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Expressions are derived for certain rheological properties, such as the stress vs strain relationship, 
yield stress, and shear modulus, of monodisperse foams and highly concentrated emulsions for the 
model of infinitely long cylindrical drops (or bubbles). The variables considered are the volume 
fraction of the dispersed phase, the drop radius, the interfacial tension, the thickness of the films 
separating adjacent drops, and the films' associated contact angle. Both the yield stress and the shear 
modulus are proportional to the interfacial tension and inversely proportional to the drop radius. The 
yield stress increases sharply with increasing volume fraction, while the shear modulus varies as its 
square root. The effect of a finite contact angle, 0, is to decrease the shear modulus and, in most 
cases, to increase the yield stress. Finally, the effect of a finite film thickness is to always increase both 
the yield stress and the shear modulus. The implications of these results to real emulsions and foams 
are discussed. 

INTRODUCTION 

Foams and highly concentrated emulsions 
are of  importance in a multi tude of  practical 
applications. Much of  their utility derives 
f rom their peculiar rheological properties, 
such as the high viscosity, relative to that  o f  
the constituent bulk fluid phases, a yield 
stress, and their shear-thinning behavior.  
What  little experimental  work exists suggests 
the following trends: 

(1) Both the yield stress and the apparent  
viscosity increase with increasing volume 
fraction of  the dispersed phase (1-3), and 
with decreasing bubble (or drop) size (1). 

(2) Yield stresses of  typical emulsions 
with volume fractions of  the dispersed phase 
in excess of  0.90 are of  the order of  a few 
hundred to a few thousand dynes /cm 2 (2-4), 
and much  smaller for foams (1), presumably 
as a result of  the generally much  larger size 
of  the dispersed units. 

(3) The observed flow behavior  depends 
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strongly on the nature of  the contacting solid 
surfaces (4). 

(4) Both emulsions and foams can be de- 
stroyed when subjected to sufficiently high 
shear (3, 4). 

While experimental  work on the rheology 
of  these systems is scant, there appears to be 
a virtual lack of  theoretical understanding of  
how the rheological properties are linked in 
a quantitative way to system parameters  such 
as volume fraction of  the dispersed phase, 
droplet (or bubble) size, interracial tension, 
interfacial viscosity, contact angle between 
droplets (5-8), and thickness of  the film sep- 
arating adjacent drops (or bubbles). 

It  is the object of  the present study to fur- 
ther this understanding by a detailed analysis 
of  the deformat ion of  the individual dis- 
persed units when the system as a whole is 
subjected to strain, and by an analysis o f  the 
associated stress. In this first part,  we shall 
concentrate on a two-dimensional  model  sys- 
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) 
FIG. 1. Hexagonally close-packed cylindrical drops o f  

radius R. Each drop is "conta ined"  in a hexagon of  side 
a. The volume fraction in this case is 4~ = 0.9069. 

tem, in which the dispersed units are cylin- 
drical. Although such a system is unrealistic, 
it can be treated with relative ease and es- 
tablishes the principles by which real foams 
and emulsions are governed. It may also fa- 
cilitate subsequent analysis of the real, three- 
dimensional system. This step-wise approach 
was used successfully in a previous study of 
the structure of unstrained, highly concen- 
trated emulsions (5, 6). 

In the following, we shall refer to the sys- 
tem as an "emulsion" and to the dispersed 
units as "drops," although the analysis is 
equally valid for foams. 

T H E O R E T I C A L  ANALYSIS 

Princen (5) presented an analysis of the 
geometrical packing and shape of cylindrical 
drops in a monodisperse, two-dimensional 
emulsion system when the volume fraction 
exceeds that of the system of hexagonally 
close-packed circular cylinders (q~ = 0.9069). 
The variables considered were the volume 
fraction, q~; the contact angle, 0, associated 
with the thin liquid films separating adjacent 
droplets (5-8); and the thickness, h, of these 
films. Other variables, i.e., the droplet radius, 
R, and the interfacial tension, "r, were shown 
to be involved in determining important 
emulsion properties, such as the compressive 
pressure exerted on the films (which must be 
balanced by a repulsive or "disjoining" pres- 
sure inside the films) and the emulsion's 
"osmotic pressure" (5, 6). 

The results of the above study serve as a 

starting point for the present analysis. As 
before we shall first consider the case where 
the contact angle, 0, is zero, and the film 
thickness, h, is negligible compared to the 
overall drop dimensions. These restrictions 
will be relaxed later. 

1. Zero Contact Angle," 
Negligible Film Thickness 

As the volume fraction of a monodisperse, 
two-dimensional emulsion is increased, a 
point is reached where the drops, each of ra- 
dius R, just touch and arrange themselves in 
a hexagonally close-packed configuration 
(Fig. 1). This occurs at ~ = 0.9069. At higher 
volume fractions, each drop occupies an in- 
creasingly large fraction of the hexagon (of 
side length a), available to it. In the process, 
the drop flattens at its six sides, where it is 
now separated from its neighbors by a thin 
fiat film of continuous phase, while its sur- 
faces in the corners are circular of radius r. 
This process continues until, at q~ ~ 1, the 
drop has, in fact, assumed the shape of a pure 
hexagon (Fig. 2). 

