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,,An algorithm is developed for deriving the transfer functions of the 
constant-temperature hot-wire anemometer of arbitrary complexity. The 
only restriction is that the bridge elements, including the hot-wire filament, 
must be modeled by lumped components. A minimum of two equivalent 
amplifiers are required to model the feedback amplifier properly. The poles 
of the transfer functions for electronic and velocity perturbations are 
shown to be identical regardless of the frequency response characteristics 
of the feedback amplifier and the nature and quantity of components used 
to model the bridge impedances. Computer simulations are used to explore 
the behavior of representative configurations. It is shown that the fre- 
quency response characteristics of the feedback amplifier must be included 
in addition to the offset voltage and cable and balance inductance to fully 
account for the behaviour observed in real systems. This leads to an 
optimum system response when the balance inductor is in excess of that 
required for ac bridge balance. Increasing the frequency response and gain 
of the feedback amplifier have the rather surprising effect of increasing the 
damping of the dominant poles. It is the higher order poles that are 
responsible for the instabilities under these conditions. With subminiature 
wires it is shown that insufficient frequency response of the feedback 
amplifier is the most likely cause of instabilities. Operating modes are 
demonstrated that are misleading, in the sense that the operator can be 
deceived into interpreting an erroneous frequency response. Examples are 
provided to help operators of the instrument to identify and avoid these 
rather subtle and undesirable modes of operation. A brief description is 
given of a new high-performance anemometer design that is based on these 
considerations. 
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INTRODUCTION 

Despite the shortcomings of the constant-temperature 
hot-wire anemometer it is still the most widely used means 
of measuring velocity fluctuations. In many situations, the 
behavior of the instrument can be explained using third- 
order models of the system behavior (e.g., [1, 2]). How- 
ever, there are many aspects of the behavior of the 
instrument that cannot be accounted for in terms of 
existing theories. For example, instabilities are often en- 
countered when using subminiature (e.g., d = 0.5 /zm 
diameter) hot wires. Attempts to increase the overall 
frequency response by increasing the gain and frequency 
response of the feedback amplifier are invariably frus- 
trated because the system develops instabilities. 

Address correspondence to Dr. Jonathan H. Watmuff, MCAT Institute, 
94035. 

Experimental Thermal and Fluid Science 1995; 11:117-134 
© Elsevier Science Inc., 1995 
655 Avenue of the Americas, New York, NY 10010 

The analysis reported in this paper was initially moti- 
vated by observations of hot-wire behavior in supersonic 
flow at the Gas Dynamics Laboratory at Princeton Uni- 
versity. A frequency response requirement of 500 kHz is 
not uncommon in high-speed flows. Yet with extremely 
careful tuning of the system controls, by the most highly 
skilled operators and under the most favorable of circum- 
stances, a barely adequate frequency response of around 
250 kHz can be obtained with commercially available 
equipment. However, the phenomenon known as strain- 
gauging (in the form of small-amplitude high-frequency 
oscillations) was responsible for contamination of about 
three out of every four experimental runs (A. Smits, 
private communication). Sometimes the oscillations could 
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be made to disappear by adjusting the anemometer 
controls. This observation led me to propose that strain- 
gauging could be a purely electronic, rather than elec- 
tromechanical, phenomenon and that a more sophisti- 
cated model of the system behavior could lead to further 
understanding and possible control of this frustrating 
problem. 

It appears that the behavior of the constant-tempera- 
ture hot-wire anemometer is not sufficiently well under- 
stood. A more complete understanding could lead to ways 
of avoiding instabilities and extending the frequency re- 
sponse. My original analysis [3] has been completely gen- 
eralized and is presented here along with examples that 
will guide those who wish to build their own instruments 
&nd those who require the highest possible performance. 

MODEL OF THE 
CONSTANT-TEMPERATURE 
HOT-WIRE ANEMOMETER 

It will be shown by example that the feedback amplifier 
must have the potential for both a high gain and a 
high-frequency response in order for the system as a 
whole to achieve stable high-frequency operation. Practi- 
cal constant-temperature hot-wire anemometer designs 
should use a cascade of amplifiers rather than a single 
feedback amplifier because of the gain-bandwidth prod- 
uct limitations of physical devices. Therefore a cascade of 
n amplifiers is used in the model shown in Fig. 1. The 
device labeled I is a current booster stage that usually 
consists of a pair of power transistors. It will be assumed 
that the current booster has unity gain and zero offset 
exactly. The assumption of a perfect voltage follower 
means that the current booster need not be considered in 
the analysis. The behavior of each amplifier will be as- 
sumed to be linear with zero offset voltage. The net offset 
voltage of the amplifier cascade is controlled by introduc- 
ing a dc voltage E_ i and a perturbation voltage e s into the 

• t /  

mth amplifier. The dc voltage is used to adjust the fre- 

quency response and stability of the system while the 
perturbation voltage is used for estimating the system 
frequency response. The perturbation voltage usually con- 
sists of a square wave, although sinusoidal inputs are 
sometimes used. In general, uppercase letters refer to dc 
quantities and lowercase letters refer to small perturba- 
tions. Za(s), Zb(S), Zc(s),  and Zw(s) represent the electri- 
cal impedances of each arm of the bridge, and s is the 
Laplace variable. 

THE STATIC OPERATING POINT 

Only the resistive components of the Wheatstone bridge 
need to be considered for the static (dc) analysis, that is, 
Za(s)  = Ra, Zb(S) = Rb, Zc(s)  = Rc, and Zw(s) = R w. 
The voltage at the top of the bridge, that is, the output of 
the nth amplifier, is given by 

Eo n = Kb[ Ka( I1Ra -- 12Rc ) + Eqi] (1) 

where K~ = K I . . .  K m_ 1 is the total gain of the cascade 
up to (but not including) the mth amplifier where the 
offset voltage is injected and K a = K m . . .  K n is the total 
gain of the cascade from the mth to the nth amplifier. 
The bridge voltage can also be expressed in terms of the 
currents 11 and 12 , 

Eo, = I i ( g  a + R w) (2) 

and 

Eo, = 12(R b + Rc) .  (3) 

Equations (1)-(3) lead to the following expression for the 
wire current: 

KbEqi (R  b + Rc) (4) 

I1 = (R~ + R w ) ( R  b + R~) + Kt~'  

where /~ = R w R  ~ - R a R  b represents the bridge imbal- 
ance and K = K~K b is the overall gain of the cascade• 
Equation (4) represents the behaviour of the circuit. 

Eon + eon 

Zw(s) & (s) 

Cur ren t  B o o s t e r  Stage 

o OffSeEV+lteage ( ) T ~ f  j th  ampl i f~r  n 

Figure 1. Model of constant-temperature hot-wire anemometer. 
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Following Smits et al. [4], an equation that represents 
the balance between the heat transfer and the Joule 
heating of the filament is given by 

( 1  ~_~ ) 7rlKg NU 
12 = Rg c (s) 

where Rg is the wire resistance at gas temperature, l is 
the length of the wire, Kg is the thermal conductivity of 
the fluid, Nu is the Nusselt number, and c is the tempera- 
ture coefficient of resistivity of the wire material. The 
operating point is defined by the intersection of (4) with 
(5), which must be solved by iteration. 

A number of important asymptotes and limits were 
identified by Perry and Morrison [2] with respect to the 
circuit equation. For example, the right-hand side of Eq. 
(4) must be indeterminate if 11 is to remain finite as 
Eqi ~ O, that is, 

(R a + Rwa)(Rb + Re) + gi~ a = 0, (6) 

where/~a = Rw~R c - RaR b is the value of /~ correspond- 
ing to the asymptotic value of the wire resistance 

Rw~ = 
K R a R  b - R a ( R  b + R c) 

g g  c + ( R  b + R c) 
(7) 

They showed that perfect bridge balance can be achieved 
only in the limit as the offset voltage E q i  ~ 0 and as the 
overall gain of  the amplifier cascade K ~ oo. However, the 
quantity KR always remains finite, even as the limits 
mentioned above are approached. The quantity K/~ has a 
strong effect on the system stability and frequency re- 
sponse, and it is controlled by adjusting the offset voltage. 

TRANSFER FUNCTIONS FOR 
DYNAMIC RESPONSE 

The circuit shown in Fig. 1 will be analyzed using Laplace 
transform methods as that lets us examine transient phe- 
nomena (such as the square-wave response) in addition to 
the usual steady-state sinusoidal response. It will be as- 
sumed that the dynamic behavior of any j th amplifier in 
the cascade can be adequately described by 

e-o. A j ( s )  
- ; - ( s )  = B-- 
ei) 

(8) 

which is the transfer function for output voltage fluctua- 
tions in terms of the input voltage fluctuations. The cir- 
cumflex denotes the Laplace transform, Kj is the ampli- 
fier gain, and the roots of the polynomials Aj(s) and B,(s) 
are the zeros and poles of the amplifier. From now on'the 
circumflex will be dropped, but the Laplace transform is 
still implied. 

