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ABSTRACT 

The use of a neural network approach in thermal processing applications 
is presented. A four layer neural network with 3 inputs and 3 outputs was 
trained using a back-propagation algorithm. A finite difference computer pro- 
gram was used to predict nodal temperature responses of conduction heating 
model foods under t h e m 1  processing conditions. Equivalent lethality processes 
were obtained for a range of input variables (can size, food thermal dimsivity 
and kinetic parameters of quality factors) for sterilization temperatures between 
110 and 134C (at 2C intervals). The computed optimum conditions and their 
associated quality changes were used as input variables for training and 
evaluation of the neural network. The trained network was found to predict 
optimal sterilization temperatures with an accuracy of f 0 . X  and other 
responses with less than 5 % associated errors. 

INTRODUCTION 

Food industry is pressed with the need to provide foods that are safe, 
nutritious and convenient at competitive prices. In the last decade, various 
studies have been carried out for quality optimization of thermally processed 
foods. Computer simulation has made this possible since kinetics of microorgan- 
isms and quality factors, and physics of conduction heat transfer are very well 
understood and can be described with mathematical models. Optimization of 
sterilization process is based on the fact that thermal inactivation of microorgan- 
isms is much more temperature dependent than quality factors (Lund 1977) and 
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has lead to the use of high temperature short time (HTST) processing. However, 
applicability of this principle to conduction heated foods is limited due to their 
slow heating behavior resulting in large temperature gradients within the can 
during heatingholing. Teixeira et al. (1969) were probably the first to use 
computer simulations for quality optimization. They used a finite difference 
solution to conduction heat transfer equation for cylindrical cans coupled with 
kinetic data on nutrient degradation. Recently, several researchers have used 
such models for predicting optimal conditions for thermal processing of foods 
(Teixeira ef al. 1969; Saguy and Karel 1979; Ohlsson 1980; Thijssen and 
Kochen 1980; Silva ef al. 1992; Hendrickx el al. 1989, 1993). 

Hendrickx ef al. (1989) used an empirical approach to calculate optimal 
temperatures for maximizing quality factors. Using traditional regression 
analysis, they developed empirical equations to relate optimal temperatures to 
various product properties (thermal diffusivity and z-value of quality factors), 
processing conditions (geometry and dimensions of the food, surface heat 
transfer coefficient, initial product temperature and retort come up time) and 
processing criteria (target Fa-value). Hendrickx ef al. (1993) extended the 
correlations for more generalized conditions accounting for cooling lethality as 
well as retort come up time. The study, however, was limited to infinite shapes 
with one dimensional heat transfer. Silva ef al. (1992) presented the correlations 
for optimal sterilization temperature for conduction heating foods with finite 
surface heat transfer coefficients. Previously mentioned work (Hendrickx et al. 
1989, 1993; Silva et al. 1992) was based on optimizing the surface quality. An 
extensive review of modeling optimum processing conditions for sterilization 
was presented by Silva ef al. (1993). Recently Silva et al. (1992) presented a 
comparative study between surface and volumetric average quality retention in 
thermo processed foods. 

ARTIFICIAL NEURAL NETWORK 

An artificial neural network is a collection of interconnecting computational 
elements which is simulated like neurons in biological systems. It is character- 
ized by the network topology, neurons and learning rules. Artificial neural 
network has the capability of relating the input and output parameters without 
any prior knowledge of the relationship between them. A properly trained neural 
network can be used to simultaneously produce more than one output, unlike 
traditional models where one regression is required for each output. Recently, 
artificial neural networks have been used in those situations where no good 
physical models of the process were available and the number of output 
variables were more than one (Link0 ef al. 1992; Huang and Mujumdar 1993). 
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Artificial neural network models were originally developed to mimic the 
function of human brain. Brain contains billions of nerve cells (neurons) highly 
interconnected through synapses. Each neuron processes information by 
receiving signals from other neurons via synapses and produce an output which 
is then transmitted to some other neurons. It is believed that the synaptic 
strength of junctions is altered when knowledge is stored in the brain. 
Consequently, a synapse can be considered as the basic memory unit of the 
brain. 