From Princen (5), we know that R, r, and 
are related through 

/ '  
/ a / 

/ ;  

i 

0 O 0  
~= 0.9069 ~ ~= 1 

FIG. 2. Hexagonally close-packed cylindrical drops. 
The bot tom sequence shows increased filling o f  the cir- 
cumscribing hexagon as the vo lume fraction is raised. 
The dashed parallelogram is the uni t  cell used in the 
analysis. 
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R/a=(~----~r)U2~l12=O.9094qb ]12 [ I ]  

[ 3 ~ / 2  ~u2(1 
r/a = ~2~--~- ~] _ q~)l/z 

= 2.8383(1 - ~b) L/2 [2] 
and 

• (~1/2 

(~1/2 

-- 0.3204 (1 - ~b) 1/2 " [3] 

Let us consider such an emulsion to be 
contained between two horizontal, parallel 
plates in such a way that the outer drop layers 
are in intimate contact with the plates. The 
individual droplets in these outer layers will 
be flattened against the plates, and we shall 
assume that there is no "slip" at the droplet/  
plate interface. When the plates are forced 
to move relative to one another  over a finite 
distance, the emulsion will be strained uni- 
formly throughout its mass. Each layer of  
droplets, running parallel to the plates, will 
be displaced relative to the two adjacent 
layer. Because of  droplet crowding, this can 
be accomplished only if each droplet is de- 
formed in the process. To analyze this situ- 
ation of  simple shear, we shall consider what 
happens in cross section to a "uni t  cell," i.e., 
the parallelogram that connects the centers 
of  four neighboring drops, as illustrated in 
Fig. 2. The base of  this unit cell is a,cr3, and 
its height is 3a/2. When strain is applied, the 
upper side of  the unit cell moves relative to 
the base over a distance Ax, while the height 
and base are held constant. In this process, 
the angle a in the upper left-hand corner of  
the unit cell increases from an initial value 
of  60 ° , such that 

3 3 
A x / a  = ~ cot 60 ° - ~ cot c~ 

3 
= 43/2 - ~ cot tx. [4] 

The "strain," as commonly  defined, equals 
the relative displacement of  two shear planes 

AX 

[ \120o#1 \ 
3 \ ~  \" Ca) 

E r s - -  7 . . . .  ] 

I f I 
k L __J 

/ = ,7 
U N S T A B L E  i I / /  /I 

/ /  ~ / /  (c) 

/ I  A / ~ = 6 0  o i I 
/.._ _ _ _ . . _ i  't _.._/ 

I 
, ~ i - A ; - l  7 

I[~" ~ III (d )  

FIG. 3. Increasingly s trained uni t  cell for ~ = 1. W h e n  
a = 120 ° (or A x  = a4"3), an instability arises and  the 
original configuration is restored. (a) Unstrained; (b) 
strained, but below stability limit; (c) strained to stability 
limit; and (d) unstrained, after droplet reorientation. 

divided by the distance between these planes, 
i.e., 

Ax 2 
Strain - - -  - A x / a  

3a/2 3 

= l/x/3 - cot a. [4'] 

It is assumed throughout  that the films 
separating the droplets are stabilized against 
rupture by a suitable surfactant, so that drop 
coalescence does not occur. 

i. Analysis  for  4a = 1. The easiest case to 
treat is that for the limiting case of  ~ = 1. 
The corresponding unstrained unit cell is 
shown in Fig. 3a. Anticipating our  results, we 
conclude that, with increasing strain, the 
lengths of  the films emanating from the cen- 
ters of  the sides of  the unit cell increase from 
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/ / [ / / 
i1" _ J  / 

FIG. 4. Similar to Fig. 3 but with the four drops sur- 
rounding a given unit cell drawn in their entirety. 

the initial values of  a/2 to b/2 and d/2, re- 
spectively, while the "diagonally" oriented 
film decreases in length from a to c (Fig. 3b). 
In the process, the total surface area in- 
creases. At any stage, the films must meet at 
angles of  120 ° to ensure mechanical stability 
at the junctures (9-12). This condition is 
known as Lamarle's first law (12), formulated 
over a century ago (13, 14), and is consistent 
with that of  min imum total surface area of  
the films within a given unit cell. It turns out 
that, at c~ = 120 ° and Ax/a = x/3, the two 
intersection points merge into a single point 
(Fig. 3c). This configuration is unstable, as 
no more than three liquid films can meet in 
a line (9-12). The instability resolves itself 
by the generation of  new film from the center 
to restore the original, unstrained configu- 
ration of  lower total film area (Fig. 3d). The 
upper drop layer has now moved to the right 
by one drop width, relative to the stationary 
bot tom layer. From then on, the process can 
repeat itself over and over again. 

Instabilities of  the type shown in Figs. 3c 
and d have been observed by Schwarz (l 1) 
in foams. He observed rearrangements within 
the foam as a result of  the diffusion of  gas 
from the smaller into the larger bubbles. 
Whenever a configuration such as that in Fig. 
3c would develop as a consequence of, say, 
the disappearance of  a particular film, the 
juncture of  the four intersecting films would 

instantaneously disproportionate into two 
junctures by the generation of  a new film 
until all films would again meet  at angles 
of  120 ° . 

The unit cell, as defined above, was chosen 
to facilitate the geometric analysis of  the 
problem, perhaps at the expense of  easy vi- 
sualization of  what happens to each individ- 
ual drop. This can be readily remedied by 
fitting together a few unit cells, as shown in 
Fig. 4 where the four drops, whose centers 
are at the corners of  the unit cell ABCD, have 
been drawn in their entirety at various stages 
in the straining cycle. From Fig. 4 it is seen, 
more clearly than from Fig. 3, that, although 
the emulsion as a whole is subjected to simple 
shear deformation, the drops respond in a 
more complex manner  which is dictated by 
the requirement that the angles between in- 
tersecting films are to be maintained at 120 °. 

To proceed with the analysis, it is neces- 
sary to establish the lengths of  the films, b, 
c, and d, at any stage in the above process. 
Also, the value of  6, i.e., the angle between 
film b and the horizontal, needs to be eval- 
uated, since this will give us the contribution 
to the stress per unit cell through 

F = 23' cos 6- [5] 

Equation [5] results from the realization that 
each film has a tension 23, and that it is the 
horizontal component  of  this tension that 
contributes to the tangential stress on the 
plates that are used to strain the system. 

