 3D 
curved surfaces have even been created [ 13,331. 

(3) Pose clustering is implemented by computing the object pose from a group of 

features corresponding to a particular model, and storing the estimate in an accu- 
mulator in pose space; if enough local groups have the same pose, a hypothesis 
for the model is formed. This approach (frequently called generulised Z-lough) 
has the disadvantage that the pose space is high-dimensional (six degrees of 
freedom for 3D Euclidean space), so searching for consistent pose is expensive. 
Two ways round this are to use a decomposition of the pose space into separa- 
ble parameters [ 44,671, or to use an adaptive Hough transform [ 651. Another 
approach eliminates the requirement to quantise the pose space into rectangular 
cells by constructing a quantisation that depends both on the estimates of pose, 
and on the expected error bounds of the pose measurements [ lo]. 

For a small number of models, for example two or three, it is reasonable simply 
to try to find image feature support for each model. This approach is typical of many 
existing systems [ 1,2,27,3 1,38,47,5 I]. As the size of the model library increases, this 
approach becomes computationally too expensive. It is then more effective to choose 
potential models from the library based on the observed image features. That is, image 
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feature measurements are used to index into the modelbase. In constructing such index 
functions, invariance plays a major role, since a model should be identified irrespective 

of object pose. 

1.2. Geometric invariants in modelling and recognition 

Invariants are properties of geometric configurations which remain unchanged under 
an appropriate class of transformations. Within the context of vision we are interested 

in determining the invariants of an object under perspective projection onto an image. 

For example, for a planar object the perspective projection between object and image 
planes is a projective transformation. Properties such as intersection, collinearity, and 
tangency are unaffected by a projective transformation; however, invariant values can 
also be computed. Examples are given in Section 2.1. 

More formally, under a linear transformation of coordinates, X’ = TX, the invariant, 
I(P), of a configuration P transforms as 

Z(P’) = ITI”‘Z(P) 

and is called a relative invariant of weight w, where P’ is the transformed configuration. 
If w = 0, the invariant is unchanged under transformations and is called a scalar invariant, 

We will only be interested in scalar invariants in this paper. 

In general we seek invariance to projective transformations, so T is a general nonsin- 
gular square matrix acting on homogeneous coordinates. For planar configurations it is 
3 x 3, and for 3D configurations 4 x 4. Note that invariants are computed with respect to 
a transformation, which is a mapping between spaces of the same dimension. The goal 

is to measure the invariants from a perspective projection of the configuration, where 
the image may have a lower dimension than the object. We write P for the projection 
matrix that covers a 3D Euclidean transformation of the object followed by perspective 

projection onto the image. For planar objects the original and image spaces are the same 
dimension and P is simply a projective transformation represented by a 3 x 3 matrix. 
This is discussed in detail in Section 2. For three-dimensional objects, the original and 
image spaces are no longer of the same dimension and P is a 3 x 4 matrix mapping 3D 

homogeneous coordinates onto the image plane. This is described in detail in Section 

3.2. 

1.2.1. Indexing 
One of the most important uses of invariants in vision is as indexing functions. 

In traditional model-based recognition systems (Section 1.1) , recognition proceeds by 
hypothesising a correspondence between image and object features, and then evaluating 
the hypothesis based on the consistency of the best projection of the model onto the 

image features. This constitutes simultaneously finding pose and performing recognition, 
and is generally of a complexity linear in the number of models in the library, since 
each model must be evaluated. 

An index function provides direct access to a certain model in the modelbase without 
using specific information about the model, or model pose in advance. Ideally, the index 
function should uniquely retrieve a model from the library (thus facilitating constant 
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time, as opposed to linear, access to the library), but in practice it is likely that a 
small number of models are retrieved with the same index. Even so, the search cost 

is considerably reduced below that of testing the full library. The index is typically a 

vector of independent invariant measurements. 
More formally: the index is considered to be a vector, M, which selects a particular 

model from the library. The index is a function M(f) of a set of projected object 
features only, where f = PF, with F object features, and f the corresponding image 
features. Assuming that M can be computed from any image projection of the object 

features, then library values for M can be constructed simply by acquiring one or a few 
images of the object in isolation. 

For planar objects, P is a planar projective transformation, T, from the object in an 

arbitrary pose onto the image plane, and 

M(T(F)) = M(F), 

i.e., the index has the same value computed on the original object and after the transfor- 
mation (a scalar invariant). Each element of the index vector M is an invariant measure 
computed from a group of image features such as tonics, lines, points and plane curve 

segments. A typical example is shown in Fig. 1. For 3D objects the same function 
cannot be applied to object and image, since they differ in dimension. However, again 

M is defined so that each element is a projective invariant of the 3D structure that is 
measured from the perspective image. Examples are given in Section 3. 

1.2.2. Invariance and representation 

The term “invariance” does not simply refer to the viewpoint-invariant measurement 

vector described above. The term also includes the idea of an invariant relation, which 
is distinct from an invariant value. For example, the cross-ratio is an invariant value of 
four collinear points. The collinearity of the points is a projectively invariant relation 
between the points which is independent of the cross-ratio value. In the definition 
of generic geometric classes, the identification of invariant relations is often a more 
important issue for representation than the computation of specific invariant indexing 
values. 

Another general aspect of the invariant approach is the symbiotic application of 
geometric and algebraic analysis. It is often the case that geometric insights provide 
the first clue to the nature of invariants for a particular object class. Then subsequent 
algebraic analysis can generalise and simplify invariant computation, and in turn provide 

additional insight. 

1.2.3. Model acquisition from images 

A model consists of the set of significant geometric features of the object boundary 
known up to a projective, or more restrictive, transformation (for example affine). 
Projective models can be constructed from images without requiring knowledge of the 
intrinsic camera parameters or known 3D ground control points. In the case of 2D 
objects the model can be acquired from a single image, for 3D objects more images are 
generally required. Model acquisition is discussed further in Sections 2.3 and 4.3. 
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Before proceeding to the case of more general 3D object recognition, we review a 
mature system for 2D object recognition. This review will illustrate many of the issues 

in object recognition by invariants and provide a context for our more general discussion 

of recognition architectures at the end of the paper. 

Notation 
We adopt the notation that corresponding entities in two different coordinate frames 

are distinguished by upper and lower case. In general lower case is used for image 
quantities, and upper for 3D quantities. Vectors are written in bold font, e.g., x and 

X. Matrices are written in typewriter font, e.g., c and C. With homogeneous quantities, 
equality is up to a nonzero scale factor. 

For smooth surfaces the projile (also called the apparent contour) is the outline of 
the surface in the image. It is the image projection of a surface curve, the contour 
generator, where rays from the optical centre are contained in the surface tangent plane. 

2. The planar recognition system 

The use of planar projective invariants for planar object recognition is particularly 
appropriate and straightforward because a projective transformation between object and 
image planes covers all the major imaging transformations: the plane-to-plane projec- 

tivity models the composed effects of 3D rigid rotation and translation of the world 

plane (camera extrinsic parameters), perspective projection to the image plane, and an 
affine transformation of the final image which covers the effects of camera intrinsic 
parameters. Consequently, projective invariants, which are unaffected with respect to all 

of these parameters, have a high currency for this domain [ 40,49,54,56,58,59,69,70]. 
Here we summarise the main features of a planar object recognition system that 

has been developed during the past four years. The projective representation of shape 
used in the system has the key advantages of simple model acquisition (direct from 
images), no need for camera calibration or object pose computation, and the use of 
index functions. Recognition proceeds by measuring invariants in the target image. The 

invariants are used to construct index vectors to select models from the library. If the 
index value coincides with that associated with a model, a recognition hypothesis is 
generated. Recognition hypotheses corresponding to the same object are merged to form 
joint hypotheses, provided they are geometrically compatible. The (joint) hypotheses 
are then verified. The system’ has been tested on a large set of images and under 

varying levels of occlusion and clutter. A detailed description of this system appears 
in [56]. 

The projective nature of the representation is utilised at a number of stages in the 
recognition process, for example in both model acquisition and verification. In acquisi- 
tion, any image provides a projective model of the object outline because the image and 
object planes are related by a projective transformation. This is because the object is 
mapped by a perspective transformation onto the image, and perspective is a restricted 

’ The system is called LEWIS. The motivation for this name is explained in Section 4.4. 
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form of a projective transformation. In verification, the target image outline is projec- 
tively related to the model image outline. This follows because the target image outline 
is a projective transformation of the object outline, which is a projective transformation 

of the model image outline. Plane projective transformations are a group, and a sequence 
of projective transformations is 

closure 1. 
equivalent to a single projective transformation (group 

2.1. Projective invariants used 

There are three different algebraic invariant constructions used in the system: five 

lines; a conic and two lines; and a conic pair. For example the two invariants of five 

lines are given by 

IN~~IIINs~II 

” = IN42,lbkd’ 

/ N421I I h’s321 

‘2 = lN4i2llNs2tl’ 
(1) 

where Ni;k = (l;,l,i,lk), (N;,kl is the determinant, and E = (11,12,13) is the homogeneous 

representation of a line: Ilx + 12~ + 11 = 0. (See 1451 for the other invariants.) Table 1 

gives examples of these invariants computed from the images shown in Fig. 1, which 
have varying degrees of perspective distortion. These are applicable to image curves 

that are “algebraic” (lines, tonics). For nonconvex smooth curve segments canonical 
frame invariants [45,58] are used. These arc constructed from projective coordinates of 

a concavity delineated by a bitangent. 

a c 

Fig. I. The lines used to compute the tive-line planar projective invariant for the above images are highlighted 

in white. The values are given in Table I. 

Table I 
Values of plane projective invariants measured on the object, and from images with varying perspective effects. 

The values vary (due to measurement noise) by less than 0.4% 

Five-line invariants 

Measured on II 12 

Object 

Figure I (a) 

Figure I (b) 

Figure I (c) 

0.840 1.236 

0.842 I.234 

0.840 I.232 

0.843 I.234 
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Fig. 2. The recognition system has a single grey scale image as input and the outputs are verified hypotheses 

with associated confidence values. Many of the processes are shared by the acquisition and the recognition 

paths. The recognition system is similar to previous systems [27] in all but the indexing and hypothesis 

merging stages. 

In all cases there is tolerance to partial occlusion, i.e., the invariants can still be 

formed if part of the outline is occluded. This is a result of using semi-local invariant 
descriptions, i.e., not global, like moments of the entire boundary, and redundancy: there 
are a number of different descriptors for each object so that there is not an excessive 
requirement for any single object region to be visible. In the algebraic case lines and 
tonics can still be extracted if part of the curve is occluded. 

2.2. Architecture 

The stages of recognition are shown in Fig. 2. In the following sections we describe 
these stages in sufficient detail to expose the important issues for consideration in 
extending these ideas to 3D object recognition. 

