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Abstract  

Techniques for the development of mathematical models in the area of predictive 
microbiology have greatly improved recently, allowing better and more accurate descriptions 
of microbial responses to particular environmental conditions, thus enabling predictions of 
those responses to be made with greater confidence. Recognising the potential value of 
applying these techniques in the food industry, the Ministry of Agriculture, Fisheries and 
Food (MAFF) initiated a nationally coordinated five-year programme of research into the 
growth and survival of microorganisms in foods, with the aim of developing a computerised 
Predictive Microbiology Database in the UK. This initiative has resulted in the systematic 
generation of data, through protocols which ensure consistency of methodology, so that data 
in the database are truly comparable and compatible, and lead to reliable predictive models. 
The approaches taken by scientists involved in this programme are described and the 
various stages in the development of mathematical models summarized. It is hoped that this 
initiative and others being developed in the USA, Australia, Canada and other countries, 
will encourage a more integrated approach to food safety which will influence all stages of 
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food production and, eventually, result in the development of an International Predictive 
Microbiology Database. 
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1. Introduction 

Predictive microbiology has emerged as a discipline in its own right in recent 
years, and the usefulness of the approach is becoming widely accepted. This has 
resulted in considerable international interest particularly in Western Europe, 
USA, Canada, and Australia. The true power of this approach is that, unlike the 
traditional storage trial, models, once validated, can be used swiftly to predict with 
confidence the responses of organisms under a variety of conditions. Such a tool is 
invaluable for the modern food microbiologist in day-to-day decision making. 

Following a review of research priorities in 1987-88, the Ministry of Agriculture, 
Fisheries and Food (MAFF) identified predictive microbiology as one approach to 
help ensure food safety. Initially, the use of literature data was considered for 
modelling purposes but was not deemed suitable for a number of reasons. The 
published data on some bacteria, particularly newly emerging pathogens, were 
scarce and experiments had rarely been designed to generate sufficient data to 
develop models; it was difficult to combine data from different studies as they were 
often not complementary; many of the important factors and interactions affecting 
growth, survival and death of bacteria in foods had been poorly quantified. 
Consequently, a UK coordinated programme of research on the growth, survival 
(in conditions that did not support growth), and thermal inactivation of food-poi- 
soning bacteria in conditions relevant to food was initiated by MAFF. The aim was 
to build on the new modelling expertise becoming available and to generate a 
computerised Predictive Microbiology Database (Gould, 1989). 

A five-year coordinated programme of practical research was developed involv- 
ing microbiologists and mathematicians from the Norwich and Reading laborato- 
ries of the Institute of Food Research, Campden Food and Drink Research 
Association (CFDRA), the Flour Milling and Baking Research Association, 
Leatherhead Food Research Association and Torry Research Station, along with 
Unilever Research and some input from the Universities of Surrey, Bath and 
Wales College of Cardiff. The data produced from all the participating laborato- 
ries are submitted to the UK Predictive Food Microbiology Database. This has 
resulted in a large database comprising data produced to a high standard using 
common protocols, ensuring that data from different laboratories could be com- 
bined and modelled successfully. Once accepted by the Models Selection Group, 
models are submitted to the UK models base. The database and models base are 
located at CFDRA. This was launched in October 1992 as a commercial service - 
Food Micromodel. The system is available for use by the food industry. A personal 
computer (PC) based version is also being developed. 

A multidisciplinary group of food microbiologists (Model Selection Group, 
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MSG) with experience in the field of predictive microbiology was set up to help to 
co-ordinate technical activities within the programme, and to consider the appro- 
priateness and validity of models generated. This paper is intended to give an 
insight into the approaches this group has taken to evaluate the performance and 
applicability of the models. 

