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SUMMARY 

An iterative adaptive equation multigrid solver for solving the implicit Navier-Stokes equations simultaneously 
with hi-trce grid generation is developed. The hi-tree grid generator builds a hierarchical grid structure which is 
mapped to a finite element grid at each hierarchical level. For each hierarchical finite element multigrid the 
Navier-Stokes equations are solved approximately. The solution at each level is projected onto the next finer grid 
and used as a start vector for the iterative equation solver at the finer level. When the finest grid is reached, the 
equation solver is iterated until a tolerated solution is reached. The. iterative multigrid equation solver is 
preconditioned by incomplete LU factorization with coupled node fill-in. 

The non-linear Navier-Stokes equations are linearized by both the Newton method and grid adaption. The 
efficiency and behaviour of the present adaptive method are compared with those of the previously developed 
iterative equation solver which is preconditioned by incomplete LU factorization with coupled node fill-in. 

KEY WORDS: grid generation; tri-tree; unstructured grid; multigrid; finite element; mixed formulation; analytic integration; 
adaptive solver; Navier-Stokes equations 

INTRODUCTION 

Intensive research on developing efficient algorithms for solving the Navier-Stokes equations for 
arbitrary geometries has taken place in several physical disciplines such as aerodynamics,’ 
hydrodynamics2 and haem~dynamics.~.~ For implicit solution algorithms,” direct equation solvers 
have shown limitations due to rather large computer storage and computer time requirements.’ In view 
of this, iterative equation solvers have been paid extensive attention, with the ultimate goal to be able to 
solve the Navier-Stokes equations for large, time-dependent, three-dimensional problems with complex 
geometry. Although there have been substantial developments towards efficient solvers, there are still 
needs and possibilities for further improvements. 

Recently, several iterative equation solvers for non-symmetric equation systems have been developed 
and t e~ ted .~*~-”  These iterative equation solvers have gained quite a lot in both efficiency and 
robusmess by the use of different preconditioning algorithms of the equation system. l3-lS In previous 
papersss7 a new incomplete LU factorization preconditioner with a coupled node fill-in algorithm was 
presented. The philosophy of this ILU preconditioner made it possible to obtain also a preconditioning 
matrix for the pressure coefficients in the equation matrix. Fill-ins with this algorithm were allowed 
where the nodes in the equation system were coupled and not only where the coefficients were initially 
different from zero. This ILU preconditioner revealed advantageous properties also when the equation 
system was reduced to form an inner-outer iterative alg~ri thm.~ 

CCC 0271-2091/96/111041-19 
0 1996 by John Wiley & Sons, Ltd. 

Received February I995 
Revised August I995 



1042 S. 0. WILLE 

The most timeconsuming operation in iterative equation solvers of the conjugate gradient t y p  is 
matrix-vector multiplication. Since the finite element equations are solved for successively finer grids 
during the refinement procedure, the matrix generation of the equation system should be as fast as 
possible. Traditionally, numerical integration is applied to form the equation matrix. However, since 
simple elements such as triangles in two dimensions and tetrahedra in three dimensions are applied, 
the integration of the element matrix terms can be executed analytically. Analytical integration will 
then save a lot of computational work during the finite element calculations. The integration formulae 
consist of a constant part, independent of element size, multiplied by a term containing the relative 
location of the nodes within each element. 

During the transition from coarse to finer grid the solution of the coarse grid is interpolated to the 
fine grid and used as a start vector at the fine grid. The refinement procedure on the grid consists of 
dividing each element into four new elements in two dimensions and eight new elements in three 
dimensions. Then some nodes will be common to both the coarse and the fine grid. For these nodes, 
solution values of the coarse grid are used directly. New nodes in the fine grid are generated at the 
midpoints between the nodes in the coarse grid. The start values for the iterations at these nodes in the 
fine grid are then found by linear interpolation. The main purpose of the present adaptive algorithm is 
to obtain better start vectors as the grids become more and more refined. When the finest grid is 
reached, the solution is iterated until the desired convergence criterion is satisfied. 

the tri-tree 
algorithm for generating grids in two and three dimensions, was presented. The tri-tree algorithm 
method starts with a triangle or tetrahedron which is subdivided into four new triangles or eight new 
tetrahedra respectively. The tri-tree structure then has pointers like the quad-tree and oct-tree.'9'20 The 
main and essential difference is that the leaves in the tri-tree consist of triangles and tetrahedra. The 
triangulation procedure of the tri-tree element structure is then much simplified compared with that of 
the oct-tree structure and will only consist of connecting triangles or tetrahedra of different sizes. By 
introducing very mild restrictions on the tri-tree structure, which hardly affect the ability of local 
refinements, the triangulation procedure becomes very simple. The elements generated are optimal in 
the sense that they do not collapse during the refinements. The elements are equilateral triangles and 
tetrahedra, or at the interfaces of elements of different sizes the equilateral triangles will be divided 
into two and the equilateral tetrahedra will be divided into two or four. 

During the triangulation procedure an efficient search algorithm is needed for finding co-ordinate 
points in space. In the present work a lexical tree search algorithm for the point co-ordinates has 
proved to be very efficient. 