d 

Desired Response 

FIG. 1. MODEL OF AN ARTIFICIAL NEURON 

The artificial neural network used in this study is a computer program that 
consists of a collection of simple elements (neurons) that work together to solve 
the problem. An artificial neuron is modelled (Fig. 1) to receive (n) inputs, X 
= [xD x,, x2. ... x,J and yield a desired output (d), through a process of 
learning. The conponents of the input vector are weighted by a set of 
coefficients, W (wo w,, w,, ..., w,). The sum of the weighted input is then 
computed, producing an output, S = X’W (X input vectors from Mth layer). 
The weights are essentially continuous variables and can take negative as well 
as positive values. During the learning process, input vectors and desired 
response are presented to the network, and an algorithm automatically adjusts 
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the weights so that output responses to input vectors will be as close as possible 
to their respective desired response. A popular method for adapting the weights 
is the simple LMS (least mean square) algorithm (Widrow and Lehr 1993) 
which minimizes the sum of squares of the linear error over the learning set. 
The linear error (E) is defined to be the difference between the desired response 
(d) and the output (S). However, when this model is applied to a multi-element 
neural network, the procedure for error calculation becomes more complicated 
(Widrow and Lehr 1993). 

The more common structure of an artificial neural network is generally of 
multilayer design. A fully connected four layer network is illustrated in Fig. 2. 
During learning, the response of each output neuron in the network is compared 
with a corresponding desired response. Error signals associated with the output 
elements are computed and the information transmitted from one layer to the 
previous layer using a back-propogation algorithm (hence the name back-propo- 
gation network). This procedure is repeated over the entire learning set for a 
specified number of times (learning ms), chosen by trial and error. In the layer 
structure, the inputs are interconnected in an input layer, and the computed 
outputs are interconnected in the output layer (Fig. 2) .  In between these two 
layers, one or more hidden layers (as another variable for neural network) 
depending upon the applications, are interconnected. The number of input 
neurons correspond to the number of input variables, and the number of output 
neurons match the number of desired output variables. The number of neurons 
in the hidden layer is dependent on the application of the network. In principle, 
if sufficient number of these input/output combinations are used for learn- 
inghraining of neural network, such a trained network should be able to predict 
the output for new inputs. These learning sets can be compiled from experimen- 
tal data if available or, as in the present study, the needed data can be obtained 
from computer simulation. 

Can Size b p t  

Thermal Diffusivity Process Time 

z, b 

Input Layer Hidden layers Output layer 
FIG. 2. SCHEMATIC OF ARTIFICIAL NEURAL NETWORK USED IN THE PRESENT STUDY 
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The objective of this study was to evaluate the use of neural network in 
predicting optimal thermal processing conditions. In the present study, due to 
lack of experimental data for constructing/learning of the neural network, a 
finite difference computer simulation was used to generate needed data on 
optimal sterilization temperatures, associated process times and quality factor 
retention. Neural network models can also be applied to situations where exact 
mathematical description of the process is not available or when prevailing 
conditions result in deviations from predictable behavior. In fact, neural network 
applications will have a greater impact/application under these situations. 
Because of the use of computer simulation for data input, in this study, the 
potential of neural network application may seen less obvious; however, it 
should not be viewed as a limitation. 

METHODOLOGY 

Process Optimization 

An optimal sterilization temperature is generally taken as the processing 
temperature that results in minimum volumetric heating of the food product 
while meeting the constraints of commercial sterility. Such a process can be 
expected to preserve the bulk of thermolabile quality factors. Exceptions exist 
to this rule; for example, when surface discoloration due to thermal treatment 
is the primary consideration, the optimization should be aimed at minimizing 
surface cook rather than product bulk. Parameters that determine the optimal 
sterilization temperature' are numerous: can dimension, thermal diffusivity of 
food, kinetic parameter of nutrient (z), lethality to be achieved, cooling water 
temperature, initial temperature of food, retort come up time, convective heat 
transfer coefficient at the can outer surface, etc. To obtain optimal sterilization 
temperatures in this study a mathematical model for conduction heat transfer in 
a cylindrical container was coupled with volume average thermal destruction 
kinetics of quality factor and center point destruction of a target microorganism 
(or F, value). Modeling of such a process involves the mathematical description 
of (1) numerical solution of the two-dimensional heat conduction equation for 
a finite cylinder and (2) first order kinetics, describing the thermal destruction 
of microorganisms and quality change. 

