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AbstracG-Recent advances in artificial intelligence have changed the fundamenta1 assumptions upon 
which the progress of computer-aided process engineering (modeling and methodologies) during the last 
30yr has been founded. Thus, in certain instances, numerical computations today constitute inferior 
alternatives to qualitative and/or semi-quantitative models and procedures which can capture and utilize 
more broadly-based sources of knowledge. in this paper it will be shown how process development and 
design, as well as planning, scheduling, monitoring, analysis and control of process operations can benefit 
from improved knowledge-representation schemes and advanced reasoning control strategies. It will also 
be argued that the central challenge coming from research advances in artificial intelligence is “modeling 
the knowledge”, i.e. modeling: (a) physical phenomena and the systems in which they occur; (b) 
information handling and processing systems; and (c) problem-solving strategies in design, operations and 
control. Thus, different strategies require different forms of declarative knowledge, and the success or 
failure of various design, planning, diagnostic and control systems depends on the extent of actively 
utilizable knowledge. Furthermore, this paper will outline the theoretical scope of important contributions 
from AI and what their impact has been and will be on the formulation and solution of process engineering 
problems. 

Zusammenfassung-Neuere Entwicklungen bei kiinstlicher Intelligenz haben die grundlegenden Annah- 
men veriindert, auf denen der Fortschritt der computergestiitzten Fertigungsplanung (Forrngebung und 
Methodenlehren) wghrend der letzten 30 Jahre begriindet war. Daher stellen in bestimmten Flllen 
numerische Berechnungen schlechtere Alternativen fiir qualitativ und/oder halbquantitative Modelle und 
Verfahren dar, die breiter fundierte Wissensquellen einnehmen und benutzen k6nnen. In diesem Artikel 
wird gezeigt, wie Proze~ntwicklung and -gestaltung sowie Pianung, Steuerung, Oberwachung, Analyse 
und Kontrolle der ProzeDtltigkeiten von verbesserten Wissensdarstellungsshemen und modernen vemiin- 
ftigen Kontrollstrategien profitieren k6nnen. Es wird such argumentiert, daD die zentrale Heraus- 
forderung, die aus Fortschritten bei der Entwicklung kiinstlicher Intelligenz kommt, “Modellierung des 
W&ens” ist, d.h. Modellierung: (a) physikalischer Phsnomene und der System, in denen sie sich abspielen; 
fb) van Info~ations~ar~jtungs- und Verar~iLung~ystem~n; und (c) problemliisender Strategien bei 
Planung, Betrieb und Kontrolle. Daher erfordern unte~hiedliche Argumen~tionsstrategien unter- 
schiedliche Formen des erkllrenden Wissens, und der Erfolg oder der MiBarfolg verschiedener Entwurf- 
splanungen, Diagnosen und Kontrollsysteme hLngt vom Umfang des tatslchlich nutzbaren Wissens ab. 
Weiterhin wird in diesem Artikel der theoretische Umfang wichtiger Beittige durch kiinstliche Intelligenz 
dargelegt und deren Auswirkung auf die Formulierung und LGsung von Problemen der Fertigungsplanung 
in der Vergangenheit und Zukunft. 

RCsum&--Les nouveaux dCveloppements en matitre d’intelligence artificielle ont modifii les suppositions 
de base sur lesquelles le progr& de la planification de l’usinage assist&e par ordinateur (modelage et 
methodologies) ttait fond& pendant les 30 dernidres an&es. Les calculs numhriques repn%entent done dans 
certains cas des alternatives moins bonnes pour tes modeles qualitatifs et/au semi-quantitatifs ainsi que 
pour les pro&d&s bases et utilisant des sources scientifiques $ fondement plus large. Cet article montre 
comment le dCveloppement et la conception des processus ainsi que la planification, la commande, la 
surveillance, l’analyse et le contrBle des activitOs de processus peuvent profiter des schtmas de 
representation scientifique am&ior& et des stratCgies de contrble modernes rtsonnables. 11 est aussi 
argument6 que le d&i central qui r&+ulte des progr& accomplis dans le diveloppement d’une intelligence 
artificielle est un “modeiage des connaissances”, c’est-$-dire un modelage: (a) des phC_nomPnes physiques 
et des sysremes dans lesquels ils se deroulent; (b) des systdmes de traitement et de transformation des 
informations; et (c) des strattgies qui r&solvent les probl6mes lors de la planification, de l’exploitation et 
du contrdle. C’est pourquoi les diverses stratCgies d’argumentation exigent diversees formes de savoir 
explicatif et le succ& ou 1Vchec de diverses planifications d’tbauches, de diagnostics et de syst&mes 
de contrble d&pent de 1’Ctendue du savoir r&ellement utile. Cet article reprhsente kgalement l’ktendue 
theorique d’importants apports par t’intelligence artificielie ainsi que leurs r+ercussions sur la 
formulation et la solution apport6es aux problemes de la planification de la production dans le pass6 et 
B l’avenir. 
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1. THE SCOPE OF COMPUTER-AIDED 
PROCESS ENGINEERING 

The role of computers in process engineering 
research and development has grown continuously 
over the last 30 yr to a point of pervasive and 
self-propelling reliance on the machines. In the area 
of chemical process development and design, comput- 
ers are used for: (a) process simulation and analysis; 
(b) equipment sizing and costing; (c) optimization; (d) 
integrated design of energy management systems, 
reactor networks, separation sequences; (e) layout of 
piping networks; and (f) project planning. Chemical 
process control is relying more and more on comput- 
ers for the implementation of low-level feedback 
control, on-line parameter estimation and controller 
adaptation, as well as for the execution of higher-level 
tasks such as optimization, planning and scheduling 
of plant-wide operations. 