The initial triangle is successively subdivided into four new triangles and the tetrahedron into eight 
new tetrahedra. The successive subdivision is continued until the required level of refinement is 
reached. At each level of tri-tree refinement an associated finite element grid can be constructed and 
used for finite element calculations. The tri-tree data structure is therefore well suited for an adaptive 
algorithm. 

In a previous paper a new tri-tree method16 for generating unstructured 

EQUATIONS 

The non-linear Navier-Stokes equations are given by 

- ~ V ~ V + ~ V . V V + V ~ = O  in n, 
- v . v = o  in n, 
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where v is the velocity vector,p is the pressure and p is the viscosity coefficient. The first equation is the 
equation of motion which contains a diffusion and a pressure gradient term. The second equation is the 
equation of continuity. A minus sign is introduced in the continuity equation in order to obtain the same 
sign for the pressure gradient as for the continuity equation in the finite element formulation. In the 
finite element formulation the velocities are approximated with quadratic basis functions and the 
pressure is approximated with linear basis functions on each element.*’ Denote the quadratic 
polynomials by Ni and the linear polynomials by Li. Then by the Galerkin residual method and 
integration by parts the second-order finite element formulation of the Navier-Stokes equation system 
becomes 

The following equation system can then be solved by successive approximation for the second-order 
polynomial approximation: 

There are several methods for linearizing this equation system. Usual linearization techniques 
involves the computation of gradients or approximate gradients, e.g. Newton or steepest descent 
methods. However, another simple way of linearization which has not previously been given attention 
is adaptive grid approximation. The adaptive grid linearization method will be discussed in a later 
section. 

NEWTON LINEARIZATION 

The Navier-Stokes equations contain one non-linear term, the convective acceleration, which requires a 
non-linear iterative solution procedure. The non-linear algorithm chosen is the Newton method, which is 
known to have a second-order convergence rate. The Navier-Stokes equations (3) then have to be 
differentiated with respect to the unknowns and the linear equation system which has to be solved at 
each Newton step is 
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where the matrix and the right-hand side are given by 

- J, L,V - v m  1 
If the initial solution yo, po  is chosen close enough to the final solution, convergence of the non-linear 

equation system is guaranteed. The solution is then updated at each Newton step with the correction 
found by solving (6): 

v"+' = v" + Av, (7) 

p" + Ap. (8) pn+l = 

The number of Newton steps to obtain a converged solution is usually of the order of 5-10, depending 
on the strength of the non-linearities and the magnitude of the convergence criterion. 

The Newton method for non-linear equation systems can also be applied favourably to the linear 
Stokes equations. For linear equation systems, only one Newton iteration is required. The advantage of a 
Newton formulation for linear equation systems appears when introducing the Dirichlet boundary 
conditions. The columns and rows in the equation matrix can then be zeroed with a one on the 
corresponding diagonal and a zero on the right-hand side. The Dirichlet value is included in the initial 
guess of the solution vector. The application of Dirichlet boundary conditions to the original equation 
matrix would be more complicated to maintain the advanlageous symmetric property, as the Dirichlet 
condition multiplied by the corresponding column vector has to be subtracted from the right-hand side. 

ADAPTIVE LINEARIZATION 

The non-linear set of Navier-Stokes equations can be linearized in several ways. The Newton 
linearization can take place globally and the multigrid algorithm can be applied to solve the linearized 
Navier-Stokes equations for each Newton step. Another way of linearization is to linearize locally at 
each grid level and solve the non-linear Navier-Stokes equations at each grid level. However, an 
alternative or supplement to Newton linearization of the equation system is local grid adaptation to the 
solution, which will also contribute to the linearization of the equation system. From the analytic 
integration the following formula is obtained: 

J, PNivc v?c m 
(9) - - - 

b '  I, PVN, V? d!2 

In this formula, a and b are constants independent of element size, while 1 is some characteristic length 
of the element. The formula shows that the magnitude of the matrix coefficient of the convection can be 
reduced arbitrarily compared with the diffusion coefficient in the implicit equation system by local 
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refinements. A natural criterion for adapting the grid to the solution of the Navier-Stokes equations 
would then be to fulfil the criterion 

r r 

The above relations are valid in both two and three dimensions and for first- and second-order 
polynomial approximations of the Navier-Stokes equations. By reducing the element size where the 
convection is large, the equation system becomes more and more linear and symmetric. If the local 
element size is then reduced sufficiently, this implicit adaptive linearization will for many Navier- 
Stokes applications appear to be sufficient and satisfactory. 

ANALYTIC INTEGRATION 

Let the linear basis functions be denoted by L, and the quadratic basis functions by Ni. Then in three 
dimensions 

Li = ai + bp + c$ + d;z. 

The quadratic basis function can then be given as a function of the linear basis function. For the comer 
nodes i and midside nodes n respectively 

N ,  = Li(2L, - l) ,  Nn = 4LjLkt 

where the nodes j and k are the comer nodes on each side of the midside node n.  The comer nodes are 
numbered first, then the midside nodes. 

Let nd be the spatial dimension. The exact integrals can be computed by the formula 

Let 

6 j j , k , n , , ,  = a!)!y!6!w!. 

