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Abstract-Numerical solutions for laminar heat transfer of a non-Newtonian fluid in the thermal entrance 
region of a square duct are presented for three thermal boundary conditions. The power-law model 
character&s the non-Newto~~ behavior. The numerical resufts show that for each flow behavior index the 
Nusselt number decreases from a maximum value at the entry plane to a limiting value when both velocity 
and temperature profiles are fully developed. The results are compared with the available solutions for 

Newtonian fluid and excellent agreement is found. 

NOMENCLATURE 

half width of square duct ; 
specific heat of the fluid at 
constant pressure; 
hydraulic diameter of the duct, 
D, = 4 (cross-sectional area)/ 
perimeter ; 
“Darcy” 01 “large” friction 

factor, ( - dp/~),~D~(~~~2) 
[dimensionless] ; 
Graetz number, Re,Pr/(x/2D,,) 
[dimensionless] ; 
dimensionless invariant, defined 
by equation (4); 
indices, indicating positions in X, Y 
and Z directions respectively; 
thermal conductivity of fluid; 
parameter in power law stress strain 
relationship, consistency index; 
flow behavior index, parameter in the 
power law model [dimensionless] ; 
fluid static pressure; 
Nusselt number, for fully developed 
flow, hD,/k [dimensionless] ; 

N%( P local Nusselt number for the thermal 
entrance region : the second 
subscript in ( ) designates the 
associated thermal boundary 
condition--the local Nusselt 
number is an average value with 
respect to perimeter at any 
given cross section x ; 

Nsm logarithmic mean Nusselt number 
for @ boundary condition ; 

pr, Prandtl number, pc,u,ajkRe, 
[dimensionless] ; 

, 
4, inljut heat flux per unit length 

through the walls of one quadrant 
of the duct : 
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Rem 
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u, 

input heat flux per unit area 
through the duct wall; 
Reynolds number based on duct half 
width, (pu”u~-“)/m [dimensionless] ; 
Reynolds number for the duct based 
on hydraulic diameter, (pDiui_“)/m 
[dimensionless] ; 
dimensionless local viscosity, 
defined by equation (3); 
dimensionless fluid temperature; 
= (t - t,)/(t, - t,) for @ 
boundary condition ; = (t - tJ(q’/k) 
for @ boundary condition; 
= (t - t,)/(q”u/k) for @ 
boundary condition ; 
axial fiuid velocity in duct ; 
average fluid velocity in duct; 
fluid axial velocity component in the 
X direction, u/u, [dimensionless] ; 

x, y, z, rectangular Cartesian coordinates ; 
X, 

x*, 

Y, z, 

K 

dimen~on~e~ axial coordinate, 

(x/M& ; 
dimensionless axial distance, 
X* = l/Gz = (x/D,,)/(ZRe,,Pr); 
dimensionless transverse 
coordinates, Y = yfa, Z = z/a; 
relaxation parameter. 

Greek symbols 

PT fluid density; 

local disc fluid viscosity 
coe%cient at a point in the 
square duct ; 

6, prefix denoting a Werence. 

Subscripts 

b, bulk mean ; 
e, initial value at x = 0 

(at duct entrance); 
fd, fully developed laminar flow ; 
m, mean ; 
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fff, referring to @ boundary (2) Constant heat input per unit axial distance and 
condition ; constant peripheral wall tem~ature at each axial 

ff2, referring to @ boundary position, with wall temperature varying axially only; 
condition ; referred to as @ boundary condition. 

T, referring to @ boundary (3) Constant heat input per unit axial distance and 
condition ; per unit peripheral distance; referred to as @ 

w, wall. boundary condition. 

I. INTRODUCITdN 
The channel configuration and coordinate system 

are shown in Fig. 1. The origin of the coordinate 
INDUSTRIE.S in which non-Newtonian fluid behavior is 
encountered include those dealing with rubber, 
greases, polymer solutions or melts, pharmaceuticals, 
paints and biolo~cal fluids. An understan~ng of such 
non-Newto~an fluid flow behavior will contribute 
substantially to the solution of a variety of problems. It 
is important to have a knowledge of the characteristics 
of the forced convective heat transfer in steady laminar 
non-Newtonian flow through non-circular ducts to 
exercise a proper control over the performance of the 
heat exchanger and to economise the process. yL---2a--c( _ 

Laminar flow solutions for Newtonian fluids were 
compiled by Shah and London [l] and Porter [2] in 
an exhaustive manner. The theoretical laminar flow 
solutions for heat transfer and flow friction for twenty 
one straight ducts and four curved ducts were com- 
piled by the former while the latter compiled the 
laminar flow solutions for Newtonian as well as non- 
Newtonian fluids with constant and variable fluid 
properties. While Porter considered a very general 
problem, the report by Shah and London is much 
more exhaustive in the more limited area. 