In a physical circuit the current booster stage usually 
has a frequency response well in excess of that of the 
amplifiers. For the purpose of modeling it will be assumed 
that the frequency response is infinite in addition to the 
assumptions of exact unity gain and zero offset voltage. 
The assumption of an "ideal" current booster stage means 
that it need not be considered in the following analysis. 

The small perturbation output voltage of the first ampli- 
fier in the cascade is given by 

A,(s) 
= g l B _ ~ [ i l Z a ( S )  _ i 2 Z c ( s ) ]  ' (9) eo 1 

where i 1 and i 2 a r e  the small perturbation bridge currents 
that are dependent on both offset voltage and velocity 
perturbations. The system transfer functions will be de- 
rived for these two cases. 

System Transfer Function for Offset 
Voltage Perturbations 

In the absence of velocity fluctuations, the small perturba- 
tion c u r r e n t s  i I and i 2 c a n  be expressed in terms of the 
voltage fluctuation at the top of the bridge, that is, the 
output eo, of the last (nth) amplifier, 

e°" (I0) 
i I = Z a ( s  ) .-}- Z w ( s  ) 

and 

e°" (11) 
i 2 = Z b ( S  ) -1- Z c ( s  ) " 

The electrical impedance of each arm of the bridge can be 
expressed as a transfer function relating voltage and cur- 
rent perturbations: 

ZaN(S) ZbN(S) 
Za(S) Zb(S) 

Zao(s) '  Zbo(S)' 

ZcN(S) zwN(s) 
Zc(s) = - -  and Zw(S) 

Zco(S)' Zwo(S)" 

(12) 

This representation is completely general, and an arbitrar- 
ily large number of elements can be used. The only 
restriction is that the elements must consist of lumped 
components. Using (10) and (11) to substitute for i 1 and i z 
in Eq. (9) and then applying Eq. (8) along the amplifier 
cascade leads to the expression for the output of the last 
(nth) amplifier eo,  that is, 

Am(s) ... A,,(s) 
eo, = K m ""  K, Bm(s ) . . .  B n ( s  ) 

AI(S  ) --. A m _ l ( S  ) 
× K1 "'" Kin.1 Ba(s ) . . .  B m _ l ( S  ) (13) 

( e o . Z ~ ( s )  e o ° Z ~ ( s ) ) ]  
× Za(s ) +Zw(s) - Zc(s ) +Zb(S) +e s . 

Equation (13) implies that a minimum of two equivalent 
amplifier stages are needed to properly account for the 
introduction of offset voltage perturbations. The first of 
these two equivalent amplifiers, a, has a transfer function 
equal to the amplifier cascade up to (but not including) 
the rnth amplifier where the offset voltage is injected, that 
is, 

AI (S  ) - - - h m _ l ( s  ) 
e°---~ = K1 "'" K m -  1 (14) 
el. n l ( s ) " "  B m_ l(S) 
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or  

eo~ A . ( s )  
- -  = K  a na(S------ ~ . (15) 
ei  a 

The second equivalent amplifier, b, has a transfer function 
equivalent to the amplifier cascade from the ruth to the 
nth amplifier, that is, 

or  

e%(s) = g m  ... K n A m ( s ) ' " A n  (s) 
eib Bm(s)"" Bn(s) 

(16) 

eo b A b ( S )  
- -  = K b (17) 
ei  b B b ( S )  " 

The transfer function of the system response to offset 
voltage fluctuations using the equivalent amplifiers a and 
b is obtained from (13) as 

%" (s) Q~(s) (18) 
e s = ge  P--~s) 

where K¢ = K b, the polnomial expression for the system 
zeros is given by 

Qe(s ) = Ab(S)Ba(s)ZI(S), (19) 

and the polynomial expression for the system poles is 
given by 

P(s) = B a ( S ) B b ( s ) Z 1 ( s )  + K a K b A a ( S ) A b ( S ) Z 2 ( s ) ,  

(2o) 

where 

and 

ZI(S)  = [ZaN(S)ZwD(S) -I- ZaD(S)ZwN(S)] (21) 

x [z~,.(S)Zco(~) + z~i,(~)ZcN(S) ] 

Z2(s ) = ZaD(S)ZbD(S)ZcN(S)ZwN(S ) 

-- Z,N(S)ZbN(S)ZcD(S)ZwD(S). 
(22) 

Note that the poles of the amplifiers that precede the 
offset voltage injection stage appear as zeros in the overall 
system transfer for offset voltage fluctuations in Eq. (19). 
This is an important result, and the implications will be 
discussed later. 

System Transfer  Function for Velocity Fluctuations 

For the case of velocity fluctuations, the wire acts as the 
source of the voltage fluctuations and the total current 
perturbation i 1 depends on the nature of the impedances 
forming the wire arm of the bridge, Zw(s). The represen- 
tation of Zw(s) required for the derivation of the transfer 
functions for velocity fluctuations is shown in Fig. 2. This 
representation does not restrict the generality implied by 
Eqs. (12), and an arbitrarily large number of elements can 
be used to form the impedances Zs(s), Zwir~(s), and 
Zp(s). 

ewire 

ila 

el t i l  

I ] (s) 

ilb 

Figure 2. General representation of bridge impedance Z w 
required to derive the system transfer function for velocity 
fluctuations. 

Let the transfer functions representing the impedance 
be given by 

Zwire~(S) 
Zwire(S) Zwireo(S)' 

ZpN(S) 
Zgs)  = Z p£(S ) "  

ZsN(s) 
Zs(s )  Zso(s) ' 

(23) 

where 

Fz(s) = Zp(s) (28) 
Zp(S) + Zgs)  + Zwire(s) 

The voltage perturbation across the wire is given by 

ewir e = Z w i r e ( S ) i l  a + SuFu(s)u ' (24) 

where ila is the wire current, S u is the sensitivity to 
velocity perturbations (i.e., cgEwire/OU) a t  zero frequency, 
u is the velocity perturbation, and F,(s) represents the 
normalized frequency response characteristics of the wire, 
that is, Fu(0)= 1. For a fixed mean velocity, S u is a 
constant. The voltage perturbation across the wire arm of 
the bridge is given by 

el = [Zs(s )  + Z w i r e ( S ) ] i l a  + SuFu(s)u ' (25) 

which is also equal to the voltage perturbation across the 
parallel impedance, 

el = Zp(s)ilb. (26) 

The total perturbation current (i 1 = ila + iib) can be 
found from Eqs. (25) and (26), so the voltage perturbation 
at the top of the bridge can be determined: 

eo. = [Za(S) q- Zw(s)]i l + SuFu(s)Fz(s)u, (27) 
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and the impedance of the wire arm of the bridge is given 
by 

ZP(S)[Zs(S) + Zwire(S)] (29) 
Zw(S) = Zp(s )  + Zs(S) + Zwire(S) " 

Substituting for i 1 from Eq. (27) and i 2 from Eq. (11) into 
Eq. (9) and using the two-amplifier model for the cascade, 
the system transfer function for velocity fluctuations is 
given by 

Qu(s) 
e°° (s )  = Ku (30) 
u P ( s )  ' 

Ku = SuKaKb (31) 
where 

and 

where 

Qu(s) = Z a ( S ) A b ( s ) Z 3 ( s ) F u ( S ) Z w i r e D ( s ) ,  (32) 

Z3(S) = ZaN(S)ZpN(S)ZsD(S) (33) 

× [z~(s)Zc°(S)  + Z~o(S)Z~(s)].  
The behavior of a hot-wire filament is very complex. For 

example, Perry [5] discusses aeroelastic effects and pertur- 
bations in the symmetry of the temperature distribution 
along the wire. Even relatively simple models that allow 
for a nonuniform temperature distribution along the wire 
must use a partial differential equation in space and time, 
which is beyond the scope of Laplace transform methods. 
In order to keep the analysis tractable a simple lumped 
model must be used for the hot-wire filament: 

1 
Fu(s ) (34) 

T w s + l  
and 

ZwireN(S) RwTwS + R w + ot (3s) 
Zw~oo(s) TwS + 1 ' 

where T w is the lumped time constant of the wire arising 
from its thermal inertia, R w is the dc wire resistance, and 
a = Rw(R w - R . ) / R o ,  where R. is the wire resistance at 
gas temperature. ~ Thd simple lu~nped model for the fila- 
ment possesses the same time constant for the simple 
poles of the sensitivity to velocity and current fluctuations, 
and this leads to a simplified expression for the system 
zeros, 

Qu(s ) = Z a ( S ) A b ( s ) Z 3 ( s ) .  (36) 
In the limitZp(s) ~ ~ (i.e., when there are no elements 

in parallel with the wire), the expression for Z3(s) given by 
Eq. (33) should not be used because it implies that Qu(s) 

~. The expressions for Zl(s) and Ze(s) given by Eqs. 
(21) and (22) can. be factored .bY .Z~N(s)' and when Zp(s) 
= the expression for Z3(s) is given by 

Z3(S ) = ZaN(S)ZsD(S)[ZbN(S)ZcD(S ) 
(37) 

+ ZbD(s)Z~N(S)]. 