Although the variety of computing applications is 
extensive and growing, the underlying paradigm has 
been unique and a simple one, namely, “numerically 
solve a set of equations.” This is due to the fact that 
computers have been perceived to be “computational 
machines” only. Thus, even when the desirable is a 
qualitative description of a physical system’s 
behavior, it will be established quantitatively under a 
limiting set of parametric values and initial 
conditions. Furthermore, the exclusive reliance on 
numerical computations forces one to “use only the 
knowledge which can be represented by a quantitative 
scheme,” thus limiting the range and utility of the 
ensuing numerical results. Quite often, the exclusion 
of available qualitative and approximate-quantitative 
(e.g. ordinal, or order-of-magnitude relations) 
knowledge is very detrimental because the user either 
overlooks fundamentally sound scientific knowledge, 
or distorts such knowledge to fit it into a quantitative 
representational scheme. Needless to say, one should 
resist the down-grading of reliable quantitative 
knowledge to inferior qualitative or semi-quantitative 
forms. Instead, one should strive to articulate, 
represent and utilize all forms of available knowledge. 
This is the new dictum imposed by the needs in 
chemical engineering and made possible by present 
state-of-the-art advances in computer science 
technology. 

To better understand the limitations of the 
paradigm based on numerical computations alone, let 
us examine a series of representative problems from 
chemical engineering: 

Process desig_Figure 1 shows an advanced com- 
puter-aided design environment for chemical process 
design. It is composed of a database management 
system (DBMS) which retrieves and directs infor- 
mation among the various facilities such as process 
simulators, optimizers, process units’ sizing and cost- 
ing routines, estimators of physical or chemical prop- 
erties, etc. under the guidance of the human designer. 
But, such a computer-aided design system “does not 
know” how the design is done and cannot encode and 
answer questions like: Where does the design start 
from? What is to be done next? What simplifications 
and assumptions should be made for the design to 
proceed? The design strategy and methodologies for 
design decision-making reside in the expert human 
designer’s mind and they never become articulated 
into automatic, computer-implemented procedures. 
As a result, a CAD system as the one of Fig. 1 cannot 
even encode and replay the “history of a design.” 
Models of the design process which allow the 
development of “human-aided” design systems will 
be discussed later in this paper. 

Product and process development-Scientists and 
engineers involved in the design of new products 
(materials, solvents, pharmaceuticals, specialty 
chemicals) or the conceptualization of new processing 
schemes stemming from basic chemical or biochemi- 
cal reaction schemes do not use computers in their 
creative tasks because their essential needs are not 
numerical computations. Thus, fundamental 
qualitative scientific knowledge, or accumulated 
experimental facts are never formally articulated and 
represented. 

Modeling system’s behavior--Suppose that we 
want to establish the qualitative behavior of an 
assumed model for a catalytic reaction and thus 
investigate the effects of the postulated mechanistic 
steps. Numerical simulation depends heavily on the 
assumed values of the inherent parameters and pro- 
vides only local information. Mathematical analysis, 
on the other hand, can establish for small size 
problems explicit global properties of the assumed 

Fig. 1. Typical computer-aided design environment. 
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model such as number of steady state solutions and quently, additional forms of knowledge and symbolic 
their character. Consequently, one should attempt to generation and manipulation of primitive operations 
capture all fundamental results from mathematical are essential for the synthesis of operating procedures 
analysis and formalize them through proper represen- either a priori (i.e. at the process design stage) such 
tations into a software system, which can produce the as start-up, shut-down, change-over or on-line (i.e. 
global qualitative behavior of the assumed catalytic during operation) such as response to faults, coordi- 
mechanism over various regions of parametric values. nated plant-wide optimization. 

Feedback control-Quantitative models and 
numerical computations are and will continue to be 
central for the implementation of feedback control. 
Unfortunately, numerical computations alone are 
weak or not robust in answering questions such as: 
How well is a control system running? Are the 
disturbances normal? Why is derivative action not 
needed in a loop? What loops need dead time 
compensation; should it be increased or reduced? 
Have the stability margins of certain loops changed, 
and if so, how should the controllers be automatically 
retuned? 

It is clear from the previous discussion that present 
and future needs in chemical engineering cannot be 
met by the traditional computing paradigms. But, 
before we explore how artificial intelligence is impact- 
ing the reformulation of computing paradigms in 
various areas of chemical engineering, it is important 
to elucidate what the essential premises are on which 
current application of artificial intelligence in 
engineering problems is based. 

Monitoring and diagnosing process operation 
Computer technology has caused an explosion in the 
process information that can be conveyed to human 
operators. Present-day control rooms display thou- 
sands of analog or digital process data, and hundreds 
of alarms. During the course of steady state oper- 
ations, simple observation of scores of displays is 
sufficient to confirm the process’ status. But, when the 
process is in transient or crises occur, the dynamic 
evolution of displayed data can confound even the 
best operators. Quantitative computations are in- 
adequate to provide a robust “mental model” as to 
what is going on and carry out routinely tasks like: 
distingish normal from abnormal operating con- 
ditions, assess current process trends and anticipate 
future operational states, identify causes of process 
trends (e.g. external disturbances, process faults, op- 
erator-induced mishandling, operational degradation 
due to parametric changes). The key cognitive skill is 
the formation of a mental model of the chemical 
process that fits the current facts and enables the 
operator to correctly assess the process’ behavior and 
predict the effects of possible control actions. The 
automatic development of such a mental model 
requires more knowledge than that provided by 
numerical computations alone. 

2. THE ESSENTIAL FRAMEWORK OF ARTlFIClAL 
INTELLIGENCE 

It is generally accepted that artificial intelligence is 
part of computer science and, in the words of Elaine 
Rich (1983), “. is the study of how to make 
computers do things at which, at the moment. people 
are better.” Thus, while computers outperform 
humans in: (a) carrying out large-scale numerical 
computations: (b) storing and efficiently retrieving 
massive records of detailed data; and (c) efficiently 
executing repetitive operations, they are currently 
quite inferior in: (i) responding to situations very 
flexibly; (ii) making sense out of ambiguous or 
contradictory messages; (iii) recognizing the relative 
importance of different elements within a situation; 
and (iv) finding similarities despite differences, and 
drawing distinctions despite similarities among 
various situations; all considered to be manifestations 
of human intelligence (Hofstadter, 1980) and subjects 
of study in the realm of artificial intelligence. 