FIG. 1. Configuration and coordinate system for square 
duct. 

For Newtonian laminar heat transfer, Montgomery 
and Wilbulswas [3] and Lyczkowski et al. [4] solved 
the thermal entry length problem for the rectangular 
ducts by using explicit finite difference method. The 
effects of axial heat conduction, viscous dissipation 
and the thermal energy sources within the fluid were 
neglected. &at-transfer solutions for laminar flow of 
non-Newtonian fluids in non-circular ducts other than 
parallel plate geometry [S, 6-J are not available in the 
literature. 

system is at the bottom left corner of the duct. The 
application of appropriate s~etry conditions at the 
cross-section center lines permits the restriction of the 
solution to one quadrant of the square duct. For the 
hydrodynamically developed flow, there is only one 
nonzero component of velocity u, and the constitutive 
equations of motion reduce to a single nonlinear 
partial differential equation of the form 

&;)+&g)+g=o (1) 

where p = m[(&#y)* + (d~/~z)~J~~-~~~~, local vis- 
cosity at a point in the quadrant. 

In terms of ~ensionle~ variables and parameters, 
equation (1 f reduces to 

In this paper, the forced convective heat-transfer 
information as a function of the pertinent non- 
dimensional numbers for three boundary conditions, 

$wtoF; ,zin a%u;;e I;;euted for the non- 

-&(s~)+-&(s~)+$$=O. (2) 

The function S is a variable viscosity and is defined in 
terms of I,, the second invariant of the irrotational 
strain-rate tensor. The power law model used in this 
work to describe the stress strain-rate relation for 
pseudoplastic fluids is given by 

2. GOVERNING EQUATIONS 

The applicable dimensionless momentum and 
energy equations for the non-Newtonian case with 
appropriate boundary conditions are outlined below 
to describe the heat-transfer characteristics through 
the straight square duct. 

where 

S = jf2-l)iZ (3) 

(4) 

Three representative heat-transfer modes as sugges- 
ted by Irvine [7] for the rectangular channel case are 
considered. The boundary conditions on the energy 
equation present a problem for square duct. The three 
cases considered are: 

(1) Constant wall temperature both peripherally 
and axially ; referred to as @ boundary condition. 

Equation (2) is subject to the boundary condition: 

atthewalls,Y=OandZ=O:U=O (5) 

and the constraining equation: 

UdYdZ = 1. (6) 
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Equation (6) can be regarded as indirectly relating the 
value offaRe, to the parameter n, the flow behavior 
index, which appears in the constitutive equation of 
motion, equation (2). 

The dimensionless governing boundary-layer energy 
equation for constant property flow, neglecting axral 
conduction and viscous dissipation, is 

U$=;[Z+$]. (7) 

The boundary condition for @ , @ and @ 
cases are given as follows : 

Case 1: 
T(0, Y, Z) = 1 

T(X, 0, Z) = 0 

T.(X, Y, 0) = 0 

Case 2: 
T(0, Y, Z) = 0 

[er;iOdY+l.‘;lOdZ= 1 

;(x,l,z)=o 

%(X,Y,l)=O. 

Case 3 : 

T(0, Y, Z) = 0 

$(X,O,Z) = 1 

$X,Y,O)=l 

g(x,l,z)=o 

fg(X,Y,l)=O. 

Q-9 
(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

3. FINITEDIFFERENCE REPRESENTATIONS 
AND METHOD OF SOLUTION 

The numerical solution of equation (7) is charac- 
terized by the replacement of continuous derivatives 
by finite difference representations defined at the nodes 
of a three dimensional rectangular mesh superimposed 
on one quadrant of a cross-section of the duct. 