Finally, since the width of  the unit cell is 
ax/3, there are 1/av~ unit cells per cm 2 in any 
horizontal plane, so that the stress on the 
plates, i.e., the force per cm 2, is given by: 

F 23/ 
r - a4~ - av~ p [6] 

where /?  = F/23, = cos 6, or, in view of  Eq. 
[11, 

3' r = 1.050 ~ 4~1/2P [7] 

which is valid for any volume fraction ex- 
ceeding 0.9069, not just for 4~ = 1. 
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To evaluate b, c, d and ff as a function of  
Ax (or t~), we consider the unit cell at some 
intermediate state of  strain, i.e., for 60 ° 
< a < 120 ° (Fig. 5). MP, NP, and OP are 
given by d/2, b/2, and c/2, respectively, while 
all angles around P are 120 °. 

The area of  the unit cell is given by: 

34~ 
A = ~ a 2 = 8 × Area AMNO. [8] 

It is readily shown that 

Area AMNO = 1~ (bc + cd + bd) [9] 

so that, by combining Eqs. [8] and [9], we 
find: 

B C  + CD + BD = 3 [10] 

where B = b/a, C = c/a, and D -- d/a. 
Furthermore,  the cosine rule applied to 

AMOP yields 

MO = [(d/2) 2 + (c/2) 2 + cd/4] 1/2 [111 

while, at the same time, 

MO = ax/3/2. [ 12] 

Combination of  Eqs. [111 and [121 gives 

C 2 + D  2 + C D = 3 .  [13] 
Similarly, 

NO = [(b/2) 2 + (c/2) 2 + bc/4] 1/2 [14] 

and 

so that 

3 a  
- -  [ 1 5 ]  NO - 4 sin a 

9 
- -  [161 B 2 + C 2 + B C -  4 sin 2 a 

o r  

oL = arc sin I ~ ( B2 + C 2 + B C )- l /21 . [17] 

Finally, 

~k = 180 ° - c~ - ~ [18] 
o r  

cos 7/-- - c o s  (c~ + ~o). [191 

The sine rule, applied to ANPO, leads to 

N 

I ~  k ~ I 
I ! 1  3 / I  o1~ I 

; . . . . .  i l  
FIG. 5. Detailed view of unit cell for ~ = 1 at some 

intermediate state of  strain. 

sin~O sin 120 ° 

c/2 NO 

or, because of  Eq. [15], 

sin q9 = C sin a/~]3. [20] 

This, when combined with Eq. [19], yields 

c o s  ~ = P 

= _cos ( a  + sin_ 1C sin a )  vr~ . [211 

The solution to the problem can now pro- 
ceed as follows. A value of  C is picked be- 
tween its limits of  1 and 0. The corresponding 
value of  D is obtained from Eq. [13], and the 
corresponding value of  B can then, in turn, 
be calculated from Eq. [10]. This enables 
one to evaluate a via Eq. [17]. Finally, P 
= cos ff and the relative displacement of  two 
adjacent layers, Ax/a,  are obtained from Eqs. 
[21 ] and [4], respectively. This scheme is then 
repeated for different values of  C, until the 
dependence of  ff  on displacement Ax/a  has 
been fully established. 

The result is shown as the top curve in Fig. 
6. The stress per unit  cell, divided by twice 
the interfacial tension, increases up to a max- 
imum value of/~ = 0.5 at Ax/a  = x/3, which 
is the situation depicted in Fig. 3c. At that 
point the stress drops abruptly to zero as the 
original geometry  is restored. Thus,  the 
emulsion behaves as a purely elastic material 
up to the yield stress, to, which, on account 
of  Eq. [7], is given by: 
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, ;  l 
0.2 I lJ  j 

/ i /  ;O' 
I t',,' 
I rJ t o. I  i ,It, 
'~'~ 

i i 
0.5 1.0 1.5 -/'3 

ax/a 
/ 01.2 01.4 01.6 01.8 11.0 2)-/3 

STRAIN 

FIG. 6. Plot of /¢  vs Ax/a for various values of@. The 
top curve refers to @ = 1. For lower values o f  ~b, this 
same curve is followed over some range o f  Ax/a, until  
a so-called Mode-II configuration is reached and  a dif- 
ferent curve is followed which is physically meaningful  
only up to the point  where it starts to back up. 

1.050 3, 
- 0 . 5 2 5 3 " / R  (~b = I ) .  [ 22 ]  r 0 -  2 R 

As an example, the yield stress of  such a 
two-dimensional emulsion with 3' = 5 dyn/  
cm and R = 5 #m would be ro = 5250 dyn/  
cm 2. Of  course, when the applied stress ex- 
ceeds to, the emulsion will start, and con- 
tinue, to flow. 

ii. Analysis for 0.9069 <~ 4~ < 1. For this 
case, the unstrained unit cell is shown in Fig. 
7a. In this cross-section, the films no longer 
intersect in a point but  meet  in a triangular 
Plateau border whose sides have a radius of  
curvature, r, given by Eq. [2]. The angle en- 
closed by each pair of  films is still 120 ° . It 
is clear that, initially at least, the process of  
straining the unit cell is identical to that de- 
scribed above for ~b = 1. The two Plateau 
borders maintain their shape and curvature 
as they are simply swept along with what 
used to be the two intersection points (Fig. 
3). Therefore, over this so-called Mode-I 

range, F will depend on Ax/a  in exactly the 
same manner  as before. However, at some 
point, the two Plateau borders will come into 
"contact"  (Fig. 7b), beyond which the two 
borders merge into one (Fig. 7c), giving rise 
to what we shall refer to as Mode-II config- 
urations. The transition will occur the sooner, 
the larger the Plateau borders, i.e., the lower 
the volume fraction q~. The single channel, 
as shown in Fig. 7c, must  have the same vol- 
ume (i.e., the same cross-sectional area) as 
the two merging triangular Plateau borders, 
and its four bounding surfaces must have 
identical radii of  curvature o(#r), which will 

r . . . . .  . , ,  
%** r ~  

X \4 (a) 
% % 

MODE I \ %,. 
o i '  - , 

T . . . .  - F  . . . . . .  ', 

~= 60 ° ; ; (b) 

i f ,  ' t t 

#= 75 ° (c) 
MODE. I ~  l 

(INCREASING I}, L %  J 
S E E  T E X T )  ~ ] 

. . . . . .  1 

~= 90 ° I (d) 

T i 
. . . . . .  