Planning and scheduling of process operations-The 
planning of process operations involves specifying an 
ordered sequence of operations, or a partially-or- 
dered set of operations which, when carried out, will 
perturb the state of the chemical plant from some 
initial state and cause it to eventually attain some 
prespecified final, or goal state. Conceivably, one 
could formulate this problem as a mixed-integer, 
nonlinear optimization problem and solve it numeri- 
cally, if it were not for the following difficulties: (1) 
for realistic size industrial problems it can be shown 
that the problem is intractable; (2) nontemporal 
constraints introduce restrictions on the temporal 
ordering of process operations; and (3) the objective 
function cannot be fully articulated a priori. Conse- 

Making a mind vs modeling tbe brain (Dreyfus and 
Dreyfus, 1988bThis definition could be construed as 
implying that AI is trying to “make computers think 
exactly like humans,” i.e. creating a model of the 
brain. For engineering work such interpretation is 
wrong and obviously sterile. Instead, “making a 
mind” is a more accurate description of what AI 
applications in engineering are trying to do, i.e. they 
tackle the same problems humans do, with solutions 
that possess the robustness and flexibility character- 
istic of human approaches. Such a shift in emphasis 
has produced excellent examples of computer systems 
which exploit symbolic processing, novel models to 
represent all forms of knowledge, and a series of 
successful problem-solving paradigms, all results of 
research work in AI. 

AI and computer programming-Rich’s definition 
of AI has another important corollary: the research 
results should lead to an executable computer 
program. It is this requirement that places AI 
squarely in the area of computer science and 
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distinguishes it from operations research, infor- 
mation science, systems theory, mathematical logic 
and other fields from which it has been, and still is, 
drawing in ideas and methodologies. Such requisite 
computer program, based on a computer language 
which “. is a novel formal medium for expressing 
ideas about methodology . (and) . . . control(ling) 
the intellectual complexity .” (Abelson and 
Sussman, 1985) should, ideally, possess provable 
properties such as tractability, correctness and 
completeness. Unfortunately, this is a very hard 
proposition and for many applications, impossible to 
establish. 

Modeling knowledge-Looking more closely at the 
various research advances one quiclky realizes that 
the practical thrust of AI in engineering applications 
is to enforce systematic and organized modeling of 
knowledge, i.e.: (a) modeling of physical systems (e.g. 
at the Boolean, qualitative, semi-quantitative or 
quantitative level); (b) modeling of information 
processing systems; and (c) modeling of problem- 
solving paradigms, such as diagnostic, planning, 
design. Without expressive representations of the 
requisite declarative (i.e. “what is . .?“) and 
procedural knowledge (i.e. “how to . .“), no 
computer programs can be written. It is this preoccu- 
pation with all forms of knowledge and their 
representation that distinguishes current efforts from 
earlier ones in chemical engineering, and enables 
people to deliver what in the past was an “idea.” But, 
developing the proper models to represent knowledge 
and generating programs with, ideally, provable 
properties, are highly-challenging propositions with 
significant intellectual content. This is the message 
that current research efforts of AI applications in 
chemical engineering convey. Current research has 
outgrown simple-minded rule-based systems. 

Problem-solving paradigms--Complex codes for 
numerical computations have enjoyed a significant 
advantage: the existence of a concise, advanced 
mathematical background that provides the proof of 
the computer program’s properties; e.g. stability, rate 
of convergence, residual errors. Most of the computer 
programs developed in the field of artificial intelli- 
gence are based on problem-solving paradigms, 
which are not as fortunate as their numerical counter- 
parts. But, significant advances in mathematical 
logic, approximate algebras, qualitative and semi- 
quantitative calculus are providing the theoretical 
background for developing algorithms with provable 
properties. 

Software design-Procedural programming based 
on a bottoms-up design of software systems has been 
the traditional mode in computer-aided process 
engineering applications. This is quite unsatisfactory 
for large-scale, diverse information processing 
required by process engineering. Thus, top-down 
design approaches based on object-oriented program- 
ming (Stephanopoulos et a/., 1987; Fikes and Kehler, 
1985; Stefik and Bobrow, 1985) are evolving as the 

dominant paradigm, requiring a complete inversion 
of traditional thinking. 

3. ARTlFlCIAL 1NTELLlGENCE IN PROCESS 
DEVELOPMENT AND DESIGN 

The engineering design of processing systems is a 
dialectic process (Stefik et al., 1982) between goals 
(i.e. what is desired) and possibilities (i.e. what is 
actually realizable). But, the diversity of the top-level 
(initial) goals makes design quite an informal activity 
in the province of expert designers. Indeed, no general 
theory exists for the systematic and rigorous develop- 
ment of the procedure that leads to the design of the 
desired “artifacts.” Various attempts to formalize the 
overall design procedure as mathematical program- 
ming problems have yielded limited success with 
rather narrowly focused problem definitions and 
quite rigid solution methodologies. Thus, these 
advances can be viewed as a set of support tools, 
rather than a theoretical framework for design. 

In the absence of a general theory on how design 
is done, research in the field of AI has been addressing 
the following two distinct, but complementary, areas 
of inpuiry: 

Axiomatic theory of design, with the objective to 
establish a theoretically firm ground for the definition 
of design and thus bring it into the realm of “science” 
rather than “art,” where it presently stands. 
Advances in this direction have been rather recent, 
but significant research effort is currently underway. 

Engineering science of knowledge-based design 
(Tong, 1987), aiming at the development of a rational 
framework for organizing, evaluating and formulat- 
ing knowledge-based models of how the design is 
done. The central issue to resolve here is the identifi- 
cation and structuring of various forms of 
knowledge, which is pertinent to the design tasks. 
Two major areas of advancement have resulted from 
the use of AI-related research: (i) systematic modeling 
of the process of design; and (ii) new effective 
programming styles, which depart from the conven- 
tional computer-aided design paradigms and allow 
the development of large highly-complex computer 
programs. 

3.1. The human -aided computer -based design 
paradigm 

Despite the continuous enrichment of traditional 
CAD environments, the character of the overall 
design procedure remains the same: “the human does 
the design and the computer provides the support tools, 
without understanding the design process, its rationale, 
or the design decisions.” But, the complete structure 
of tasks during the design of an engineering artifact 
can be very large, detailed and complex for any 
human to document mentally and carry with him/her. 
To the extent that we can untangle and make explicit 
the design procedure, thus emulating the designer’s 
own methodology, the process can be mechanized. 



