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A review of the human's role in detectino, diaonosino, and compensatino for system 
failures permits the synthesis of a multilevel, rule-based, pattern reeoonition oriented 
model of human problem solvino in such situations. 
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Al~tract--The role of the human operator as a problem solver 
in man-machine systems such as vehicles, process plants, trans- 
portation networks, etc. is considered. Problem solving is dis- 
cussed in terms of detection, diagnosis, and compensation. A 
wide variety of models of these phases of problem solving are 
reviewed and specifications for an overall model outlined. 

INTRODUCTION 

MAN--MACHINE interaction has been a topic of 
formal study for well over 50 years. The earliest 
investigations focused on the environment as it 
affected the human operator's safety and ability to 
perform his job. Later investigations began to con- 
sider also the design of equipment in terms of 
identifying possible limitations and devising poten- 
tial enhancements of operator performance. Much 
progress has been made in these areas, although a 
great deal remains to be accomplished. 

More recently, the impact of automation has 
come to be of increasing importance. In aircraft, 
ships, process plants, transportation networks, and 
other large-scale systems, more and more control 
loops that were once closed manually are now auto- 
matically controlled. As a result the human opera- 
tor is becoming more of a monitor and supervisor 
of automation (Sheridan and Johannsen, 1976). 

The possibility of failures is the primary reason 
for having human monitoring of automatically 
controlled processes. If hardware and software 
failures could not occur and if the automation were 
capable of handling all contingencies, then human 
operators would be unnecessary. However, failures 
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and design limitations are quite possible and there- 
fore, a primary task of the human operator is to 
detect these events and deal with them appropri- 
ately. If current trends continue, this task will come 
to dominate the human's responsibilities (Ras- 
mussen and Rouse, 1981). 

It seems reasonable to make the general claim 
that the manual activities of the human operator 
will increasingly be supplanted by problem-solving 
activities. The objective of this paper is to review 
models of human problem solving with emphasis 
on models useful for describing and predicting 
human behavior and performance for the purposes 
of design and evaluation. While a brief review of 
the general area of human problem solving is pre- 
sented, the models considered in most detail are 
those which are directly applicable to situations 
involving man-machine interaction in detecting, 
diagnosing, and compensating for system failures. 
The combined results of this brief general overview 
and the detailed review of the most relevant models 
are used as a basis for outlining specifications for 
an overall model of human problem solving. 

GENERAL BACKGROUND 

Much of the literature in the general area of 
human problem solving emphasizes the pattern 
recognition nature of human behavior in problem 
solving tasks. This position is argued from both a 
physiological basis (Albus, 1970) and using notions 
such as cognitive economy (Hormann, 1971). The 
pattern recognition need not be a concise one- 
to-one mapping. Familiar scripts (Schank and 
Abelson, 1977) or frames (Minsky, 1975) may evoke 
a sense of having seen a particular type of problem 
before. Of course, particular instances can also be 
recalled (Neimark and Santa, 1975). 

The use of pattern recognition or visually 
oriented approaches to problem solving has been 
advocated for a variety of domains including chess 
(Chase and Simon, 1973; Nievergelt, 1977), elec- 
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tronic troubleshooting (Dale, 1958; Burroughs, 
1979), mental arithmetic (Hayes, 1973), and analogi- 
cal problem solving (Sternberg, 1977). This view of 
analogies is rather interesting because it involves 
a double mapping; one to recognize the analogy 
and one to transform the solution. 

Modes of problem solving 
Not all problems can be solved by a direct 

mapping from observations to solution. Thus, 
modes of problem solving other than pattern 
recognition may be required. In an effort to describe 
possible multiple modes of problem solving, various 
dichotomies have been suggested. Examples include 
pattern recognition vs heuristics (Gerwin, 1974; 
Burroughs, 1979), intuition vs analysis (Peters, 
Hammond and Summers, 1974; Simonton, 1975), 
remembering vs solving (Rumelhart and Abraham- 
son, 1973; Jacoby, 1978), retrieval vs search (Atwood 
and co-workers, 1978), imagistic vs linguistic strat- 
egies (Wood, Shotter and Godden, 1974; Sternberg 
and Weil, 1980), and symptomatic vs topographic 
strategies (Rasmussen and Jensen, 1974; Rasmus- 
sen, 1978, 1981). 

The choice of mode of problem solving can be 
highly influenced by the way in which the problem 
is represented. Perceptual cues, even if they are 
irrelevant, can lead to a pattern recognition mode 
of behavior (Dale, 1958; Peters, Hammond and 
Summers, 1974). On the other hand, representations 
that preclude or inhibit pattern recognition may 
lead to a more analytical or heuristic approach 
(Peters, Hammond and Simmons, 1974; Gerwin and 
Newstad, 1977) and, at least in the form of flow 
charts or functional diagrams, such representations 
have been shown to improve some aspects of prob- 
lem solving performance (Mayer, 1975; Brooke and 
Duncan, 1980). Some seemingly helpful forms of 
representation such as color coding (Neubauer and 
Rouse, 1979) and special formats (Brooke and 
Duncan, 1981) may, however, have surprisingly 
little effect, especially for highly practiced problem 
solvers. Another effect of experience is that humans 
tend to fixate on one form of representation even 
when multiple forms are available (Polich and 
Swartz, 1974). 

Nature of expertise 
Since multiple modes of problem solving are 

possible, it is quite natural to wonder if some modes 
are better than others. One way to approach this 
issue is to compare behavior of novices and experts. 
Many authors have argued that expertise is synony- 
mous with highly developed pattern recognition 
abilities (Chase and Simon, 1973; Atwood and co- 
workers, 1978; Dreyfus and Dreyfus, 1979). Others 

have presented results that indicate expertise to be 
related to particular strategies (Goldbeck and co- 
workers, 1957; Wood, Shotter and Godden, 1974; 
Simon and Reed, 1976; Hayes-Roth and Hayes- 
Roth, 1979). 