2.2.1. Feature extraction and invariant formation 
The goal of the segmentation is the extraction of geometric primitives suitable for 

constructing invariants. In the algebraic case this involves straight lines and tonics, and 
for non-algebraic curves, concavities delineated by bitangents. An example of algebraic 
segmentation is shown in Fig. 4. 
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A local implementation of Canny’s edge detector is used to find edgels to subpixel 
accuracy. These edgels are linked into chains, extrapolating over any small gaps. Consid- 

erable advantage is made of local image feature topology. In many recognition systems, 
the local connectivity of edge1 chains and fitted features is ignored; but we have found 

that feature grouping, based on the connectivity provided by edge1 chains and proximity, 

allows index formation to have a low complexity with respect to the number of image 
features. 

For algebraic invariants, connectivity enables efficient linking and ordering of line 
segments. For example, five-line invariants are formed from sets of consecutive lines 

within single edge1 chains at a cost that is linear in the number of lines in the scene 
(i.e., 0( 1), compared to 0( I”) if all groupings are attempted). For concavities, the 

curve again provides an ordering for the feature points used (bitangent and cast tangent 
points [ 721) and only the two cases of global curve reversal have to be considered. 

Once sets of grouped features, f, have been produced, the algebraic and canonical 
invariants are computed. Each set of grouped features, or concavity curve, generally 

produces a number of invariant values which are collected into a vector M(f). The 
invariant vector formed by the above process represents a point in the multi-dimensional 
invariant space. The space is quantised to enable hashing. Each object feature group is 

represented by a collection of points that define a region in the invariant space, the size 
of which depends upon the measured variance in the invariant value.’ 

2.2.2. Indexing to generate recognition hypotheses 

The invariant values computed from the target image are used to index against invariant 

values in the library. If the value is in the library a preliminary recognition hypothesis 
is generated for the corresponding object. Each type of invariant (e.g., five lines, conic 
pair) separately generate hypotheses. 

This process is made more efficient using a hash table that allows simultaneous 

indexing on all elements of the measurement vector. In the experiments to date there has 
not been any significant problem with collisions in the hash table. Hash table collisions 3 
should not be confused with the intersection of object invariant measurements in index 

space. These intersections lead to erroneous hypotheses which cost some effort during 
the verification stage, but are usually eliminated. 

2.2.3. Hypothesis merging 

Many collections of primitives may come from the same model instance: for example, 

an object consisting of a square plate with a circular hole in it admits four collections, 
each consisting of a conic and two connected lines. Each collection has an invariant 
which may generate a recognition hypothesis. Such a set of recognition hypotheses is 
compatible if a single model instance could explain all of them simultaneously. Prior 

2 See Section 2.3. 

’ A hash table collision occurs when a number of models have the same hash index. Such a collision can 

occur when the number of hash buckets is smaller than the model population or when the hashing function is 

not uniform and causes many models to hash to the same bucket. 
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b 

Fig. 3. Hypothesis compatibility: (a) If the same model is indexed by a five-line invariant (due to lines li, 
i E {1,...,5}), anda conic three-lineinvariantthat iscompatible with it (dueto C and li, iE {2,...,4}), 
then it is wise to verify both hypotheses together. The invariants are compatible if the ordering of the image 
lines are consistent with those on the model. (b) For a pair of concavity curves there are 8 distinguished 
points which could be used to form 2 x 8 - 8 = 8 different five-point invariants. Rather than computing so 
many, which is unnecessary, invariants are computed between the four distinguished points of each concavity, 
and the “central” point of the other. This yields four invariants, and does so using a symmetric construction. 
These invariants are sufficient to hypothesise compatibility. 

to verification, compatible hypotheses are combined into joint hypatheses. There are 

number of reasons why hypothesis merging is desirable: 
( 1) Backprojection and searching for image support is computationally expensive and 

it is more efficient to validate several hypotheses of the same object together. 
(2) More features facilitates more accurate least squares calculation of the backpro- 

jection transformation (there are more matched model and image features), and 

consequently a reduced error in measuring image support. 

(3) Many hypotheses indexing the same object in a single part of the scene signifi- 
cantly increase confidence that the match is correct. 

The hypothesis merging process is equivalent to forming an interpretation tree for the 
indexed object based on the features which index a particular model. The merging 

is controlled by topological and geometric compatibility. The topological consistency 
(ordering and connectedness) is illustrated in Fig. 3(a). Geometric consistency is im- 

plemented efficiently by a second use of invariants-this time joint invariants between 
the feature groups used to compute each individual hypothesis. This is illustrated in Fig. 

3(b). 

2.2.4. Veri$cation 
There are two steps involved in verification, both of which can reject a (joint) recog- 

nition hypothesis. The first is to attempt to compute a common projective transformation 
between the model features and the putative corresponding features in the target image. 
The second is to use this transformation to project the entire model onto the target 
image, and then measure image support. 
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Incorrect hypotheses arise because grouped image features happen to have an invariant 
value that coincides (within the error bounds) with one in the library. The features 
used to produce the matching model and image invariants provide sufficient constraints 
to compute the projective transformation between the model and image. In general 

this will be over-constrained-many more constraints than the eight unknowns of the 

projective transformation are available. Consequently, if a common transformation cannot 
be computed the features are not projectively equivalent and the hypothesis is rejected. 

Backprojection and subsequent searching involves the entire model boundary, not 
just the features used to form the invariant. Projected mode1 edgels must lies close to 

image edgels with similar orientation (within 5 pixels and 15”). If more than a certain 

proportion of the projected model data is supported (the threshold used is 50%)) there is 
sufficient support for the model, and the recognition hypothesis is confirmed. The final 

part of the process is expensive as 0( 10”) edgels need to be mapped onto the image. 
Efficiency is improved by approximating the distances using the 3-4 distance transform 

of Borgefors [ 71. 

2.3. Model acquisition and lihraq formation 

One benefit of using only projective representations, rather than Euclidean ones, is that 

a model can be acquired directly from an image. No special orientations or calibrations 
are required. Acquisition is simple and semi-automatic (for instance, curves do not 
have to be matched entirely by hand between images), using the same software for 
segmentation and invariant computation as used during recognition. 

A model consists of the following: a name; a set of edges from an acquisition view 
of the object (used in the backprojection stage of verification); the lines, tonics and 
concavities fitted to the edges; the expected invariant values and to which algebraic 
features and curve portions they correspond. (The mean and variance of the invariant 
values are computed from a variety of “standard’ viewpoints of the object.); and, 
finally, topological connectivity and geometric relations between feature groups used in 
the construction of joint invariants. 

The library is partitioned into different sublibraries, one for each type of invariant 

(e.g.. one for the five-line invariant, another for the conic pair). Each sublibrary then 
has a list of each of the invariant values tagged with an object name, and is structured 
as a hash table. 

2.4. Recognition examples 

Only a small number of examples are included since others appear elsewhere [45, 
56,591. In each case successful recognition is demonstrated by projecting the mode1 
outline onto the image. Segmentation for algebraic features is shown in Fig. 4. The 
two objects in the scene which are contained in the library are successfully recognised 
using algebraic invariants computed from these features despite substantial occlusion and 
clutter. 1049 invariants are computed which index 41 hypotheses. These are converted 
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Fig. 4. (a) A scene containing two objects from the modelbase, with fitted lines (100 of them) and tonics 

(27) superimposed in (b). These numbers are typical for images of this type. Note that many lines are caused 

by texture, and that some of the tonics correspond to edge data over only a small section. The lines form 70 

different line groups. (c) shows the two objects correctly recognised, the lock striker plate matched with a 

single invariant and 50.9% edge match, and the spanner with three invariants and 70.7% edge match. 

a b 

Fig, 5. Single concavities are sufficient to recognise the two model instances shown in (b). The redundancy 

of the canonical frame representation gives much better tolerance to occlusion than global shape methods. 

The left-hand object gained 67.1% boundary support, and the right object 8 1.6%. 

into 131 joint hypotheses4 that have to be verified, of which 13 are rejected by first 
stage verification, based on valid projective transformations, and 78 require the second 

stage, based on image support. 
Fig. 5 shows recognition based on canonical frame invariants. The algebraic and 

canonical frame invariants can be independently applied to an image to recognise objects 
of both types. Fig. 6 shows an example of recognition for both index methods together. 

2.5. Summary of pelformance 

Fig. 7 shows data collected over fifty evaluations of the recognition system in which 

a single object from the modelbase was placed in a scene and partially occluded by 

4 The joint hypothesis list consists of combinations of compatible hypotheses, together with all the original 

hypotheses. 
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Fig. 6. A demonstration that both types of invariant index can be used to recognise objects in a single 

image. The bracket is indexed using algebraic invariants and the spanner is indexed using the canonical frame 

signature. 

other objects that are not in the modelbase (clutter). The average number of hypotheses 
computed as more models were added to the library is plotted. The first model added 

to the library always corresponded to the actual object in the scene. With 33 models in 
the library, on average 15.8% of the hypotheses were for the correct model. Although 
predominately linear, the graph has a very low gradient. 

The real benefit of indexing becomes apparent when one considers how many hy- 
potheses would be produced if an alignment technique is used, maintaining the same 
grouping methods. On average, over 2000 feature groups are produced for each image, 
and so 2000 hypotheses would be generated for each model feature group in the library 

(generally there are four or five feature groups per object and so the situation would be 
far worse). This would result in about 7 x lo4 hypotheses for the entire modelbase com- 
pared to fewer than 60 produced when indexing is used. As these all have to be verified 
it is clear that indexing produces a dramatic improvement in the system efficiency. 

2.6. Appraisal 

This system is an effective and reliable recognition system, and demonstrates a number 
of features that are likely to be important in building the next-generation system: 

l Hypothesis combination. Simply verifying each indexed model is prohibitive, par- 
ticularly for complex objects with many features. Hypothesis combination is an 
effective way of combining semi-local information from different parts of the scene 
to obtain a single recognition hypothesis. 

l Untrustworthy und expensive verijcation. Verification is neither cheap nor reliable, 

as it involves backprojecting a large number of features, and testing for distance 
between those features and possibly unrelated image events. Verification scores can 
be incorrectly high, due to background clutter and texture which leads to false 
positives. The next-generation system must have more extensive verification mech- 
anisms using region properties as well as edge geometry. Also much more careful 
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Fig. 7. The number of hypotheses that have to be verified as the number of models in the library is varied. 
The results show an average over fifty scenes containing only one object in the library, but with other clutter 
and occlusion present. Over 2000 indexes are created for the scene, which corresponds to the number of 
hypotheses that would have to be verified per model feature group if alignment is used. Therefore, there is a 
rapid linear growth in the number of hypotheses created as the model base is expanded. However, the number 
of hypotheses created through indexing remains substantially lower-there is a linear growth, but with a very 
low constant of proportionality. 

analysis of edge and junction intensity events must be carried out with respect to 
constraints imposed by the model. For example, specialised corner detection can 

be supervised by the model hypothesis. 
l A need for global scene analysis. In many cases, ambiguities arise which must be 

settled globally by a scene analysis approach: for example, does a given image 
line come from object A or object B? Are the recognition hypotheses consistent? 
The lack of local support for a model hypothesis can be augmented by global 
relationships, e.g., A is on top of and partially occluding B. In this case we can 
predict the features which are potentially available to support hypotheses for B, 
once A is recognised. 