Equations (21) and (22) can still be used to evaluate Zl(s)  
and Z2(s)when Zp(s)  = ~. 

It is important to note that the poles of the transfer 
functions for both offset and velocity fluctuations are 
identical [provided that Fu(S)Zwireo(s) = 1]. This result is 
completely general in the sense that the system poles are 
identical independent of the number of amplifiers in the 
cascade, the complexity of the overall transfer function for 

the feedback amplifier, and the number of lumped compo- 
nents used to model the bridge impedances. 

SOME ILLUSTRATIVE EXPANSIONS OF 
TRANSFER FUNCTIONS 

Unlike the poles, the zeros of the transfer function for 
offset and velocity fluctuations are quite different. It has 
already been proved that the poles of amplifiers preceding 
the offset voltage control stage appear as zeros in the 
transfer function for offset voltage perturbations but not 
for the velocity fluctuations. Other differences between 
the zeros of the two system transfer functions depend on 
the nature of the bridge impedances, and these will be 
considered in the examples below. It should be empha- 
sized that the expansion of the polynomial expressions for 
the system poles from Eq. (20) and zeros from Eqs. (19) 
and (36) can be quite involved, even for relatively simple 
configurations. It is instructive to consider some particular 
cases. 

The Simplest Possible Configuration 

For the simplest possible configuration, only resistive ele- 
ments appear in the bridge, that is, 

ZaN(S) = Ra, ZaD(S ) = 1, 

ZbN(S) = Rb, ZbD(S) = 1, 

ZcN(S) = Rc, Z~D(S) = 1, 

(38) 

(39) 

(40) 

and from (35) and (12) the impedance of the wire arm of 
the bridge is given by 

ZwN(S) = RwTws + R w + o~, 
(41) 

ZwD(S) = Tws + 1. 

Substituting Eqs. (38)-(41) into (21), (22), and (37) leads 
to the expressions 

Zl (S)  = ( R  b + R c ) [ ( R  a + Rw)Tws + ( R  a + R w + a) ] ,  
(42) 

Z2(s) = l~(Tws + 1) + R c a ,  (43) 

Z3(s ) = R,,(Rb + Re) .  (44) 

Assuming an ideal amplifier--one with infinite frequency 
response--then 

ha(S )  = B a ( s )  = A b ( S )  = B o ( S )  = 1. (45) 

Let the feedback amplifier consist of two stages such that 
K a = 1 and K b = K. Substitution of Eqs. (42)-(45) into 
(19), (20), and (36) leads to 

Qe(s)  = ( R  a + Rw)(R b + Rc)Tws 
(46) 

+ ( R  a + R w + ot)(R b + R~), 

Qu(s) = R b + R~, (47) 

P ( s )  = [ (R  b + R ~ ) ( R  a + R w) + K/~] Tws 

+ ( R  b + R c ) ( R  a + R w + or) + K(I~ + R~ + a ) .  

(48) 
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The time constant of the simple zero in (46) is approxi- 
mately the same as the time constant T w of the wire 
filament. It is this zero that causes the system response to 
a step input of offset voltage to appear like the response 
expected from a delta function impulse of velocity. Note 
that this system possesses only one simple pole, so the 
step response can only exhibit an exponential decay, that 
is, the system response cannot exhibit ringing. The static 
response and the dynamic response are coupled through o 
the quantity R, which is controlled by adjusting the offset 
voltage. Consideration of Eqs. (6) and (48) indicates that 
the time constant of the simple pole approaches zero (i.e., 
the frequency response of the system becomes infinite) as 
the offset voltage approaches zero. In practice, the fie- 
quency response is limited by other higher order effects as 
shown in the examples below. 

The influence of the feedback amplifier was first consid- 
ered by Ossowski [6], and for some time it was believed 
that the frequency response characteristics of the feed- 
back amplifier were the dominant factor in the determina- 
tion of overall system performance and stability. However, 
Davis and Davies [7] demonstrated that the inductance of 
the probe cable and the offset voltage of the feedback 
amplifier were the dominant parameters affecting stability 
and frequency response. Perry and Morrison [2] extended 
this work, and the results for a system with inductive 
bridge elements is expanded in the next section. 

Hot-Wire System with Inductance 

Perry and Morrison [2] modeled the hot-wire cable as a 
simple lumped inductive element L w in series with the 
wire. Equations (35) and (12) give the components of 
impedance of the wire arm of the bridge as 

ZwN(S) = LwTw s2 + (RwT w + Lw)s  + (R w + a ) ,  
(49) 

ZwD(S) = Tws + 1. 

Perry and Morrison demonstrated that the system stability 
and frequency response could be improved by incorporat- 
ing a tunable balance inductor L b in series with the 
bridge resistor R b. From (12), the components of the 
impedance of this arm of the bridge are 

ZbN(S ) = Lbs + R b. and Zb,(S)  = 1. (50) 

The upper bridge elements are purely resistive, and sub- 
stitution of Eqs. (38), (40), (49), and (50) into Eqs. (21), 
(22), and (37) leads to the expressions 

Zl(s) = LbLwTwS 3 + {[(R b + R ~ ) L  w 

+ ( R  a + R w ) L b ] T  w + LbLw}s  2 

+{(R b + R c ) [ ( R  a + R w ) T  w + L  w] (51) 

+ ( R o  + R w + a)Lb}S 

+ ( R  b + R¢) (Ra  + R w + a )  

Z 2 ( S  ) = ( R c L  w - R ~ L b ) T , s  2 
(52) 

+ ( & w  + RcLw - RoLb)  + + Re- ) ,  

Z3(s  ) = Ra[LbS + ( R  b + Re)]" (53) 

Perry and Morrison [2] did not include the frequency 
response characteristics of the feedback amplifier so that 

the poles and zeros are given by (45). Substitution of these 
expressions into (20) for P(s)  leads to a third-order poly- 
nomial for the system poles, 

P ( s )  = P3 s3 + P2 s2 q- P1S q- Po, (54) 

where the constants Po . . . .  , P3 are given by 

P1 = 

P2 0 
P3 0 

0 0 0 / | C  o 
1 0 0 / C1 

1 0 C 2 
0 1 C3 

o 

1 CK 1 , 
0 
0 CK2 

(55) 

and C o , . . . , C  3 and CKO,. . . ,CK2 a r e  constants that de- 
pend on the system parameters, 

C o =  ( R  b + R c ) ( R  a + R  w +  a ) ,  

C I = ( R  b + R c ) [ ( R  a + R w ) T  w + L  w] 

+(R~ + R w + a ) L b ,  

C 2 = [(R o + R c ) L  w + ( R  a + R w ) L b ] T  w + LbL w, 

C 3 = L b L w T  w, (56) 

CKO =1~ + R Ca, 
o 

CK1 = R T  w + R c L  w - RaLb ,  

CK2 = ( R c L  w - R . L b ) T  W. 

A single zero occurs in the transfer function for velocity 
fluctuations, 

Qu(s ) = Ra(Lbs  + Rt ' + Re).  (57) 

In most configurations this zero is located well beyond the 
frequency range of interest, so it is not of great signifi- 
cance. The expression for the zeros of the transfer func- 
tion for offset voltage fluctuations is third-order 

Qe(S) = C3 $3 q- C2 $2 -I- ClS  q- C O. ( 5 8 )  

The simple zero given by Eq. (46) for the simple system 
with only resistive bridge elements has a time constant 
that is approximately the same as that of the wire fila- 
ment. It turns out that there is always a simple zero in Eq. 
(58) with a time constant of similar value. Therefore, the 
response to a step input will also appear like the response 
expected from a delta function impulse of velocity. How- 
ever, the expression for the poles is now third-order, so a 
pair of complex conjugate poles are possible. In this case 
the step response may exhibit ringing, the decaying sinu- 
soidal response that operators of hot-wire anemometers 
are familiar with. 

Perry and Morrison proposed that the frequency re- 
sponse of the feedback amplifier can be omitted from a 
model of the system behavior because they found that it 
exerts only a small influence on the overall frequency 
response of the system. However, later, in the section on 
examples of fifth-order system behavior it shows that the 
frequency response of the feedback amplifier must be 
included to fully account for the behavior observed in real 
systems. 