2. Experimental design 

The intended use of a model is an important consideration when designing 
experiments to describe the effects and interactions of environmental factors on 
the growth, survival or death of a population of microorganisms. Although a wide 
range of factors may affect microorganisms in foods, the major determinants of 
microbial growth are generally temperature, pH and water activity (aw). The 
experiments within the programme have been designed primarily to examine the 
effects of these three main controlling factors, although the effects of a number of 
additional factors known to be important in particular circumstances e.g. atmo- 
sphere and preservatives, have also been studied. Once it had been established 
that the salmonellae model developed from experiments in broth mimicked growth 
responses in foods it was decided to generate the data for model construction 
using laboratory media. Liquid media are homogeneous, easily and accurately 
adjusted and controlled, allowing similar or more rapid growth than that observed 
in foods. The resultant models will therefore be independent of food-type, and 
give predictions tending to err on the safe side i.e. they will generally predict faster 
growth than will be observed in a food. 

The following section summarises the approach the MAFF initiative has used to 
design experiments for the above purpose. A more detailed guide to experimental 
design for predictive modelling can be found elsewhere in the literature (Davies, 
1993; Ratkowsky, 1993; McMeekin et al., 1993). 

2.1. Range o f  controlling factors 

Prior to undertaking the experimental work, the range of conditions over which 
the model is to be used should be defined carefully as empirical models should not 
be applied beyond the range of factors used in their construction. The ranges may 
be based on prior knowledge of the likely microbial responses. These are usually 
well characterised for factors acting independently, but less well for factors acting 
in combination. The amount of experimental work needed can usually be reduced 
considerably by the use of suitable screening experiments which may make use of 
automation (e.g. turbidimetric techniques using multi-well plates). 

2.2. Choice o f  acidulant and humectant 

Hydrochloric acid was used as the acidulant in most of the work since it is 
generally less inhibitory than organic acids. The effects of pH quantified by the 
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resulting models are, therefore, not significantly influenced by specific effects 
relating to either undissociated or anionic species of organic acids, and will more 
accurately reflect the effect of hydrogen-ion concentration alone and tend to 
predict faster growth. Where  organic acids have been used, known amounts have 
been added so that the concentration of undissociated acid (generally the in- 
hibitory agent) is easily determined. Sodium chloride was used because it is the 
most commonly used humectant  in foods. The effects of other humectants,  such as 
sugars and glycerol, on bacterial growth, survival and thermal death are being 
investigated, because of their relevance to particular foods (e.g. bakery products), 
by comparing the effects at selected a w values across arange of other environmen- 
tal conditions. 

2.3. Choice of strain and size of inoculum 

Since it is not feasible to screen large numbers of strains against numerous 
combinations of factors, mixtures (cocktails) of strains have been used for the 
growth models within the programme,  in order to determine the ' leading edge'  of 
growth i.e. the growth response will be determined by the fastest growing strain 
within the cocktail. Using a mixture of strains in thermal inactivation studies 
would, however, produce thermal inactivation kinetics data that may be difficult to 
interpret. Consequently, single strains with greater, but not abnormally high, heat 
resistance were used in studies of heat resistance. 

The inoculum levels were chosen to ensure that the expected microbial re- 
sponse could be measured,  and not to reflect the numbers commonly present in 
foods. Generally, the following levels were used: 102-103 c fu /ml  for growth 
conditions; 106-107 c fu / m l  for survival; and 108-109 c fu /ml  for thermal inactiva- 
tion. 

2.4. Number and position of data points 

With respect to kinetic responses, although there are no clear rules for the 
number  of estimates of viable numbers with time, it is recommended that at least 
10 points are generated for each growth or inactivation curve. More importantly, 
the usefulness of data can be related, often, to the number  of determinations in 
the region of rapid change e.g. end of lag phase. Hence,  sampling times are an 
important  consideration. With survival and thermal inactivation studies, 
geometric-scale time points may be more appropriate  than arithmetic-scale time 
points, because of this reason. 

When considering the effects of independent  variables on kinetic responses (e.g. 
the effect of tempera ture  on generation time) the areas of most interest and 
concern to the food microbiologist are often those closest to the conditions needed 
to prevent bacterial growth. The variance of the measured response in these areas 
tends to be greater  than in other, less inhibitory, regions. To have the same 
confidence in the predictions over the whole experimental matrix, it is necessary to 
have more datasets in these areas than in areas where the response is more 
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reproducible. Although knowledge from previous experiments (e.g. screening stud- 
ies or data from the literature) can often help in deciding where data sets are 
required, in the absence of a precise definition of the boundaries for growth and, 
in order to position data in the correct areas, modification of the experimental 
plan may be necessary during the course of the study. 