Depending on one's definition of pattern recogni- 
tion, these two perspectives of expertise may or may 
not be conflicting. If one views expertise as being 
gained solely by the acquisition of a large repertoire 
of context-specific patterns, then strategy may be 
an irrelevant concept (Dreyfus and Dreyfus, 1979). 
On the other hand, if expertise in pattern recogni- 
tion includes an ability to recognize useful context- 
free structural patterns in problems, then changes 
in strategy that reflect expertise can be described 
as changes in the perceived usefulness of structural 
patterns (Rouse, Rouse and Pellegrino, 1980). 

The distinction between patterns of context- 
specific observations and patterns of context-free 
structures is central to the model outlined later in 
this paper. One school of thought emphasizes the 
dominance of context (Newell and Simon, 1972; 
Chase and Simon, 1973; Bree, 1975) while others 
give more credence to context-free aspects of 
problem solving (Kearsley, 1975; Mason, Bramble 
and Mast, 1975; Brooke, Duncan and Cooper, 1980) 
and the importance of structure (Loftus and Suppes, 
1972; Malin, 1979; Rouse, 1981b). This issue can be 
clarified and partially resolved by reviewing the 
results of a variety of transfer of training studies. 

Transfer of training 
If context dominates problem solving, then trans- 

fer of training should be negligible between prob- 
lems that are structurally similar but contextually 
different. While there is some evidence of such a 
lack of transfer (Smith, 1973), most results indicate 
positive transfer of training (Shepard and co- 
workers, 1977; Siegler, 1977; Luger and Bauer, 1978; 
Rouse, 198 lb). Thus, structure is clearly an impor- 
tant aspect of problem solving. However, context 
is also important and does probably dominate when 
the human is in a familiar problem solving environ- 
ment. 

Considering the general area of training, it is 
interesting to contrast the modes of problem solving 
that various training methods promote. There are 
methods that emphasize context-specific pattern 
recognition (Duncan and Shepard, 1975; Towne, 
1981; Johnson, 1981), methods that stress inferential 
(i.e. searching) strategies with respect to particular 
systems (Glaser, Darmin and Gardner, 1954; Landa, 
1972; Brown, Burton and Bell, 1975; Freedy and 
Lucaccini, 1981; Hunt and Rouse, 1981), and 
methods that promote context-free search strategies 
(Rouse, 1981b). Recently, it has been argued that a 
mixture of methods is probably the best overall 
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approach to training (Johnson and Rouse, 1982a, b; 
Rouse, 1982). 

Models 

Many of the above results have motivated the 
development of models of human problem-solving 
behavior. Some of the earlier efforts in this area 
compared human performance to optimal half-split 
strategies (Goldbeck and co-workers, 1957; Dale, 
1958; Mills, 1971) or to time-optimal strategies 
(Stolurow and co-workers, 1955). There were also 
efforts to model the problem solver as a Bayesian 
information processor (Bond and Rigney, 1966; 
Kozielecki, 1972). These modeling endeavors have 
typically shown that the human is only optimal 
for simple problems unless extensive training is 
provided. 

More recently, emphasis has come to be placed 
on the process (i.e. strategy) rather than the product 
(i.e. results) of problem solving (Gregg and Simon, 
1967). In other words, concern has shifted to model- 
ing human behavior (i.e. what the human does) 
rather than human performance (i.e. how well the 
human does). A variety of methodologies useful for 
developing process models have emerged (Newell 
and Simon, 1972; Waterman and Hayes-Roth, 
1978; Rouse, 1980). As a result of this trend, con- 
siderable attention has been devoted to the con- 
cept of strategy (Wason and Johnson-Laird, 1972; 
Simon, 1975; Simon and Reed, 1976; Johnson, 1978). 
Some effort has been devoted to developing per- 
formance measures that are sensitive to differences 
in strategy (Duncan and Gray, 1975; Brooke and 
Duncan, 1980; Hunt and Rouse, 1981; Henneman 
and Rouse, 1982). 

Process models have emerged for a wide range 
of tasks including chess (Newell and Simon, 1972), 
fitting of mathematical functions (Huesman and 
Cheng, 1973), water jug problems (Atwood and 
Poison, 1976), missionaries and cannibals (Jeffries 
and co-workers, 1977), errand planning (Hayes- 
Roth and Hayes-Roth, 1979), fault diagnosis (Rouse 
and co-workers, 1980; Rouse and Hunt, 1981; Hunt 
and Rouse, 1982), and many others. A common 
feature of these models is the extensive use of rule- 
based strategies (as opposed to algorithmic opti- 
mization) with, in a few cases, a mixture of 
probabilistic or fuzzy choices or transitions among 
modes. Another important aspect of these models 
is that they can actually perform the task of interest; 
this cannot be said of many of the earlier product- 
oriented models of human performance. 

Summary 

This brief review of the general area of human 
problem solving has served to point out several 
concepts and issues that are important to modeling 

human detection, diagnosis, and compensation for 
system failures. Perhaps the most important con- 
cept is the dichotomy between context-specific 
pattern recognition and structure-oriented search- 
ing, and the relationship of this dichotomy to 
the nature of expertise. It appears that training 
methods, forms of problem representation, and use 
of aids are important determinants of the modes of 
problem solving chosen by humans, at least initially. 

While many of the models of human problem 
solving reviewed in this section are not directly 
relevant to the type of problem solving of interest 
in this paper, the notion of modeling the process 
rather than the product of problem solving is very 
important. Further, as later discussions will illus- 
trate, much of the rule-based modeling method- 
ology underlying these models has been quite useful 
for developing models that focus on detection, diag- 
nosis, and/or compensation. Several of these models 
will now be reviewed. 