Frequency Response Characteristics of the 
Feedback Amplifier 

As mentioned previously, the influence of the frequency 
response characteristics of the feedback amplifier was first 
considered by Ossowski [6]. More recently, Freymuth [8] 
derived a model in which the frequency response of the 
feedback amplifier was controlled by adjusting the roll-off 
frequency of two simple poles. However, Freymuth did not 
account for the inductance of the probe cable, which has 
been shown to exert a dominant influence. Wood [9] 
derived a fifth-order model, including the amplifier char- 
acteristics in addition to the lumped inductance described 
in the previous subsection. The analysis of Wood will be 
discussed further later. 

The positions of the system poles on the s plane are 
independent of how the poles and zeros are distributed 
among the first and second equivalent amplifiers. How- 
ever, extra zeros will appear in the transfer function for 
offset voltage fluctuations if the poles are located before 
the offset voltage control stage, Ba(s); see Eq. (19). The 
number of zeros in the transfer function for velocity 
fluctuations remains unaltered in this situation; see Eq. 
(36). Further, any zeros that are incorporated into the 
feedback amplifier will appear in both system transfer 
functions only if they are added to the second equivalent 
amplifier. If any poles and /o r  zeros are deliberately added 
to the feedback amplifier for control purposes, then it is 
highly recommended that they be added only to the sec- 
ond equivalent amplifier, that is, after the offset voltage 
injection stage. This will avoid introducing any further 
differences between the system transfer functions for ve- 
locity and offset voltage fluctuations. The inherent differ- 
ences between the transfer functions already make it 
difficult enough to correctly infer the system frequency 
response from square-wave tests. 

MIS + 1 
Kb (S9) 

- - ~ s j  = (M2s + 1)(Mas + 1)" ei b 

The first equivalent amplifier will be modeled using Aa(s) 
= Ba(s) = 1. This configuration could be used for exami- 

K~. 

I/M 2 I/M~ 

Kac 

log co 
I/M 3 

Figure 3. Sketch of Bode diagram for amplitude of a feed- 
back amplifier with a simple zero with time constant M 1 and 
two simple poles with time constants M e and M 3. 
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nation of systems in which the gain of the feedback 
amplifier is frequency-dependent by putting M 2 > M 1 > 
M 3. The Bode diagram of a feedback amplifier with this 
particular frequency-dependent gain distribution is 
sketched in Fig. 3. Smits and Perry [10] considered the 
behavior of systems with a feedback amplifier with a 
frequency-dependent gain (except that they did not ac- 
count for the high-frequency roll-off (i.e., M3). The impli- 
cations of using a feedback amplifier with a frequency- 
dependent gain will be discussed later. 

This configuration of the feedback amplifier leads to a 
system in which the polynomial for the poles is fifth-order, 
that is, 

P(s)  =Pss 5 +e4 $4 + P3 S3 + P2 s2 + P]s + P0, 

where the constants P0 . . . . .  Pt are given 

~e0' 
P1 

P2 
P3 

P4 
~P5 

1 
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M2 M3 
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0 0 
1 0 
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0 M2M 3 
0 0 

× 

Co 
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C3 

+ K  

1 0 0 
M I 1 0 

0 M 1 1 
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0 0 0 
0 0 0 

by 

0 
0 

0 

(60) 

1 

M 2 + M 3 

M 2 M3 

CK° ) 

CK1 . (61) 

CK2 

The presentation of (61) using matrix notation has the 
advantage of being compact and demonstrates the cou- 
pling between the gain and the poles and zeros of the 
feedback amplifier. The expressions for the zeros can be 
obtained by multiplying the polynomials given by Eqs. (57) 
and (58) by MIS + 1. The extra zero given by Mls + 1 is 
cause for concern and will be discussed later. 

Additional Reactive Bridge Components 

Including the frequency response characteristics of the 
feedback amplifier introduces a relatively small increase 
in the effort required to expand the transfer function 
polynomials. However, the addition of a small number of 
reactive bridge elements results in a much higher level of 
complexity. Using a single lumped inductor is a rather 
simplistic representation of a coaxial hot-wire cable with 
its distributed inductance, capacitance, resistance, and 
leakage conductance. A slightly more sophisticated model 
for the cable could include a lumped capacitor C w in 
parallel with lumped inductor L w and the wire. A balance 
capacitor C b could be introduced in parallel with the 
balance resistor and balance inductor. This configuration 
was originally derived by Watmuff [3] and leads to a 
system in which the polynomial for the poles is seventh- 
order, that is, 

P(s)  = P7 $7 + P6 $6 + 195 $5 -k- P4 $4 

q- P3 $3 + P2 $2 + P1S + Po, 
(62) 
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where the constants Po . . . . .  P7 are given by 

IPo 
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(63) 

The constants Co, C1, C2, C3, C x o  , CK1 , and CK2 are 
given in (56), and 

Ctl = R b R c ( R  a + R w + a ) C  b 

+ Ra(R  b + Rc)(R w + a ) C  w, 

C' 2 = Ra( Rb + Rc )( RwTw + Lw)Cw + Ra( Rw + a ) Lb Cw 

+ RbRc[(R  ~ + Rw)T w + Lw]C b 

+ Rc(R  a + R w + o t ) L b C  b 

+ R ~ R b R c ( R  w + a )CbC w, 

C'3 = Ra(Rb + Rc)LwTwCw 

+ R~(RwTw + Lw)LbCw 

+ Rc[(R a + Rw)T w + Lw]LbC b + R b R c L w T w C  b 

+ RaRbRc(RwTw + L w ) C b C w  (64) 

+ R~Rc(R  w + a ) L b C b C  ~, 

C' 4 = RaRc[ (RwL  b + R b L w ) T  w + LbLw]CbC w 

+ ( R c C  b + RaCw)LbLwTw, 

C' 5 = R ,RcLbLwTwCbCw,  

CtK1 = Rb(R  w + ot)(RcC b - RaCw) , 

C~2 = [Lb(Rw+ or) + R b ( R w T w + L w ) ] ( R c C b - R a C ~ ) ,  

C,~ 3 = [(RwL b + RbLw)Tw + LbLw] (RcC  b - R.Cw) , 

C¢K4 = L b L w T w ( R c C  b - RaCw) .  

The zeros for offset voltage perturbations are given by 

Q e ( s )  = (M1s + 1)[C~s 5 + Ct4 $4 + (C  3 + Ct3)s 3 
(65) 

+ ( C 2  ~t_ Ct2)s 2 ~_ (C  1 q_ C,I) S .q_ Co], 

and the zeros for velocity fluctuations are given by 

Qu(s) = Ra(Mls  + l ) [ L b C b  82 + ( R b R c C  b + Lb)S  
(66) 

+ R  b + Rc]. 
It is significant that the terms ( R c L  w - R a L  b) and 

( R c C  b - R a C  w) appear in the expressions for the transfer 
function coefficients given by Eqs. (56) and (64) because 
the influence of the reactive bridge elements can be 
minimized if these terms approach zero. For both of these 
terms to be zero requires that L b / L  w = R c / R  ~ = (cross- 
bridge ratio) and that C b / C  w = R a / R  c = 1/(cross-bridge 
ratio). This means that the only way to nullify both of 
these terms is to make the cross-bridge ratio unity. This 
may be the reason a symmetrical bridge is offered as an 
option for high-frequency operation with one commer- 
cially available system. 

Discussion 

Wood [9] performed an analysis of the type of system in 
which the gain of the feedback amplifier is frequency- 
dependent. For systems with a frequency-dependent gain, 
the term KR is multiplied by the ratio of the ac gain to 
the dc gain, which can be as small as 0.003. This minimizes 
the effect of offset voltage, and the system stability and 
frequency response are adjusted by varying the ac gain in 
conjunction with the balance inductance and roll-off fie- 
quency of the amplifier. This is typical of some commer- 
cially available systems and is thought to offer several 
advantages over systems using a feedback amplifier with a 
flat frequency response. First, tuning the system frequency 
response by adjusting the ac gain does not alter the 
hot-wire calibration like offset voltage adjustment does. 
However, if the frequency response and stability of the 
system are properly tuned, then there should be no need 
for further adjustments after calibration. Second, as men- 
tioned above, a constant-temperature hot-wire anemome- 
ter cannot maintain the bridge in perfect balance. The 
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wire resistance varies slightly with mean velocity, so the 
calibration curve deviates from the ideal constant-temper- 
ature behavior. Systems with high dc gain amplifiers are 
designed to minimize the bridge imbalance, so the hot-wire 
system can be thought to more closely follow some ideal- 
ized heat transfer law, such as King's law. 