AI in process engineering 1263 

But, in this case, we are moving towards a 
“human-aided, machine-based design” paradigm 
(Stephanopoulos and Kriticos, 1987), where the 
computer through human guidance can carry out 
significant portions of a design by “understanding” 
the design process itself, its rationale and the reason- 
ing behind a number of design decisions. This is the 
paradigm whose development and computer 
implementation has been significantly advanced by 
research in AI, and which we will discuss in the 
following sections. The benefits from the availability 
of such mechanized models for design are many and 
diverse: (1) improvements in cost and reliability; (2) 
explicit documentation of the design process itself: 
why certain goals were set during the design and how 
they were achieved; how design decisions were made; 
what assumptions and simplifications were involved; 
what models were used at the various stages of 
design; what alternative designs were examined, and 
why certain ones were selected over others; (3) explicit 
documentation of the designed artifact itself; i.e. what 
are its components and their characteristics, how are 
they interconnected, what are its functional and 
performance characteristics, what are the critical 
design variables and the intrinsic trade-offs; (4) easy 
verification and modification of the resulting design. 
Having an explicit documentation of the intermediate 
design tasks, generated alternatives, rationale behind 
various design decisions, assumptions, conjectures 
and simplifications, one can replay the design 
scenario and easily verify the validity of the derived 
design, or modify its design premises for further 
improvements; and (5) the mechanized model of a 
design methodology offers an excellent depository for 
the organization of new empirical knowledge and/or 
the systematic incorporation of new theoretical 
results and analytic tools. Such inclusion of new 
knowledge will progressively increase the automation 
of the design procedure itself. 

3.1.1. Modeling the process of design. Figure 2 
shows a generic model, suggested by Tong (1986), 
which captures the essential features of the human- 
aided design paradigm. It is composed of three 
distinct facilities, an Advisor, a Planner and a De- 
signer, which can interact in both top-down and 
bottom-up directions. Specifically, in a top-down 
architecture the Advisor develops and maintains a 
network of design goals (a partial ordering of the 
design steps). It also assesses the qualitative impact 

on selected goals by identifying bottlenecks in a 
proposed design plan. It embodies a theory of how 
goals are created, prioritized, decomposed, how they 
interact and how they are satisfied. The Planner 
receives a goal from the Advisor and simulates the 
design steps using a detailed planning theory. As a 
result, it completes the design plan, initially sketched 
by the Advisor, by identifying all the specific engin- 
eering design tasks. The Designer maintains the 
representation of the engineering artifact being de- 
signed and other domain-specific knowledge. Thus, 
given a design step (from the Planner), the Designer 
must simulate the step and update the artifact’s 
representation accordingly. In a bottom-up architec- 
ture the Designer detects conflicts, and/or using the 
domain-specific data, generates extensions to the 
design plan which are communicated to the Planner. 

Although the prototype of Fig. 2 is quite generic, 
various models of the design process result from the 
following considerations: goal-driven and data- 
driven strategies are present in every model of the 
design process, but their contributions may differ 
widely: (i) different theories are employed to stipulate 
different networks of goals, i.e. create, prioritize, 
decompose, satisfy design goals; (ii) different 
planning methodologies are used to order the design 
steps, leading to design strategies with different 
computational complexity; (iii) different control 
strategies are invoked to coordinate the interaction 
between goal-setting and planning the design steps; 
and (iv) different representational schemes are used to 
describe the design states of the engineering artifact 
under design. 

3.1.2. Modeling components. But, what are the 
essential components of a model of the design 
methodology? To answer this question, Mostow 
(1985) has summarized the various efforts in model- 
ing the design process and has suggested that a 
comprehensive, computer-based model of design 
should address the methodological and/or represen- 
tational aspects of the following elements: (a) the 
state of the design, i.e. descriptions of the artifact 
under design at various levels of detail; (b) the goal 
structure of the design process. If the design is to be 
mechanized, it must be a purposeful activity with 
clear goals, which guide what is to be done at each 
point of the design process. These goals are not 
“descriptions of the artifact under design, but 
prescriptions as to how these descriptions should be 
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Fig. 2. A generic model for the design process. 
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manipulated;” (c) design decisions. Once a goal has 
been selected, there may be several paths for achiev- 
ing it. Design decisions represent choices among them 
and should be clear and explicit; (d) rationale for 
design decisions. They justify the goal selection and 
the choice of the best plan to accomplish it. The need 
for explicit rationalization forces the designer to 
evaluate his/her reasoning and allows the design 
procedure to evolve systematically as new knowledge 
becomes available; (e) control of the design process. 
Provides the navigation through the design alterna- 
tives by guiding the designer in how to choose the 
goal to work on at each point and selecting the best 
plan with which to achieve it. This is the most critical 
component of the design methodology; and (f) learn - 
ing in design. Emulates the designer’s own ability to 
learn both general knowledge about the domain and 
specific knowledge about the problem at hand, from 
the accumulation of factual and strategic knowledge. 

3. I.3. Issues to be resolved. Current (future) 
research efforts are (will be) focusing on resolving the 
following issues, which are presently inhibiting the 
full deployment of human-aided machine-based de- 
sign environments: (i) develop concise representations 
of the state of design which allow the description of 
the process at various levels of detail; (ii) formalize 
the generation, aggregation, disaggregation, elimin- 
atton or propagation of design constraints as the 
design evolves; (iii) compose efficient and provable 
algorithms for the logical control of design activities, 
which can tame the complexity of the overall prob- 
lem; and (iv) mechanize automatic learning from past 
design experience. 