The hnction 6 j j , k , n , m  is simple to implement: just count the number of equal indices and compute the 
corresponding faculties. 

In the formulae below the &function is defined by 

2, i = j ,  
1,  i # j .  

Linear matrix coeficients 

Let the comer nodes have the local node numbers 1, . . . , n, and let the midside nodes be locally 
numbered as n, + 1 ,  . . . , n,. In the second-order basis function formulation the integrals of the 
derivatives in the equation matrix are given by 

D = (nd l)(nd 2)t 

iii = 1, j = j ,  
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.. . 
11 = I ,  JJ = midpoint(n, m),  

ii = midpoint(n, m),  JJ = midpoint@, q) ,  

.. . 
11 = I ,  kk = k, JJ = midpoint(n, m),  
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.. . 
11 = 1,  kk = midpoint(n, m), JJ = j ,  

.. . 
11 = I ,  kk = midpoint(n, m), JJ = midpoint@, q),  

dn = (2Lf - Li)4L,Lm4 
f n  

= ( [32diinmp - 16dinW(nd + 5 ) ]  ax 

ii = midpoint(n, m), kk = k, JJ =J.  

ii = midpoint(n, m), kk = k, J = midpoint@, q), 

aL 
= ( [ 3 2 6 b m p  - 166,,,,Jnd + 5)13 ax + [326,, - 16dhmq(nd + 

(20) 

ii = midpoint(n, m), kk = midpoint@, q), J = j ,  

aN.. aL. 
4L,L,4L&J4Lj - 1)' dn ax 

ii = midpoint(n, m), kk = midpoint@, q), JJ = midpoint(r, s), 

Usually, numerical integration, e.g. Gauss integration, is applied to compute the coefficients in the 
finite element matrices. When simple elements such as triangles and tetrahedra are used, it is possible to 
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perform analytical integration. The coefficients of diffusion, convection, continuity and pressure 
gradient can be computed exactly. 

TRI-TREE STRUCTURE 

In the tri-tree search algorithm,'6 equilateral triangles and tetrahedra are used as basic domains. The 
equilateral triangles and tetrahedra are then subdivided into new equilateral triangles and tetrahedra. In 
two dimensions an equilateral triangle is divided into four triangles. A diagram of the two-dimensional 
tri-tree structure is shown in Figure 1. An initial equilateral triangle is divided into four new equilateral 
triangles. Each of these triangles can then be divided into another four equilateral triangles, and so on. 
The tree structure of these divisions is shown in the lower part of Figure 1. The record belonging to each 
triangle contains pointers to the triangles into which it is subdivided. This triangulation procedure 
therefore permits local refinements required by the geometric shape of the boundary as well as the 
properties of the solution. 

In three dimensions an equilateral tetrahedron is divided into eight tetrahedra. The ordering of 
successive divisions is organized as a tree structure. The tree record structure needs nine integers in two 
dimensions and 14 integers in three dimensions in order to keep the necessary information at each level 
of subdivision. 

Figure 1 .  Hierarchical structure of the tri-tree. An initial equilateral triangle is divided into four new equilateral triangles. Each of 
these triangles can then be divided into another four equilateral triangles, and so on. The tree structure of these divisions is shown 
in the lower part ofthe figure. The record belonging to each triangle contains pointem to the triangles into which it is subdivided. 
This triangulation procedure therefore permits local refinements q u k d  by the geometric shape of the boundary as well as the 

properties of the solution 
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The records describing each two-dimensional triangular leaf are shown in Figure 2. A level number 
indicates the size of division and all triangles or tetrahedra of equal size will have the same level number. 
When a division is terminal, the level number is given a negative sign. In addition to the level number, a 
point index to each of the comers of the structure is stored. This is not strictly necessary, because the co- 
ordinates of each point can be calculated when they are needed. However, if the corner points are stored, 
the computing time is considerably reduced. The next positions in the structured record are pointers to 
the records of the divisions. When a triangle or tetrahedron is terminal, some of these pointers are used 
as pointers to the neighbour using triangles and tetrahedra instead. The last integer in the record points 
to the record of the parent triangle or tetrahedron. It is therefore possible to perform both up and down 
searches in the tri- tree. 

When a triangle or tetrahedron is divided, the midpoint on each line between the comers is calculated. 
This point may already exist if the neighbour has a larger level number. If a point does not exist, it is 
added to the list of points. In order to be able to search for and add points fast, the list is organized as a 
binary tree. The binary tree, Figure 3, is sorted lexically on the point coordinates. 

DJ 

I-.'lpolpJ IPJ 1.. I J  I J I  I / I  

Figure 2. Numbering of triangular leaves in the tree structure together with global numbering of nodes. The record of each 
triangular structure contains information on the level of refinement at which the triangle is located. If the refinement level number 
is negative, the triangle is terminal in the tree structure. The following three n u m b  in the ltcord point to the co-ordinates of the 
comm of the triangle. For a non-tmninal triangular leafthe next four n u m b  point to the record of the four triangles into which 
it is divided. I f  the triangular leaf is terminal, threc of thcse numbers are used as pointm to the n x d s  of ncighbouring triangles. 