Next, we take up the problem of 3D object recognition. First, the central question of 
the existence of invariants for the perspective projection of general 3D structures is 

discussed. 

3. Extending invariant descriptions to 3D structures 

Much recent debate has focused around a theorem, proven by a number of authors [ 9, 
11,421, which states that invariants cannot be measured for a 3D set of points in general 
position from a single view. The theorem has frequently been misinterpreted to mean 
that no invariants can be formed for three-dimensional objects from a single image. For 
the theorem to hold, however, the points must be completely unconstrained (like a cloud 
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Fig. X. A “butterfly” configuration ol stx 31) points with a projective invariant measurable from a single 

perspective image. Points ABCD and CDEb’ lie on two planes intersecting in the line CD. The lines AB and 

EF intersect the line CD generating four collinear points. This construction can he carried out in 3D and 

the image to generate corresponding points. The cross-ratio of these points is the projective invariant. Note 

that the planes can articulate about the line CD without altering the value of the cross-ratio. Many analogous 

structures exist e.g.. if the points A8 arc replaced by a line. 

of gnats). If a 3D structure is cotutrait~ed, then invariants are available. For example, 

six points constrained to lie on two planes in a “butterfly” configuration, as in Fig. 8, 
have a cross-ratio that can be measured in the image. This is a projective invariant of 

the entire 3D structure, and not simply a disguised planar invariant, since each plane 

contains only four points (five coplanar points are required to form a plane projective 

invariant from points alone). 
In fact, a set of points in general position in space is a poor model of what we 

see: the world is full of curves, polyhedra, and surfaces; sets of isolated points are an 
irregular occurrence. An analogue of the above “no-invariants” theorem, in the case of 

surfaces, would be to ask whether a generic surface has invariants measurable in a single 

image from its profile. Other than qualitative descriptions such as nonconvexity (from 
the sign of the profile curvature [ 321) and the Euler characteristic (from the profile of 
a transparent surface) no projective invariant can be obtained. A similar result holds for 
space curves. However, if the surface satisfies constraints, much can be recovered from 

a single image, as the following section demonstrates. 

3. I. Object classes 

The form of the constraint on the object defines an object class. The class determines 
both the process by which the 3D invariants are measured in images, and the particular 
segmentation and grouping strategies that are applied during “early vision”. For example, 

surfaces of revolution define a class, with a specific vase or wine glass being particular 
instances of the class. Projective invariants of the 3D surface can be recovered from 
the image profile, and further the two matching “sides” of the profile are projectively 
equivalent (Section 3.5). That is, one side can be mapped onto the other by a projective 
transformation. The segmentation and grouping for this class is guided by the association 
of these projectively related image contours. 

It is important to distinguish this notion of geometric class from the idea of a generic 
rype. For example, the class of rotationally symmetric objects is not the same as the 
generic type category of wine glass. There can be many different shapes of wine glass 
but the class of rotationally symmetric objects is still larger and does not capture the 
functional notion of a wine drinking container. A related discussion of class is given by 
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Moses and Ullman [42] who contrast the notions of generic and specific classes with 
regard to recognition functions. 

Another significant aspect of the class definition is its imposition of constraints which 

can be measured and verified in the image. This consideration is a significant departure 

from the hypothesise and test paradigm of conventional model-based recognition systems 
operating on specific objects. Here, the class assumption can be immediately confirmed 
without committing to the full chain of recognition processing. For example, for a 
rotationally symmetric object, the two “sides” of the image outline are related by a 

planar projective transformation (Section 3.5). This relation can be immediately tested 

when a pair of image profile curves are hypothesised as belonging to an object of class 
rotationally symmetn’c. 

In the following sections we catalogue a number of object classes where each is 
defined by an associated constraint. In each case the recovery of invariants is illustrated 
and other geometric consequences, such as invariant relations, described. 

3.2. Dejinitions-3D projective invariants 

In what follows, we assume a perspective camera with unknown internal parameters, 

and measure only projective properties in the image. In turn, this means in general that 
only projective properties of the 3D objects can be recovered. Algebraically, the camera 

is modelled as x = PX: 

(2) 

where (x, y)T are image coordinates, and (X, eZ)T world coordinates, and k is a 

scaling: in this case, k = (p31X + p32Y + p33Z +p34)-l. 
We now introduce 3D projective invariants because they are the basis for image 

invariants that we can hope to recover from a single view of a constrained structure. 

These are invariants under projective transformations of P3. A projective transformation 
Je written as: of P3 can 1 

i 

X’ 

k 
Y’ 

Z’ 

1 

where k is again the appropriate scaling to ensure the fourth coordinate is one. Fifteen 
parameters are required to define the 3D projective transformation matrix up to an arbi- 
trary scale factor. Thus five 3D points are sufficient to construct a projective coordinate 
system. A sixth point will then have invariant 3D coordinates in the projective basis 
defined by the other five. These 3D point invariants can also be interpreted as the cross- 
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ratio of tetrahedral volumes computed by taking determinants of point coordinates, four 