3.2. Cooperative process design 

The design of a chemical process goes through 
various stages of evolution, requiring the input of 
diverse expertise to deal with: (i) process technology 
characteristics; (ii) safety considerations; (iii) sizing, 
costing and economic optimization; (iv) operability 
specifications; and (v) desired controlled operation. 
Presently, all of these activities are carried out in a 
largely sequential and segmented fashion. The 
availability of software systems emulating a concise 
model of how process design is done can integrate 
these activities and lead to a Cooperative Process 
Design environment, functioning as follows: (i) differ- 
ent designers with different expertise are operating 
from diKerent engineering workstations; (ii) object- 
oriented intelligent database systems provide a global 
database reflecting the current state of process design 
and private databases retaining different versions of 
the evolving design; (iii) the various expert designers 
use the global database to assert their preferences, 
introduce their design choices and critique decisions 
made by others. Assumptions, decisions and method- 
ologies are explicitly available in the global database; 
and (iv) various versions of the process design are 
developed as noncommensurable decisions are 
stipulated by various experts for subsequent study 

and analysis. Such systems of cooperative engineering 
design are already available in experimental forms for 
the design of manufacturing systems. 

4. ARTIFICIAL INTELLIGENCE IN PROCESS 
OPERATIONS AND CONTROL 

The design of process control systems and the 
on-line control of chemical plants require the system- 
atic coordination of a multitude of tasks. In turn, 
each of these tasks has many facets requiring data, 
numerical algorithms, decision-making procedures 
and human intervention to provide experiential 
knowledge. AI can play an important role in 
automating many of these tasks through the use of 
computers. 

4.1. The autonomous process control system 

A chemical plant is part of a corporation-wide 
network of processing systems. Operations Planning 
(Ladson and Baker, 1986) establishes multi-plant 
production logistics (production plans, budget, raw 
materials, desired products, sales, inventories). 
Within the scope of these constraints, Plant- 
Operations Management defines the multi-period 
production plans, resolves crises, plans scheduled 
maintenance and shutdown and evaluates system’s 
performance. This hierarchy of control tasks contin- 
ues with the middle level of Control Strategies and 
Coordination and the lower level of Direct Control 
and Adaptation. Although this hierarchy is an old 
idea (Lefkowitz, 1966; Mesarovic et al., 1970; 
Findeisen et al., 1980), past work did not address the 
fundamental issues which prevented its full 
implementation. AI is providing the enabling theory 
and technology, thus leading to the emergence of the 
so-called Autonomous Process Control System 
(Stephanopoulos, 1989). 

4.1.1. Plant -operations management. The essential 
structure of functions is shown in Fig. 3. The Plant- 
Operations Planner is entrusted with the development 
of a feasible plan of plant operations over a period of 
time. To achieve its objective: (a) it defines the scope 
of the planning problem; and (b) it calls on other 
functions such as Production Optimizer, Start- 
up/Shut-down Planner or Crisis Manager to solve the 
planning problem. To define the scope of the 
planning problem, the Plant-Operations Planner 
receives information from the following sources: (i) 
from corporate production plans it learns the pro- 
duction goals; (ii) from the Plant/Operations Assessor 
it receives information about the status of processing 
units in the plant, the available processing capabih- 
ties, and whether a crisis has developed and needs 
attention, or is developing and should be deflected; 
and (iii) from the Maintenance Scheduler acquires 
information as to what units are marked for preven- 
tive or corrective maintenance. Defining the planning 
problem requires significant intelligence on the part 
of the Plant-Operations Planner, which must be able 
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Fig. 3. The structure and functions of the Plant-Operations 

Planning segment. 

to do the following: (a) generate symbolic descrip- 
tions of states (initial, goal), objectives, constraints 
and subjective preferences; (b) have decision-making 
abilities to identify and resolve conflicts among de- 
sired goals, constraints, preferences and select the 
appropriate function to carry out the planning; (c) 
adapt and expand its knowledge, based on the 
performance of plans already executed; and (d) 
identify infeasibilities in the corporate production 
plans, resolve them and return the information to 
corporate planning. The Production Optimizer is 
called to produce a multi-period optimal plan of 
.>perations. The methodology here is fundamentally 
algorithmic (mathematical programming), but the 
essential difficulty lies in the formulation of the 
optimization problem. The Starr-up/Shut-down 
Planner, under normal conditions, encapsulates 
standard operating procedures. It is essentially 
symbolic in character and incorporates significant 
amounts of knowledge and decision-making. Crisis 
Manager is entrusted with the “creative” planning of 
operating procedures, which will deflect incipient 
problems in production. The recognition of crisis 
rests with the Plant-Operations Planner. Since the 
Crisis Manager does not contain but a limited 
number of crisis scenarios, it must possess extensive 
decision-making abilities to synthesize novel plans. 
The Learning function attempts to capture new 
knowledge by comparing the performance of plant 
operations with the intended goals, and construct ad 
hoc rules or generalizations of fragmented 
observations on how planning at this level can be 

4.1.2. Control strategies and coordination. The net 
outcome of the upper-level tasks is the formulation of 
multi-period operational plans. The functions of the 
middle-level tasks (Fig. 4) will: (a) convert these plans 
to control strategies; or (b) adapt the current control 
strategies using information from the Direct Control 
and Adaptation level tasks. The Control-Strategies 
Synrhesizer and the Control-Strategies Executirpe are 
the two central functions at this level. The first 
schedules sequences of control actions, while the 
second coordinates the use of various resources 
needed for the implementation of the control actions. 
The Control-Strategies Synthesizer first defines the 
scope of the control-strategies synthesis problem, by 
receiving the following information: (i) plans of 
process operations established at the upper-level by 
the Plant-Operations Planner; (ii) evaluation of 
current process trends from the Process-Trends 
Analyzer; (iii) equipment, processing or performance 
faults from the Process-Trends Interpreter; and (iv) 
commands, rules or preferences from the process 
operator. This information is used to establish: (1) the 
current operating state and trends; (2) desired control 
objectives; (3) processing constraints; and (4) human 
preferences on the desired sequence of control 
actions. Second, it determines a schedule of control 
actions, which satisfies the established scope, by 
calling on the functions Optimizing Control or 
Response-to-Faults Scheduler. It requires significant 
intelligence and must possess skills in symbolic 
manipulation of data, models and plans, and 
decision-making in resolving conflicts. 