MODELS OF DETECTION 

Detection is defined as the process whereby the 
human operator decides that an event has occurred. 
There are four types of model of human perform- 
ance in event detection. One type is based on signal 
detection theory; another type utilizes thresholds 
for error and error rate; another employs the 
residuals of a Kalman filter within a sequential 
decision theory algorithm; a final type is based on 
pattern recognition methods. These types of model 
are summarized in Table 1.* The following discus- 
sion elaborates on the summaries in this table. 

Signal detection theory 

Signal detection theory (see entry l, Table 1) has 
been used extensively to describe the results of 
experimental studies of the human's abilities to 
detect infrequent signals in the presence of noise 
(Sheridan and Ferrell, 1974). The theory assumes 
that the human forms a likelihood ratio in terms 
of the conditional probability of observed data 
given there is a signal divided by the conditional 
probability of the observed data given there is only 
noise. This likelihood ratio is then compared to a 
threshold which is a function of a priori probabili- 
ties, values of correct responses and costs of 
incorrect responses. If the likelihood ratio exceeds 
this threshold, the theory predicts that the human 
will report the detection of a signal. 

Results of signal detection studies are typically 
expressed in terms of 'hits' and 'false alarms'. The 
probability of a hit is plotted against the probability 
of false alarm. The resulting plot is called a relative 

* The value of N shown in Tables 1 and 2 denotes the number 
of experimental subjects with which the model was compared. 
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I. Signal 
Detection 
Theory 

2. Miller and 
Elkind 
(1967) 

3. Phatak and 
Bekey 
(1969) 

4. Niemela and 
Krendel 
(1975) 

5. Gai and 
Curry 
(1976) 

6. Greenstein 
and Rouse 
(1982) 

TABLE 1. M O D E L  

Basic 
Approach 

detection 
threshold on 
likelihood 
ratio 

detection 
threshold on 
variance of 
changes in 
error rate 

detection 
thresholds on 
error and error 
rate 

detection 
thresholds on 
error and error 
rate 

detection 
threshold on 
cummulative 
filter residuals 

detection 
threshold on 
likelihood ratio 
from discriminant 
function 

OF HUMAN FAILURE DETECTION 

Key 
Assumptions 

separability of 
detectability 
and decision 
criterion 

known set of 
possible 
failures 

known set of 
possible 
failures 

known set of 

I p o s s i b l e  
I failures 

i known model of 
system and 
statistical 
properties of 
disturbances 

features 
independent and 
linearly 
weighted 

Types of 
Failure 

presence of a 
slngle known 
event obscurred 
by noise; 
monitoring 

changes in gain 
and polarity for 
i st order 

system; 
compensatory 
tracking 

changes between 
2 nd and 4 th 

order aircraft 
dynamics; 
compensatory 
tracking 

changes in 
polarity for 2 nd 

order system; 
compensatory 
tracking 

step and ramp 
changes of mean 
disturbance of 
2nd order 
system; 
monitoring 

ramp changes of 
signal to noise 
ratio of 2 nd 
order system; 
multiple process 
monitoring 

Experimental 
Results 

typically used 
to describe hit 
vs. false alarm 
rates 

reasonable 
Jredictions of 
detection time 
and some false 
alarms; N=3 

reasonable 
qualitative 
comp of 
detection time 
and thresholds ; 
N=I 

analysis of 
detection 
threshold; N=5 

reasonable 
predictions of 
detection time; 
N=2 

reasonable 
predictions of 
detection time; 
N=8 

operating characteristic or ROC curve. The shape 
of the curve can be expressed in terms of the 
human's sensitivity to the signal, while the human's 
operating point on the curve reflects the afore- 
mentioned response threshold. 

Signal detection theory has been quite popular 
with experimental psychologists whose laboratory 
studies allow rather straightforward manipulations 
of probabilities, costs, etc. However, in more realis- 
tic settings it can be rather difficult to determine 
the values of these variables and therefore, the 
model is considerably less useful for realistic situa- 
tions. Nevertheless, the ROC curve is still a useful 
way of summarizing human detection performance. 

Error  vs error  rate  models  

This type of model (see entries 2-4, Table 1) is 
attractively simple in that human failure detection 
decisions are assumed to be made solely on the 
basis of a two-dimensional threshold involving the 
displayed error and error rate in compensatory 
tracking tasks (Phatak and Bekey, 1969; Niemela 
and Krendel, 1975). A related model by Miller and 

Elkind (1967) assumes that detection is based on 
the variance of changes in error rate in compensa- 
tory tracking. While all three of these models were 
developed for manual control tasks, the notion of 
an error vs error rate display is certainly very 
general and could be applied to other monitoring 
tasks. 

The simplicity of this type of model is not with- 
out its disadvantages. In particular, the two- 
dimensional threshold on error and error rate is 
highly situation-dependent and the parameters of 
these models must be empirically adjusted for 
different types of dynamic processes and failures. 
Therefore, as with signal detection theory, this type 
of model is most useful for describing rather than 
predicting results. 

Fi l t e r -based  models  

A Kalman filter is basically a method of resolving 
the conflict between prediction and subsequent 
observation (Rouse, 1980). While this conflict may 
be attributed to poor predictions or noisy observa- 
tions, an alternative cause of conflict is system 
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failures. Since a failure may change the input- 
output relationship of a system, predictions based 
on the pre-failure input-output relationship are 
likely to disagree with observations of variables 
produced by the post-failure input-output relation- 
ship. The extent of the disagreement can be used 
as a means of detecting failures. 