at a time. 
For example, an invariant for six 3D points is given by 

~~~~s(XI,XZ,XZ,X~,X~.X~) = 
/XI x2 x3 x4/ /XI x2 x5 x6/ 

/XI x2 x3 &I IX, x2 x4 X6/’ 

where X, = (Xi, E, Z;, 1 )T. This invariant has the familiar property of invariants that 

i.e., both the value and the form of the expression are unaffected by the transformation. 

By assuming that a set of constraints hold among the 3D projective invariants of a 
point set, it becomes possible to measure 3D projective invariants in a single view. The 
following section illustrates the nature of these constraints and provides a geometric 

interpretation for the measurable invariants. 

3.3. Constrained point sets 

It is possible in general to predict whether invariants of a three-dimensional structure 
can be measured from images, by counting the number of image measurements available. 
While such counting arguments cannot cover every degeneracy, and therefore never offer 

a proof that an invariant is or is not possible, they offer a useful guide to what is 
likely to be true. A complication in counting the degrees of freedom of a geometric 

configuration, and the number of parameters of a transformation, is the existence of 

isotropies. An isotropy is an action of a transformation which does not alter the geometry 
of a configuration. For example, translation along the tangent direction of a line or 
rotation about the centre of a circle does not affect the structure. Therefore an isotropy 
reduces the effective number of transform parameters, and generally increases the number 
of invariants. 

Consider a 3D configuration M. Plane projective invariants are denoted 12, and pro- 
jective invariants of 3D denoted 13. Then, 

For m perspective images of M, if there is no isotropy group acting in P3, then to 
recover nh functionally independent invariants of the three-dimensional structure 
M from image information alone, the following inequality must be satisfied: 

m x ni2 3 nj, + 3m, 

where nf2 is the number of functionally independent plane projective invariants 
of the image of M. If there is an isotropy group of dimension (dim Is) acting, 
then (provided dim 1~ < 3) the following inequality must be satisfied: 

m x n12 > nh + m(3 - dimIs). 

We sketch the reasoning when there is no isotropy group acting for the case of 
a single image. The image projective invariants are functions only of the projective 
invariants of the configuration consisting of M taken together with the optical centre, 
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0. To see this, consider a projective transformation of P3. This projectively distorts 
the {M, 0) configuration and the image plane. However, the image plane geometry is 
transformed by only a plane projective transformation. This means that the projective 

invariants of both the image configuration and the 3D configuration are unaffected. The 

image projective invariants can depend only on the rays linking 0 to points of M, and 
depend, therefore, on the optical centre 0 as well as on M. Since the image projective 
invariants are unaffected by the position of the image plane, the relationship between the 

2D projective image invariants and the 3D projective object invariants is a function only 
of the three unknown coordinates of the centre of projection. Provided there are three 

or more such image invariants, it is possible (in principle) to eliminate the (unknown) 
contribution of the optical centre. 

The counting argument then simply relates the number of unknowns and the number 
of measurements: in m views there are 3m unknowns for the optical centres, and nl, 
unknown 3D projective invariants for the configuration M; the number of measurements 
is n12 in each of the m images. Note that, like most such arguments, the condition is 

necessary but may not be sufficient; this means that there could be cases where the 
counting argument indicates that invariants can be measured from the image, when in 
fact they cannot. The significance of the argument is that it indicates where a further 

analysis may be useful. 
As an example, consider the case of six points in space which have three 3D projective 

invariants, as discussed above. If we specify, or assume, the values for two of the 
invariants, then we can compute the value of the third from a single image. The so- 
called butterfly configuration in Fig. 8 is an example where we assume that two of the 
3D invariants are zero, which corresponds to the coplanarity of two sets of four points 
in the six-point configuration. The counting argument goes as follows: the number of 

degrees of freedom for the image points is 12 (2 for each point) less 8 for the plane 
projective group gives nl, = 4. For six points in space on two planes there are 16 degrees 

of freedom (3 for each point, less 2 for the planarity constraints) less 15 for the 3D 
projective group, gives nl, = 1. There are also three unknown coordinates of the centre 

of projection. Thus the counting argument shows that the unknown 3D invariant can be 
measured in a single view, i.e., 

1x431+1x3. 

Table 2 

Examples of the counting argument for various butterfly-like structures. A = six-point butterfly; B = butterfly 

with two points of wing replaced by line (four points, one line) ; C = butterfly with lines on both wings (two 

points, two lines) 

A B C 

dof 

dim Is 

“13 

“12 
dof of 0 that matter 

Counting relation 

16 14 12 

0 2 4 

1 1 1 
4 2 I 
3 1 0 

4=1+3 2=1+1 1=1+0 
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Similar counts for a number of butterfly analogues in the case of isotropies are given in 
Table 2. Sparr [ 621 has constructed many other examples of butterfly-like configurations, 
and provides a method for generating such invariants algebraically. 

The counting argument is used in this manner to focus attention on configurations 

where invariants may be available. As a further example, consider recognising algebraic 
surfaces from their profiles. In this case, the surface has degree d, and has [ i(d + 

3) (d + 2) (d + 1) - I ] - IS functionally independent projective invariants. The profile 
has degree d (d - I ) . and has [ $ ( I -d +d2) (2 -d +d2) - 1 ] - 8 functionally independent 

projective invariants. For d > 2, the number of invariants of the profile substantially 
exceeds the number of invariants of the surface, and so it is reasonable to expect to 

recover invariants from the profile of an algebraic surface. In fact, such invariants can 

be recovered, though the procedure is complicated; details are given in [ 201. 

3.4. Repeated structure 

Structures that repeat in a single image of a scene are equivalent to multiple views 

of a single instance of the structure. Thus, for example, a view of two similar cars in a 
car park where the cars are parked within translations of one another, is equivalent to 

a stereo pair of images of one such car, with the cameras related by a pure translation. 

The 3D shape of the car can be recovered by the familiar techniques of stereopsis. More 
formally, 

A repeated structure is defined by a geometric structure S, and a 3D transforma- 
tion I, which generates a transformed copy of S, i.e., S’ = 7(S). Both S and 

S’ are viewed in the same perspective image. 

In many cases the internal calibration parameters of the camera will be unknown. In this 
case a single image of a repeated structure is mathematically identical to an uncalibrated 

stereo pair where the two cameras are related by the transformation between S and 
S’. It has been shown by Faugeras [ 151 and Hartley et al. [ 301 that if one carries 
out stereo reconstruction from two uncalibrated perspective images, the reconstruction 
can differ from the actual 3D Euclidean geometry of the object by a 3D projective 
transformation. Thus, 3D projective invariants of this recovered structure have the same 
value as projective invariants measured on the actual Euclidean structure. 

The equivalence with stereo means that epipolar structure can be defined within a 

single image and represents the geometric relationship between corresponding features 
on the object copies. As a simple example, consider the case where 7 is a 3D trans- 
lation, i.e., S and S’ are related by a simple 3D translation. In this case, it can be 
shown [ 4 I ] that afine, rather than projective, 3D structure can be recovered. Lines 
joining corresponding points on S and S’ are parallel in 3D and are imaged as a set of 
lines converging to a vanishing point. These imaged correspondence lines and vanishing 
point are the analogue of “epipolar lines” and “epipole”, and these terms will be used 
from now on. For translation only, there is a single epipole and corresponding points 
in S and S’ lie on the same epipolar line. We call this convenient correspondence 
relation auto-epipolar correspondence. This correspondence relation is an example of 
the more general idea that repeated 3D geometric structure imposes 2D constraints on 
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corresponding image features which can be used to advantage in grouping and verifica- 
tion. 

We reserve the epipolar terminology for the case where the centres of projection of 
the two cameras are displaced. For some repeated structures, the transformation between 

S and S’ does not alter the camera centre and thus does not yield an epipolar structure. 

However, it is still possible to construct a correspondence structure in the image which 
is not an epipolar geometry but has many similar advantages. An example of this is 

given in Section 3.5 for surfaces of revolution. 

Thus we have two recurring issues that arise in the context of repeated structures and 
in most cases where object class produces invariants that can be measured in a single 

image view: 
( 1) the computation of image-measureable 3D invariants; 
(2) the correspondence relationship between the imaged features of the 3D structure, 

and associated grouping strategies. 

In the next few sections we review some mature examples of repeated structure [ 36,461 

where the discussion is organised around these two issues. 

3.4.1. Bilateral symmetry 

In the case of a single bilateral symmetry, the repeated structure is the half object 
on one side of the symmetry plane. A single camera imaging a bilaterally symmetric 
object is equivalent to two identical cameras, viewing the half structure, where one 

camera is transformed to the other by a reflection in the object symmetry plane. A 

similar observation was made in [ 26,391, though in the context of a calibrated camera. 
Below we give examples of 3D point sets and space curves with a single bilateral 

symmetry. 

30 geometry 
Lines joining corresponding points (on either side of the symmetry plane) are par- 

allel and orthogonal to the plane of symmetry. There is a natural coordinate system 
provided by these correspondence directions and the symmetry plane (Fig. 9). The 
correspondence lines intersect the symmetry plane at the midpoint of the corresponding 

points. 

Measuring invariants 

Perspective projection does not preserve midpoints. However, the images of the 3D 

midpoints can be computed (see below). All 3D midpoints are coplanar (they lie on 
the symmetry plane). There is a projective transformation between the set of imaged 
midpoints and the 3D points on the plane of symmetry. Thus planar projective invariants 
can be measured in the image from the computed midpoints. 

The image of the 3D midpoints can be computed using a property of equally spaced 
points (see [63] ): three collinear points, separated by the same distance, and taken 
with a point at infinity have a harmonic cross-ratio. Since the point at infinity on the 
line joining two corresponding points is imaged as a vanishing point (see below, and 
Fig. lo), it can be observed. Thus, the position of the midpoint in the image can be 



i: ‘Midpoints 

Fig. 9. The natural coordinate frame Ibr an object with bilateral symmetry. The XY plane is the plane of 

reflection. and the Z axis is parallel to lines joining corresponding points. Note, all midpoints are coplanar. 

computed from the image coordinates of the corresponding points and from the image 
coordinates of the vanishing point. Furthermore, since computing a point that has a fixed 

cross-ratio with respect to three other points is linear, there is a unique solution. Other 
geometric methods for computing the imaged midpoint are available, based on point 
pairs or triplets. 

The 3D structure can be reconstructed up to a projective ambiguity, based on the 

equivalence with uncalibrated stereo [ 15,301. 3D projective invariants can be measured 
from this recovered structure. In the case of bilateral symmetry, structure is recovered 
to better than a projective ambiguity because of the orthogonality constraints available 
in the “natural” coordinate frame [ 18,561, 

Cosrespondence arid grouping 

The epipolar structure in this case arises from the parallel lines joining corresponding 
points (on each side of the object). Under perspective projection, these correspondence 
lines (the epipolars) image to a family of lines converging to a single vanishing point 
(the epipole). The epipole can be determined using two pairs of corresponding points 
(Fig. IO). Once the epipole has been computed, further correspondences are found by 
a ID search on the epipolar line. This is a recurring theme-the constraints that define 
the object class not only show how invariants may be recovered, but also facilitate and 
direct the image grouping. 

We demonstrate two examples of bilateral symmetry, a polyhedral point set and a 
space curve. 
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// corresponding points 

a 

Fig. IO. (a) The epipole can be located using the intersection of lines between two corresponding points on 

a bilaterally symmetric object (the points are marked by solid circles). Epipolrus can then be constructed 

through the epipole to aid correspondence. (b) Typical corresponding points determined in this manner. 

a b 

C a 

Fig. 11. Three-dimensional structure is recovered, module a projectivity, from the single view of the points 

marked on the stapler in Fig. IO(b). Four typical views are shown with only (a) at a viewpoint close to that 

of the original image. Note the collinearity of the line segments in (b), this demonstrates the accuracy of the 

recovered structure. 

( 1) 30 poZyhedron. Fig. 1 I shows different views of the 3D reconstruction of a 
stapler obtained from a single view. The reconstruction is placed in a Euclidean 
frame to give a normal presentation of the object shape, but any projective frame 
could be used. 



262 A. Zissermun et ul. /Artijicial Intelligence 78 (1995) 239-288 

c d 

Fio 

all& 

12. A single view of an object with a plane of bilateral symmetry, such as a teaspoon, is sufficient to 

a full 3D projective reconstruction. Only two pairs of distinguished points are needed for the approach, 

these are recovered from surface markings and can be used to determine the epipolar structure of the image. 

Using this epipolar structure an arbitrary number of correspondences can be produced. Four different views 