Fig. 4. The structure and functions of the Control-Strategies 
improved. Synthesis and Coordinating segment. 
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The Optimizing Conrrol function carries out 
optimization of a functional objective subject to a set 
of differential-algebraic constraints. It is essentially a 
numerical procedure, but is must be complemented 
with symbolic manipulations and decision-making 
skills to allow: (a) adaptation of the models as the 
process moves through an expanded region of 
operation; (b) adaptation of existing or specification 
of new operating constraints; (c) specification or 
adaptation of the objective function(s); and (d) spe- 
cification of preferences, trade-offs, given that opti- 
mizing control is essentially multi-objective. The 
Response-to -Faults Scheduler is basically a schedul- 
ing facility, operating at a higher frequency than the 
Crisis Manager at the upper level. It is invoked when 
the Control-Strategies Synthesizer has decided that 
the information from the Process-Trends Znterpreter 
indicates the presence of faults to contend with. It 
carries out the following tasks: (I) establishes the 
goal-state that the desired control strategy should 
make possible to reach; i.e. retain or return operation 
to the feasible region; (2) determines the list of 
available resources; i.e. pumps, valves, control loops, 
stand-by units, etc. which can be used for the 
synthesis of the control strategy; (3) defines the set of 
constraints (hard and soft) which must be obeyed; 
and (4) schedules a sequence of operating steps; e.g. 
changes in controller set-points, turning pumps on or 
off, closing or opening valves, switching units on or 
off. An essential feature of the Response-to-Faults 
Scheduler is its ability to predict future operating 
states and trends, through qualitative and semi-quan- 
titative simulation. This is needed: (i) to evaluate the 
consequences of existing abnormalities (faults); and 
(ii) to evaluate and compare alternative schedules, 
given that the available constraints are not sufficient 
to establish a unique schedule. 

The Process- Trends Analyzer and Process- Trends 
Interpreter provide information on the current status 
of processing equipment and operations. The former 
establishes the temporal trends of operating variables 
through declarative descriptions (Cheung and 
Stephanopoulos, 1988). The latter interprets these 
trends and determines whether the operation is 
normal or abnormal. In the second case it identifies 
the source(s) of abnormalities, e.g. equipment faults, 
processing malfunctions (e.g. sintering, poisoning of 
catalysts, caking, fouling of heat exchangers) or 
performance deterioration (e.g. decreased yields, 
shifts in products composition). Both are highly 
symbolic in character and they involve qualitative 
and semi-quantitative modeling and logical decision- 
making. 

The Control-Strategies Executive receives sched- 
ules of control actions and coordinates the resources 
for their implementation. To accomplish its tasks, it 
uses information from the Control-System Assessor, 
which provides the following data: (i) current control 
loop configuration, process models and constraints 
used in the control law, executable control laws and 

controller adaptation mechanisms; (ii) evaluation of 
control system performance; (iii) loss of control due 
to control valve failure, controller saturation or faults 
in communication lines; and (iv) loss of information 
due to faulty sensor(s) or communication lines. The 
above failures are rather abrupt and are detected 
directly at the lower level (see Direct Fault-Detector) 
in contrast to equipment or processing faults which 
are detected indirectly at the middle level (see Pro- 
cess - Trends Interpreter ). 

The information from the Conirol-System Assessor 
defines the scope within which the Control-Strategies 
Executiue determines the control-loop configuration, 
control laws and the adaptation of controller tuners. 
Each of these tasks is carried out by special functions. 
The Control-Loops ConfYgurer determines the 
structure of control loops. It uses algorithmic, 
control-theoretical methods and a set of rules to 
account for ad hoc past experience (Tzouanas et al., 
1988), or to propagate semi-quantitative modeling 
constraints. Since the Control-Loops Conjigurer may 
change the present configuration, it must also provide 
an operating schedule for switching from the present 
to the next configuration. Such schedule provides the 
interface between numerical controller designs and 
logic-based decision-making. 

The Control-Loops Configurer seeks information 
from the Control-Law Selector, which encompasses 
theoretical and heuristic knowledge to suggest the 
preferred algorithm for the implementation of direct 
control. 

The Adaptive Tuner determines whether certain 
conditions are met in order to adjust, tune, certain 
parameters in the adaptation laws. It uses predeter- 
mines criteria based on excessive output, state and 
parameter errors, all of which is information supplied 
by the Control-System Assessor. 

Machine learning is, in principle, possible at two 
points: (a) comparing the resulting process trends 
with the schedules of control action produced by the 
Control-Strategies Synthesizer, one can evaluate the 
merits of decisions made by the Optimizing Control or 
the Response-to-Faults Scheduler; and (b) the merits 
of decisions orchestrated by the Control-Strategies 
Executive can be judged against the performance 
evaluation offered by the Control-System Assessor. 
Very little work has been done along these lines, 
because the declarative descriptions of process trends 
and performance evaluation has been of low expres- 
sive value. 

4.1.3. Direct control and adaptation. The central 
component here is the Controller (Fig. 5) which 
encompasses the numerical algorithms of “Control 
Law” and “Estimation/Controller Adaptation.” It 
can accept any of the available conventional method- 
ologies, in a direct or indirect adaptation strategy. 
The Controller determines the law governing the 
actions of the actuators after it receives the following 
information from the Control-Strategies Executive: 
(i) whether to change the control-loops configuration 
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Fig. 5. The structure and functions of the Direct Control 
and Adaption segment 

or not; (ii) whether to change the control law or 
not; (iii) a schedule of actions to transfer operation 
from the old to the new control-loop configuration 
and/or control law, if a change is warranted; (iv) 
in case of a control law change, the new process 
models and constraints, on which the new control 
law is based; (v) whether to adapt the parameters 
of the estimator and/or adaptive mechanism; and (vi) 
a schedule of actions to transfer operation from 
the old to the new estimator/adaptor. In turn, it sends 
to the Control-System Assessor information regard- 
ing its current control-loop configuration, control 
laws, identification and controller adaptation mech- 
anisms. 