Heat Transfer Model. The heat flow in cylindrical geometry of finite 
shape was represented by the following partial differential equation (Ozisik 
1989); 
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where a! is the thermal diffusivity and r and z are the radial and axial coordi- 
nates, respectively. 

The initial and boundary conditions were; 

T = Ti at t=O; @a) 

aT/& = 0 at r = 0 and t > 0 (2b) 

awaz = o at z = hi2 and t >o (2c) 

T = T, a t r  = a, z = 0, z = h a n d t  > 0 ( 2 4  

All thermophysical properties were assumed to be temperature independent, 
and the external heat transfer resistance at the can surface was considered to be 
negligible as in the case of processing of cans in steam. A finite difference 
computer program using Crank-Nicholson scheme for spatial derivatives and a 
fully implicit scheme for time derivative was employed (Ozisik 1989). Due to 
symmetry around both the axes of a cylindrical can, only one quarter of the 
cylinder was modelled using a 20 x 20 grid. Since an unconditionally stable 
implicit scheme was used, a time step size between 2 to 20 s was used 
depending on can size. The computer program was written in FORTRAN 77 to 
compute the transient temperature distribution in a cylindrical geometry. 

Kinetics of Thermal Destruction. A primary objective of thermal 
processing is to achieve a preset level of commercial sterility. The intended 
process lethality (or thermal times), measured in terms of an F, value, is used 
for this purpose: 

where F, is the integrated lethality (min); t is the time of processing (heating, 
holding and cooling), T is the temperature at the geometric center of can; T,, 
is the reference temperature (121.1C) and z, is the temperature sensitivity 
indicator of the thermal destruction of microorganism under consideration 
(typically, z, = 1OC for spores of Clostridium botulinum). The integrated 
lethality was continuously computed and process simulation continued until the 
heating lethality reached the target value of 10 min. Based on the contribution 
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of lethality during the cooling, the computation process was then adjusted by 
trial and error to give a combined lethality (heating and cooling) of 10 kin.  
Integrated heating time (F,) with respect to a quality attribute of food product 
was calculated at the reference temperature by: 

t V 

The above equation is similar to the F, value except that the F, is based 
on volumetric/mass average destruction which is of greater interest for quality 
retention (e.g., nutrient retention). zq indicates the temperature sensitivity 
indicator quality factor in question (used as a variable in this study). Using the 
calculated F the quality retention following a process can be obtained using 
the relationship: “4’ 

where D,,, is the decimal reduction time for quality factor, No is initial quality 
and N is the quality remaining after processing. Fog which determines the extent 
of retention of quality factors based on their respective D and z values, was used 
as a criterion for optimization in this study. 

Variables Selection. Three factors, can size, thermal diffusivity, and z 
value of quality factor were used as variables in the study (Table 1). Other 
parameters (initial product temperature = 80C, retort come up time = 0 min, 
process lethality = 10 min and z value of microorganisms = 1OC) were kept 
constant. A can has two-dimensions: radius (a) and height (h); in order to reduce 
the number of input variables for neural network analysis, a characteristic 
dimension was calculated using following equation (Ramaswamy ef al. 1982): 

Characteristic dimension = (2.303)/[(2.467/(h/2)2) + (5.783)/a2] (6) 

Thirteen operating temperatures were employed in the range 110 to 134C 
(at every 2C interval). 

Calculation of Input/Output Data Needed. In order to construct and 
train the neural network, data on optimal process temperature, corresponding 
process time and associated quality factor were needed. These were obtained 
first by identifying the process times required at each of the 13 operating 
temperatures to achieve the preselected Fa value of 10 min. Simulation processes 
were run for these calculated times and the extent of quality factor destruction 
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TABLE 1 .  
LEVELS AND RANGE OF INPUT VARIABLES USED IN 

THERMAL PROCESSING OPTIMIZATION 

Variables No. of test levels Range 

Can size 30 200 x 211 to 401 x 41 1 (30 can sizes)' 

Thermal diffusivity x lo7 m2/s 3 1.2 1.4 1.6 

z value of quality facton, C 4 15 25 35 45 

Temperam, C 13 110 to 134 C (2 C interval) 

'Lopez (1987 ) 

for each z value was computed. From a plot of quality destruction vs. operating 
temperature, the optimal temperature for minimum quality destruction was 
obtained, again for each z value (representing arbitrary quality factor). The 
simulation was then rerun at this optimal process temperature to get exact 
process time and quality factor retention. 