are shown of the 3D reconstruction computed from the image. The construction works very well: note the 

planarity of the handle recovered in (b), and the full 3D shape in all of the images. 

(2) A space curve. Corresponding points on the two imaged space curves are de- 

termined using the epipolar geometry. Four different views of the reconstruction 
for the outline of a spoon are shown in Fig. 12 (the 3D projective representation 
has again been constrained to lie in a believable Euclidean frame). 

The reasoning outlined above can be applied to objects with more than one bilateral 
symmetry [ 181 and to objects projectively equivalent to ones with bilateral symme- 
try. 

3.4.2. Trunslational repetition 

In this case the structures, S and S’, are related by a 3D translation. As described 

above, the structure of S can be recovered up to an affine ambiguity, from a single 
image of the duplicate structure. 

Measuring invariants 

Aftine invariants are computed from the perspective image in three stages. First, 
structure is recovered up to a projective ambiguity using uncalibrated stereo. Second, 
the plane at infinity [ 631 is determined in this projective coordinate frame as follows: a 
line on S is parallel to its counterpart on S’, so the intersection of corresponding lines 
is a point P on the plane at infinity. The image, p, of P is computed by intersecting 
the imaged corresponding lines. Since p lies on both lines its 3D position, P, can 
be determined by stereo. Three such points determine the plane at infinity. Third, the 
structure is projectively transformed such that the plane at infinity has the standard form 
X4 = 0. The structure is then known up to an affine ambiguity, and affine invariants 
measured from this structure have the same value as invariants measured on the 3D 
Euclidean structure S. 
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d 

Fig. 13. One object (a speaker) repeated under translation. The epipolar correspondence lines for image (a) 

are shown in (b). The translation vector is different for images (a) and (c) and the same between (c) and 

(d) Affine invariants computed from these images are compared in Table 3. 

Table 3 

Comparison of 3D affine invariants computed for the speaker from Fig. 13. The invariant is the 3D position 

of one comer of the speaker in an affine frame defined by four other points on the speaker. The values are 

fairly stable, even though the images have different translation vectors and viewpoints 

Image (a) Image (c) Image (d) 

-0.2249 -0.2324 -0.2317 

-0.0642 -0.0685 -0.0626 

I .2833 1.2979 1.2849 

Correspondence and grouping 
As in the bilateral symmetry case, lines joining corresponding 3D points are parallel. 

The image correspondence is again auto-epipolar (all corresponding lines intersect in a 
single epipole) . 

As an example, invariants are calculated from the images of two translated polyhedral 
structures shown in Fig. 13. The translation between the duplicated structure differs 
in each case demonstrating that the invariants are associated with the structure itself, 
i.e., S. Affine invariants are computed for the 3D vertex positions which are computed 
using the epipolar geometry of the translated copies. The values of the invariants are 
given in Table 3. The differences between the invariants computed from each image are 
small, even though the translation vector between the speakers and the viewpoint varies 
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significantly. In many cases of such repeated structures, the object copies are rigidly 
connected, but this example illustrates that the affine invariants are independent of the 
translation vector as well. 

3.4.3. Other repeated structures 

The notion of structure repetition under a transformation is extensible to more general 
situations. It is not necessary that the copies be Euclidean equivalent and repeated under 

translation. The copy transformation can be a full 3D projective transformation whilst 

still preserving an epipolar correspondence within the image. The 3D reconstruction 

of the object geometry is then known only up to a 3D projective transformation of 
space. 

In the case that there are three or more Euclidean equivalent structures, the geometry 
can be recovered up to a 3D similarity. This follows from the equivalence of this case 
to three views of a single object taken with an identical camera, where it has been 
demonstrated that structure can be recovered up to a 3D similarity [ 171. 

It is also interesting to speculate about approximately-repeated structures. Suppose 

that the structure is not repeated according to a rigid 3D transformation but is only an 
approximation to such a transformation. This approximate repetition occurs in natural 
objects such as animals and vegetation. It seems that the invariants which one can 
compute from an idealised form of the approximate repetition will not be very far from 
an invariant description of the actual structure. For example in a bunch of grapes, it 

can be assumed that each grape is copy of the other under an affine transformation or 
perhaps even a scaled Euclidean transformation. Another example is texture which can 

be thought of as a statistical repeated structure. 

3.5. Rotational symmetr) 

Surfaces of revolution have had considerable attention, though generally with cali- 
brated cameras [ 131, or as a special case of a generalised cylinder [ 52,711. 

Projile geometry 

The image curves forming the two “sides” of the profile are related by a plane pro- 

jective transformation, T, with the property that T’ = I. Such a projective transformation 
is called a planar harmonic homology [63]. It arises in this case because the im- 
age transformation is a conjugate reflection (whose conjugating element is a projective 

transformation). To see this, construct the plane containing the axis of the surface and 
the optical centre. The surface then has a mirror symmetry in this plane, as does the 
cone of rays through the optical centre and tangent to the surface. This cone yields the 
profile when it is intersected with the image plane. Clearly, the contour generators are, 
in general, space curves, related by a mirror symmetry in space. If the image plane 
is perpendicular to the plane of symmetry, then the profile has a mirror symmetry; 
but the profile for any other image plane is within a projective transformation of the 
perpendicular plane. 

In this case, there is no epipolar geometry defined, since reflection in the symme- 
try plane does not move the optical centre. However, a correspondence relation still 
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Fig. 14. The profile of a surface of revolution is projectively equivalent to two curves with bilateral symmetry. 
Under a projective transformation parallel correspondences (left) converge to a vanishing point (right). 
Corresponding points x H x’ are related in this case by a particular plane projective transformation, T, called 
a planar harmonic homology. The transformation has a line of fixed points, the image of the axis of symmetry, 
which result from two of the eigenvalues of T being equal. There is also a fixed point, et, not on the line, 
called the centre of the homology which defines correspondences between symmetrical points on each side of 
the contour. That is, corresponding point pairs and the centre of the homology are collinear. The cross-ratio 
of et, the corresponding points x, x’, and the intersection of their join with the axis, is harmonic. (The line 
of fixed points is ez x e3, where ez and e3 are the eigenvectors with equal eigenvalues. The third eigenvector, 
et, is distinct and nonzero, and is the centre for a pencil of fixed lines.) 

exists and is generated by the planar homology between the opposing sides. A pla- 
nar harmonic homology (see Fig. 14) is a special case of a planar homology (see 
Fig. 20(b)) for which the characteristic invariant of the homology is harmonic [ 631. 

For planar homologies there is a fixed point which is the centre of a pencil of fixed 
lines which define correspondence pairs. That is, corresponding points lie on the same 
line of the pencil, in the same manner as the epipolar geometry of translated cam- 
eras. 

Measuring invariants 
The intersections of “corresponding” profile bitangents lie on the projection of the 

object’s axis. The image intersection points are projections of the intersection points 
between planes bitangent to the surface and the 3D object axis. This point is viewpoint- 

independent. This is shown schematically in Fig. 15. Four such points are sufficient to 
measure a cross-ratio (the points are collinear in space, all lying on the axis of rotational 
symmetry). In this manner a projective invariant (the cross-ratio) is associated with the 
surface [21,35,45]. 

The construction extends to straight homogeneous generalised cylinders (SHGCs) 

[3,35]. Again, the intersections of corresponding profile bitangents correspond to a 
viewpoint-invariant 3D point, and are collinear, so cross-ratios can be formed. Fig. 
16 shows images of a surface of revolution with the calculated invariants given in 
Table 4. 
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Fig. 15. A rotationally symmetric object, and the planes bitangent to the object and passing through the optical 

centre. are shown. It is clear from the figure that the intersection of these planes is a line, also passing through 

the optical centre. Each plane appears as a line in the image: the intersection of the planes appears as a point. 

p, which is the image of the point, P, at which the bitangent planes intersect the axis of symmetry. 

Fig. 16. Five perspective images of a surface of revolution at different inclinations. The invariant values are 

given in Table 4. 

Table 4 
Stability of invariants for a surface of revolution. The invariants are computed from measured points. The 

angle is the inclination of the axis of the lamp-base to the camera plane (Fig. 16). Typical affine (length 

ratio) and projective (cross-ratio) invariants are shown. Note that the value of the affine invariant changes at 

extreme angles, whereas to two significant figures the projective invariant remains stable to the second decimal 

place 

Angle Cross-ratio Lzngth ratio 

45.0 0.486187 I .40862 

40.0 0.490.561 1.98153 

35.0 0.486796 2.14017 

2S.0 0.486640 2.38409 

IS.0 0.486260 2.70539 

0.0 0.494849 4. I3687 
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Correspondence and grouping 

261 

AS described above, the profile of a rotationally symmetric surface can be separated 
into two “sides”, which are related by a planar harmonic homology, T. There are a 
number of consequences of this result: 

(I) The two sides of the profile can be grouped by associating curves which are 
projectively equivalent. For example, by matching projectively equivalent con- 
cavity curves. This correspondence can be achieved automatically by the planar 
recognition system described in Section 2. 

(2) If the projective transformation between two projectively related curves is not a 
harmonic homology, then the grouped curves can be ruled out as arising from a 

surface of revolution. This is simply tested by checking if T2 = I. 
(3) Under real imaging conditions the transformation T relating the two sides of a 

profile will be close to affine. This quasi-invariant condition can be used in two 

ways: first, lines joining corresponding points on the two sides of the profile will 

be almost parallel. Second, relative (not scalar) affine invariants can be used to 
match concavity curves [43]. 

(4) T provides point-to-point correspondence between the sides of the profile, this 
can be used to disambiguate bitangent matches. This correspondence can be used 
to repair missing profile portions, filling in gaps by transforming over points from 

the other side of the profile. 
(5) The projected axis can be determined directly from the projectivity as a line of 

fixed points of the homology [63]. 
To illustrate the power of this grouping constraint, Fig. 17 shows an image with 

many surfaces of revolution of various types and sizes. The matched concavities are 
partitioned into sets, and the profile curves corresponding to each set are grouped. The 
entire process is automatic and relies only on the properties of the homology between 

symmetrical portions of the profile. 

3.6. Canal surfaces 

A canal surface is the parallel surface of a space curve. It is the locus of points which 
are a fixed perpendicular distance from the curve. Equivalently it can be generated as 
the envelope of a sphere swept with the centre on the curve. Common examples are 
pipes or tubes such as occur in plumbing. In the following we consider canal surfaces 
for which the generating curve, LY, is planar. For such surfaces we have: 

Under general viewing conditions, an inflection in the generating curve gives 
rise to two inflections in the profile, one on either “side”. The tangents on the 
contour generator at the pre-images of the profile inflections, and the tangent at 
the generating curve inflection, are parallel. 

The consequence of this is that tangents at the paired profile inflections intersect in the 
vanishing point of the generating curve inflection tangent. This vanishing point lies on 
the vanishing line of the plane of the canal surface generating curve. This is illustrated 
in Fig. 18(a). Note that a straight line is simply a degenerate inflection, so invariants 
can be obtained from a piecewise linear generating curve. 
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Fig. 17. (a) Original image containing several surfaces of revolution, (b) The linked edges computed from 

(a). (c) Extracted surface of revolution profiles with axes computed automatically using grouping constraints 

based on a harmonic homology. (d) Extracted surface of revolution profiles and axes superimposed on the 

original image. 

b 

Fig. 18. For a canal surface with a planar axis. (a) intlections in the profile occur in pairs for each inflection 

of the axis. The intersection of a pair of inflection tangents determines the vanishing point of the tangent line 

at the axis inflection. Two such vanishing points determine the vanishing line, I,, of the plane of the axis; 

(h) corresponding profile tangents (profile points arising from the same surface circular cross-section) also 
intersect on I,. Their intersection point is the vanishing point of the corresponding axis tangent line. 

Computing invariants 

The canal surface is the envelope of spheres, and the canal profile the envelope 
of sphere profiles [ 601. Under affine imaging conditions, provided the image has the 
correct aspect ratio (scaled orthographic projection), the sphere profile is a circle, and 
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d 

Fig. 19. Affine normalisation of canal surface symmetry sets. Each row shows two images of the same pipe, 
and the symmetry set from these views and others transformed to an affine canonical frame. The canonical 
frames (c) and ( f) contain symmetry sets generated from thirteen and five images respectively. At least half 