Gai and Curry (1976) employed this concept to 
develop a model of human performance in failure 
detection (see entry 5, Table 1). The sequence of 
differences between predicted and actual system 
outputs is obtained from Kalman filter. This 
sequence of 'residuals' is cumulated and compared 
with a threshold which is based on acceptable 
probabilities of missed events and false alarms. 
Beyond the step and ramp failures noted in Table 
1, this model has also be.en applied to detecting 
changes in variance and bandwidth (Curry and 
Govindaraj, 1977). 

The strength of this filter-based model is the in- 
variance of its structure across a wide range of 
dynamic systems. Thus, the model need not be re- 
formulated for each new task situation. There is a 
cost for this generality, however, in that the model 
must have explicit knowledge of an appropriate 
mathematical model of the dynamic process being 
monitored. 

Pattern recognition models 

In order to detect failures, humans may observe 
a wide variety of features beyond errors, error rates, 
and residuals. For example, sounds, vibrations, and 
smells may be part of the overall patterns of features 
relevant to failure detection. In general, the human's 
detection task is to recognize when the pattern of 
features is other than normal. 

Greenstein and Rouse (1982) have developed a 
model of human performance in event detection 
based on discriminant analysis, one of the simplest 
pattern recognition methods (see entry 6, Table 1). 
A discriminant function is used to linearly weight 
any number of task features deemed relevant. This 
function is used to generate a likelihood ratio which 
is then compared to a threshold similar to that used 
in signal detection theory. 

The advantages of this model include its ability 
to overcome a key limitation of signal detection 
theory (i.e. the process whereby the likelihood ratio 
is determined), its generalization of the feature- 
based error vs error rate models, and its ability 
to function without the mathematical model of 
the process required for filter-based models. The 
model's main disadvantages include the need to 
empirically determine discriminate function coeffi- 
cients and, when a mathematical model of the 
process dynamics is available, its inability to make 
direct use of this information. 

Summary 

Contrasting the four types of model reviewed 
here, it seems quite reasonable to conclude that the 
filter-based models are the best available if the 
requisite information to use them can be obtained. 
Otherwise, pattern recognition models are most 
appropriate. In either case, these models are cer- 
tainly not available 'off the shelf'. For example, 
considerable thought would be needed before these 
models could be applied to resolving the issues 
associated with the human's relative abilities to 
detect failures in manually and automatically con- 
trolled processes (Ephrath and Young, 1981; 
Wickens and Kessel, 1981). Nevertheless, sufficient 
basic research has been performed to justify the 
effort necessary to apply these models to under- 
standing and resolving these and other issues 
associated with failure detection. 

MODELS OF DIAGNOSIS 
Diagnosis refers to the process of identifying the 

cause of an event. Table 2 summarizes a variety of 
models of human performance in diagnostic tasks. 
These models roughly fall into two classes: pre- 
scriptive and descriptive. The following discussion 
elaborates upon this distinction and the summaries 
given in Table 2. 

Prescriptive models 

Most of the earlier efforts to model human 
behavior and performance in fault diagnosis tasks 
involved comparing human performance to that of 
prescriptive models. One prescriptive method of 
diagnosis is the half-split or binary chop which 
attempts to choose tests that partition the feasible 
set into two halves in terms of uncertainty. The 
evidence is fairly conclusive (see entries 2, 3, and 5, 
Table 2) that humans typically do not make optimal 
half-split tests (Goldbeck and co-workers, 1957; 
Dale, 1958; Mills, 1971). While training may help, 
its effect becomes limited as problem complexity 
increases. The primary difficulties appear to be 
humans' inabilities to identify the feasible set and 
tendencies to utilize irrelevant perceptual cues. 

Another type of prescriptive approach to fault 
diagnosis utilizes probabilities of failure and 
average action times to find the minimum time 
solution (Stolurow and co-workers, 1955) or just 
probabilities to find the most likely fault (Bond and 
Rigney, 1966). Human's abilities to employ this type 
of strategy are highly dependent on their knowledge 
of a priori probabilities and average action times 
(see entires 1 and 4, Table 2). This knowledge 
is often imperfect, and therefore, humans are 
precluded from performing as well as the prescribed 
strategy. 
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TABLE 2. MODELS OF HUMAN FAILURE DIAGNOSIS 

- ~ A t ~ b ~  - BaSic Key Types of 
Approach Assumptions Failure 

i. Stolurow, 
et al. 
(1955) 

2. Goldbeck, 
et al, 
(1957) 

3. Dale 
(1958) 

4. Bond and 
Rigney 
(1966) 

5. Mills 

( t971) 

6. Rasmussen 
and 
Jensen 
(1974) 

7. Rouse 
(1978, 
1979) 

8. Rouse 
and 
Rouse 
(J979) 

9. Rouse 
et al. 
(1980) 

10. Wohl 
(1981) 

11. Hunt 
and 
Rouse 
(1982) 

consideration of 
• ' expected 

time strategy 

comparison 
with half-split 
strategy 

comparison 
with half-split 
strategy 

com; 
with Bayesian 
updating of 
probabilities 

comparison 
with half-split 
strategy 

description 
of strategies 
and selection 
among 
strategies 

formation of 
fuzzy feasible 
and infeasible 
sets 

information 
theoretic 
measure of 
complexity 

rank-ordered 
set of 
situation- 
action rules 

description of 
possible causes 
of very skewed 
repair time 
distributions 

fuzzy rank- 
ordering of 
pattern recogni- 
tion and network 
searching rules 

repair actions 
based on prob- 
ability and time, 
independent of 
structure 

diagnosis 
based on 
decreasing size 
of feasible 
set 

diagnosis 
based on 
decreasing size 
of feasible 
set 

test choices 
based on 
probability, 
independent of 
structure 

diagnosis 
based on de- 
creasing size 
of feasible 
set 

verbal 
protocols 
reflect 
strategy 

diagnosis 
based on 
decreasing 
size of fuzzy 
feasible set 

strategy of 
individual 
affects 
complexity 

rank-ordering 
of rules 
fixed 

exhaustive 
search in 
order of 
increasing time 
per action 

rule choices 
governed by re- 
call, applica- 
bility, useful- 
ness,and simpli- 
city 