Smits and Perry [10] studied the influence of the overall 
gain by assuming King's law and solving (4) and (5) for the 
operating point as the velocity is varied. They found that 
the deviations from ideal behavior were of the order of 
1% for a gain of 500 and that increasing the gain beyond 
1000 brings only a diminishing return. These small devia- 
tions from ideal behavior would be accounted for in 
practice by the curve fit used for the calibration. In any 
case, a hot-wire filament cannot be regarded as a straight 
infinitely long cylinder of uniform circumferential and 
spanwise temperature (see Perry [5]), so it seems unlikely 
that there exists a single universal heat transfer law for 
hot-wire calibrations. When these practical considerations 
are taken into account, the advantage of frequency-depen- 
dent gain systems should be considered idealistic and of 
minor significance. 

Of more concern is that a negative step in the Bode 
diagram occurs when the feedback amplifier has a fre- 
quency-dependent gain. In his paper, Wood [9] states, 
"the theory presented here for the a.c. response holds 
only for frequencies above that at which the a.c. gain 
becomes fiat." Although he could not calculate the re- 
sponse from his analysis in the frequency range where the 
amplifier gain is falling from its dc level to its ac plateau, 
Wood realized that a significant step in the frequency 
response could occur. He argued, by worst case example, 
that the effect is important (7%) only at low resistance 
ratios and for low ac gains. However, Smits and Perry [10] 
found that the step size can be significant for resistance 
ratios greater than 1.1. Even for resistance ratios on the 
order of 1.5 they showed that the size of the step can be as 
large as 3% of the static response. For these reasons, the 
feedback amplifier of the anemometer considered in the 
examples below will have a fiat frequency response, 
M 1 = 0. The time constants M 2 and M 3 will be treated as 
variables for adjusting the roll-off frequency of the feed- 
back amplifier. 

COMPUTER SIMULATIONS 

The expansions given above illustrate that the derivation 
of transfer functions for even high-order systems would be 
extremely tedious, particularly for systems with large num- 
bers of reactive bridge elements. One way to avoid the 
tedious algebra would be to derive the transfer functions 
using a symbolic manipulation software package. How- 
ever, this would require a commitment to the highest level 
of complexity to be studied before invoking the derivation. 
An alternative method that avoids this restriction consists 
of deriving the transfer functions numerically. One disad- 
vantage of the numerical method compared to the sym- 
bolic manipulation software approach is that the relation- 
ships between the parameters forming the coefficients of 
the transfer function polynomials are hidden. However, 
the analytical expressions for the polynomial coefficients 
for higher order systems approach such complexity that 
little can be inferred by direct examination anyway. 

Computer simulations are a convenient tool for explor- 

ing the behavior of hot-wire systems because the trajecto- 
ries of the poles and zeros on the s plane, the Bode 
diagrams, and the square-wave response can all be calcu- 
lated for each operating point as the anemometer controls 
are adjusted. In a real system the .operator can view only 
the square-wave response. A computer simulation allows 
operating conditions to be examined that are beyond 
current technology, and extreme operating conditions can 
be explored without the penalty of wire breakage. 

An interactive program has been written for examining 
the stability and frequency response of constant-tempera- 
ture hot-wire systems. All the parameters can be specified 
via menus, including the number and type of components 
forming the impedance of each arm of the bridge and the 
fluid and wire properties. The poles and zeros of the two 
equivalent amplifiers for the feedback can be specified, 
and the amplifier transfer function polynomials are calcu- 
lated using Eqs. (14) and (16). For a given set of parame- 
ters, the static operating point is obtained by iteration 
using Eqs. (4) and (5). The Nusselt number is evaluated 
using Kramer's relationship. For the results presented 
here, the convergence tolerance for I 1 is one part in 10 -4. 
The lumped time constant T w and the operating resis- 
tance of the wire are evaluated using expressions given in 
Perry [5]. The impedance of each arm of the bridge is then 
calculated as the ratio of two polynomials as expressed in 
Eqs. (12). The coefficients of Zl(s), Z2(s), and Z3(s) given 
by Eqs. (21), (22), and (37) [or Eq. (33) if there are 
elements in parallel with the wire] are calculated using 
general-purpose routines for multiplying and adding poly- 
nomials. These routines are then used to calculate the 
coefficients of the polynomial expressions for the transfer 
function zeros Qc(s) and Qu(s) using Eqs. (19) and (36) 
and for the poles P(s) using Eq. (20). The roots of the 
transfer function polynomials (i.e., the poles and zeros) 
are found numerically using the Lin-Bairstow method of 
successive quadratic factorization. The calculations were 
performed using Fortran Real*16 and Complex*16 vari- 
ables, and the accuracy of the pole and zero estimation 

15 was typically one part in 10 . 
If the system input (i.e., u or e s) is sinusoidal, then the 

output will also be sinusoidal after a sufficient time has 
elapsed for the transients to have decayed. This corre- 
sponds to putting s = jr0 in the transfer function, which 
gives a complex number for eo/e s and eo/U. The absolute 
values leo/e~l and leo/ul give the Bode diagrams for 
amplitude. The response to a more general class of inputs 
is given by Perry [5], and this has been used to calculate 
the square-wave response. 

INTERPRETATION OF ELECTRONIC 
SQUARE-WAVE TESTS 

It is again emphasized here that one of the additional 
zeros in the system transfer function for offset voltage 
perturbations is always a simple zero with a time constant 
close to that of the wire filament. The time constants of 
the system poles are usually at least an order of magni- 
tude smaller than this zero. Consequently, the dc compo- 
nent of the system response to a step input of offset 
voltage is greatly diminished with respect to the higher 
frequency components. Therefore, this simple zero is re- 
sponsible for causing the electronic square-wave response 
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to have an appearance resembling that expected from a 
delta function impulse of velocity. 

The characteristic frequency of a pole is equal to the 
scalar distance of the pole from the origin of the s plane. 
When there is more than one pole in the system, the 
frequency response or "roll-off" frequency of the system 
will be defined to be equal to the lowest characteristic 
frequency of all the system poles. The pole(s) possessing 
this characteristic frequency will be referred to here as the 
dominant pole(s). Although the system will respond to 
higher frequency inputs it is strictly unusable beyond this 
point because the system sensitivity varies with frequency. 

The most common method for tuning anemometers is 
to first adjust the square-wave response such that it ex- 
hibits optimally damped second-order behavior and then 
estimate the frequency response from the ringing fre- 
quency. Although the square-wave test is an invaluable 
aid for tuning anemometers, it is easy to misinterpret the 
actual frequency response. Of particular concern is any 
simple pole that possesses a characteristic frequency that 
is lower than that of the complex conjugate poles. In this 
situation the square-wave response may still exhibit high- 
frequency oscillations, but these will be at a higher fre- 
quency than the system response, which is dominated by 
the simple pole. Examples are given in the next section 
that demonstrate the danger of blindly following a simplis- 
tic recipe for adjusting the frequency response. 

EXAMPLES OF FIFTH-ORDER 
SYSTEM BEVAVIOR 

It has been my experience that the bare minimum con- 
figuration capable of reproducing the behavior observed 
in real systems is that defined in the section on frequency 
response characteristics of the feedback amplifier, which 
includes the frequency response characteristics of the 
feedback amplifier and the lumped inductor representing 
the probe cable and the balance inductor. Examples of 
undesirable modes of operation are demonstrated below, 
and instructions are given on how to avoid them by 
appropriate adjustment of the anemometer controls. 

Offset Voltage of the Feedback Amplif ier  

The results of a systematic parametric study suggest that 
only two types of dominant pole s-plane trajectories are 
observed as the amplifier offset voltage Eqi is varied. The 
type of dominant pole trajectory depends on the nature of 
these poles as frequency response of the feedback ampli- 
fier fA --* ~" The effect of varying Eqi on the higher order 
poles is usually very small. 

Two examples that are representative of each type of 
behavior have been calculated. The frequency response of 
the feedback amplifier is assumed to be flat through to a 
simple second-order roll-off, that is, M 1 = 0 and M 2 = 
M 3 = M in Eq. (59). In each example the gain K and 
frequency response fA of the feedback amplifier are fixed 
at K = 1000 and fA ~ 79.6 kHz (i.e., M = 2 × 1 0  - 6  S) ,  

and the trajectories of the system poles on the s plane are 
traced out as the offset voltage E_ i is varied. Only quad- • q 
rant 2 of the s plane is shown because quandrant 3 is the 
mirror image of 2 reflected about the real axis. 