FIG. 7. Increasingly strained unit  cell for 0.9069 
< @ < 1 (a to c). The  drawings are actual configurations 
for q~ = 0.96. Angle # is defined in Fig. 8 and  is used as 
the independent  variable in the analysis o f  the Mode-II 
region; (d) refers to a = ~ = 90 ° and  is an  unstable 
configuration, at least for 4~ > 0.96. 
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now vary with the strain. In this situation, 
the films can no longer enclose angles 
of  120 ° . 

The transition from Mode I to Mode II 
occurs at a value of  Ax/a  where the length 
of  c in Fig. 3 has decreased to just twice the 
center-to-cusp distance of  each Plateau bor- 
der, i.e., 

cu = 2 r / ~  [231 

where ct~ is the value of  c at the transition, 
or, in view of  Eq. [2], 

Ctr = 3.2774(1 - 4,)1/2. [24] 

The corresponding values of  D, B, 0/, A x/a, 
and F can be obtained, as before, from Eqs. 
[13], [10], [17], [4], and [21], respectively. 

Beyond the transition, the previous anal- 
ysis no longer applies. Instead, we refer to 
Fig. 8 for a detailed view of  the unit cell at 
some point in this range. The lengths of  the 
two remaining types of  film are f l  and f2. As 
mentioned above, the radii of  curvature of  
the bounding surfaces of  the central channel 
are p. As an analytical aid, a d iamond is con- 
structed whose sides pass through the cusps 
of  the channel, perpendicular to the films, so 
that its sides are 2p. It is further characterized 
by the angle/3 in its upper left-hand comer.  
At the Mode I --~ Mode II transition, /3 
= 60°; it varies with the strain. The angles 
0/1 and 0/2 are defined as in Fig. 8 ( a  1 "31- O/2 

= 0/) .  

The cross-sectional area of  the central 
channel is given by: 

A~h = 4p 2 sin/3 - zp 2 [25] 

so that the volume fraction is 

A - Ach 
4, 

A 

= 1 - ~ (p/a)2(4 sin/3 - ~r) [26] 

o r  

[ 3.~1~ V/2 

p/a = ~8 s i n - ~ -  2 ~ )  (1 - 4,)1/2. [27] 

Straightforward but  somewhat tedious geo- 

q 

F 
I - ~ .  P I I  

: , " ,  / . q  I , 
i ! '~ I , f~ , Y i . . ~  , 

3a - - 4  . . . . . .  
I ~ , 

L . . . . . . . .  '_£_.  - 

FIG. 8. Detailed view of  uni t  cell for q~ < 1 when the 
configuration is of  the Mode-II type (schematic). 

metric analysis, which will not be presented 
here, yields the following equationsJ They 
have been arranged in such an order that 
each quantity can be evaluated from those 
listed above it. This facilitates sequential nu- 
merical computations. 

4~/2 
q/p - [28] 

p/a 

fz/P = - s in /3  + [(q/p)2 _ cos 2/311/2 [29] 

(x/3/2)(q/o) 2 - sin 13 - f2/p 
f l /P = (/z/P) sin/3 + 1 [30] 

P/P = [(fl/p) 2 + 2(f~/p) sin/3 + 1] ~/2 [31] 

(cos/3~_ 
al = cos -1 k P/p ] /3/2 [32] 

= (cos/3~ _ 
0/2 COS-1 \ q/P ] /3/2 [33] 

0/ = 0/1 -{- 0/2 [34] 

= cos ~b = sin (0/2 - / 3 /2 )  [35] 

and, of  course, 

3 
Ax/a  = x/3/2 - ~ cot 0/. [36] 

The solution to the Mode-II part o f  the 

1 A list of  derivations o f  these and  other equat ions in 
this paper may  be obtained from the author  upon  re- 
quest. 
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0.90 o.'92 o.~4 o.~o o.~ l.oo 
¢ 

FIG. 9. Fm~ and the corresponding strain as a function 
of 4~. 

problem proceeds as follows. Choose the vol- 
ume fraction of  interest in the range 0.9069 
~< ~ < 1, and a value of/3 in the range 60 ° 
~< /3 < 90 °. Working sequentially through 
Eqs. [27]-[36], one finally arrives at the cor- 
responding values of /~  and Ax/a. Then this 
scheme is repeated for a larger value of /3  
until P vs Ax/a has been evaluated com- 
pletely for that particular value of  qL etc. 

The results for various values of  ~ are pre- 
sented in Fig. 6, together with the previous 
curve for q~ = 1. The dashed parts of  the 
curves, although representing mathematical  
solutions to the problem, are physically 
meaningless and refer to unstable states, 
much like the instabilities encountered when 
a solid object is pulled vertically out of  a liq- 
uid. In the latter case, the force passes 
through a maximum with increasing vertical 
displacement (the "max imum force"), then 
decreases until the slope of  the force vs dis- 
placement curve becomes infinite (the "max- 
imum height") where the object detaches 
from the liquid surface. A typical theoretical 
force vs displacement curve backs up at this 
point but  is not experimentally accessible in 
that region because it represents unstable 
equilibria [e.g., see Refs. (15-19)]. It will be 
shown later how this type of  instability is 
handled in the present problem. 