of each set show significant perspective distortions, Note the variation in pipe width in the middle column 
due to perspective. Affine (as opposed to projective) normalisation can be achieved because the vanishing 
line of the plane of the generating curve is known (It is computed using the construction of Fig. 18 (a) ) The 
canonical frame curves are clearly very stable against variation in viewing position. Moreover, different pipes 
can be distinguished based solely on this affine representation [ 501. The slight instability present towards the 
ends of the canonical frame curves are due to errors in the extracted symmetry set which occur where the 
pipe radius changes. 

the sphere centre projects to the circle centre. The circle centre can be recovered from the 
symmetry set 5 of the canal profile, which is thus projectively related to the generating 
curve, LY. This relation is exact under affine imaging conditions, and is an extremely 
good approximation under perspective with a realistic field of view-another example of 
a quasi-invariant. Consequently, invariants computed for the symmetry set are invariants 

of the generating curve. For example, invariants can be computed from measurements 
on the symmetry set curve in a canonical frame in a similar manner to the “footprints” 
of Lamdan et al. [ 341. Fig. 19 shows examples of such curves. 

Correspondence and grouping 
As in the case of bilateral symmetry, the constraint of a canal surface with a planar 

generating curve establishes a planar projective constraint in the image. In this case two 
vanishing points determine the vanishing line, l,, of the plane containing the generating 

curve. Subsequently, inflections on the profile can be paired by the intersections of their 
tangents on this vanishing line. Furthermore, it can be shown that this intersection 
constraint holds for all corresponding profile points, i.e., 

5 The symmetry set is the locus of centres of circles bitangent to a plane curve. It is studied in detail by 
Giblin and Brassett 1231. 
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Corresponding profile tangents (i.e., points whose pre-image is on the same 
circular cross-section) intersect on 1,. 

Set Fig. 18(b). 
Under affine imaging conditions the two sides of the profile are parallel curves of the 

symmetry set (the projection of the generating curve). This follows directly from the 
profile curves being the envelope of constant-radius circles swept along the symmetry 
set. 

3.7. Polylzedru 

Recovering the structure of polyhedral objects from a single view has been widely 

explored, with the most detailed study appearing in [66]. In this work, Sugihara shows 
that the incidence equations between polyhedral vertices and faces, observed in the 
image, lead to a linear system of equations in the coefficients of the polyhedron’s faces 

and image observations. 
The equations in this system are incidence equations for vertices of the polyhedron 

incident on plane faces. In particular, given vertex V; = (Xi, I$, Zi) lying on face F; = 
(A;,B.i,C,, l), it must be the case that 

A,X; + lIiK + C,,Z, + I = 0. 

Assume that the camera image plane is the plane Z = 1 and the focal point is at 
(O,O, 0); these assumptions can be accounted for by the geometric ambiguity in the 
reconstruction. Then Vi projects to image point (ui, u;) = (Xi/Zi, K/Z,). If vertex Vi 
also lies on face Fk, we can divide the incidence equations by Z; and subtract to 
eliminate 1 /Zi, obtaining: 

(A, - 4)~; + (B., - ~k)t’, + cc, - ck) = 0, 

where u; and L’; are known, and the coefficients of the planes are unknowns. This system 
of equations always has at least a three-dimensional family of solutions, corresponding 
to a polyhedron where all faces are the same plane (since a plane figure has three 

degrees of freedom in 3D space). If the family of solutions is four-dimensional, then 
a generic element of the family is a system of planes that is projectively equivalent 
to the faces of the original polyhedron. This case holds when the reconstruction of 
the polyhedron cannot be made impossible by a small shift of the vertices, that is, is 

“position free” in the terminology of Sugihara, and many or most of the visible faces 
have at least four vertices per face. Although this is by no means a generic polyhedron, 
it is a useful case because many human artifacts satisfy these constraints. Given the 
added assumption that vertices are trihedral, it is possible to reconstruct faces for which 
only two edges are visible; thus, on viewing a cube, all six faces can be recovered. This 
leads to a novel formulation of the aspect graph idea, where substantively fewer aspects 
are necessary for effective representation. The case where the polyhedron consists only 
of triangular faces is equivalent to an unconstrained set of points. That is, a set of points 
can always be triangulated to form a polyhedron. As in the case of a general point set 
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(Section 3), vertex positions are unconstrained by the image view and no invariants can 
be constructed. 

Computing invariants 
Assuming an uncalibrated camera, it can be shown [56,57] that for polyhedra that 

lead to a system of equations having a four-dimensional solution space (such as cubes) 
any solution of this system is projectively equivalent to the original (Euclidean) polyhe- 

dron. Consequently, projective invariants of the solution are the same as those measured 

on the original polyhedron. 

Correspondence and grouping 
Approaches to grouping and correspondence for this class are well established from the 

decade or so of blocks world vision research. The main basis for grouping is topological, 
where one seeks to construct a complete polyhedral structure with consistent incident 
relations between vertices, edges and faces. 

For particular subclasses of polyhedra, and for particular aspects, further constraints 

are available. For example, a cube has three major directions which define a triple 
of vanishing points in the image. All edges aligned with a major direction must pass 

through the same vanishing point. Similar incidence constraints apply to any polyhedra 

projectively equivalent to a cube. Constraints of this type can be used to extract a 

polyhedral wireframe from a polyhedral silhouette, inferring internal boundaries. 

3.8. Extruded surfaces 

An extruded surface is a special case of a generalised cylinder, formed by a section 
cut from a general cone by two planes (see Fig. 20(a) ) in such a way that the section of 
surface does not include the vertex of the cone [ 221. This is the projective generalisation 
of a surface formed by a system of parallel lines, with plane ends (such a surface can 
be extruded from a nozzle). Extruded surfaces, and surfaces made up from extruded 
components, are extremely common-examples include most tin cans, boxes, books, 

and many plastic bottles. 

Outline geometry 
The base and top curve are perspectively related in 3D, and thus related in the image 

by a projective transformation, T. This transformation is a planar homology [ 631. It has 
five degrees of freedom: the vertex (2 dof), axis (2 dof) and the cross-ratio defined 
by the vertex, a pair of corresponding points, and the intersection of the line joining 

these points with the axis (1 dof). The cross-ratio is the same for all points related 
by the homology.6 As in the case of a planar harmonic homology (Fig. 14) a planar 
homology has a line of fixed points and a fixed point not on this line: 

h In the case of a harmonic homology, the cross-ratio is harmonic, i.e., known, so there are only four 

remaining degrees of freedom. The sides of the profile of a surface of revolution arc related by a harmonic 

homology, as described in Section 3.5. 
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(a) (b) 

Fig. 20. An extruded surface is a section cut from a general cone by two planes. (a) A range of examples of 

extruded surfaces; note that for most examples, the vertex is at infinity. (b) The top and base image curves, 

Cl and C2, of an extruded surface are related by a particular projective transformation T, called a planar 

homology. Corresponding points lie on lines through V, which is the fixed point of the transformation (the 

centre or vertex). The line L, which is the image of the intersection of the two planes that cut the “cone”, is 

a line of fixed points of the transformation (the axis ). 

( 1) The homology vertex is the projection of the 3D cone vertex. It is the fixed point 
of T. 

(2) The homology axis is the projection of the line of intersection of the top and 
base planes. It is the line of fixed points of T. 

The profile curves of an extruded surface are a pair of lines which intersect at the image 
vertex. 

Computing invariants 

The projective geometry of an extruded surface is completely defined by three ele- 
ments: a plane cross-section; a cone vertex, not on the plane; and, a line in the plane. 
The plane cross-section and vertex together define the cone. The line is the axis of the 
pencil of planes which intersect the cone to generate the top and base curves. These 
elements can be recovered from an image of the surface since the cross-section of the 
cone is determined up to a projective transformation from the imaged base curve or top 
curve, and the line is the line of tixed points of the projective transformation relating 
top and base image curves. 

In essence, the invariants of an extruded surface are those of the plane cross-section 
plus an extra line in the plane, obtained from intersection of the base and top planes. 

Thus extra invariants are available over the plane cross-section alone. For example, in 
Fig. 20 a five-line invariant can be computed from the image, although the top curve 
only contains four lines. In the case that the top and base planes are parallel, affine 
invariants of the curve can be measured from a perspective image. 

Correspondence and grouping 

As described above, for an extruded surface the top and base image curves are related 
by a planar homology, T. Grouping proceeds by finding curves which are projectively 
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related. The class assumption can then be tested immediately since the projective trans- 
formation must be a homology if the curves are from an extruded surface (for example, 
two of the eigenvalues will be equal). The homology then defines the vertex, axis, and 
correspondence for the surface, which is used for further grouping. Additionally, since 
the surface is ruled, and all rulings pass through the vertex, the intersection of line 
segments in the profile determines the imaged vertex. Similarly, all corresponding point 
pairs on C and C’ (Fig. 20(b)) define a pencil of lines which pass through the vertex, 
and corresponding tangents intersect on the line of fixed points, 1. 

3.9. Algebraic surfaces 

Algebraic surfaces are surfaces for which a single polynomial vanishes: examples 
include spheres (x2 + y2 + z* - 1 = 0) and ellipsoids which are both degree-two 
surfaces (quadrics) , and a wide range of popular surfaces in modelling such as rational 
bicubic patches. Smooth quadrics are all projectively equivalent (just as all tonics are 
projectively equivalent) so that there are no projective invariants of the surface to recover 
from images. Although a single quadric does not have any projective invariants, two or 
more quadrics do. Similarly, if the surface has degree 3 or greater, there are projective 
invariants to recover from images. In theory these invariants can be recovered from the 
surface profile alone [20], though this has not been implemented in practice. 

4. An architecture for a 3D recognition system 

We have demonstrated that a large vocabulary of 3D invariants can be derived from 
the geometric constraints associated with object class definitions, e.g., that of a surface 
of revolution. In general, these curve, surface or volume class constraints enable the 
construction of invariants, and permit at least partial reconstruction of the 3D structure 
from a single perspective view. Class constraints also provide image feature grouping 
mechanisms and associated indexing machinery. 

The work to date, however, has focused on the derivation of invariants, structure recov- 
ery, and grouping for single object classes. Experimental validation has been restricted 
to isolated objects of a given class against an uncluttered background. An important next 
step is to integrate the approaches which have been developed into a unified 3D object 
recognition system. It is only in the context of a full system that the effectiveness of a 
class-based invariant representation for recognition can be convincingly demonstrated. 

4.1. Fundamental principles 

Object recognition should be based on 3D geometric descriptions, both of objects 
and of the relationships between objects. To date, systems have largely ignored these 
relationships; as we show below, requiring consistency in inter-object relationships yields 
substantial information. In the architecture we describe, this information is encapsulated 
in an internal database, known as the scene. The scene provides a working reconstruction 
against which hypotheses can be checked to provide immediate detection of a false 
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recognition hypothesis. For example, if two objects are hypothesised in such a way that 
one must be wholly occluded by the other, then at least one of the object hypotheses 

must be wrong. 
Central to the architecture is efficient management of control of each level. Even 

for relatively small images, vast numbers of hypotheses for feature correspondences 

and model interpretations can be constructed. It is impossible to explore all avenues of 
interpretation, so some basis must be established for scheduling feature combination, 
hypothesis generation and verification of hypotheses. The priority of scheduling should 
be based on a tradeoff between the cost and the benefit of a computation. 

Finally, class pervades the architecture, influencing segmentation, grouping, indexing, 
and hypothesis confirmation. 

4.1.1. Class 

The idea that objects should be organised in a taxonomy and classified before pro- 

ceeding to recognition is a natural and well-accepted principle. The problem with this 
philosophy is that many ontological distinctions are not manifested in observable prop- 
erties, for example, the difference between a hollow container and a solid block. Our 
geometric approach to object classification is based directly on visible features; its main 
strength is that it is not vested in abstract, philosophical differences, so much as in 

image observable distinctions. Object class has its most important effects in considering 
feature grouping and the structure of the modelbase. 

Class drives grouping, as opposed to the usual “heuristics” that are used to associate 
image features. Each object class defines a grouping mechanism based on its image 

invariant relation. For this reason, object class is typically settled at an early stage in 