Initially, in the first example, at the point labeled 1 in 
Fig. 4, the system is dominated by a pair of complex 
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Figure 4. Calculated s-plane trajectories (second quadrant 
only) of dominant poles for fifth-order system with increasing 
offset voltage Eqi. Inductor values L b = 8 /zH, Lw = 1 /xH, 
amplifier frequency response fA = 79.6 kHz, and gain K = 
1000 are constant. Flow velocity U = 20 m/s.  Point fn = oo 
corresponds to model to Perry and Morrison [2] (i.e., M = 0) 
for conditions at point 1. Square-wave response for operating 
points 1-5 also shown. Line ~" = 0.6 shows optimum damping 
for complex poles. 

conjugate poles labeled A (with image B). There is also a 
simple pole labeled C and another two higher order 
simple poles D and E; D and E remain well behaved and 
beyond the frequency range of interest, and their trajecto- 
ries are not shown. Note that if the frequency response of 
the feedback amplifier were increased to infinity while the 
other parameters were held fixed, the system would still 
be dominated by a pair of complex conjugate poles, but 
they would be more damped as illustrated by the point 
labeled fA = ~ in Fig. 4. Increased damping of the domi- 
nant poles with increased F A appears to be a general 
property of constant-temperature hot-wire systems. This 
rather surprising property will be discussed in more detail 
later. Returning to conditions at point 1, as E_ i is in- 
creased, the complex conjugate poles A and ~ move 
toward the real axis, where they eventually meet and split 
to form two simple poles. These points are known as 
breakaway points in the system theory literature. As Eqi is 
further increased, the simple pole C, which has been 
moving toward the origin, now merges with the simple 
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pole B to form a new complex conjugate pair. However, 
pole A has continued to move closer to the origin, and 
therefore it dominates the system frequency response. 
This behavior is typical of systems in which the dominant 
poles remain complex as fA ~ oo. 

The square-wave response corresponding to the points 
labeled 1-5 are also shown in the figure. The square-wave 
response can be very misleading under these conditions. 
For example, for conditions corresponding to point 5 in 
Fig. 4, where E l =  100 mV, the ringing frequency is 
around 320 kHz, ~ut the simple pole A limits the system 
frequency response to about 3.6 kHz. The Bode diagrams 
and the step response for both offset voltage perturba- 
tions and velocity fluctuations corresponding to this situa- 
tion are shown in Fig. 5, and they clearly demonstrate why 
this type of system behavior is undesirable. 

An example of the second type of trajectory is shown in 
Fig. 6. For conditions corresponding to point 1, the domi- 
nant poles are also complex conjugates. However, in the 
limit fA ~ oo this system possesses all simple poles, and 
different s-plane trajectories are observed as the offset 
voltage Eqi is varied. With increasing E_i, poles A and B • . . t l  

remain complex conjugate whale simple pole C moves 
toward to the origin and eventually dominates the system. 
This behavior is typical of systems that possess only simple 
poles when fA ~ oo. Despite the different trajectories of 
the dominant poles, the end result is much the same as in 
the first example, and the system possesses similar unde- 
sirable Bode diagrams and step-response characteristics. 
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It turns out that for the third-order system considered 
by Perry and Morrison [2] (i.e., fA = o% see the earlier 
section entitled "Hot-Wire System with Inductance"), the 
type of behavior observed in the above examples can only 
be produced when the balance inductor L b is set to be 
very close to the value required for ac bridge balance, 
Lb0 = ( R c / R a ) L  w. For values of L b slightly less than this, 
the system is dominated by the usual complex conjugate 
pole pair. For values of L b slightly greater than Lb0, the 
poles rapidly cross over to the right half-plane and the 
system becomes unstable. However, in a real system the 
phenomena described above can be produced over a wide 
range of balance inductor settings by increasing the offset 
voltage Eqi. The only way to simulate these observations is 
to include the frequency response characteristics of the 
feedback amplifier. 

Balance Inductor 

As mentioned above, the analysis of Perry and Morrison 
[2] predicts instability when the balance inductor L b is in 
excess of the value required for ac bridge balance Lb0. 
However, systems with finite frequency response ampli- 
fiers are capable of maintaining system stability when the 
balance inductor exceeds the ac balance value Lb0. For a 
fixed amplifier frequency response fA it is possible to 
obtain significant improvements in the system frequency 
response f0 by suitably adjusting the offset voltage as L b 
is increased to values in excess of Lb0. In fact, having 
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Figure 5. Bode diagrams and step-response for point 5 in Fig. 4 where Eqi = 100 mV. (a) 
and (b) offset voltage perturbations es, (c) and (d) for velocity fluctuations u. 



128 J .H.  Watmuff 

control of  onl.y Eqi a n d  L b requires that L b > Lb0 to 
obtain the optimum system response. However, if L b is 
too large it may be impossible to obtain a satisfactory 
response by adjusting the offset voltage. 

Lb/Lbo  = 0.5 in the example shown in Fig. 6, and this 
configuration will serve as a baseline from which to illus- 
trate these effects. The s-plane trajectories for this con- 
figuration are reproduced in Fig. 7 along with those of  five 
other configurations in which the values of  Lb/Lbo are 
held fixed at 1, 2, 3, 4, and 5, respectively. For small values 
of  the offset voltage (e.g., Eqi < 2 mV), nearly all the 
configurations are unstable because the poles A (and B) 
are located on the right half-plane. As Eni is increased, 
these poles cross to the left half-plane and ~ e  simple pole 
C of  each system moves along the real axis toward the 
origin. For a given offset voltage, the initial position of 
pole C is further from the origin for smaller values of L b" 
However, this effect is pronounced only when E i is small. • q 
AS Eqi is increased, the location of  the simple poles C 
become more and more independent of  L b. For each L b, 
the best response will be defined to be when the charac- 
teristic frequency (i.e., I cr + j~ol/27r) of  poles A and B and 
simple pole C are equal. For L b < Lb0 , the best response 
occurs when poles A (and B) are overdamped. When 
L b > Lb0  , poles A (and B) never reach the optimum 
damping condition, so the best response occurs when they 
are underdamped. The locus of  the operating point with 
the best response that can be obtained by adjusting both 
the offset voltage Eqi a n d  the balance inductor L b is 
shown as a dashed curve. Opt imum damping (ff = 0.6) 
occurs when L b = 1.5Lb0. The square-wave response cor- 
responding to various operating points is shown in Fig. 8, 
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Figure 6. Same as Fig. 4 but with L b = 0.5/xH and L w = 0.1 
/xH• Despite the different s-plane trajectories, the end result 
is much the same as in Fig. 4 for large Eqi. 
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Figure 7. Same as Fig. 6 where L w = 0.1 ~H and Lbo = 
(Rc /R , )L  W = 1 /~H. Trajectories for Lb/Lbo = 0.5, 1, 2, 3, 
4, and 5 also shown. Dashed line shows locus of points where 
poles A, (B), and C have equal characteristic frequencies. 
H a v i n g  Eqi and L b as the only tunable parameters leads to 
an optimum response when L b ~ 1.5 Lb0. 

and these may help operators interpret anemometer  be- 
havior. In particular, note how there is no adjustment of 
Eqi that will increase the damping of system to a satisfac- 
tory level when L b is very large. An operator observing 
this type of square-wave response is advised to reduce the 
size of  the balance inductor. 

F requency  Response and Gain of  the 
Feedback Amplifier 

Intuitively it might be expected that the roll-off frequency 
of  the feedback amplifier would play a dominant role in 
determining the overall system frequency response. Analy- 
sis predicts that the frequency response of hot-wire sys- 
tems fo ~ ~ in the limits of fA --~ ~, K --* % Eqi -~ 0, 
and L b -~ Lb0. However, attempts to approach these lim- 
its in practice are invariably frustrated by the appearance 
of instabilities• For example, Smits and Perry [10] ob- 
served that hot-wire systems are prone to instabilities as 
L b -~ Lb0 because there is an extreme sensitivity to very 
small variations in L b . However, this observation was 
made for a third-order model where fA = oo. Systems with 
finite frequency response amplifiers have an optimum 
frequency response when L b > Lb0, and stability can be 
maintained even when L b is excessively large. Neverthe- 
less, one might suspect that the form of dominant pole 
instability described by Smits and Perry will eventually 
occur as fA is increased• However, the results of a system- 
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Figure 8. Square-wave response corresponding to a spread of points in Fig. 7. It is 
impossible to obtain a satisfactory response by adjusting Eqi when Lb/Lbo is excessive. 

atic parametric study suggests that other higher order 
instabilities are more likely to arise beforehand. Although 
there are still significant improvements to be found by 
increasing the frequency response and gain of the ampli- 
fier, its role is often more critical in determining the 
system stability by influencing the higher order poles. Two 
examples are given in Figs. 9 and 10. 