It is seen in Fig. 6 that for any ~, except 
for ~ = 0.9069, the curve initially follows 
that for q~ = 1 (Mode-I deformation). How- 
ever, at the point of  transition from Mode 
I to Mode II, the curve bends away and ul- 
timately goes to zero at &x/a = 43/2, where 
a = 3 = 90 °. For  the lower volume fractions, 
the Mode-II curves pass through a max imum 
~#max- At higher ~, the max imum force is 
reached while the system is still in Mode I. 
Pm~x is the unit cell's contribution to the yield 
stress of  the system. They ie lds t r e s s  itself is 
given by Eq. [7] where F = Fmax. Since, in 
the range of  interest, q~ varies only from 
0.9069 to 1, the yield stress is, to a good ap- 
proximation, given by: 

~0 ~ R" max- [37] 

Fmax and the corresponding strain have been 
plotted as a function of  ~ in Fig. 9. Z#max is 
seen to increase sharply from about 0.1 at 

= 0.9069 to 0.5 at 4~ = 1. 
If one could, in fact, produce cylindrical 

systems of  the type being considered here, at 
least two kinds of  experiment can be imag- 
ined. 

First, one can use a stress-controlling de- 
vice and subject the system to a given stress, 
r. As long as • < r0, the system will simply 
respond with an elastic deformation, char- 
acterized by the corresponding Ax/a. When 
r >/ ~'0, however, the emulsion cannot  de- 
velop sufficient elastic stress to balance r,  and 
the emulsion will start, and continue, to flow 
as long as the applied stress is maintained. 

Second, one can use a strain-controlling 
device, impose a given strain on the system, 
and measure the resulting stress. In this sit- 
uation, one can, in principle, explore the 
stress-strain relationship over a whole cycle, 
i.e., for 0 < Ax/a < V~. 

Figure 6 is incomplete for this purpose. To 
find the complete stress-strain curve for in- 
creasing Ax/a, two facts must be taken into 
account: (i) as indicated above, the curves are 
physically meaningful only up to the point 
where their tangent is vertical, i.e., where the 
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0.5 curves in Fig. 6 start to back up (dashed 
lines). When Ax is increased beyond that 
point, the system jumps to a new configu- 
ration where F actually changes sign (see be- 
low). The new configuration may be either 
of Mode I or Mode II; (ii) the point in Fig. 
6 where P = 0 and Ax/a = ,f3/2 is the merg- 
ing point for all Mode-II curves. As noted 
before, a = /3 = 90 ° at this point, which 
means that the drops are then lined up in 
vertical rows, with the unit cell appearing as 
in Fig. 7d. Although this configuration may 
or may not be stable for reasons given above, 
it can be reached equally well, from a math- 
ematical point of view, from the side of neg- 
ative stress (by reversing the direction of 
strain, starting from Ax/a = v~). Therefore, 
this point can be seen as a center of sym- 
metry, and all curves in Fig. 6 have their sym- 
metrically disposed counterparts for F < 0. 
The corresponding configurations of the unit 
ceil are mirror images of those for F > 0. 

Keeping the above two facts in mind, one 
arrives at the complete stress-strain curves 
shown in Fig. 10 for continuously increasing 
strain over a whole cycle. As long as F > 0, 
the system will return to its original position 
at (0; 0) when it is suddenly set free to move. 
When F < 0, however, the system is driven 
"forward" to the end of  the cycle at 
(0; ,r~). This may be termed the "'toggle 
switch effect." 

2. Finite Contact Angle," 
Negligible Film Thickness 

The existence of contact angles in emul- 
sions has been well established, particularly 
in systems stabilized by anionic surfactants 
in the presence of added electrolyte (6-8). 
This phenomenon can lead to an increased 
packing density of the emulsion, as discussed 
in great detail for cylindrical systems by Prin- 
cen (5), and in less detail for real emulsions 
by Princen et al. (6). It is important to note 
that for a given value of the contact angle, 
0, there is a certain volume fraction, ~ 
(>0.9069), at which the drops can pack in 
hexagonal close-packing without being 

co~ ~_ - ~  
1 0.9069 7 
2 0.92 
3 0.94 
d 0,96 
5 0.98 
6 0.99 
7 0.997 
8 1.00 

0.4 

0.3 

0.2 

o. I  

~" o 

-0.1 

-0.2 

-0.3 
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0,5 i .0 . 
ax/a 

0.2 o.4 o.6 o'.~ ~.o' 2 ,~  
STRAIN 

FIG. 10. Stress vs strain curves for different values 
of  ~. 

"compressed" (5). That is to say that a col- 
lection of drops, suspended freely in the con- 
tinuous phase, has a tendency to sponta- 
neously clump together to form a close- 
packed structure of volume fraction ¢~, 
which is given by (see Ref. 5) 

7r - 60  + 3 sin 20 
~ = 24r3 cos 2 O (0 in radians) 

[38] 

for0~<O~<30 ° . For0>130 ° , ~ =  1. 
The drops in such a structure are de- 

formed, but not by the process of compres- 
sion that is associated with trying to force 
more drops into a given volume of contin- 
uous phase than that corresponding to hex- 
agonally close-packed, undeformable cylin- 
ders. Instead, the drops deform sponta- 
neously, as they "make contact," under the 
influence of strong short-range attractive 
forces, the existence and magnitude of which 
are, in fact, indicated by the existence and 
magnitude of the contact angle. 