The last number in the triangle mod points to the mod of its ppnat 
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In order to find the neighbours of a tri-tree element, a search in the tri- tree is performed to find which 
tri-tree element contains a point slightly outside the edge or side of the present triangle or tetrahedron. 
The point to use in the hi-tree search is given by 

P = P,  + (P ,  - P,) /d  + E(Pg - P,). (23) 

In this expression, Ps is the centre of gravity and P" is a comer in the tri-tree element. The spatial 
dimension is d ( d = 2  or 3) and E is a small constant which depends on the accuracy of the actual 
computer. If E is zero, P is the point where the line from the comer P, through the point of gravity hits 
the opposite edge or side. For small E the point P will be on the line from comer through the point of 
gravity slightly outside the tri-tree element. The constant E should be chosen so that the computer 
representation of 

in only two or three of the least significant digits. The point P defined in this way is a point slightly 
outside the element edge or side opposite to the comer P,. A search in the hi-tree for a tri-tree element 
which encloses a point can either start at the mot of the tree or at the location of the last search. If the 
points which are searched for are introduced in a random fashion, it will be most efficient to start at the 
root of the tree. When a search for the point P defined above is performed, the a priori knowledge is that 
the point is enclosed in an adjacent tri-tree element. The probability is therefore high that the adjacent 
tri-tree element belongs to the same subtree. If the tri-tree element belongs to the same subtree, it is 
faster to start the search at the present location, or even better at one level above the present location, 
than from the root of the tree. On the average, experiments indicate that it is most efficient to start the 
search at one level above the present. At each level the four triangles in two dimensions and the eight 
tetrahedra in three dimensions are explored to find which one contains the point. 

In the balancing procedure a tree element is refined if more than one neighbour is at a smaller level. 
The balancing procedure is an interative procedure. After the balancing procedure the tri-tree is valid for 
triangulation. In two dimensions there is at most one node at the midpoint of one of the edges of the 
triangles. This tri-tree triangle is divided into two finite element triangles. In three dimensions the 
situation is more complex. Each equilateral tri-tree tetrahedron can either have one node on one of the 
edges or three nodes at the edges of one of the sides. If there is one node at one edge, the tetrahedron is 
divided into two. If there are three nodes at the edges of one side, the tetrahedron is divided into four 
finite element tetrahedra. The triangulation procedure is only applied to tri-tree elements which are 
inside the computational domain. When the tri-tree is triangulated, the finite elements are kept in a finite 
element structure and the tri-tree structure is stored to be used later when the multigrid is M e r  adapted 
to the solution. 

ADAPTIVE SOLVER 

Let d denote the set of grids (d: k = 1, . . . , N}, where the grids d are in increasingly finer order. Let 
xk  E X" be the set of functions which we require to solve the set of differential equations on the grid d. 
Let the transfer operator from coarse to fine grid be p: xk-' + x k ,  where 3 is the prolongation from 
coarse to fine. Let the set of differential equations to be solved on Gk be given by 

P(x") = bk. (25) 

Let Smoorh(x, 2) be a smoothing or approximate solution algorithm defined on every grid d, i the 
start vector and x the smoothed vector. The adaptive multigrid algorithm is then defined by 



TRI-TREE MULTIGRlD SOLVER FOR NAVIER-STOKES EQUATIONS 

r, 
L R  

1051 

1; 4 
L R  L R  

Binary tree. lexically sorted 

rn 

Given two points, P arid Q 

P = [ z , ~ , z ]  and Q = (u ,v ,w]  

then P 5 Q if  

where 

i f x s u  
i f x = u  y i v  
1 f x = u  y - v  z < w  

Figure 3. During the refinement process the nodes wth co-ordinates are stored in a binary tree. The key to each node is the co- 
ordinates, which determine whether one node is smaller or larger than another. The des are then lexically sorted and a fast 

search algorithm will decide whether a point during the refinement procedure is already presmt in the bee structure 

Choose ik 
for (k  = 1; k(= N - 1; k + +) 

{ 
= xk + p(&' - p); 

Smooth(x~, S k ) ;  

I 
Solve FN(#) = bN iteratively. 

The initial triangle or tetrahedron is successively refined until the desired refinement level is reached. At 
each tri-tree level of refinement a finite element grid is constructed and the set of dfferential equations is 
solved approximately for this grid. The approximate solution on one finite element multigrid level is 
then interpolated and projected onto the finer grid and used as a start vector for this grid. 

The prolongation pk is the mapping from coarse to fine grid. The values of the common nodes are 
taken fiom the coarse grid and the values of the new nodes at the midpoints of each side are interpolated 
linearly. The linear interpolation procedure is simply to take the average between two comer nodes. The 
prolongation algorithm is applied in both two and three dimensions. There exist more complicated local 
smoothing algorithms which take into account several neighbouring nodes. However, as local 
smoothing is followed by global smoothing, a simple first-order local smoothing algorithm is sufficient. 