aircraft power- 
~lants with 
unequal failure 
rates and 
repair times 

components in 
logic network 

components in 
flow network 

oscillator 
circuit 

series electri- 
cal circuit 
with unequal 
failure 
~robabilities 

electronic 
instruments 

2omponents in 
two types of 
logic network 

components in 
two types of 
logic network 

components in 
two types of 
logic network 

several mili- 
tary electronics 
systems 

simulated 
powerplants and 
avionics 
systems 

Experimental 
Results 

significant dis- 
agreement among 
instruct,~rs about 
times and proba- 
lities; N=IO 

significant de- 
parture from op- 
timality; diffi- 
culty identify- 
ing feasible 
set; N=130 

significant de- 
parture from 
optimality; ir- 
relevant cues 
utilized~ N=240 

agreement on 50% 
of solutions; 
dependent on i- 
nitial probabil- 
ities; N=39 

significant 
departure from 
optimality ; 
N=6 

topographic and 
symptomatic 
strategies; 
strategy fixa- 
tion; N=6 

reasonable 
predictions of 

number of tests 
and effects of 
aiding; N=36 

reasonable 
predictions of 
solution time; 
N=88 

similar choices 
on 90% of 
actions; N=154 

high correlation 
with average 
field repair 
time; N=I0 
equipments 

similar choices 
on 70% of 
actions; N=IO 

From this set of comparisons of human perform- 
ance with that of prescriptive models it can reason- 
ably be concluded that humans are not optimal 
diagnosticians, at least not with respect to the 
criteria upon which these models are based. This 
suboptimality may be due to a lack of knowledge 
of the prescribed strategy or, due to a lack of 
knowledge of the requisite information for im- 
plementing the strategy or, due to an inability to 
process the information in the manner required by 
the strategy. Finally, of course, it could be that 
humans have performance criteria that include 
more than just number of actions or time. They 
may also be concerned with minimizing effort, risk, 
etc. 

Descriptive models 

Given that human performance departs substan- 
tially from that of prescriptive models, the next 
logical consideration is describing how humans 
actually do perform fault diagnosis. While the 
studies of prescriptive models, particularly the 
studies of Dale (1958), did attempt to describe devia- 
tions from optimality, the studies were not con- 
cerned with producing descriptive models per se. 
Such models have only more recently emerged. 

The discussion of prescriptive models indicated 
that humans have difficulty identifying the feasible 
set. This could be interpreted as meaning that 
humans find it difficult to crisply say 'yes' or 'no' 
about the membership of each component in the 
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feasible set of failures. Rouse (1978, 1979) has in- 
corporated this limitation into the half-split strategy 
by using fuzzy set theory and defining membership 
in terms of the 'psychological distance' between 
components and symptoms (see entry 7, Table 2). 
This model was quite successful in predicting the 
effects, in terms of number of tests until solution, 
of providing the human aids for identifying the 
feasible set. 

Some fault diagnosis problems can be solved 
quickly while others require quite a long time. It 
seems reasonable to argue that this difference in 
problem solving time is related to problem com- 
plexity. Rouse and Rouse (1979) studied a variety 
of measures of problem solving complexity and 
found that an information theoretic measure of the 
uncertainty associated with all of the connections 
among components in the feasible set provided the 
highest correlation between time and complexity 
(see entry 8, Table 2). Since this measure was based 
on the feasible set as it evolved through the course 
of each individual's problem solving, this measure 
can be said to incorporate each individual's 
strategy. Thus, the measure reflects the problem 
solver as well as the problem. 

Wohl (1981) has also studied problem solving 
time as a function of complexity (see entry 10, Table 
2). In contrast to the Rouse measure which predicts 
the time for a specific troubleshooter to solve a 
particular problem, Wohl's model predicts average 
repair time across all failures and troubleshooters 
for a particular piece of equipment. His measure of 
complexity is based on the number of connections 
among all components in the piece of equipment. 
The model also incorporates a particular diagnostic 
strategy, namely, exhaustive search in order of in- 
creasing time per action. The correlation between 
the average time predictions of this model and data 
from both field and laboratory studies is quite 
impressive. 

The number of tests and the time until a fault is 
isolated reflect the product of diagnosis. A much 
better understanding of human problem solving 
may be possible with models that reflect the process 
of problem solving. Rouse and his colleagues (Rouse 
and co-workers, 1980) developed a rule-based 
model that predicted the sequence of actions chosen 
by the troubleshooter (see entry 9, Table 2). By 
appropriate choices of rules and rank-orderings, 
they were able to obtain a high level of agreement 
between the behavior of the model and that of 
humans. One particularly interesting conclusion 
was the fact that better troubleshooters did not 
necessarily have better rules than poorer trouble- 
shooters; they often simply had a better rank- 
ordering of the same rules. 

Rasmussen's description of diagnostic strategies 
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(Rasmussen and Jensen, 1974; Rasmussen, 1978, 
1981) has shown that a variety of strategies are 
adopted by troubleshooters (see entry 6, Table 2). 
The most important distinction found was between 
strategies based on context-specific pattern recogni- 
tion (i.e. symptomatic strategies) and those based 
on relatively context-free network searching rules 
(i.e. topographic strategies). While symptomatic 
strategies result in a direct mapping from symp- 
toms to hypothesis, topographic strategies involve 
searching through networks of functional relation- 
ships. Rasmussen has also studied the process 
whereby humans choose and perhaps fixate on 
strategies. 