Neural Network. The software program employed was NEURALWORKS 
Explorer (Neuralware Inc., Pittsburgh, PA). A four layer neural network (i.e., 
1 input, 1 output and 2 hidden layers, the maximum that could be accommodat- 
ed by the available software) was used in this study. The input layer consisted 
of 3 neurons which corresponded to 3 inputs variables (characteristic can 
dimension, thermal diffusivity of food product and z value of quality factor). 
The output layer also had 3 neurons one each for optimal sterilization tempera- 
ture, process time and F,. Standard back-propogation algorithm was used for 
leaming/training of the network. In order to find the optimum configuration of 
neural network for the present problem, a range of 2 to 16 neurons in each 
hidden layer and 1,OOO to 100,OOO learning runs were tested. Then, the neural 
network was trained with 360 cases and its prediction capability was tested with 
same 360 cases. The optimum configuration was decided based on minimizing 
the difference between the neural network and the desired outputs. Once the 
optimum configuration with respect to number of neurons and learning runs was 
found, the performance of neural network was tested on different sizes of data 
set. The data set of 360 cases generated from finite difference simulation were 
randomly divided in two groups. The first group consisted of all 360 cases for 
learning and a randomly chosen 100 cases for the test. In second group, 100 
cases were selected for learning and 100 cases for the test, all chosen randomly 
from the set of 360 cases. Several statistical parameters (mean absolute error, 
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standard deviation of error, mean relative error, standard deviation of relative 
error) were used for the determination of optimum number of neurons in hidden 
layer and also the number of learning runs. The following criteria were used 
with respect to the statistical parameters: 

Error (E) = I Finite difference output - Neural network response I 
Relative Error (t,) = (€/finite difference output) x 100% 
Mean Absolute Error (MAE) = Mean o f t  values 
Standard Deviation of Error (SDE) = Standard deviation in t values 
Mean Relative Error (MRE) = Mean of relative error (er) 
Standard Deviation of Relative Error (SRE) = Standard deviation of 
relative error (tJ 

The above parameters were used to give a broader range of selection 
criteria. The error magnitudes in user units (MAE, SDE in degrees C or min) 
are more meaningful with respect to process temperature and process times 
while the relative error (MRE, SRE in X) better describe the network 
performance with respect to Fog. 

RESULTS AND DISCUSSION 

Computer Simulation 

A total number of 4680 (13 temperatures ranging from 110 to 134C with 
interval of 2C for 360 test conditions) time-temperature simulations and 
associated quality changes were obtained to generate optimal processing 
parameters for 360 test conditions. The optimal sterilization temperature clearly 
dependent on the can size, thermal diffusivity and z value of the quality factor. 
Lower values of characteristic dimension of the can and higher values of thermal 
diffusivity resulted in higher optimal process temperature, probably due to 
resulting lower thermal gradients. This was also shown by Silva ei al. (1992) 
while minimizing surface cook value. At higher z values (30 and 45C), the 
optimal sterilization temperatures were at the higher end of the range, while the 
opposite was true when the associated z values for quality factor were lower (15 
and 25C). This was expected, since higher value of zq represents a more thermal 
resistant quality factor. Process time and Fq were also significantly influenced 
(p C0.05) by all three parameters. Process times were larger for the bigger can 
size and/or lower thermal diffusivity while quality retention was found to be 
higher (since lower F,) for smaller can size and/or higher thermal diffusivity. 
Process times were shorter with increasing z values since the associated optimal 
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process temperatures were higher. Average quality retention values have been 
reported to vary with zq and a lumped parameter, f,,, which depends on can size 
and thermal diffusivity (Silva ef al. 1992). In our study, we found that for 
smaller cans and lower thermal diffusivity , the optimal process temperatures 
were higher and nutrient retention values were lower at higher zq values. 
However at higher thermal diffusivity, the nutrient retention data showed a 
curvi-linear trend, initially decreasing and then increasing with increasing zq. 
With larger cans, on the other hand, irrespective of the thermal diffusivity value 
in the range studied, optimal process temperatures increased and the quality 
retention values decreased with zq. 