The critical part of the adaptive multigrid algorithm is the global smoothing method. The special 
problem which arises with the Navier-Stokes equations is the zero diagonal block'.' associated with the 
continuity equation, which implies non-positive definiteness of the equation matrix. Thus smoothing 
algorithms such as Gauss-Seidel and traditional ILU factorization cannot be applied directly as 
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smoothing procedure. However, if some rather arbitrary postconditioning22 matrix is used, this 
limitation can be overcome. The difficulty with non-positive definiteness can also be avoided with 
inner- outer iterations. As the equation matrix is non-symmetric, the usual conjugate gradient type of 
smoothing cannot be applied either. The introduction of inner-outer iterations and a postconditioning 
matrix certainly represents an increase in superfluous work. In the present work the CGSTAB conjugate 
gradient with coupled node fill-in, which is often considered as an iterative equation solver, 
is used as smoother. 

The adaptive multigrid algorithm starts with the coarsest grid, computing a smoothed or exact 
solution for this grid. This solution and the corresponding residual are then prolonged to the finer grid. 
At the finest multigrid level the solution is determined fully converged. When the equation system is 
solved for the finest grid, the adaptive multigrid cycle is complete. 

The smoothing algorithm within each adaptive multigrid iteration can be just a few iterations with the 
CGSTAB smoother or a fully converged solution found by the CGSTAB equation solver. For linear 
equations the equation solver can be stopped either after a fixed small number of iterations or by a 
convergence criterion defined by 

where 8 is the residual and bk is the right-hand side at multigrid level k. However, for non- linear 
equations this convergence criterion is not quite suitable, as the right-hand side approaches zero in the 
Newton iteration procedure. A better convergence criterion for the linear iterations for solving non- 
linear equations is 

where xk is the solution of the non-linear equation system and 6xk is the update in the linear equation 
solver. For the linear Stokes equations the two convergence criteria are equivalent and of the same order 
of magnitude. 

NUMERICAL EXPERIMENTS 

The node numbering delivered by the tri-tree grid generator is shown in Figure 2. The nodes in the tri- 
tree generator are numbered as new nodes are introduced during refinement of the grid. The comers are 
numbered first, and when the final refinement level is reached, the midside nodes are introduced in 
element order. However, this way of ordering the nodes is not optimal when the equation system is 
preconditioned by incomplete factorization with coupled node fill-in. Four ways of numbering the nodes 
were tested in a previous paper.23 In the sorting algorithm used in the present experiments, Figure 4, the 
nodes are sorted with respect to their distance from the centre of the grid. The node which is W e s t  
away from the geometrical centre is given the smallest number. The node in the middle of the grid gets 
the highest number. 

The test problem for the Navier-Stokes equations is the cavity problem and the boundary conditions 
are shown in Figure 5.  In Figure 6 a hierarchy of the multigrid is shown. By the projection algorithm the 
equation system is first solved for the coarsest gnd. The solution is projected onto the finer grid and 
used as start vector in the Newton iterations. The projection of the solution onto the finer grid consists of 
using the solution on the coarse grid for common nodes and computing the linear interpolation of the 
solution for nodes in the fine grid which are not present in the coarse grid. 

Figure 7 shows the solution of the Stokes equations in terms of velocity vectors and pressure isobars. 
The velocity vectors show the flow circulation and the pressure isobars show a pressure minimum in the 
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Figure 4. Node ordenng after sorting the nodes with respect to their distance from the geometrical centre a : gnd. The 
boundary nodes are numbered first and the centre node has the highest number 

‘1 = 0. Y = YO 

._ ... . 
= n.r  = II 

.- 1 
” = 0.” = 0 

Figure 5. Test problem of two-dimensional cavity flow with boundary conditions. The velocities are zero at the walls, except for 
the left wall where a tangential velocity is specified 

Figm 6. Hierarchy of gnds used in computations. The initial grid is shown at the top and has eight finite elements with a total of 
nine comer nodes. At the next lcvel of refinement each of these elements is divided into four new elements, giving a total of 32 
elements and 25 comer nodes. The start vector for each finer grid is the solution from the coarser @id for common nodes. The 

start values for new nodes are found by linear interpolation 
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Figure 7. Wimcnsional solution of Stokes equations for cavity flow. The solution is presented in tenns of pressure isobars and 
velocity vectors. The upper part of the figure shows the solution seem from above and the lower part shows the solution rotated in 
space. The height of each isobar comsponds to the pressme value at the isobar. The level of refinements is 4 with a 16 x 16 

rectangular grid. The number of degrees of freedom is 2267 

upstream part of the cavity and a pressure maximum at the downstream comer of the cavity. Both the 
pressure and flow show antisymmetric patterns with respect to a midline normal to the main direction of 
flow. 