Calculated s-plane trajectories of a typical fifth-order 
system are shown in Fig. 9. Two cases are considered: 
increasing amplifier frequency response and increasing 
gain. The behavior of the dominant poles labeled A and B 
and the higher order poles labeled C, D, and E are shown 
separately in Figs 9a and 9b because of the wide range of 
values observed. In the first case, the amplifier gain K = 
1000, the offset voltage Eqi = 12.5 mV, and the induc- 

tances L b = 40 /~H and L w = 5 /zH are held constant. 
Note that the damping of the dominant poles A and B 
increases with increasing amplifier frequency response. As 
a matter of interest, the system frequency response (fo = 
17.8 kHz) is higher than the amplifier frequency response 
(fA ----" 15.9 kHz; i.e., M = 1.0 × 10-Ss) for conditions cor- 
responding to points labeled 1A in Fig. 9a. The system 
response increases rapidly with increasing amplifier fre- 
quency response but only to fo = 27 kHz for fA = 106 
kHz (i.e., M = 1.58 × 10 -6 S). Further increases in the 
amplifier frequency response have only a small effect on 
the dominant poles; for example, fo ---) 31 kHz for fA ---) oo 
(i.e., M ~ 0). As the amplifier frequency response is in- 
creased, two of the higher-order simple poles, C and D, 
move toward each other and merge to become complex 
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Figure 9. Calculated s-plane trajectories of system poles for 
increasing )CA (with constant K = 1000) and for increasing K 
(with constant fA ~ 79.6 kHz). Eqi = 12.5 mV, L w = 5 /zH, 
and L b = 40 /zH. (a) Dominant poles; (b) higher order 
poles. 

conjugates for fA ~ 106 kHz. This breakaway point is 
labeled 2A in Fig. 9b. The third simple pole, E, moves 
further away from the origin and exerts negligible influ- 
ence on the system. With further increases in the ampli- 
fier frequency response, the two higher order conjugate 
poles C and D move toward the imaginary axis and 
ultimately cross over to the right half-plane, resulting in 
instability. 
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Figure 10. Same system as Fig. 8 but with Eqi increased to 20 
mV. Calculated s-plane trajectories of system poles for in- 
creasing fA (with constant K = 1000) and for increasing K 
(with constant fA = 79.6 kHz). (a) Dominant poles; (b) higher 
order poles. 

Similar behavior is observed if the amplifier gain K is 
increased while the other parameters ar held constant as 
shown in Fig. 9b. Although the dominant poles move 
along slightly different trajectories, the endpoints K = 
and fA = ~ are very closely the same. The s-plane trajec- 
tories of the higher order system poles C and D are very 
similar as K ~ o0 and }CA ~ ~- 

In the previous example the dominant poles approach 
the complex conjugate third-order system values asymptot- 
ically as K ~ ~ and as fA --* ~. In the second example, 
shown in Fig. 10a, a different type of trajectory is ob- 
served. The dominant poles A and B move toward the real 
axis, where they meet and split to form two simple poles. 
These poles also approach the third-order system values 
asymptotically as K--* ~ and as )CA--* ~- This type of 
behavior is also consistent with the observation mentioned 
previously that relates the increased damping of the domi- 



nant poles to increased frequency response and gain of 
the feedback amplifier. Note that increasing fA or K 
beyond the point where the dominant complex poles are 
transformed into two simple poles actually reduces the 
overall system frequency response because pole A moves 
closer to the origin. The effects of increasing K and fA on 
the higher order poles are very similar to those in the 
previous example, despite the different trajectories for the 
dominant poles; that is, the poles C and D merge to 
become complex conjugate and move toward the imagi- 
nary axis. The higher order poles ultimately cross over to 
the right half-plane, resulting in system instability as shown 
in Fig. 10b). 

These examples demonstrate several important proper- 
ties of constant-temperature hot-wire systems. The effects 
of increasing K and fA are quite similar and have the 
unexpected effect of increasing the stability of the domi- 
nant poles. This appears to be true for all systems; not one 
contrary example has been found to this observation out 
of a large number of cases studied. It is the higher order 
poles that are responsible for the system instability under 
these conditions. It is often difficult to determine the 
damping of the higher order poles during a square-wave 
test even when they are grossly underdamped, because the 
oscillations can still decay rapidly compared to the re- 
sponse of the dominant poles. However, a small change in 
either K or fA from this point could result in instability. 
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This type of higher order instability can occur suddenly 
and without warning to the anemometer operator, who 
can only observe the square-wave response. 

Instabil i t ies  w i th  Submin ia ture  Wires  

Some workers (e.g., Miller et al. [11]) have reported frus- 
tration with instabilities when using subminiature hot 
wires. One way of comparing system behavior with differ- 
ent diameter wires is to nondimensionalize the poles and 
zeros with the lumped time contant of the wire, T w. 
Alternatively, the coefficients of s n in the system transfer 
functions can be made nondimensional by division by 

2 n RwT,~. The relative positions of the nondimensional poles 
and zeros will be the same for systems in which Ra/R w, 

o 2 
Rb/Rw, RJRw,  R/R,,,, Lb/RwTw, Lw/RwTw, and M / T  w 
are equivalent. 

For a given l /d  ratio, Rg Gt d -1, so that Rg for a 
typical subminiature wire (e.g., d = 0.5 /~m) is about an 
order of magnitude greater than for a more conventional 
wire (e.g., d = 5 /.~m). T w is reduced for smaller diameter 
wires but by a smaller factor than the length-scale ratio 
because the Reynolds number is also reduced. Conse- 
quently, the product RwT.,, becomes larger as the wire is 
made smaller. This leads to a beneficial reduction in the 
size of the nondimensional bridge inductance Lb/RwT . 
and Lw/RwT w. Values of Ra/Rw, Rb/Rw, RJRw,  and 
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Figure 11. Calculated s-plane trajectories of the dominant poles for a range of wire diameters with the same 
length-to-diameter ratio. R b has been adjusted to closely give the same resistance ratio, that is, R = 2. Egi = 5 mW, 
L b =0.5/xH, and L ,  = 0.1 /xH. Higher values of K and fA are required for stability as the wire diameter is reduced. 
(a) Increasing fA (with constant gain K = 1000). (b) Increasing K (with constant fA = 79.6 kHz). 
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0 2 
R / R  w can be altered by adjusting the bridge resistors 
and the offset voltage. Finally, the frequency response of 
the feedback amplifier must be increased to obtain the 
same value of M / T  w. 

If fg  is fixed, then M / T  w can be considerably larger 
with subminiature wires. This is especially significant be- 
cause it has been demonstrated that the dominant poles 
become less damped as f a  is reduced. If fA is tOO small, 
then the dominant poles may be unstable. Figure 11 shows 
the effect of reducing the wire diameter while maintaining 
the same length-to-diameter ratio (1:200) and the same 
resistance ratio R = 2 (by increasing Rb).  A t  the lowest 
values of fA and K, the dominant poles are unstable for 
small wire diameters. As either fA or K is increased, these 
poles move to the left half-plane and the systems become 
stable. The effect on the higher order poles is similar to 
the examples shown in Figs. 9 and 10. 

The wire current required for a given resistance ratio is 
smaller for subminiature wires, so the static output volt- 
age at the top of the bridge is considerably less than that 
obtained with conventional wires. Therefore, increasing 
R a and R c to obtain the same values of R J R  w and 
R J R  w, as suggested above, would also help to restore the 
size of the output signal. However, this is not recom- 
mended because increasing R~ and R~ tends to reduce 
the damping of the dominant poles as shown in Fig. 12. 
The largest values of R J R  w and R c / R  w correspond to 
the values used for the d = 5.0 Izm wires in earlier 
sections. An even higher frequency response amplifier 
would be required to obtain a satisfactory system response 
under these conditions. 

I I I I I | I 

[] 500 f~ 
[] 600 ~" 
[] 700 

800f~ 

• 100 F2 
[] 200 
O 300 
• 400 f2 

8.0 

7.0 

6.0 ,-~ 
"7o~ 

5.0 
% 

4 . 0  "~ 

.~,.~ 

2.0 V 900 
A 1000 f~ 

1.o Ra/Rc = 1 0  
| | ! I I I I I I 

" f t . 0  " 7 . 0  " 6 . 0  " S o 0  - 4 . 0  - 3 . 0  - 2 . 0  - |  . 0  
6 

CY (x 10 s") 

Figure 12. Increasing the upper bridge resistances R a and 
R c causes dominant poles to become less damped. Subminia- 
ture platinum filament of length 0.1 mm and diameter d = 0.5 
/£m (R = 80 ohms) Largest values of R J R  w and R c / R  w g . 
are apprommately the same as for the d = 5 ~m wires in 
Figs. 4-11. L b = 8 / . t H ,  L w = 1 /xH, R b = 1.6 kohm, and 
the amplifier frequency response fA "~ 1.6 MHz, gain K = 
1000, and offset voltage E q i  = 5 mV are constant. Air veloc- 
ity is 20 m/s.  

Insufficient frequency response of the feedback ampli- 
fier is the most likely cause of system instability when 
using subminiature wires. 