Hunt and Rouse (see entry 11, Table 2) have 
combined the fuzzy set model, the rule-based model, 
and the concepts of Rasmussen to produce a fuzzy 
rule-based model (Rouse and Hunt, 1981; Hunt and 
Rouse, 1982). The model has S-rules (symptomatic 
rules such as: if the car will not start, check the fuel 
quantity) which it prefers to use if possible, and 
T-rules (topographic rules such as: if a component's 
outputs are bad, check its inputs) which it will 
employ if necessary (i.e. if it cannot find an appro- 
priate S-rule). Particular rules are chosen according 
to membership in the fuzzy set of choosable rules 
which is defined as the intersection of the fuzzy sets 
of recalled, applicable, useful, and simple rules. 
This model was reasonably successful in predicting 
the sequence of actions chosen by aircraft mech- 
anics in troubleshooting simulated powerplant and 
avionics systems. Further, it was useful for illus- 
trating the shift from S-rules to T-rules when 
unfamiliar problems were encountered. 

Summary 

Contrasting the variety of models of diagnostic 
behavior presented in this section, it is clear that 
the unconstrained prescriptive models do not pro- 
vide good descriptions of human behavior and per- 
formance. For the purpose of predicting repair 
time for a particular equipment system, averaged 
across types of failure and different troubleshooters, 
Wohl's model is probably the best choice. For more 
fine-grained predictions of human behavior, the 
model of Hunt and Rouse, as a derivative of earlier 
work by Rasmussen and Rouse, would seem to offer 
the most appropriate approach. 

MODELS OF COMPENSATION 

If a failure must be diagnosed during system 
operation, as opposed to during maintenance, then 
the human problem solver typically must be con- 
cerned with both keeping the system operating and 
diagnosing the source of the problem. The process 
of sustaining system operation in failure situations 
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is termed compensation. In this section, two types 
of compensation will be considered: (1) compensat- 
ing for symptoms and (2) compensating for failures. 

Compensatin9 for symptoms 
There appear to be two general types of symptom. 

The first type includes abnormal and emergency 
events such as fires, leaks, system trips, etc. These 
events are often dealt with using standard proce- 
dures, which may or may not be formalized. In 
some situations, however, there are no written or 
unwritten procedures and humans must revert to 
problem solving. 

The second type of symptom includes substantial 
deviations of state variables. Examples include pres- 
sures, levels, flows, and velocities that are too high 
or too low. This type of symptom can be dealt with 
in several ways. For loops that are normally 
automatically controlled, the operator may com- 
pensate by assuming manual control. Another 
approach to compensation is through reallocation 
of resources including switching to backup modes, 
re-routing of resources, and re-prioritizing or shed- 
ding of demands on the system. With this second 
approach, standard procedures are typically not 
available and problem solving is required. 

Compensatin9 for failures 

Once the diagnostic process has proceeded to the 
point of having identified the failure, the operator 
must decide how to compensate for the failed 
component. The most obvious compensation is to 
repair or replace the failed component. However, 
this is often not immediately possible. As a result, 
the operator may have to plan for degraded mode 
operation. 

Degraded mode operation involves continued 
operation with the loss or substantial impairment 
of one or more system functions. If the lost or im- 
paired functions are critical (e.g. engines to an 
aircraft), then the only thing of interest may be that 
of bringing system operation to a halt in a safe and 
orderly manner (e.g. a safe landing). For critical 
situations such as these there are often standard 
procedures. 

Many situations, however, do not call for or allow 
suspending of systems operations. In these cases, 
the operator may have to continue compensating 
for the symptoms and/or plan for operating with a 
long-term loss or impairment of functions. This may 
require problem solving. 

Coordinating compensation and diaonosis 
Compensation and diagnosis can be viewed as 

two separate tasks competing for the operator's 
attention (Rouse and Morris, 1981a, b; van Eekhout 
and Rouse, 1981). Unfortunately, this situation can 

result in the operator focusing on one task to the 
exclusion of the other. If the effects of failures are 
cumulative or if symptoms tend to become aggra- 
vated, focusing on only compensation or diagnosis 
can have disasterous consequences. For example, 
at least one major airline crash has been attributed 
to the crew having focused on diagnosis to the 
exclusion of all other tasks. 

The coordination of compensation and diagnosis 
is not simply the process of managing two tasks 
simultaneously. Since the two tasks are far from 
independent, they have the potential for being 
conflicting. For example, compensating for the 
symptoms may make diagnosis more difficult. On 
the other hand, the two tasks may be complemen- 
tary in that information acquired for performing 
one task may provide information valuable to per- 
forming the other task. In either case (i.e. conflicting 
or complementary~, this interdependence illustrates 
the potential complexity of dealing with problem 
solving at multiple levels. 

Models 
Unlike the discussion of detection and diagnosis, 

this section has no tabulation of models and their 
attributes. For those situations where compensa- 
tion involves executing standard procedures or 
manual control, there are a variety of models avail- 
able (Sheridan and Ferrell, 1974; Rouse, 1980; 
1981a). However, these are not models of human 
problem solving. In fact, other than the afore- 
mentioned models by Rasmussen, Rouse, and Hunt, 
there are no directly applicable models of problem 
solving behavior in coordinating compensation and 
diagnosis, or for compensation itself. The next sec- 
tion proposes an outline for such a model. 

OUTLINE FOR AN OVERALL MODEL 

From the foregoing discussion, it is obvious that 
considerable effort has been invested in the study 
of human problem solving in general, and human 
detection, diagnosis, and compensation for system 
failures in particular. However, most of the models 
discussed thus far focus on a single aspect of problem 
solving. Only a few of the models (Newell and 
Simon, 1972, Minsky, 1975; Schank and Abelson, 
1977; Rasmussen, 1979) consider the full breadth 
and robustness of human problem solving behavior. 
What is needed is a model that, at least conceptu- 
ally, captures the whole of problem solving and, at 
the same time, can be operationalized within specific 
task domains. This section outlines the specifica- 
tions for such a model. 