the grouping process, and identity emerges only after modelbase access. For example, 
there is no point in grouping lines into faces, as required for polyhedral class grouping, 
to recognise a rotationally symmetric object. A rotational symmetry hypothesis requires 
image curves related by a planar harmonic homology. The projective matching of these 
curves can be carried out by computing and matching projective invariants of the curves. 
This is an application of planar object recognition techniques within a single image. 

Class determines the access functions and partitioning of the modelbase. The model- 
base itself is a collection of facts about objects and their properties. These facts must be 
organised in such a way as to allow easy retrieval; a hashing mechanism is appropriate. 
By the time the modelbase is accessed, the object group will contain a strong implicit 

hypothesis about object class-for example, a pair of concavity-curves cannot be passed 
to the polyhedral hashing mechanism. In fact, the modelbase can be viewed as a rather 
conventional database, organised to answer certain queries very efficiently. 

4.1.2. Consistem) 
Consistency tests arise from computing and representing relationships between objects. 

To date, there have been few “hard” geometric consistency tests for inter-object relations. 
In fact, strong geometric tests emerge from the observation that objects share the same 
Euclidean frame and the same camera. These tests make it possible to recover the 
Euclidean identity of objects even if the calibration of the camera is initially unknown. 
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Fig. 2 I. (a) A scene containing polyhedra all of which are projectively equivalent, but Euclidean inequivalent. 
(b) A labelling of the scene. (c) A Euclidean reconstruction of the polyhedral world shown in (a). The 
optical centre is the marked point in the top right-hand comer of the figure. 

Suppose that models are Euclidean (i.e., the relation between the model and object 

is an Euclidean transformation, as opposed to the projective transformation of the 2D 
recognition system), and recognition hypotheses have been formed for a number of 
objects. Even though the camera is uncalibrated, the Euclidean consistency of the recog- 

nition hypotheses can be tested by a comparison of the set of ray cones from the optical 
centre to each object. 

The cones are determined from P, the rank three, 3 x 4 projection matrix of Eq. (2). 

Given a hypothesised object, P is determined from the known 3D Euclidean geometry 
and the image features by standard resectioning (as in, for example [55]). Partitioning 
P as P = [M 1 -Mt] [ 301, then t is the optical centre which is the null space of P. A 

cone of rays from the optical centre to other Euclidean objects in the scene can then be 

constructed. 
If the hypotheses for each object are correct, the ray cones for each object should 

be Euclidean equivalent. That is, there will be a rotation about the optical centre which 
superimposes the cones for each object from each hypothesis. Thus, inconsistent hy- 
potheses can be detected by the failure of this test and the goal is to build up the largest 

pairwise consistent set of object hypotheses. An example of hypothesis labelling and 
reconstruction is shown in Fig. 21. 

Another consistency test involves decomposing the matrix A4 (above) as M = KR by 
QR decomposition [ 25 J , where R is a rotation matrix, and K an upper triangular matrix 
containing the intrinsic parameters of the camera. Each hypothesis must agree on the 
camera intrinsic parameters and inconsistent hypotheses can be detected from differing 

decompositions for K. 
Given an image containing a large number of known objects, once the first few 

have been recognised and used to construct a consistent world frame, this frame can 
be accepted and used to prune additional hypotheses in a depth-first search for consis- 
tency. At this point, rather than searching for consistent groups of object hypotheses, 
individual hypotheses can be tested against the established frame with little risk of 
error. Furthermore, if this frame is accepted, then it can be used to condition group- 
ing and indexing activities. The Euclidean reconstruction of the world forms the scene 

database. 
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Fig. 22. The proposed architecture for object recognition organised around geometric classes with associated 

grouping and indexing methods. 

4.2. The architecture 

Representation is organised into a number of layers as illustrated in Fig. 22. These 

stages of representation are not very different from other recognition architectures, 
however the three principles of class, global consistency and control provide a unifying 
theme. 

Segmentation and grouping 

The key to successful recognition is efficient and robust feature segmentation and 
grouping. There are four levels of image feature representation and grouping: 

l Level I: Pixel-level features. These are defined with respect to an image coordinate 
system and reflect the quantised nature of pixel coordinates. Typically, features will 

be produced using an edge operator with subpixel accuracy, and the resulting edgels 
linked into a network reflecting the topology of the image boundaries. 

l Level II: Geometricfeatures. Curves from level I are described in terms of geometric 

primitives, where appropriate. For example, algebraic curves such as line segments 
and tonics, smooth curves, and concavities defined by bitangents. 

l Level III: Generic grouped features. This level of grouping is applied to all fea- 
tures produced at level II. The output is a number of groupings and databases which 
are used by the class-based groupers described below, Generic grouping includes: 

near-incidence (jumping small gaps, completing corners and junctions); collinear- 
ity; marking bitangent and other distinguished points; finding sets of parallel line 
segments; affine or projective equivalence of curve segments (e.g., concavities), 
These relations can be viewed as queries to a spatially organised database. For 
example, typical queries might be: “what other lines are parallel to a given line 
and above a certain length in the region of interest?‘, or “what other lines are 
collinear with the given line over the entire image?‘. In the current design there 
is no attempt at enforcing “backwards compatibility”. For example, if a grouper 
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at level III hypothesises that two curves should be joined there is no attempt to 
correct the level II representation. Ultimately, it may be important to ensure such 
consistency between levels. 

l Level IV: Class-based grouping. Each class has an associated “class-based grouper” 
that interrogates the level III groupings and databases, and attempts to form groups 
appropriate for its class. The grouping mechanism is based on the image invariant- 
relation as described in Section 3 for each class. A good example is given by the 
rotationally symmetric class which defines a grouping constraint in terms of the 
harmonic homology between the corresponding sides of the profile (Section 3.5). 

In addition to grouping, such constraints can be used to repair missing portions 
of the outline due to occlusion or poor contrast. For example, for a surface of 
revolution, a “snake” or deformable template can be defined by one side and 
applied to the other under the transformation of the homology. The transformation 
between both sides can be iterated to improve the geometric correspondence of both 
sides. Such class-based snakes can also augment the initial edge1 extraction process. 
Fig. 23 shows an example of repair and augmentation, where a polyhedral class 
snake recovers poorly defined interior edges from the exterior polyhedra outline, 
again based on the class constraints. 

Indexing and hypothesis combination 
The groups defined by each class also define the indexing function used to retrieve 

specific objects from the modelbase. For example, for a canal surface the indexes 
are computed from the symmetry set of the profile, for a surface of revolution from 
distinguished points on the axis. 

Indexing is handled by a series of hash tables, one per class, that take the invariants 
of a set of grouped features and associate with them models in the modelbase. For 
complex objects, there may be many feature groups that index to the object, leading 
to a situation where a single instance could generate many recognition hypotheses. In 
the planar recognition system, this problem is handled by merging consistent object 
hypotheses into joint hypotheses. 

Forming joint hypotheses (cliques) is fairly successful for small numbers of feature 
groups, but for more complex objects, there are potentially quite substantial combinato- 
rial problems. However, the principle that feature groups belonging to the same object 
should accrete into a more complex feature grouping is a good one. This accretion can 
be implemented in a more general fashion as follows: if a feature group results in a 
successful indexing attempt to a relatively small number of models, it leaves a record 
of that attempt in an image-scene relational data structure. When another feature group 
indexes to the same object or list of objects, and is within some grouping horizon of the 
first group, the two feature groups can be associated in a larger feature grouping, based 
on their correspondence to the same object structure. To make this record, the system 
forms a collection of keys out of the image feature position and each possible object 
model in turn, and stores a unique identifier for the image feature group in an image- 
scene database using these keys. The storage mechanism is such that, if the database is 
queried using a model identity and feature position, it will return any image features that 
indexed that model and are “near” (for some horizon) the original feature group. Note 
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that other forms of image-scene information could be used in addition to Euclidean 
distance in the image; for example, an indexing hypothesis might be associated with a 

pose or frame hypothesis. 

kijcation 

In the planar system, two stages of verification were used: plausibility of the projec- 
tive transformation taking the object from the mode1 to image frame, and image support 
measured by the proportion of the backprojected mode1 perimeter that lines up with im- 
age features. Such verification, based only on object outline, can fail through accidental 

correspondences with texture (for example, oriented markings such as wood grain). 
To avoid this problem, verification is augmented in a number of ways. First, surface 

markings and surface texture will be stored for each object in the model library. During 

verification, the internal surface properties of an object can be compared with the 

properties actually observed in the interior of a mode1 hypothesis. Second, the reliability 
of verification will be improved by scene consistency analysis. For example, if one object 
is deemed to be behind another with respect to a given camera viewpoint, then it would 
be inconsistent to declare a large portion of confirmed boundary for the occluded object. 
More generically, the “score” for a hypothesis is improved if, when portions of the 
perimeter cannot be matched, there is independent evidence of an occlusion occurring. 
For example, one piece of evidence for occlusion is that aligned “T” junctions occur at 

each end of the occlusion. 

The mode/base 

The modelbase will be organised around object class. For each class there will be 

appropriate hash tables for indexing, and a database of models. For example, canal 

surfaces and surfaces of revolution will have separate indexing tables, containing re- 
spectively affine and projective invariants, and separate model libraries. 

In the 2D recognition system (Section 2.3) the modelbase typically acted as a passive 
repository that contained geometric models, and was indexed to identify an object. The 
modelbase can be more powerful than this. It can also store aggregated statistics derived 
from all the models in each class library. These can be used to improve efficiency. For 

example, suppose the maximum number of undulations of any surface of revolution 
in the library is stored. Then if a putative profile is returned by the grouper which 
has more undulations than this, there is no point computing invariants or indexing. 
Similarly, if there are only trihedral vertices for any polyhedra, then there is no need 
for the polyhedral grouper to attempt to group or index with four concurrent lines. 
Exploiting the modelbase in this manner can greatly strengthen the performance of the 
system. 

Objects which do not correspond to a single volumetric primitive, i.e., composite [ 7 1 ] 

objects, will have multiple representations: each representation covering a possible image 
segmentation and grouping. For example, a mug might be represented, in the composite 
3D structure class, as a surface of revolution together with a canal surface (the han- 
dle). Equally, the handle could be represented as a digital plane curve, and the mug 
body as a canal surface or extruded surface. All such representations will be included 
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in the modelbase. It is only through recognition that the common concept “mug” is 

achieved. 

The scene 
An additional source of constraints and parameters is the 3D scene, which can also be 

viewed as a database which reflects the current configuration of the world and cameras. 
It provides a representation of all the information currently available about the common 
Euclidean frame in which objects reside. This 3D spatial layout can be used at a number 

of stages, for example, to determine occlusion relations amongst model hypotheses, and 
for camera viewpoint consistency. 

4.3. Model acquisition 

Typically, models will be acquired from multiple views of objects. The fact that such 

models can serve as sufficient representations for recognition is a major advantage of 
the invariance approach to recognition. Our goal is to provide a model acquisition tool 
which permits additions to the model library to be as simple as providing four or five 
unoccluded views of the object. This goal was achieved in the planar object recognition 

system, where only one or two unoccluded views were required to construct a model. 

Of course, the problem is more difficult for 3D objects, but the partitioning into 
classes, based on geometry, will permit the efficient grouping and correspondence con- 
struction required for model description. Since the object classes consist of 3D volumet- 
ric primitives, we expect that only a small number of views will be required for most 
objects, and that these views will be defined by the extraction of a sufficient set of stable 

features over a wide range of viewpoints. This contrasts with the construction of aspect 
graphs based on topology [ 641, which define a large number of aspects, or distinct 