2.5. Standardising the protocols for recording data 

A protocols document has been produced to standardise the production and 
recording of data within the predictive modelling programme (Walker and Jones, 
1993). The document ensures that all data are captured, calculated and recorded 
in a standard way for ease of incorporation into the database via a spreadsheet. 

3. Modelling 

Predictive models have been developed describing growth, survival and death, 
and thermal inactivation of foodborne pathogens. For most models a two-step 
approach has been followed. In the first step, curves have been fitted to data 
derived experimentally, and in the second step, kinetic parameters derived from 
the curve fitting exercise have been modelled against the controlling factors (pH, 
aw, temperature). 

3.1. Curve-fitting 

In general, growth curves were fitted with a modified-Gompertz function as 
described by Gibson et al. (1988). In addition, alternative approaches have been 
considered such as those described by Baranyi et al. (1992) and Jones and Walker 
(1993). The former uses differential equations to describe growth, whilst the latter 
describes growth and survival by a single mathematical function. 

Thermal inactivation data demonstrating near log-linear death kinetics have 
been fitted using traditional decimal reduction times (Peck et al., 1993). However, 
where significant deviations from log linearity were seen the log-logistic approach 
(Cole et al., 1993) has been used. Both these approaches may be used to determine 
the time to a specified decrease in cell numbers. 

3.2. Modelling kinetic parameters 

To develop models, kinetic parameters derived from the curve-fitting exercise 
have been fitted to the environmental factors (e.g. pH, temperature, a w etc). This 
relationship is described by the deterministic part of the model. The extent to 
which the predicted response deviates from the observed (stochastic or error term), 
however, is equally important. To obtain the best fit of the model to the data, the 
error in the estimate of the selected response must be independent of the value of 
the response and if not, then a suitable transformation should be used to normalise 
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this variance (alternatively, a weighted fitting procedure may be used). This is 
particularly relevant when comparing the performance of different models (Mc- 
Meekin et al., 1993). Taking the logarithm of the response was found to be a 
suitable transformation for normalising the variance associated with these data. 

In most cases a sequential fit to a quadratic response surface was used 
(McClure et al., 1993). However, the fit to some data sets was improved by using a 
surface fit (one stage procedure)  as described by Jones and Walker (1993). Models 
should use the minimum number  or set of terms which describe the response 
adequately (ie be parsimonious), where an adequate fit is defined by certain 
criteria (see Section 4.1., Mathematical  testing). 

4. Acceptance 

Once a model of the experimental data has been developed, it is discussed at 
the MSG. Before a model is accepted for inclusion in the database, it is analyzed 
to ensure that it describes the data well, and checked that it makes biological 
sense. The fit of the model to the data is checked visually by plotting fitted 
responses against observed responses to determine potential problem areas. 

The importance of working within the limits of the experimental matrix (i.e. 
without extrapolating) of empirical models has already been mentioned. In these 
experiments, not all of the combinations of factors will allow growth, hence, simple 
maximum and minimum values of factors used are not adequate to define the 
domain over which the model is valid. Instead, the domain must be defined by the 
actual combinations of conditions used to generate the model or a polygon 
describing these. Food Micromodel applies an algorithm which uses the experi- 
mental  matrix to describe this domain of validity. Acceptance of a model is 
therefore also subject to the submission of the complete experimental matrix of 
factors used in the construction of the model. 

4.1. Mathematical testing 

The adequacy of a model to fit data was assessed on the basis of root mean 
square error (RMSE) and percentage goodness of fit (percentage fit). 