Pattern recognition orientation 
A conclusion that surfaced repeatedly in the 

earlier discussions was that humans, if given a 
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choice, would prefer to act as context-specific 
pattern recognizers rather than attempting to calcu- 
late or optimize. Obviously, life would be difficult 
indeed if one had to constantly recalculate various 
things in order to make choices. Thus, human 
preference for pattern recognition is justifiable both 
scientifically and practically. 

However, if the human does not recognize a pat- 
tern, a mode of problem solving other than context- 
specific pattern recognition must be employed. The 
alternative modes may be called heuristic, analyti- 
cal, topographic, etc. A common characteristic of 
these modes is that the human must go beyond the 
surface features of the problem. Since the focus of 
this paper is on system failures, this notion can be 
more precisely stated as the human must go beyond 
the system state and consider the system structure. 

Figure 1 illustrates this fundamental concept. The 
human is assumed to have a clear preference for 
proceeding on the basis of state information. The 
use of structural information is definitely a less- 
preferred alternative. The mechanism shown in 
Fig. 1, which is elaborated upon throughout the 
remainder of this section, is proposed as the central 
and only mechanism necessary for an overall model. 

]~ 
PROBLEM I~ 

CONSIDER] 
STATE 

NFORMAT O~ 

~1o 

CONSIDER I [ 
STRUCTURAL ~ 
NFORMATION] [ 

STATE 
ORIENTED 
RESPONSE 

STRUCTURE 
ORIENTED 
RESPONSE 

r 

FIG. 1. Basic mechanism for proposed model of human problem 
solving. 

Levels of problem solving 
Considering the literature reviewed earlier in 

this paper and a variety of studies of human 
problem solving in aircraft, ships, and process 
plants (Johannsen and Rouse, 1980, 1981; Rouse 
and co-workers, 1982; Johnson and Rouse, 1982a, b; 
van Eekhout and Rouse, 1981; Rouse and Morris, 
1981a, b), it seems reasonable to conclude that 
problem solving occurs on several levels. Perhaps 
the most obvious example of multilevel problem 
solving is the aforementioned coordination of com- 
pensation and diagnosis. The concept of multiple 

levels is, however, much more general than the idea 
of coordinating tasks. 

It appears that three general levels of problem 
solving are needed to model human behavior: 
(1) recognition and classification, (2) planning, and 
(3) execution and monitoring. Recognition and 
classification involves detecting that a problem 
solving situation exists and assigning it to a 
category. Planning is the process whereby the 
approach to solving a problem is determined. 
Execution and monitoring is the actual process of 
solving the problem. 

Table 3 summarizes how the basic mechanism in 
Fig. 1 applies to the three levels of problem solving. 
At the highest level (i.e. recognition and classifica- 
tion), the human is assumed to identify the context 
and category of a problem. If the human finds 
the state information to match an available frame 
(Minsky, 1975), problem solving proceeds on that 
basis. If an appropriate frame is not in the human's 
repertoire, structural information might provide 
clues to an analogy or be used to employ basic 
principles of, for example, the scientific method. 

TABLE 3. DECISIONS AND RESPONSES FOR THREE LEVELS OF PROBLEM 

SOLVING 

i. Recognition 

and 

Classification 

Frame 

Available'? 

State-Oriented 

R e s p o n s e  

Invoke 

Frame 

Structure-Oriented 

Response 

Use Analogy 

and/or 

Basic Principles 

Planning 

3. Execution 

and 

Monitoring 

Script 

AvaJiable? 

Pattern 

Familiar? 

Invoke 

Script 

Apply 

Appropriate 

S-Rule 

Formulate 

Plan 

Apply 

Appropriate 

T-Rule 

At the next level (i.e. planning), the human must 
decide how the problem will be attacked. Based on 
the state information, the human may conclude that 
the problem solving situation is familiar and the 
appropriate script (Schank and Abelson, 1977) or 
standard procedure can be employed. If no script 
is available, the human must use structural informa- 
tion to plan in terms of generating alternatives, 
imagining consequences, valuing consequences, and 
so on (Johannsen and Rouse, 1979). 

Actual problem solving occurs at the lowest level 
(i.e. execution and monitoring) where scripts or 
plans are executed and monitored for success. 
Familiar patterns of state information may allow 
for the use of context-specific symptomatic rules 
(S-rules) that map directly from observation to 

AUT 19:6-C 
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hypothesis or action (e.g. if the engine will not crank, 
check the battery). If the pattern is not familiar, 
structural information may allow the use of topo- 
graphic rules (T-rules) for searching the structure 
of the problem (e.g. if a component's inputs are 
good and its outputs bad, the component has failed). 

All of the responses noted in Table 3 (i.e. invoke 
frame, use analogy, etc.) invoke the same mechanism 
as shown in Fig. 1. This mechanism is recursively 
invoked until actions are produced and the problem 
solved. Thus, in contrast to many of the models 
discussed earlier in this paper, the model outlined 
here is very simple, involving a single mechanism 
that is recursively employed for all aspects of 
problem solving. 

Hierarchical vs heterarchical 

If one views problem solving from an opera- 
tions research or management science perspective, 
one should hierarchically consider goals, objec- 
tives, attributes, alternatives, etc. This hierarchical 
approach has often been adopted by computer 
scientists when designing knowledge-based expert 
problem solving systems (Sacerdoti, 1974). The 
model proposed in this paper certainly could per- 
form hierarchically by first invoking a frame or an 
analogy, then invoking a script or planning, and 
finally acting via S-rules and T-rules. 