Figure 8 shows the solution of the Navier-Stokes equations for a Reynolds number of 500. The 
solution of the Navier-Stokes equations differs essentially from the solution of the Stokes equations. 
The antisymmetric patterns of the Stokes solution are completely absent. The pronounced pressure 
minimum at the upstream comer has disappeared, while the pressure maximum at the downstream 
comer is still present. The velocity circulation has become more circular in shape and the centre of the 
vortex has moved upstream and deeper into the cavity. 
An overview of the cavity multigrid parameters is given in Table I. For each multigrid level of 

refinement the grid size and numbers of velocity nodes, pressure nodes and degrees of freedom are 
shown. In Table I1 the number of iterations and amount of work are shown for solving the Stokes 
equations for different refinement levels of the multigrid of the cavity problem. With the original 
method the zero vector is used as start vector for the Newton iterations. For the projection method the 
solution of the coarser grid is projected onto the finer grid and used as start vector for the non-linear 
iterations of the finer level. When the zero start vector is applied, it is possible to obtain a solution of the 
Stokes equations up to level 6. For finer grids the equation solver fails to converge. For levels 5 and 6 it 
is also necessary to restart the linear iterative solver to avoid stagnant solutions. The properties of the 
linear iterative equation solver with regard to stagnant and nonconverging solutions are in accordance 
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Figure 8. Twodimensional solution of Navier-Stokes equations for cavity flow. Tke solution is pmented in terms of prcssurr 
isobars and velocity vectors. The upper part of the figure shows the solution sccn from above and the lowex part shows the 

solution rotated in space. The height of atch isobar comsponds to the pressure value at the isobar. The level of refinements is 4 
with a 16 x 16 nxtangular grid. The number of degrees of Fmdom is 2267 

with the increasing condition number with grid refinements and increasing number of degrees of 
freedom of the linear equation system. 

Table I. Parameters for the different grid levels. The first column shows the level of 
refinement. The second column shows the number of grid divisions in hkro dimensions for the 
cavity problem. The third and fourth columns show the numbers of velocity and pressure 
nodes respectively for the second-order finite element formulation. The last column show the 

number of degrees of freedom for each grid level 

Velocity Pressure Degrees 
Level Grid nodes nodes of freedom 

2 x 2  
4 x 4  
8 x 8  

16 x 16 
32 x 32 
6 4 x 6 4  

128 x 128 
256 x 256 
512 x 512 

25 
82 

290 
1090 
4225 

16641 
66049 

263 169 
1,050625 

9 
25 
82 

290 
1090 
4225 

16641 
66049 

263 I69 

59 
187 
659 

2267 
9539 
37507 

148739 
592387 

2364419 
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Table 11. Number of iterations for solving the Stokes equations with the original method and 
the projection method. The initial and iterative amounts of work are shown in terms of number 
of multiplications x lo-’. The initial work is the work performed during the incomplete 
factorization with coupled node fill-in and the iterative work is the number of multi- 
plications x lo-’ during one iteration. All nodes are sorted with respect to the geometrical 
centre of the grid for both the original and the projection method. The zero vector is used as 
start vector for the linear iterations in the original method and the solution from the coarser 
grid is used as start vector for the projection method. The linear convergence criterion is 
4 = The subscripts indicate the number of iterations between restarts of the iterative 

equation solver 

Iterations Work 

Level original Projection Initial Iterative 

I 2 2 I5 10 
2 4 4 58 37 
3 14 8 225 139 
4 60 18 893 540 
5 33730 11 3553 2130 

7 - 6 58,400 33,480 
8 - 3 134,200 132,961 
9 

6 l86lsO 9 14,180 8459 

- 

The projection method shows a maximum number of iterations for multigrid level 4. For finer grids 
the number of iterations required to obtain a converged solution is decreased. At multigrid level 8 as few 
as three iterations are necessary for convergence. This property of the projection method is clearly 
explained by the fact that the projected solution from the coarser grid is very close to and almost within 
the convergence criterion of the solution of the finer grid. In contrast, the original method is incapable of 
reaching a converged solution at all, owing to the condition number of the Stokes equation system, for 
finer grids. 

In Table I11 the number of iterations necessary for solving the Navier-Stokes equations for a Reynolds 
number of 500 is shown. In the experiments the solution of the Stokes equations is used as start vector 
for the Newton iterations. The numbers of linear iterations in these experiments are considerably less 
than those appearing in previous work.5 The reduction in the number of iterations in this work is due to 
the sorting of the nodes. In the previous work the nodes were numbered row by row, first the comer 
nodes, then the midside nodes. 

Table III. Number of Newton iterations and number of linear iterations within each Newton 
iteration for the original method, where the Stokes solution is used as start vector for the 
Newton iteration. The linear and non- linear convergence criteria are E = I O-4. The Reynolds 
number is 500. The nodes are all sorted with respect to distance from the geometrical centre of 

the grid 

Iterations 

Level Newton Linear Sum 

3 9 27 29 27 21 7 4 5 3 1 124 
4 9 66 23 57 44 23 7 4 8 3 235 
5 9 72 27 22 39 32 15 6 10 4 227 
6 9 83 63 56 59 68 33 47 6 10 425 
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The effect of introducing non-linearities gradually into the equation system is demonstrated in Table 
IV. The start vector of the Newton iterations is the linear solution of the Stokes equations. The non- 
linearity of the equation system is introduced by increasing the density in steps of Ap = 333 from 
p =333 to 1000. The final Reynolds number of 500 is then reached. The increasing density method 
requires fewer linear iterations, both in each Newton iteration and totally, to obtain convergence 
compared with the original Newton method, except for multigrid level 5.  The increase in the number of 
iterations at level 5 may be caused by a small perturbation in the start vector or in the intermediate 
computation and experiments indicate that this is not a general property of the method. 