views, which cannot be reliably distinguished from image feature groups. That is, fine 
topological properties of an image feature group are unlikely to be reliably recovered 
from image segmentation and grouping. The integrity of the object boundary topology 
is a secondary result achieved after an initial recognition hypothesis has occurred. 

Euclidean information in object models is required for scene consistency techniques 
to work. One approach is to derive the Euclidean properties from self-calibrated camera 

views. Three or more general views with a single camera are sufficient to derive internal 
camera parameters [ 17,291, and a 3D scaled Euclidean reconstruction for point sets. 

For manufactured objects, Computer Aided Design (CAD) models can be used to 

provide a Euclidean description, However, it should be noted that it is often the case 
that CAD models used for part design do not necessarily correspond exactly to the man- 
ufactured version of the part. The description obtained from imagery is more “realistic” 
and incorporates many details which are not practical to include in a CAD model, such 
as filets and attachment hardware. Conversely, certain CAD features may be irrelevant 
in practice since they are not manifested visually in any image. 

On the other hand, it is important to develop the idea of Platonic generalisation 
of a model description. For example, if an image curve is sufficiently straight, it can 
be interpreted as an instance of an “ideal” line even though its manifestation as an 
image feature is never perfectly straight. Similarly, a pair of profile curves may match 
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closely enough to be considered the outline of a rotationally symmetric object, even 
though they are not perfect instances of such a projection. The benefit of constructing a 

Platonic idea1 description is that over a large set of views and feature reconstructions, 

the idea1 description represents the natural mean over the set of reconstructions. Also, 
the Platonic description is in accordance with the formal mathematical constraints used 
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Fig. 23. (a) Original image containing two surfaces of revolution, two canal surfaces, and two polyhedra. 

(b) The linked edges computed from (a). Profiles are extracted and grouped automatically from these linked 

edges by the class-based groupers, (c) Extracted surface of revolution profiles with axes. Note that gaps in the 

edge1 chains have been repaired in the recovered profile. (d) Extracted canal profiles. (e) Extracted polyhedra 

outlines. ( f) Extracted profiles superimposed on original image. All the correct instances of a class have been 

grouped, and no false instances grouped. 
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4.4. MORSE 

These ideas are being incorporated into a system, called MORSE, whose implemen- 
tation is currently underway. MORSE is named after the detective character originated 
by Colin Dexter, who is able to ferret out truth given apparently unpromising evidence. 
Our earlier system for 2D object recognition is called LEWIS, the name of Morse’s less 
capable assistant. MORSE will provide an environment for research on object represen- 
tation for recognition, by providing a context in which issues such as the distinctiveness 
of representations, the usefulness of feature groups, and the significance of consistency, 
can be addressed. The system is being implemented in C++ using a class hierarchy 
based on the Image Understanding Environment (WE). 7 

The current state of progress of MORSE is illustrated in Fig. 23. Class-based groupers 
have been implemented for surfaces of revolution (Section 3.5), canal surfaces (Section 
3.6), and polyhedra (Section 3.7). In each case the grouping is based solely on the 
constraints on the structure of the profiles for each class. Profiles for each class are ex- 
tracted completely automatically. As is demonstrated in the figure, recognition proceeds 
by first recognising an object as belonging to one of the classes (for example a surface 
of revolution). Subsequently the object will be identified (for example as a particular 
vase). 

5. Discussion 

5.1. Critique of the invariance approach 

To conclude, it is useful to clarify many of the points just presented by responding 
to a number of major criticisms which can be made of the invariance approach to 
recognition. It will be instructive to employ these critical points as a benchmark of the 
progress in recognition which can be attributed to the invariant framework. 

( 1) The extreme nature of projective ambiguity. Invariance concentrates on projec- 
tive representations, In practice, perspective distortions in images are small and 
so can be ignored. Furthermore, the projective equivalence class is too large-a 
sphere and an ellipsoid are in the same class, as are a cube and a truncated 
pyramid. Thus, the recognition system cannot distinguish between them. 

Response. First, we have demonstrated with the planar recognition system that 
a projective representation is sufficient for many practical examples. Second, al- 
though it is almost always the case that only projective structure can be recovered 
in a single uncalibrated image of an object, this does not mean that the recogni- 
tion system is bound to projective ambiguities. For example, for certain classes, 

7 The IUE is an ARPA funded project to produce an object-oriented programming environment for vision 
research. A central object hierarchy in the IUJ? is the spatial-object which incorporates many of the descriptive 
requirements described in the previous sections. The IUE also has an extensive set of classes for object and 
image transformations which are a central issue in MORSE. 
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affine or similarity invariants can be measured in a perspective image, e.g., a 
structure repeated by translation (Section 3.4). Euclidean consistency, Section 

4.1.2, can be used to reduce ambiguity from projective to similarity for an image 

of multiple objects. 

(2) The exclusiveness of geometry. Invariance at present concentrates on geometry 
to the exclusion of other important object properties that should be used in a 
recognition system such as: colour, texture (e.g., wood grain), surface markings 

(e.g., pictures or lettering on a can), and surface properties (e.g., metal versus 

dielectric). 

Response. Geometry very largely dominates object descriptions in the system 
sketched above. There is some way to go before colour, texture, surface mark- 
ings or surface properties can stand on an equal footing with geometric informa- 

tion. These are, at present, measured in images relatively unreliably compared 

to geometry. Nevertheless, such cues fit into the proposed architecture. For ex- 
ample surface markings and texture can be used as additional invariant indexes 

(see Section 5.2), and could certainly be used as additional measures during 
verification. 

(3) The lack of abstract classification. Invariance does not address the problem of 
classification, only identification. In a typical model-based system, the class to 
which an object belongs can be determined only by recognising it as a specific 
object. For example, an unknown object might be identified as a “1991 Red 
Mazda 323 Hatchback’, which is a member of the class “car”. This class mem- 
bership is determined by subsequent reasoning: it cannot be directly identified as 
a car, as distinct from a fish, despite the differences between the two classes. 

Response. Abstract classification in its broadest sense presents severe conceptual 

and philosophical problems, which we have carefully avoided addressing. Until it 
is possible to address these problems concretely, by, for example, stating exactly 

what a program that distinguished between a general fish and a general bicycle 
would do, they will be difficult to solve. However, the architecture proposed 

contains a first step in this direction, by distinguishing between classes of object 
on the basis of the techniques required to construct representations from images. 
In particular, if a group of edge segments is classified as, for example, the 
profile of a rotationally symmetric object, techniques exist for confirming that 
classification (in this case, by determining that there is a projective equivalence, 
T, on the profile, such that T* = I). 

(4) The rigidity of exact geometry. Geometry is not the appropriate language to 
represent objects such as clothes, plants and animals, which can articulate and 
deform. A deformable template, or even non-geometric descriptions, such as a set 
of colour histograms, may be much more effective in representing such objects. 

Response. It is not yet clear what representations one would want to extract 
for objects that have no clearly defined geometry (for example, what aspects 
distinguish one shirt from another?). As a result, exact geometry is probably 
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going to dominate recognition for some time to come. However, there is clearly 
a need for a hybrid of geometric invariance and statistics for certain classes of 
deformation; invariance would allow for change of viewpoint, while statistics 
would cover the deformation. 

(5) Complex objects.. Invariants might be suitable for representing and recognising 

“simple” parts, such as surfaces of revolution or quadrics (“geons”) but do not 
yet cover assembling these shapes into complex objects, such as telephones or 

aeroplanes. 

Response. Some of the 3D classes, for example, surfaces of revolution or canal 
surfaces, are “simple’‘-essentially, little more than plane curves. This does not 

affect their usefulness in representing a large number of real objects. Other classes 
of objects are more genuinely 3D objects-for example, repeated structures or 

polyhedra. 
Objects consisting of, for example, a hierarchy of parts, are not explicitly 

addressed in this approach. However, the seeds of a solution are present in the 

use of geometric relations between feature groups (intra-object invariants), such 
as those shown in Fig. 3, in forming joint recognition hypotheses. One could 

advance the system architecture above to do the same thing, recognising parts 

individually and then using projective, or Euclidean information about object pose 
that results from the consistency checking, to determine whether components lie 
in such a way as to make up a composite object. 

Concerning segmentation, it may be the case that the grouping relations defined 
for each class provide a natural means of segmenting a complex outline into 
primitive volumetric parts. For example, when the harmonic homology on the 
profile ceases to apply this would indicate that the surface of revolution part had 

finished. 
Of course, there will be objects, e.g., potatoes, that cannot be represented by 

a combination of the classes described here. However, such generic shapes are 
currently difficult to distinguish with any representation under the distortions of 

perspective imaging. Our view is that it is better to proceed with a set of classes 

which can support reliable recognition and establish a benchmark of performance 

for future systems to build on. 

5.2. Avenues of future research 

Indexing allows fast recognition of objects drawn from a diverse collection of classes: 
a range of specific techniques for recovering the projective invariants necessary for 
indexing various object classes has been displayed and demonstrated. These ideas have 
been integrated to produce a recognition system architecture that should be capable of 
handling large, diverse modelbases, and that addresses many of the concerns recently 
raised about indexing in recognition systems. 

However, object recognition is not yet “solved”. There are a range of avenues of 
research that promise exciting developments; we indicate a few topics most interesting 
to us: 
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l The role of quasi-invariants. Using quasi-invariants for indexing is a problem, 
because of the cost incurred if the “wrong” object is indexed by a quasi-invariant 

applied outside its domain of stability. Avoiding this requires complex hypothesis 
combination to ensure the “right” object is indexed. The benefit of quasi-invariants 

is the use of simpler feature groups at the start of the recognition process. However, 
simple feature groups are often not very discriminating. Instead, we propose that 
quasi-invariants should be used to schedule grouping. The quasi-invariants identified 
in this paper (e.g., the affine relation between sides of a surface of revolution 

profile), can be used to schedule promising groups for further growth. 

l Learning invariants. Invariant indexes are a good goal for a learning algorithm; an 
ideal algorithm would, given a large modelbase, determine by some offline process 

of generating views, the functions and image features most useful in indexing 
models effectively. Alternatively, invariants could be extracted from a large number 
of real images of an object taken from varying viewpoints. The advantage of the 

latter is that the invariant descriptors would only involve features that could be 
reliably measured in images. 

l The use of texture and surface markings. Clearly, texture and surface markings have 
a part to play in verification. However, surface markings, together with the profile 

of certain surface classes, can be used to generate further projective invariants. For 
example, by facilitating the backprojection of the markings onto the surface for that 
class. These marking invariants can augment indexes based on the object profile 

alone. For example, without surface markings, quadrics are projectively equivalent, 
but four points (markings) on a quadric surface have two projective invariants in 
space, which can be recovered from a single image. 

l Extensions to grouping computation. In recent experiments with control for group- 
ing features for rotationally symmetric objects and repeated structures, the idea of 
synchrony in edge1 curve and line segment linking has emerged. For example in 

exploring the topological links along the profile of a rotationally symmetric object, 
it should be possible to use the constraints of the planar homology to control the 
linking sequence. In a complex scene with many possible edge1 chain connections, 
these constraints will considerably reduce the number of feasible paths generated 

for symmetrical association. Once a single concavity is determined, the rest of the 
boundary can be recovered by a synchronised edge following algorithm. As new 
parts of the boundary are confirmed, the homology transform parameters can be 
iteratively refined. 

The same type of strategy can be followed for any geometric class based on 
symmetry or structural repetition. The constraints inherent in these classes can be 
extended right down to the edge1 linking stage. Such an approach is currently being 
implemented. 
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