RMSE is a measure of the variability remaining after fitting a model, that is not 
accounted for by the deliberate changes in factors such as temperature,  pH, a,~ 
and NaCI. This error may come from several sources including natural variability, 
systematic errors and bias. Natural  variability, may be due to variability inherent in 
the microorganism, systematic errors may be due to analyt ica l / laboratory  meth- 
ods; and bias may be due to model mis-specification e.g. fitting a linear equation 
where the underlying data would be bet ter  described by a quadratic equation. 

Providing an appropriate  modelling technique is used, the contribution of the 
bias term is negligible, and the RMSE is a measure of the reproducibility of the 
measurements .  The acceptability is related to the natural variation so that a higher 
RMSE is acceptable from a naturally more variable system. For example, it has 
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been noted that measuring rates of bacterial growth from spore inocula is more 
variable than growth from vegetative cells, therefore the acceptable RMSEs 
associated with spore inocula are larger than those associated with vegetative cell 
inocula. 

The percentage fit is a measure of how well the model describes the data. 
Generally, the higher the fit, the better  the model describes the true underlying 
relationship. 

4.2. Biological  sense 

Predictions from models are examined to ensure that the response is similar to 
that expected by experienced microbiologists. With poorly designed experiments 
(e.g. more data under optimal conditions for growth than under inhibitory condi- 
tions), or over-parameterized models where the principle of parsimony has not 
been observed, experience has shown that although the fit to the data is accept- 
able, the predicted response can be erroneous for conditions not originally tested. 

5. Validation 

A key stage in the production of Food Micromodel is validation of the models 
for use in foods. This has been achieved by comparing the behaviour predicted for 
each organism by a model against its behaviour observed in foods using data from 
the literature generated by others and, where the literature data are insufficient, in 
experiments conducted specifically for this purpose. 

Before a model is accepted for inclusion in the database, it is used to predict 
the response of a microorganism in a wide range of foodstuffs, varying in such 
factors as pH, aw, NaC1 and temperature.  The performance of the model in the 
prediction of growth in food is judged according to two criteria (i) generation time 
and (ii) time for a specified change in numbers (taking account of both generation 
time and lag time). For growth, the models are not judged on lag time alone 
because the determination of this parameter  from experimental data is greatly 
influenced by the choice of times at which counts are taken, the definition of lag, 
the way the curve is fitted, and the 'pre-history' of the inoculum. Experience has 
shown that the estimation of lag is generally less repeatable than generation time. 

In food validation studies, for each food tested, the pH and NaCl concentration 
(or a w) were determined. The food was inoculated with a known concentration of 
the microorganism and stored at a known temperature.  The change in viable 
numbers was estimated at suitable intervals and used to determine kinetic parame- 
ters of growth, survival and death. 

A different approach was taken for data extracted from the literature, allowing 
a wider validation exercise to be carried out than could be done within the 
resource constraints of the programme. The literature validation exercise revealed 
marked deficiencies in the literature itself, many authors giving incomplete infor- 
mation about their foods, experimental designs a n d / o r  methods, and rarely 
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Fig. 1. A comparison of the predicted generation times (a) and time to 1000-fold increase (b) of 
salmonellae from Food Micromodel with data taken from inoculated food studies, generated within the 
U K  Predictive Microbiology Programme. Foods include a range of meat, vegetable, dairy, egg, and 
bakery products. The prediction is accurate close to the continuous line. The dashed line is the upper 
90% confidence interval for the predicted value (McClure et al . ,  1993). 

gene ra t i ng  da t a  su i tab le  for curve-f i t t ing  and  der iv ing es t ima tes  of  k inet ic  p a r a m e -  
ters  such as lag t imes  and  doubl ing  t imes.  