The convergence propedes of the projection method are shown in Table V The numbers of linear 
iterations needed at all multigrid levels to achieve convergence are considerably less than for both the 
original Newton method and the increasing density method. The table also shows that the total number 
of convergent iterations is fairly constant and independent of refinement level. The total amount of work 
in obtaining the solution must include the work in obtaining the solution for all coarser grids. For 
example, based on the figures given in the table, the total amount of work in obtaining the solution with 
the original Newton method is approximately six times the amount of work in obtaining the solution 
with the projection method. The dominating amount of work for the projection method is the work 
required at the finest grid level. In order to compare the two methods, it is therefore sufficient to 
compare the numbers of iterations required by them at the same level of refinement. 

Table N Number of Newton iterations and number of linear iterations within each Newton 
iteration for the original method, where the solution of the Stokes equations is used as start 
vector for the Newton iteration. The linear and non-linear convergence criteria are E = 
The Reynolds number is 500. The density is increased for the first three Newton iterations. In 
the first Newton iteration the density is p = 333, in the second p = 666 and for the following 

iterations the density is p = lo00 

Iterations 

Level Newton Linear Sum 

3 9 19 17 25 23 6 4 5 3 3 105 
4 9 22 12 13 26 7 3 3 3 1 90 
5 9 49 26 69 12 49 21 12 4 11 253 
6 9 104 24 46 27 17 44 23 49 10 344 

Table V Number of itemtions and number of linear iterations within each 
Newton iteration for the projection method, where the projection from the 
coarser grid is used as start vector for the Newton iteration. The linear and non- 

linear convergence criteria are E =  The Reynolds number is 500 

Iterations 

Level Newton Linear SUm 

4 4 43 29 12 3 0 0 0 8 7  
5 7 15 16 15 6 3 5  3 70 
6 7 11 21 5 6 18 8 5 74 
7 7 21 12 7 3 7 3  5 58 
8 7 6 21 19 4 5 5 13 73 
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DISCUSSION 

The goal of this work has been to develop a solution algorithm for the Navier-Stokes equations 
which is robust, fast and sparse. The robustness is attached to the implicit solution techniques for the 
diffmntial equation system. The speed of the algorithm is tied to the computer time needed. The 
sparsity is linked to the storage requirements of the algorithm. The adaptive multigrid method 
described in this paper seems to some extent to have these properties. 

In the present paper an adaptive multigrid method for solving the Navier-Stokes equations is 
developed. The adaptive multigrid algorithm may be considered as consisting of five essential parts: 
multigrid generation, adaptive refinement, matrix integration, intergrid transition and adaptive 
equation solver. 

The multigrid generation is based on the tri-tree algorithm, which permits the construction of a 
finite element grid at each tree level. The tri-tree algorithm allows for adapting the grid both to 
irregular geometry and to the solution of the system of differential equations. The matrix generation is 
executed by analytic integration and is therefore fast enough for the coefficients in the equation matrix 
to be easily generated whenever needed in the solution algorithm. The transition from coarse to fine 
grids is direct for the common nodes and linear interpolation is used for the new nodes. 

The most important property of the adaptive multigrid algorithm is that when the grid is sufficiently 
refined, the start vector is almost within the solution tolerance and only a few iterations are needed. 
For more complex boundary conditions and geometries when local spatial refinement is needed, this 
property can be used to obtain an accurate solution where large gradients in the solution occur. 

The Navier-Stokes equations can be considered as a composite of the Stokes equations and the 
Euler equation. The solution of the Stokes equation is, for relatively smooth boundaries and smooth 
initial conditions, in some sense a smooth solution. The coarseness of a regular grid in the entire 
computational domain should then be determined by the accuracy required in this smooth solution. 
The solution of the Euler equation is of a finite different nature. The solution varies from some rapid 
decay or rise to a shock appearing inside a limited number of finite elements, but is reasonably smooth 
or constant elsewhere. When a large gradient in the solution is due to an initial condition, the 
discontinuity is transmitted through the domain. When a large gradient in the solution value is caused 
by an irregular boundary shape, the solution is stationary within the computational domain. In both 
these situations the grid has to be refined locally around gradients in order to achieve an appropriate 
accuracy of the solution at the sites where these gradients occur. 

The results of the present work show that owing to the increase in condition number of the Stokes 
equations with refinements of the multigrid, it becomes more and more difficult to achieve a 
convergent solution as the multigrid is refined. In contrast, it is advantageous to have a fine grid in 
order to linearize and symmetrize the Navier-Stokes equations owing to the non-linear convection 
term. These investigations indicate that the conjugate gradient algorithm together with the original 
Newton formulation of the Navier-Stokes equations is not capable of solving the Navier-Stokes 
problem for very fine grids or very large non-linearities. The projection algorithm developed in the 
present paper overcomes these shortcomings of the original Newton method and reveals properties 
which resolve the competitive requirements arising from the condition number and the non-linearity of 
the equation system. 