Within the scope of the Autonomous Process 
Control System, planning and scheduling of process 
operations are manifestly critical activities. In the 
problem of planning and scheduling process 
operations, this automation can take two forms: (a) 
a priori synthesis of process operations for 
subsequent implementation; and (b) automatic, on- 
line planning and scheduling in real time, while 
responding to feedback of information about chang- 
ing conditions and process trends. The first of these 
options is appropriate for planning operations such 
as start-up, routine shutdown or equipment and 
process changeover and can be extended to include a 
series of predetermined safety fall-back operations. 
The second option accounts for a wide variety of 
operating conditions and involves on-line decision- 
making. Typical examples are automatic response to 
process faults and planned evolution to a new 
operating state for the purpose of optimizing oper- 
ational performance. 

Several papers have recently suggested the use of 
rule-based expert systems for the adaptive tuning of 
the control law (usually PID), and/or the protection 
of the control law through a series of logical con- 
ditions. Such solutions are basically ad hoc. Analytic 
rules can be derived to “protect” the stability of 
adaptive mechanisms which, nevertheless, can and 
should be developed algorithmically. The use of 
rules as “safety jackets” around PID or other control 
laws is a poor way to account for the inherent 
constraints, which should be part of algorithmic 
control laws. 

The planning of process operations involves 
specifying an ordered sequence of operations, or a 
partially ordered set of operations which, when 
carried out (applied), will perturb the state of the 
chemical plant from some (given) initial state, and 
cause it to eventually attain some pre-specified final 
or “goal,” state. Typically, this transformation 
cannot be achieved in a single step, and the plant 
must be taken through a series of intermediate states. 
The operation of the plant at these intermediate states 
must be consistent with physical constraints such as 
conservation of mass, energy and momentum, and 
equilibrium and rate phenomena. An operations plan 
which satisfies this condition is termed “physically 
feasible.” In addition to the physical constraints, 
intermediate states are required to satisfy certain 
“operational” constraints imposed on the plan 
(practical feasibility), such as upper bounds on 
reactor temperatures, prohibition of explosive 
mixtures, etc. Finally, for underconstrained planning 
problems, more than one feasible plan may exist. In 
such cases, more stringent performance criteria are 
required to select a small set of “efficient” plans from 
among the many alternatives. 

The Direct Fault-Detector uses raw data from Research in the area of planning falls into two 
sensors and actuators to detect abrupt faults in categories. One school of work focuses on those 
sensors, actuators or communication lines. The fault- theoretical aspects of the problem which do not 
detection methodologies, used at this level, are based depend on the particular area of application, the 
on simple qualitative rules which are presently being so-called “domain-independent” theory of planning. 
hardwired into local processors attached to individ- Other research has concentrated on exploiting 
ual sensors and actuators. The Information Assessor: characteristics specific to a given problem domain 
(a) confirms/rejects the detected faults; (b) enables or in order to construct special-purpose planning 
disables the filtering of information to the Control- programs. Clearly, if domain-independent planning 
System Assessor; and (c) evaluates the performance theory could handle all of the complexities of practi- 
of the controller with particular emphasis on the cal planning problems, this approach would be 
identification of excessive output, state or parameter preferable to one which was restricted to a particular 

errors. It passes this information to the Control- 
System Assessor. 

4.2. Planning and scheduling process operations 
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domain of application. However, there is theor- 
etical evidence to suggest that building a provably 
correct, complete, domain-independent planner 
that is versatile enough to solve real-world 
planning problems, is impossible. Lakshmanan and 
Stephanopoulos (1998a, b) developed a complete 
methodology for the synthesis of operating pro- 
cedures, based on functional operators within the 
scope of nonlinear planning strategies, initiated in the 
field of AI. The complete methodology consists of 
two phases: (a) the Problem Formulation Phase; and 
(b) the Plan-Synthesis Phase. During the Problem 
Formulation, the user describes: (i) the initial state; 
and (ii) the desired goal state. Special algorithms have 
been developed to ensure automatic completeness 
and consistency in the specification of the initial and 
goal states. Also, the computer generates automati- 
cally concurrent goals. The Problem Formulation 
ends with the (iii) specification/identification of oper- 
ational constraints on the desired plan. 

Having defined the operations planning problem in 
a form which is understood by the computer, the next 
phase of the planning methodology consists of 
synthesizing plans to solve the stated problem. This 
generation of plans is carried out in three stages: (1) 
IdentiJication of Primitive Actions. First, the primitive 
operations required to carry out the transformation 
from initial to final states must be identified. In this 
mtthodology, the means-ends analysis paradigm is 
employed to identify these primitive “operators.” (2) 
Construction of a Partial Plan. The second stage 
involves the construction of a “partial plan.” This 
consists of deriving a partial ordering on the primitive 
operations. This partial ordering stems from the 
operational constraints placed on the operating plan, 
together with the physical laws which govern plant 
operation, and is analogous to the constraint-posting 
philosophy of nonlinear planning. (3) Synthesis of 
Complete, Feasible Plans. At present, the nonlinear 
planning methodology only manipulates operational 
constraints which are temporal in nature. Some 

operational constraints stated by the user may not be 
amenable to direct transformation into temporal 
constraints between goals. In such cases, a systematic, 
linear, generate-and-test strategy based on the partial 
plan generated in the previous step, is used to develop 
a feasible plan (or a set of feasible plans) which solve 
the problem. 

4.3. Representation and analysis of process trends 

Informational overload is a typical symptom of 
modem-day computer-aided process operations 
and control. The Autonomous Process Control 
System requires that systematic and formal 
representations are available for modeling and 
analyzing the process trends, as these are generated 
from the vast amounts of sensor data. Unfortunately, 
process trends are either modeled on a very fine 
scale based on the sequence of discrete sensor 
data, or through curve fitting and interpolation 
in every conceivable way. These representations 
are very poor, cannot reflect the generic properties 
of the trends, are often inconsistent and create 
problems as one tries to coordinate feedback control, 
adaptive control, diagnosis and optimization 
within the scope of an Autonomous Process Control 
System. 

Cheung and Stephanopoulos (1990) have 
developed a formal representation of process trends 
based on the triangular modeling of temporal episodes 
(Fig. 6). It can be proven that this representation is: 
(a) complete; (b) correct; (c) robust to scaling and 
modeling errors; and (d) quite compact. It allows the 
generation of quantitative, qualitative and semi- 
quantitative relationships among process variables 
and provides consistent models of the process behav- 
ior at various levels of detail. Such representation 
schemes need to be deployed in real-time environ- 
ments to support the construction of “mental 
models” of what is happening in a chemical process 
during operation. 