LearninglTraining of Neural Network 

Theoretically, once the neural network is learnedhained using the 
learningkraining data, its performance can be evaluated by using the same data 
chosen in a random fashion (Huang and Mujumdar 1993). However, before the 
learning process, the optimum configuration of neural network should be 
determined since it has two variables: number of neurons in each hidden layer 
and number of learning runs. Several error parameters were used to determine 
adequacy of the neural network output response for a given input data set. 

First, by keeping the number of learning runs constant (arbitrarily chosen 
as 50,000). the number of neurons in each hidden layer was varied from 2 to 
16. The errors associated with optimal sterilization temperature as a function of 
the number of neurons are shown in Fig. 3. The calculated errors converged to 
a minimum value at 8 neurons in each hidden layer. Increasing the neurons 
beyond this level only resulted in increased computation time with no additional 
benefits. The trend was similar with the other two output responses, process 
time and F,, as well as other selected levels of learning runs demonstrating a 
minimum at 8 neurons. Magnitude of the deviations were, however, slightly 
higher for process time and F,. 

In the next step, with the number of neurons in each hidden layer fixed at 
8, the learning runs were varied from 1,OOO to 100,000. The variations in 
different errors are compared in Fig. 4 as a function of learning runs, this time 
with process time shown as an example output. 

The convergence was observed at about 50,000 learning runs beyond which 
the changes were small. The trend with respect to errors was again similar for 
the other two output responses, optimal sterilization temperature and F, with 
some differences in their magnitudes. 

Neural network configuration with 8 neurons in each hidden layer and 
50,000 learning runs was evaluated for performance testing on the two sets of 
data ( first set: all 360 cases for learning and 100 cases for testing; second set: 



THERMAL PROCESSING 

0.0 
Y? 
P 

293 

- - R2 

l l -  - - - - - - 

Os9 t 

0.2 L 
0 2 4 6 8 10 12 14 16 

Number of neurons 

FIG. 3. ERROR PARAMETERS AS A FUNCTION OF NUMBER 
OF NEURONS FOR OFTIMAL STERILIZATION TEMPERATURE 
(360 CASES FOR LEARNING AND 360 CASES FOR TESTING) 

WITH 50,OOO LEARNING RUNS 

100 randomly selected cases for learning and another 100 randomly selected 
cases for testing). The error parameters were compared with the reference set 
where all 360 cases were used for both learning and testing. 

The prediction performance of the neural network for the two sets is shown 
in Fig. 5-7 as plots of neural network predicted values vs. desired output values 
for all three variables. The predicted values were more evenly and tightly 
distributed around the regression line for the first set involving higher number 
of learning cases (360). For the second set involving lower number of learning 
cases (100) the predicted values generally showed more scatter with deviation 
at both ends. 

The associated errors with the neural network outputs are compared in 
Table 2. The observed high R2 values (>0.98) indicated excellent correlations 
of neural network predicted values with the finite difference output. Relatively, 
slightly lower correlations were observed while predicting the changes in quality 
factors (Fq). The magnitude of errors for the first set was nearly the same as 
those for the reference set for all three outputs. However, with the second set, 
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FIG. 4. ERROR PARAMETERS AS A FUNCTION OF LEARNING RUNS 
FOR PROCESS TIME (360 CASES FOR LEARNING AND 360 CASES 

FOR TESTING) WITH 8 NEURONS IN EACH HIDDEN LAYER 

the errors were of similar magnitude compared to the errors of reference set for 
the optimal sterilization temperature and process time, while for F,, they were 
relatively higher, especially with reference to relative error (MRE) and standard 
deviation of relative error (SRE). The deviation in optimal process temperature 
prediction (MAE) was essentially of same magnitude (0.35f0.32C) for both 
training sets. The mean relative error in process times was about 5.2% with 
both training sets; however, the standard deviation of relative error was -5% 
with first training set and -7% in the second training set. The relatively large 
standard deviations associated with process time predictions by neural network 
were due to deviations observed under conditions of low (C30  min) and high 
( > 100 min) process times. The mean relative error with F, was - 2.5 % for the 
first set and -4.5% for the second set. Neural network prediction showed 
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FIG. 5 .  CORRELATION OF NETWORK OUTPUT FOR OPTIMAL STERILIZATION 
TEMPERATURE USING DIFFERENT SIZE OF LEARNING CASES 

deviation from the desired output mostly at the higher end of F, values for the 
first set where 360 cases were used for learning purpose. However, when only 
100 cases used for learning, the predicted values deviated at both ends (Fig. 7). 
These results demonstrate that the accuracy of neural network predictions 
increases as the availability of input data increases. 