Further research will concentrate on adaptive tri-tree multigrid structures for irregular grids and 
local multigrid adaptation to discontinuities in both the solution and the boundary geometry. 

ACKNOWLEDGEMENT 

The author is grateful to Olav Dahl for discussions of numerical methods. 



TRI-TREE MULTlGRID SOLVER FOR NAVIER-STOKES EQUATIONS I059 

REFERENCES 

1. T. J. R. Hughes, L. I? F m c a  and G. M. Hulbert, ‘A new finite element formulation for computational fluid dynamics. VIII. 
The Galerkin/least-squares method for advectivodiffusive equations’, Comput. Methodr Appl. Mech. Eng., 73, 173-1 89 
(1989). 

2. T. Utnes, ‘Finite element modeling of quasi-three dimensional nearly horizontal flow’, Int. j .  numer: methodsjuids, 12, 559- 
576 (1991). 

3. S. 0. Wille, ‘Numerical simulations of steady flow inside a three dimensional aortic bifurcation model’. A Biomed. Eng., 6, 
49-55 (1984). 

4. E. Barragy and G. F. Carey, ‘A partitioning scheme and iterative solution for sparse bordmd systems’, Comput. Methodr 
Appl. Mech. Eng., 70,321-327 (1988). 

5 .  0. Dahl and S. 0. Wille, ‘An ILU preconditioner with coupled node fill-in for iterative solution of the mixed finite element 
formulation of the 2-D and 3-D Navier-Stokes equations’, Inr. j .  numer: methodspuids, 15, 525-544 (1992). 

6. S. 0. Wille, ‘Pulsatile pressure and flow in arterial aneuIysm simulated in a mathematical model’, J Biomed. Eng., 3, 153- 
158 (1981). 

7. S. 0. Wille, ‘A preeonditioned alternating inner-outer iterative solution method for the mixed finite element formulation of the 
Navier-Stokes equations’, Int. j. numer. methoukpltidq 18, 1 135-1 151 (1994). 

8. A. George and J. W. Liu, Computer Solutions oflorge Sparse Positive Definite System, Rentice-Hall, Englewood Cliffs, NJ, 
1981. 

9. I? K. W. Vinsome, ‘Orhornin, an iterative method for solving sparse sets of simultaneous linear equations’, P m .  Fourth 
Symp. on Reservoir Simulation, Society of Petroleum Engineers of AIME, New York, 1976, pp. 147-159. 

10. D. M. Young and K. C. Yea, ‘Generalized conjugate-gradient acceleration of non-symmetrizable iterative methods’, Lin. Alg. 

11. I? Sonneveld ‘CGS, a fast Lanczos-type solver for non-symmetric linear systems’, SIAM A Sci. Stat. Comput., 10, 3 6 5 2  

12. H. A. van der Vont, ‘Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear 

13. G. F. Carey, K. C. Wang and W. D. Joubert. ‘Performance of iterative methods for Newtonian and generalized Newtonian 

14. C. Vincent and R. Boyer, ‘A preconditioned conjugate gradient Uzawa- type method for the solution of the Stokes problem by 

15. 0. G. Johnson, C. A. Michelli and G.  Paul, ‘Powomial preconditionem for conjugate gradient calculations’, SIAMJ Numer: 

16. S .  0. Wille, ‘A structured bi-tree search method for generation of optimal unstructured finite element grids in two and three 

17. J. Peraire, M. Vadati, K. Morgan and 0. Zienkiewicz, ‘Adaptive remeshing for compressible flow computations’, A Comput. 

18. R. hhner, K. Morgan and 0. C. Zienkiewicz, ‘An adaptive finite element procedure for compressible high speed flows’. 

19. W. J. Schroedcr and M. S. Shepard, ‘A combined octree/Delauney method for fully automatic 3-D mesh generation’, Int. j .  

20. H. K. Ruud and S. 0. Wille, ‘An advancing front algorithm for three dimensional mesh generation’, Proc. NUMETA 90, 

21. C. Taylor and P. Hood, ‘A numerical solution of the Navier-Stokes equations using the finite element technique’, Compur. 

22. W. Hackbush. Multi-Grid Methodr and Applications, Springer, Berlin, 1985. 
23. S. 0. Wille, ‘An adaptive unstructured bi-tree iterative solver for mixed finite element formulation of the Stokes equations’, 

Appl., 34, 159-194 (1980). 

(1987). 

systems’, S I A M A  Sci. Stat. Comput., in press. 

flows’, Int. j .  numer. methoukfiirls, 9, 127-150 (1989). 

mixed Q1-PO stabilized finite elements’, Inf. j .  numer mefhodsfiids, 14, 289-298 (1992). 

A n d ,  20, 362-376 (1983). 

dimensions’, Int. j .  numex methodsfluds, 14, 861-881 (1992). 

Phys., 71,449-466 (1987). 

Comput. Methods Appl. Mech. Eng., 51,441464 (1985). 

numer. methods eng., 29, 37-55 (1990). 

Numerical Methoak in Engineering: Theory and Applications, January 1990. 

Fluids, 1 .  73-100 (1973). 

Int. j .  numer. mefhodspltids, 22, 899-913 (1996). 