It is not difficult to envisage an emulsion 
with ~b > ~ .  This situation was discussed by 
Princen (5). The drops are then indeed com- 
pressed and will, no doubt, arrange them- 
selves in a hexagonally close-packed struc- 
ture. However, emulsions with ~ < ~ are 
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S ; -  1- - _ , \  
\ A ~ 20 \ 

\\ ~ "\\ 

L . . . .  _ & , . _ _ _ _  

JUMP ~YO MODE II 

FIG. 1 1. Increasingly strained uni t  cell for 0 > 0 and  
4~ > 4~g (schematic). 

more difficult to visualize. They contain 
more continuous phase than is consistent 
with their tendency to pack hexagonally to 
a volume fraction qS~. We speculate that the 
"excess" continuous phase is expelled from 
the structure, not necessarily as a bulk phase 
that can readily be separated from the re- 
maining emulsion ofq~ = ~ ,  but, more likely, 
as occluded pockets of  continuous phase that 
are not spontaneously expelled from the 
overall emulsion. Working with real emul- 
sions, we have observed such pockets [e.g., 
see Fig. 10B in Ref. (6)]. These could, at least 
partially, be removed by mild centrifugation. 
Upon subsequent relaxation, an emulsion 
layer was left of  volume fraction close to, but  
always somewhat smaller than, ~b °. The re- 
moval became more and more difficult as 0 
increased. As the occluded pockets of  con- 
tinuous phase confer a degree of  disorder to 
the system, we shall initially restrict ourselves 
to systems with q~ > ~o. 

The unit cell for such a system, at various 
stages in the straining process, is shown sche- 
matically in Fig. 11. Again, there is a region 
of  Mode-I deformation, where the process is 
identical to that described above for q~ = 1, 
0 = 0, except that the film tension is now 
reduced from 23" to 23, cos 0 (7), so that at 
any stage the contribution, F, of  the unit cell 
to the shear stress is now given by 

F = 23, cos 0 cos 

or, in dimensionless form, 

= F/23, cos 0 = cos ~b. [39] 

While Eq. [1] is still valid, Eqs. [2] and [3] 
now become (see Eqs. [27]-[28] of  Ref. (5)) 

" ~  ( 1 -- q~l/2 [40] 
r/a - 2 cos  \ 1  - 

and 

/' d~ ~1/2 
× cos0 l- 0 r41j 

where q~g is given by Eq. [381. 
The transition from Mode I to Mode II 

will again occur when the two Plateau bor- 
ders meet, i.e., when c in Fig. 3 has decreased 
to just twice the center-to-cusp distance of  
each border; in this case 

4 
ctr = ~ r sin (30 ° - 0) [421 

or, in view of  Eq. [40], 

Ctr = 2 sin (30 ° - 0) [ 1 - q~ ~112 

c o s 0  \ 1 - ¢ ° 1  • 
[431 

This, in the same manner  as described above 
for 0 = 0, establishes the values of  Ax/a and 
of  cos ff = ~6 on the Mode-I curve where the 
transition to Mode II occurs. 

We have seen that, when 0 = 0, the tran- 
sition is continuous. At the transition, p and 
r are synonymous and equal. When 0 > 0, 
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however, the transition is discontinuous; as 
soon as the Plateau borders " touch,"  a sud- 
den rearrangement  must  take place toward 
the formation of  a single central channel, 
whose radii of  curvature, p, are different f rom 
r. This will be accompanied by a sudden 
change in ff and, therefore, in F. 

To  analyze Mode II in detail, we again 
construct a d i amond  around the central 
channel, as in Fig. 12a. In this case, the cusps 
of  the central channel are no longer located 
at the centers of  the sides of  this d iamond.  

The analysis is still straightforward but  
even more  tedious than before. We list the 
relevant equations below, again without pre- 
senting their derivation. 

p /a  

= (  3,,/- ~ ~/2 

8 sin B cos 2 0 - 4 sin 20 - 2~r + 801 

× (1 - ~b) ~/2 [44] 

where 0 is expressed in radians, 

4~/2 
q/p - [451 

p / a  

f2/P = sin 0 - sin/~ cos 0 

+ [(q/p)2 _ cos 2 0 cos 2 ~]1/2 [46] 

3.__a 
2 

,~ q 

 --iY i 
j 

,,~ a ' ~ _  

(a) 

(b) 

FIG. 12. (a) Detailed view of unit cell for a Mode-II 
configuration when 0 > 0 and 4~ > ~g. (b) Limiting con- 
figuration, characterized by/3 = /3o, where a reduction 
in strain leads to a Mode II ---* Mode I jump. 

(~r3/2)(q/p)2 - sin/~ + sin 20 - (f2/p)(cos 0 - sin fl sin 0) 
f , /p = 

(f2/p) sin ~ + cos O - sin # sin 0 

p / p  = [( f l /p)  2 + 20Cl/p)(sin ~ cos O - sin 0) 

and 

+ 1 - sin ~ sin 201l/2 

= (C °s ~ c°s 0 ) 
al c°s-1 k p / p  - 13/2 

a2 = COS-I (COS fl COS 0-) -- f l /2 
q/p  

O~ = Ogl -'[- Og2 

3 
A x / a  = ~r3/2 -- ~ cot a 

= F/2"r cos 0 = cos 

= sin (a2 - ~/2). 

[47] 

It  is readily verified that  Eqs. [44]-[53] sim- 
[48] plify to Eqs. [27]-[36] when 0 = 0. 

As indicated before for 0 = 0, Eqs. [44]- 
[49] [53] when evaluated in sequence, enable one 

to construct the F vs 2xx/a curve for the 
Mode-II  region for any combinat ion ofq~ and 

[50] 0 by inserting increasing values of  B between 
its appropriate limits. For  0 = 0, these limits 

[51] were 60 and 90 °. For  0 > 0, the upper  limit 
is unchanged, but  the lower limit is raised 

[52] somewhat  and corresponds to the case illus- 
trated in Fig. 12b where the two long arcs 
just touch. (This configuration can be reached 
by reducing the strain f rom that  in Fig. 12a.) 