Overall, the relative errors associated with the process time prediction were 
the highest and those associated with the process temperature were the least 
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FIG. 6 .  CORREJATION OF NETWORK OUTPUT FOR PROCESS TIME 
USING DIFFERENT SIZE OF LEARNING CASES 

somewhat in proportion to the range of values (optimal process temperature 
from 112 to 132C, process time from 20 to 165 min and F, from 20 to 90 min) 
employed for these variables. On a percentage basis compared to the midpoint 
values, the range associated with process times was f80%, while the same with 
process temperature was only i-9%. With F,, the range was f60X. These 
differences are also due to the logarithmic nature of both process time and 
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FIG. 7. CORRELATION OF NETWORK OUTPUT FOR F, 
USING DIFFERENT SIZE OF LEARNING CASES 

quality factor retention in relation to optimal process temperature. In neural 
network weights were adjusted to result simultaneously in minimum error in 
prediction of all three parameters, which are different in their nature. The 
relative errors found were on an average within 5% of the above ranges. In 
general, these errors will have an even smaller influence on quality factor 
retention in real processing conditions. For example, the neural network 
prediction error of * 5  % at lower end of F, values would mean f 1 2% error 
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TABLE 2. 
COMPARISONS OF ERROR PARAMETERS FOR DIFFERENT SIZE OF LEARNING 

AND TEST CASES 

Statistical Reference gmupl Fmt Group2 Second Group3 
Parameras Topt FT Fq Topt %q Topt p-r Foq 

R2 0.993 0.988 0.992 0.994 0.986 0.989 0.992 0.985 0.981 

MAE 0368 3.122 0.806 0328 3.305 1.039 0.383 3.187 1.700 

SDE 0.345 2.859 0.949 0.307 2.893 1.521 0.335 2.957 1.455 

MRE 0.303 4.827 2.108 0.269 5.168 2.490 0.315 5.254 4.583 

SRE 0.280 4.838 2.206 0.252 4.996 2.632 0.272 6.802 4.528 

4eaming = 360 cases rmd rest = 360 cases 

31eaming = 1oocas*1 and test = 100 
21esrning = 360 cases and test = 100 cases 

in thiamine retention [F, = 23.6 min, Drcf = 163 min (Lund 1975), z = 25C, 
can size = 202 x 204, thermal diffusivity = 2.0 x lo-’] at 123C and at higher 
end of F, values f 1.9% error [F, = 69.6 min, Dref = 163 min, z = 25C, 
can size = 401 x 411, thermal diffusivity = 1.2 x lo-’] at 115C. 

CONCLUSION 

The prediction of optimal sterilization temperatures, and their correspond- 
ing process time and F, values using an artificial neural network is presented. 
The neural network predicted all three outputs simultaneously, unlike conven- 
tional regression models where three different equations are needed. The study 
showed that the number of neurons in each hidden layer and the learning runs 
need to be optimized before using the neural network. For the present problem, 
a neural network with 8 neurons in hidden layers and 50,000 learning runs was 
found optimum for its performance. The trained network was found to predict 
responses with less than 5 % associated errors with respect to optimal steriliza- 
tion temperature, process times and quality factor retention. 
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a 
d 
D 
f h  

F o  
h 
M 
MAE 
MRE 
N 
PT 
r 
S 
SDE 
SRE 
t 
T 
V 

W 

X 

W 

X 

Z 

Radius of a cm, m 
Desired resonse of neuron 
Decimal reduction time, min 
Heating rate index, min 
Process lethality, min 
Height of a can, m 
Layer number 
Mean absolute error 
Mean relative error 
Quality factor 
Process time, min 
Radial coordinates 
Output of neuron 
Standard deviation of error 
Standard deviation of relative error 
Time, s 
Temperature, C 
Volume, m3 
Weight coefficient 
Set of weight coefficients 
Input 
Set of inputs 
Axial coordinates, Temperature sensitivity indicator, C 

Greek Symbols 

a! Thermal diffusivity 
I5 Error 

Subscripts 

0, 1.. . Integer numbers 
i, o Initial 
m Microorganism 
opt Optimal 
q Quality 
ref Reference 
00 Heating medium 
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