However, it has been argued that human problem 
solving is heterarchical or opportunistic rather than 
hierarchical (Hayes-Roth and Hayes-Roth, 1979). 
In other words, the human does not solve problems 
in purely a top-down or bottom-up manner. In- 
stead, it appears that the human operates on all 
levels almost simultaneously. 

The proposed model can produce this type of 
behavior if one assumes that the three decisions 
(i.e. frame available, script available, and pattern 
familiar) are constantly, but not necessarily con- 
sciously, being re-evaluated. Thus, for example, the 
model might be using T-rules to plan on the basis 
of an analogy and suddenly realize the applicability 
of a script. This could result in the preemption of 
planning and the rapid application of a sequence 
of S-rules which provides new information and 
results in a familiar frame being recognized which 
leads to a new script and so on. 

If all three decisions are constantly being re- 
evaluated, it is possible that conflicts will arise in 
terms of which decision should take precedence. 
Such conflicts might be resolved by giving more 
credence to closer matches (e.g. a very familiar 
pattern is more captivating than a somewhat 
familiar script). Another method of resolving con- 
flict is to place more weight on alternatives that 
maintain the current direction of the problem 
solving. In other words, the model could incorpor- 

ate the assumption that the human would like to 
avoid changes in frame, script, etc. 

Behaviour of the model 

Since the model outlined here represents a syn- 
thesis of the many concepts and models reviewed 
in earlier sections of this paper, it should not be 
surprising that this model will produce the types of 
behavior noted in those discussions. The strength 
of the model is that a very simple mechanism and 
method of organization can produce such an im- 
pressive range of behaviors. Of course, this possi- 
bility, from a slightly different perspective, has been 
investigated by others (Newell and Simon, 1972). 

A particularly interesting aspect of the model's 
behavior, as well as that of humans, is its potential 
for making errors. The model has two inherent 
possibilities for causing errors. The first possibility 
relates to the model's recursive use of the basic 
mechanism in Fig. 1. As the model recursively 
invokes this mechanism, it needs a 'stack' or some 
short-term memory for keeping track of where it is 
and how it got there. If short-term memory is 
limited, as it is in humans, the model may recurse 
its way into getting lost or, pursuing tangents 
from which it never returns. To constrain this 
phenomenon, it is probably reasonable to assume 
that lower priority items in the stack are more likely 
to be lost first. For example, one is more likely to 
forget one's umbrella than to forget to go to work. 

The second possibility for causing errors is the 
matching of irrelevant or inappropriate patterns. 
For example, the model, or a human, may be 
captured by an inappropriate but similar script or 
S-rule. As a result, the model may pursue an 
inappropriate path until it suddenly realizes, per- 
haps much too late to be able to recoup, that it has 
wandered far afield from where it thought it was 
headed. 

The fact that the proposed model has inherent 
possibilities for making errors, particularly some- 
what subtle errors, provides an interesting avenue 
for evaluating the model. Most models are evalu- 
ated in terms of their abilities to achieve the same 
levels of desired task performance as humans. A 
much stronger test would involve determining if the 
model deviates from desired performance in the 
same way and for the same reasons as humans. The 
proposed model can potentially be evaluated in this 
manner. 

Summary 

In this section, an outline of a model of human 
problem solving has been proposed. This outline 
is, in a sense, a set of model specifications based on 
a synthesis of a wide range of concepts and models 
as well as a variety of experimental Tesults. The 
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strength of  the proposed  model  is its potential 
ability to represent a wide range of  human  problem 
solving behavior  while also being readily imple- 
mentable for evaluation. 
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CONCLUSIONS 

Considering the relationship of  the overall model  
outlined here to the other  models discussed in this 
paper, this conceptual  model  is, to a great extent, 
an ou tg rowth  of  earlier work by Rouse and Hunt ,  
and also by Rasmussen. The frame, script, and S- 
rule aspects of  the model  are also fairly similar to 
concepts  proposed by Newell and Simon (1972). 
The manner  in which the model  utilizes both  state 
and structural information,  and the recursive use 
of  the same basic mechanism on all levels of  problem 
solving are perhaps the model 's  mos t  unique 
characteristics. In this way, the model is potentially 
capable of  dealing with unfamiliar problem contexts 
via analogies, T-rules, etc. 

Compar ing  the proposed model  with the many  
models of  detection and diagnosis reviewed in this 
paper, the pat tern recognit ion oriented and rule- 
based models can be easily incorporated within the 
general f ramework outlined here. The models which 
assume the h u m a n  to perform some type of  calcula- 
tion (e.g. Bayesian, filter-based, and fuzzy half-split 
models) best fit within the specific port ions of  this 
f ramework for planning and T-rules. It should be 
noted that  the assumptions underlying these cal- 
culat ion oriented models differ substantially f rom 
those of  the proposed model  which assumes the 
human  to avoid calculation if at all possible. 

The model 's  ability to  operate almost  simul- 
taneously on several levels provides the potential 
for representing the coordina t ion  of  compensat ion  
and diagnosis. Because of  short- term memory  
limitations, the model  also allows for the possibility 
of  errors in coord ina t ion  (e.g. focusing on one task 
to the exclusion of  the other). W h a t  is not  clear at 
this point,  and is the topic of  several current 
investigations, is the nature of  S-rules, T-rules, 
scripts, and plans relative to coordinat ing com- 
pensat ion and diagnosis. This impor tan t  topic 
deserves considerable study. 

The basic premise of  this paper  is that  the 
responsibilities of  the human  opera tor  will in- 
creasingly be domina ted  by problem solving. The 
design of  systems to support  the human  opera tor  
in fulfilling these responsibilities should be based 
on knowledge of  h u m a n  abilities and limitations in 
problem solving. This paper  has reviewed the state 
of  the art  in this area and proposed specifications 
for a new model  which has the potential  for being 
a vehicle for integrating and advancing unders tand-  
ing of  h u m a n  problem solving. 
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