[53] It  can be shown that  this limiting Mode-II  
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FIG. 13. Stress vs strain curves as a function of q~ (>4 °) for several finite values of 0. 

configuration occurs when  # = #o, where 

sin #o _ 1 [54] 
2 2 cos 0 " 

Lower values o f  # would  imply  interpenetra- 
t ion o f  the two long arcs in Fig. 12b, which 
is physically meaningless.  Instead, the system 
jumps  to a Mode-I  configuration. 

This M o d e  II ~ M o d e  I jump,  coupled 
with the M o d e  I ~ M o d e  II j u m p  noted 
above, can give rise to hysteresis loops  in the 
complete  stress-strain curves when  the strain 
is reversed. Figure 13 shows some  resulting 

curves for each o f  several values o f  O. In the 
construction o f  these curves, the same factors 
were considered as in Fig. 10, i.e., the phys- 
ical meaninglessness o f  those parts o f  the 
Mode-II curves that back up, and the sym- 
metry about point  (0; qr3/2). 

It is seen that, in all cases, the Mode-I  
curve is fol lowed up to the point  where the 
two Plateau borders touch. Then  the stress 
suddenly drops, either to a smaller positive 
value, from where it cont inues  on a Mode-  
II curve, or to a negative value. The latter 
occurs in those  cases where the vertical 
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"jump line" does not intersect the corre- 
sponding Mode-II curve in the positive stress 
portion of  the diagram. The jump  may then 
end up on the symmetrically disposed Mode- 
II or Mode-I curve. When the strain is in- 
creased further, these curves are followed 
until, at point (0; x/3) the original configu- 
ration is restored and adjacent layers have 
completed a relative translation of  one unit 
cell. The process can then be repeated over 
and over. 

The hysteresis loops, referred to above, are 
also indicated in Fig. 13. If, just following the 
Mode I ~ Mode II jump,  the strain is re- 
versed, the dashed Mode-II curve is followed 
until 13 = 130 and the system reverts to a Mode- 
I configuration. 

The yield stress, 70, is given by 

~'0 = 1.050 ~ ~l/2/~max [55] 

where Fmax is the maximum positive value 
of  F i n  Fig. 13. In all but  one of  the illustrated 
cases, the maximum is reached while the 
system is in a Mode-I configuration. The 
only exception is the case of  0 = 5 ° and 
= 0.9131, where the absolute maximum is 
reached on the Mode-II curve, following the 
Mode I ~ Mode II jump. 

The values of  ffmax are plotted in Fig. 14 
as a function of  ¢ (>i¢°) for several values of  
0, including 0 = 0 (solid curves). It can be 
concluded that, in spite of  the cos 0 term in 
Eq. [55], the effect of  a finite contact angle 
is to increase the yield stress, except in the 
region of  very small 0 and relatively small 
¢, and in the region of  large 0 and large ~b, 
where the effect is reversed. 

We speculated above that, when ¢ < ¢~, 
the emulsion contains pockets of  occluded 
cont inuous phase, dispersed in a matrix 
emulsion of  ~b = ~ .  Provided these pockets 
are large compared to the emulsion droplets, 
it can be shown that the average number  of  
films per unit area is reduced by a factor of  
¢/~b~ vis-h-vis the emulsion of  ¢ = ~b~. Thus, 
the stress in the stress-strain curve and, 
therefore, the yield stress are reduced, to a 

I I I I 

O.5 ......................... -- .... -->/30 ~ 

O.3 

0.1 I I 
0.90 " 0.92 0.94 0.96 0.98 1.00 

FIG. 14. F~.~ as a function of q~ and 0. Solid lines refer 
to ¢ > q~o, dashed lines to ¢ < 4~g and are speculative. 

first approximation, by this same factor. This 
has been indicated in Fig. 14 by dashed lines 
for ¢ < ¢8. 

3. Shear Modulus 

From the stress vs strain relationships dis- 
cussed above, we derived quantitative expres- 
sions for the yield stress, 70. Another  rheo- 
logical parameter that is readily derived is the 
shear modulus, G', for small stresses (or 
strains), i.e., in the region prior to the yield 
stress, where the emulsion behaves as a 
purely elastic material. 

G' is defined as 

shear stress 
G' - . [56] 

shear strain 

The shear strain is given by 2/3 Ax/a (see 
Eq. [4']), while the shear stress, 7, in its gen- 
eral form (0 >/0), is given by the equivalent 
of  Eq. [55]: 

3' cos 0 
r = 1.050 - - 7 -  ~bl/2/~. [57] 

Substituting for stress and strain in Eq. [56], 
one finds 

G ' =  1 . 5 7 5 ~ ¢ 1 / 2  . [58] 
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For all cases discussed above, except that 
for 4 = 0.9069 and 0 = 0, the curves of P vs 
Ax/a initially follow the Mode-I curve which, 
for small deformations, is essentially linear 
and of slope very close to 1/3, so that 

3" COS 0 41/2 ( 4  > 0.9069;~ 
G' = 0.525 ~ k small Ax/a ! " 

[59] 

4. Effect of  Finite Film Thickness 

Up to this point, the thickness of the films 
separating individual droplets was consid- 
ered to be negligible compared to the di- 
mensions of each drop. When the drops are 
extremely small and the film thickness is rel- 
atively large (e.g., when the emulsion is sta- 
bilized by an ionic surfactant at low electro- 
lyte concentration), this may not be a good 
approximation. It was shown for the un- 
strained system (cf. Eq. [17] in Ref. (5)) that, 
for finite film thickness, a given drop shape 
is found at a volume fraction, 4 h, that is 
somewhat smaller than the volume fraction, 
4, at which that same drop shape would be 
found in a system with zero film thickness. 
The two volume fractions are related through 

4-~ = + 

E1 = + 1 . o 5 o  . [60] 

It is readily shown that Eq. [60] is equally 
valid for the strained systems discussed in the 
present study. In other words, all phenomena 
described above for h = 0 remain valid with 
the proviso that the volume fractions are 
shifted downward in accordance with Eq. 
[60]. This implies that, for given volume frac- 
tion, the effect of a finite film thickness is to 
increase both the yield stress and shear mod- 
ulus. 