Y 

0 t 
Fig. 6. Example of two consecutive triangular episodes. 
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4.4. Neural networks and recognition of operating 
patterns 

In the past few years, neural networks have evolved 
to powerful computational paradigms. They are 
programmable, dynamic systems which process 
information from sensors through activation and 
inhibition rather than through the transmission of 
symbolic information. Knowledge is represented by 
the strength of the interconnections among the nodes 
of a neural network. A neural network model can 
learn the relevant features of its input environment in 
spite of noisy or contradictory inputs, producing 
useful patterns among the features of its environ- 
ment. It is adaptive in character and possesses short- 
term and long-term memory. Neural networks have 
been proposed to be used for adaptive process control 
and process fault diagnosis (Hoskins and Himmel- 
blau, 1988; Jones and Hoskins, 1987). But, certain 
clarifications are in order before one embarks on an 
instructive adoption of neural networks in process 
operations and control: (1) neural networks should be 
used to uncover unknown patterns and not to model 
existing ones; (2) neural networks should not be 
viewed as alternative parameter or state estimation 
techniques; (3) neural networks require extensive 
training based on input-output data. If a problem 
area uses input-output data based on existing 
models, neural networks are inferior solutions; (4) 
neural networks should be used on-line in process 
operations to identify hidden patterns and relation- 
ships among process variables; and (5) neural 
networks are excellent in analyzing vast amounts of 
records of data one accumulates during the operation 
of chemical plants. 

5. MODELING LANGUAGES FOR 
PROCESS ENGINEERING 

Modeling has long been the cornerstone of the 
engineering approach to problem-solving. Models are 
essential components of problem-solving method- 
ologies used to tackle process engineering. 

Since ear!y efforts, computer-aided modeling has 
been generally organized around unilateral compu- 
tations, which perform predetermined operations on 
fixed inputs to yield values of desired outputs. But, a 
series of inherent weaknesses have pointed out the 
disadvantages of the traditional approach: (a) the 
time and cost associated with computer-model 
development are high; (b) the resulting models are 
difficult to document and maintain adequately; (c) the 
re-use of computer-aided models is minimal; they 
tend to be task-specific and are often intrinsically 
linked to solution procedures; (d) the models cannot 
be synthesized automatically by the computer in the 
course of automatic execution of an engineering task; 
and (e) for interactive modeling the modeler is 
required to be highly skilled in programming. As a 
result of these weaknesses, the duplication of model- 
ing efforts has been enormous. Accumulated model- 

ing knowledge is almost impossible to use, since the 
underlying modeling context (purpose, assumptions, 
simplifications) has never been documented and 
rationalized. So, why must every new modeling effort 
start from scratch? 

All of the above weaknesses are due to the follow- 
ing two essential premises on which past and current 
computer-aided modeling has been based: (1) The 
contextual “declarative” knowledge, i.e. the “what is 

” knowledge, around a processing unit is partly 
articulated. For example, process models represented 
by sets of equations do not include explicitly 
information such as the following: (i) underlying 
assumptions; (ii) simplifications, made by the modeler 
to limit model’s validity over a given range of 
conditions or to underscore the relative importance 
of various physico-chemical phenomena; (iii) scope of 
engineering task, i.e. what the model was intended 
for. Thus, different models are needed to represent 
the process at the overall input-output level, the 
process-segment level, the process-unit level or the 
process-sub-unit level; and (iv) missing relationships, 
including inequalities, order-of-magnitude and 
qualitative relationships (Mavrovouniotis and 
Stephanopoulos, 1988). These are not normally part 
of process models because conventional analytic 
techniques cannot handle them. (2) The declarative 
knowledge, which is articulated in a model, is often 
intrinsically integrated with the “procedural” 
knowledge, i.e. the “how to .” methodologies (e.g. 
algorithms for the solution of equations of optimiz- 
ation problems), which in turn depend on the specific 
characteristics of the modeling relationship. 
Stephanopoulos et al. (1990) have developed 
MODEL.LA, a formal language for the modeling of 
processing systems to be used in various process 
engineering tasks. It was designed to achieve the 
following major objectives: (a) represent a processing 
system at any level of detail by using multiple coexist- 
ing levels of abstraction which can communicate 
betwen each other and which can explicitly keep track 
of interrelated units, and their associated modeling 
relations. The ability to represent multiple views is a 
critical feature of the system that distinguishes it from 
other modeling systems; (b) automatically generate 
the set of basic relationships (balances, reaction and 
transport rates, equilibrium equations, etc.) that 
describe the system. This requirement implies the 
development of explicitly structured mathematical 
models, involving variables, terms and relationship 
objects; (c) capture and utilize qualitative, semi-quan- 
titative relationships (ordinal, order-of-magnitude) or 
Boolean relationships. Such requirement will allow 
the modeling system to be used beyond the scope of 
traditional simulators, e.g. for diagnostic systems, 
autonomous process control systems, automated 
process design, automated planning and schedule of 
process operations; and (d) offer explicit documen- 
tation of all the hypotheses, assumptions and simplifi- 
cations that give rise to a particular model. The 
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model should have all the characteristics of the 
knowledge it embodies-it should be transmittable 
from one person to another and open to modifi- 
cation, improvement and combination with another 
knowledge. Thus it should allow a direct mapping 
between the ideas of process model and the 
knowledge-base of a project. 

MODEL.LA is composed of the following items: 
(i) a set of six elementary objects used to describe any 
structural or behavioral characteristic of processing 
systems; Generic-Unit, Port, Stream, Context, 
Constraint. Variable; (ii) a set of 10 semantic relation- 
ships describing all possible interactions among the 
six objects; and (iii) a precise set of rules determining 
the language’s syntax which is an extended BNF 
(Backus-Naur Form). MODEL-LA is becoming the 
modeling language of DESIGN-KIT (Stephanopou- 
10s et al., 1987), an object-oriented system for process 
engineering activities. 

Hoskins J. C. and D. M. Himmelblau. Comouters them. 
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