Va lues  of  gene ra t i on  t ime and  t ime for  a 1000-fold increase  f rom the  l i t e ra tu re  
or  i nocu la t ed  food s tudies  were  p lo t t ed  aga ins t  p r e d i c t e d  values  f rom the  m o d e l  
for  the  same condi t ions  (Figs.  1 and  2). A log10 scale was used  in this compar i son  
as this t r ans fo rma t ion  was found  to no rma l i se  the  var iance  (d iscussed earl ier) .  
Thus  the  u p p e r  e r ro r  of  the  p red i c t i on  can be  r e p r e s e n t e d  by para l l e l  l ine above 
the  line of  pe r fec t  ag reemen t .  W h e r e  poin ts  fall be low the l ine the  mode l  p red ic t s  
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Fig. 2. A comparison of predicted generation times of L. monocytogenes from Food Micromodcl with 
data taken from the literature, in all products (a) and meat and poultry products (b). The prediction is 
accurate close to the continuous line. The dashed line is the upper 90% confidence interval for the 
predicted value (McClure et al., 1993). 

fas te r  g rowth  than  tha t  obse rved  in the  food,  and  p red ic t ions  er r  on the  safe side. 
F o r  po in ts  above  the  line, however ,  the  mode l  p red ic t s  s lower growth than  that  
obse rved  in the  food and  the  p red ic t ion  would  ' f a i l -unsafe ' .  These  plots  may  be  
used  to c o m p a r e  d i f fe ren t  p roduc t  groups ,  and  ident i fy  foods  where  the  a g r e e m e n t  
is poor .  In  genera l ,  the  mode l s  have g e n e r a t e d  p red ic t ions  re levan t  to most  food 



274 P.J. McClure et aL / International Journal of Food Microbiology 23 (1994) 265-275 

groups, showing excellent agreement, and deviations from the model are usually 
explicable by other preservative factors. Although predictions outside the range of 
the model should never be used to advise on new or modified formulations, 
comparisons made with literature data outside the domain of validity (as shown in 
Figs. 1 and 2) serve to highlight areas where more data should be added to the 
original dataset to make the model more applicable to a wider range of products. 

After accepting a model, it is incorporated into Food Micromodel and may then 
be used to produce predictions in foods where the model has been validated. Data 
sets used to construct models are continually being extended, to improve their 
robustness and to increase the domain of validity, sometimes by increasing the 
range of conditions tested or by adding another controlling factor, such as CO 2. 
Models derived from these enlarged data sets are scrutinized in a similar manner 
as above, and once validated, will supersede models already stored within Food 
Micromodel. 

6. Future aspects 

The MAFF database and models-base held at the CFDRA in the UK represent 
the culmination of work by laboratories participating in the UK modelling project. 
These laboratories have participated in a research programme to develop a 
database and models for the pathogens Salmonella, Listeria monocytogenes, Staphy- 
lococcus aureus, Yersinia enterocolitica, Escherichia coli O157:H7, Bacillus cereus, 
Bacillus subtilis, psychrotropic strains of Clostridium botulinum, Campylobacter 
jejuni, Clostridium perfringens and Aeromonas hydrophila. The resulting models 
have been fully validated in foods using published literature or, where there is a 
paucity of published data, by extensive challenge tests in representative foods. 
Food Micromodel is fully operational and accessible by the Food Industry and 
operates as a commercial service. 

With experience, techniques for data acquisition are improving, and modelling 
can be performed on personal computers. Modelling techniques with a better 
mathematical and biochemical basis will result in improved models so that it is an 
appropriate time to plan the organisation of computerised predictive databases for 
use by food industries, regulatory bodies and other relevant groups. This will help 
to provide a safer food supply for consumers and improved control, shelf-life and 
stability of food products for manufacturers, retailers and consumers. 

Research in predictive microbiology and the development of computerised 
databases is being pursued by a number of groups in several countries. This 
non-integrated approach inevitably leads to some unnecessary repetition. In addi- 
tion, results from experiments which may be incompatible in design cannot be 
successfully combined and modelled. In the future, it is important for all countries 
involved in predictive modelling to collaborate to avoid unnecessary duplication. 
Opportunities for collaboration exist and in some cases are ongoing e.g. the 
Food-Linked Agro-Industrial Research (FLAIR) Concerted Action (No. 5) "Pre- 
dictive Modelling of Microbial Growth and Survival in Foods" in the European 
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Community. Collaboration will make research more cost-effective by avoiding the 
duplication of models encompassing a number of different factors which are 
important in controlling the growth of microorganisms in an ever-widening range 
of foods. 
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