A PRACTICAL DESIGN 

A new high-performance constant-temperature hot-wire 
anemometer has been built based on the ideas discussed 
in this paper. The first stage of the cascade is a high- 
performance instrumentation amplifier. The offset voltage 
is introduced into a buffer amplifier, which is followed by 
two variable gain stages. Two single-pole low-pass filters 
with variable roll-off frequency are located after the vari- 
able gain stages. Front panel access is provided for control 
of these parameters. The maximum large signal open-loop 
gain-bandwidth product of the feedback amplifier cascade 
has been measured in excess of 1 0  9 . The instrument also 
contains a square-wave generator for electronic tuning 
purposes as well as a "buck and gain" output amplifier, 
which is also fitted with a simple variable filter for condi- 
tioning the signals. In the standard configuration a tun- 
able inductor is provided for cable compensation and the 
operating resistance is set via a thumbwheel switch. The 
anemometer may be optionally configured with a symmet- 
rical bridge (i.e., R a = R C) and the thumbwheel switch 
and balance inductor removed from the bridge. The bal- 
ance resistor R b is then located at the end of a length of 
coaxial cable that has been carefully chosen to match the 
probe cable. This configuration should offer superior com- 
pensation to the simple lumped inductor (by using an 
actual length of cable instead). 

A detailed description of the design is given in [12]. 
Information such as fabrication drawings, parts list, speci- 
fications for a printed circuit board, and the companies 
responsible for fabrication and assembly are provided. 
Sufficient details are provided to enable the instrument to 
be constructed by others. 

PRACTICAL SIGNIFICANCE/USEFULNESS 

The constant-temperature hot-wire anemometer is now 
used routinely in complex industrial flows such as the flow 
behind turbine blades, where stable high-frequency opera- 
tion is essential. The information contained in this paper 
should act as a useful guide for achieving this objective. A 
flat frequency response is required in all flows to avoid 
biased data. The accuracy of measurements in a wide 
variety of flows will be increased if the undesirable modes 
of operation demonstrated in this paper are avoided. 

CONCLUSIONS 

Doubts concerning the flatness of the frequency response 
will always remain until there is some direct experimental 
method for subjecting the instrument to accurately known 
velocity fluctuations over the operating frequency range. 
The primary source of the uncertainty lies in the behavior 
of the filament, which has not been considered here. It is 
well known that the filament cannot be considered to be a 
straight infinitely long circular cylinder with a uniform 
circumferential and spanwise surface temperature distri- 
bution. The behavior of a real filament is more compli- 
cated because heat waves propagate along its length. 
Thermal expansion cause it to develop a bow and to 
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behave like a buckled column. The bow deflects when 
loaded laterally, and the orientation appears to have an 
influence on the heat transfer coefficient of the filament. 
Perry [5] examined these and other aeroelastic and ther- 
moelastic effects, which he proposed as being the source 
of the "ultimate uncertainty." However, other causes of 
deviation from the flatness of the frequency response can 
be identified, as shown in this paper, and these can be 
controlled if proper attention is given to the operation of 
the instrument. 

The work described in this paper was performed over a period of 
several years. As mentioned in the introduction, the initial analysis 
was formulated while I was working at the Gas Dynamics Laboratory 
at Princeton University. The analysis was further developed while I 
was supported by the Center of Turbulence Research at Stanford 
University and by the MCAT Institute at NASA Ames Research 
Center. The design and development of the hardware was also 
supported by the Fluid Mechanics Laboratory Branch at NASA 
Ames Research Center. 
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NOMENCLATURE 

polynomial for zeros for amplifier j, 
dimensionless 
polynomial for poles of amplifier j, 
dimensionless 
balance capacitor, pF 
lumped capacitor for modeling probe 
cable capacitance, pF 
temperature coefficient of resistivity 
of wire, K-  1 
diameter of wire filament, p.m 
dc output of nth amplifier, V 
dc component of offset voltage, V 
small perturbation input voltage, V 
small perturbation output voltage, V 
small perturbation offset voltage, V 
small perturbation voltage across wire 
arm of bridge, V 
small perturbation voltage across 
wire, V 
normalized frequency response of 
wire for velocity, dimensionless 
frequency response of feedback 
amplifier, s-  1 
frequency response of system, s-1 
dc bridge current, mA 
bridge current fluctuations, mA 
overall gain of feedback amplifier, 
dimensionless 
gain of first equivalent amplifier, 
dimensionless 
gain of second equivalent amplifier, 
dimensionless 
gain of transfer function for offset 
voltage, dimensionless 
thermal conductivity of fluid, 
W/(mK) 
gain of transfer function for velocity, 
dimensionless 

Lb 
Lbo 

Lw 

l 
M, M1, Mz, M3 

Nu 
P(s) 

Qe(s) 

Qu(s) 

R 

Ra, Rb, Rc 

Rg 
Rw 

Rwa 

Su 

s 

rw 
U 
u 

z,,(s), Zb(s), Z~(s) 
Zp(s) 

Z~(s) 
Z~(s) 

Zwire(S) 
Zl(S),  Z2(S), Z3(s)  

Ot 
Or 

o9 

balance inductor, ~H 
L b for ac balance [--- (Rc/Ra)Lw], 
g H  
lumped inductor for modeling probe 
cable inductance, /xH 
length of wire filament, /~m 
time constants of the feedback 
amplifier, s 
Nusselt number, dimensionless 
polynomial for system poles, 
dimensionless 
polynomial for system zeros for offset 
voltage perturbations, dimensionless 
polynomial for system zeros for 
velocity perturbations, dimensionless 
resistance ratio (=  Rw/Rg), 
dimensionless 
resistive components of Za(s), Zb(S), 
and Zc(s), ohms 
cold resistance of wire, ohms 
hot resistance of wire, ohms 
asymptotic value of R w as Eqi ~ 0, 
ohms 
bridge imbalance (=  RwR ~ - RaR b) 
ohm ~ 
de sensitivity to velocity fluctuations, 
V/(ms) 
laplace variable (=  or + jw), s -1 
lumped time constant of hot wire, s 
steady component of velocity, m / s  
small perturbation velocity, m / s  
bridge impedances, ohms 
impendance in parallel with wire and 
Zs(s), ohms 
impedance in series with wire, ohms 
total impedance of wire arm of 
bridge, ohms 
impedance of wire, ohms 
polynomials appearing in system 
transfer functions, dimensionless 

Greek Symbols 
= Rw(R w - Rg)/Rg, dimensionless 
real component of s, s-1 
imaginary component of s, rad/s  
factor in damping of complex 
conjugate poles given by Ts ~ + 
2~ Ts + 1, dimensionless 

REFERENCES 

1. Freymuth, P., and Fingerson, L. M., Electronic Testing of Fre- 
quency Response for Thermal Anemometers, TSI Quart. 3(4), 
1977. 

2. Perry, A. E., and Morrison, G. L., A Study of the Constant 
Temperature Hot-Wire Anemometer, J. Fluid Mech. 47, 577-599, 
1971. 

3. Watmuff, J. H., Some Higher-Order Effects in the Behaviour of 
Constant Temperature Hot-Wire Anemometer Systems, ASME 
Symp. Thermal Anemometry, Cincinnati, OH, June 1987. 



134 J . H .  Watmuff  

4. Smits, A. J., Perry, A. E., and Hoffman, P. H., The Response to 
Temperature Fluctuations of a Constant-Current Hot-Wire 
Anemometer, J. Phys. E: Sci. Instr. 11, 909-914, 1978. 

5. Perry, A. E., Hot-Wire Anemometry, Clarendon Press, Oxford, 
1982. 

6. Ossowski, X. X., Constant Temperature Operation of the Hot- 
Wire Anemometer at High Frequency, Rev. Sci. Instr. 19, 
881-889, 1948. 

7. Davis, M. R., and Davies, P. O. A. L., The Physical Characteris- 
tics of Hot-Wire Anemometers, ISVR Tech. Rep. 2, Institute of 
Sound and Vibration, Southampton University, 1968. 

8. Freymuth, P., Feedback Control Theory for Constant-Tempera- 
ture Hot-Wire Anemometers, Rev. Sci. Instr. 38, 677-681, 1967. 

9. Wood, N. B., A Method for Determination and Control of the 

Frequency Response of the Constant-Temperature Hot-Wire 
Anemometer, J. FLuid Mech. 67, 769-86, 1975. 

10. Smits, A. J., and Perry, A. E., The Effect of Varying Resistance 
Ratio on the Behaviour of Constant-Temperature Hot-Wire 
Anemometers, J. Phys. E: Sci. Instr. 13, 451-456, 1980. 

11. Miller, I. S., Shah, D. A., and Antonia, R. A., A Constant 
Temperature Hot-Wire Anemometer, J. Phys. E: Sci. Instr. 20, 
311-314, 1987. 

12. Watmuff, J. H., A High Performance Constant Temperature 
Hot-Wire Anemometer, NASA Contractor Rep. 177645, 1994. 

Received August 8, 1994; revised December 16, 1994 