CONCLUSIONS AND DISCUSSION 

For the two-dimensional model of a 
monodisperse, highly concentrated emulsion 

in simple shear, we have been able to derive 
the exact stress vs strain relationships in the 
elastic region as a function of the volume 
fraction, 4, and contact angle, 0. The effect 
of a finite film thickness, h, has also been 
indicated. 

Exact predictions have been made of the 
yield stress, ro, and the shear modulus, G'. 
In the most general situation, the respective 
expressions are 

r0 = 1.050 ~ 41/2/Wmax [61] 

where the last, dimensionless term depends 
on both 4 and 0, and can be evaluated from 
Fig. 14, and 

G' = 0.525 3' cos 0 41/2 . [62] 

Both ro and G' are directly proportional 
to the interfacial tension and inversely pro- 
portional to the drop radius. The dependence 
of G' on 0 and 4 is direct and simple; that 
of ro is more complex because of the term 
/~m~x. The overall effect is that r0 increases 
sharply with increasing 4 and, in most cases, 
increases also with increasing 0. 

It will be extremely difficult to extend the 
analysis to real emulsions at the same level 
of detail. However, the same general rela- 
tionships should apply. In fact, on the basis 
of simple analogy, we would expect the cor- 
responding expressions for ro and G' of real, 
monodisperse emulsions to read: 

and 

7"0 = C1 3" c o s 0  41/3Z~ma x [63] 
R 

G' = C2 Ocos~3, 41/3 [64] 
R 

where C1 and Ca are, as  yet unknown, nu- 
merical constants, and Fmax depends in the 
same qualitative fashion on 4 and 0 as in the 
two-dimensional case, e.g., it will increase 
sharply with increasing 4. Of course, for real 
emulsions the range of 4 that is of interest 
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is 0.74 ~< ~ ~< 1, rather than 0.9069 ~< ~b 
~< 1. In preliminary experiments on a series 
of emulsions of different volume fractions 
but identical values of  the interfacial tension 
and average droplet size, we have indeed ob- 
served such a sharp rise of  the yield stress 
with increasing q~. Moreover, the measured 
yield stresses were of  the same order of  mag- 
nitude as those predicted by Eq. [61]. It will 
be interesting to test the simple dependence 
of ro on 3' and R when ~b and R are kept 
constant. To our knowledge, this has not 
been done. 

To fully understand the rheological be- 
havior of  real emulsions, it will be important 
to build polydispersity into the model. This 
we have not accomplished as yet, but we 
speculate that polydispersity will not invali- 
date Eqs. [61]-[64], provided that R is re- 
placed by some average drop radius /~. 
Polydispersity is also expected to smear out 
some of the details in the stress-strain curves. 

Another limitation of the current model 
is the assumption that the interfacial tension 
does not vary with strain. This may not al- 
ways be strictly valid, since strain implies an 
increase in the surface area of  each drop. For 
example, for q~ ~ I, the increase in surface 
area at the end of a cycle can be shown to 
be about 15%. Even under static conditions 
of  strain, this will in principle be accompa- 
nied by depletion of  surfactant, and a con- 
sequent increase in interfacial tension. Par- 
ticularly when the volume fraction is very 
high and the surfactant concentration is low, 
this can lead to destabilization of the liquid 
films separating the droplets. This mecha- 
nism of film destabilization and consequent 
drop coalescence becomes potentially even 
more severe when flow occurs, especially at 
high rates of shear, when diffusion of  surfac- 
taut from the interior of the films and the 
Plateau borders into the surfaces of  the ex- 
panding films may be too slow to maintain 
stability. This kind ofdestabilization of foams 
and high-internal-phase emulsions is well 
known in practice (3, 4, 20). 

We are currently conducting an experi- 

mental study of  the theology of real high- 
internal-phase emulsions. To obtain mean- 
ingful and reproducible results, it appears 
essential that the viscometer walls are per- 
fectly wetted by the continuous phase. Oth- 
el-wise, the surface induces instability of  the 
emulsion layer adjacent to the wall, which 
can lead to gross coalescence or formation 
of a thick, lubricating film of  dispersed phase, 
as inferred by Mannheimer from his study 
of oil-in-water emulsions flowing through a 
Teflon tube (4). Even if the continuous phase 
does wet the viscometer walls, the interpre- 
tation of rheological measurements is com- 
plicated by the presence of  a thin film of  con- 
tinuous phase between the outer layers of 
emulsion droplets and the solid walls. This 
film is expected to have a thickness that is 
comparable to that between the droplets, and 
gives rise to a degree of"slip." When properly 
interpreted, however, measurements may 
give information not only on the rheological 
properties of the emulsion itself, but on the 
effective thickness of the film as well. This 
will be a subject for future study. 

Finally, the model described in this study 
is a static one. It does not treat the case of  
continuous flow, which is initiated when r 
> to. To extend the theory in this direction, 
i.e., to predict the dependence of  shear stress 
on shear rate, a detailed understanding is 
required of  the various dissipative processes 
involved. This also will be a topic for future 
study. 
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