The indices (i,j, k)indicate positions in the X, Y and 
Z directions respectively. The origin is designated by i 
= j = k = 1. The axial mesh spacing is h,. The cross- 
section center lines, Y = 1 and Z = 1, are designated 
by j = N + 1 and k = N + 1 respectively. The trans- 
verse mesh spacings h, and h, are both equal to l/N, 
where N is the number of increments between the wall 

and center-line across the quarter duct. The values of 
U and T are denoted by the following notation. 
/G?(j, k) denotes the variable /‘? at a point in the mesh (i 
+ l,j, k) and fll(j, k) denotes the variable /I at (i, j, k). 
For example, in T2(j, k), the index j gives the position 
relative to origin in the Y direction and the second 
index k gives the position in the Z direction. 

The dimensionless fully developed velocity profile, 
U, for each flow behavior index, n, is obtained from the 
marching solution described in an earlier paper of the 
authors [8]. The following finite difference repre- 
sentations are developed with the notation described 
above. 

LYT T2(j,k)-Tl(j,k) 

ax= k, 
(22) 

8T T2(j+l,k)-2T2(j,k)+T2(j_l,k) 
-= 
aY2 h: 

(23) 

a2T T2(j,k+l)-2T2(j,k)+T2(j,k-l) 
s= 

h,Z 
(24) 

The finite difference form of energy equation is 

UN, k) 
T2(j, k)- Tl(j, k) 

hx 

1 T2(j+l,k)-2T2(j,k)+T2(j_l,k) 

=pr [ h: 

+ T2(j, k+l)-2T2Cj, k)+ T2(j, k- 1) 

k f I. (25) 
The variable Tl is known while the variable T2 is to 

be determined at axial position (i + 1). The iterative 
procedure employed is described for each of the 
thermal boundary conditions. The iterative scheme for 
the solution of equation (25)is extrapolated Liebmann 
method. The principal variable for equation (25) at (i 
+ 1, j, k) is the axial temperature at that point. 

The numerical solution, obtained by using the 
extrapolated Liebmamr method [9] is an iterative 
procedure requiring initial estimates of the variables at 
each node. The results from the preceding axial 
position are substituted as an initial guess for the 
variables at (i+ 1) position. The iterative scheme of the 
principal variable (25) is 

(1+1) (1) 
T2(j, k) = T20’, k) 

(1) (1+1) 
-W[d,(T2(j+l,k)+T20’-l,k) 

(1) (1+1) 
+T2(j,k+l)+T2(j,k-1)) 

(1) 
- d, T2(j, k) + d,] 

for j=2,3,...,N+l 

and k=2,3,...,N+l 

(26) 
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where 1 refers to the iteration counter, W is the 
relaxation parameter, and, 

di = -hd(Prh,h,), (27) 

d, = 4d, - iJZ(j, k), (28) 

and 

dJ = - UZ(j, k)Tl(j, k). (29) 

Equation (26) is used to solve for each value of T2(i, k) 
in the field, repeating in some regular order until the 
values of T2(j,k) on successive iterations agree to 
within the desired accuracy, equal to, 10e6. 

(1$-l) (1) 

for j=2,3 ,..., N+l, and 

k=2,3 ,..., N+l. 
(30) 

A step h, downstream is then taken and the above 
process is repeated. Convergence of the iterative 
procedure is obtained by underrelaxation, the re- 
laxation parameter being 0.75. 

Stability and rate of convergence are functions of the 
relaxation parameter, the mesh size (axial as well as 
transverse), the axial velocity profile and the nature of 
the estimated temperature profile. The results of the 
numerical experiments indicate that the finite differ- 
ence equations of the model are consistent and stable. 

(a) @ Condition 
After the dimensionless temperature distribution is 

obtained, the bulk mean temperature, ?& the local 
Nusselt number, Nu,,r, and the logarithmic mean 
Nusselt number, Num,r, are computed at the axial 
position in the following way. 1 1 

G= JJ VT2dYdZ. (31) 

Equation (31) is eva;ua:ed using Simpson’s Double 
Integral Rule. Based on the energy balance on the duct 
length of 6x, the local Nusselt number .Nu,,, is 
presented in terms of the fluid bulk mean temperature 
gradient along the flow length in equation (32). 

Na,,r = -(WT,)(dT,/dX). (32) 

The local Nusselt number Nu,,~ can also be expressed 
in terms of temperature gradient at the wall as, 

(33) 

The numerical values obtained for Nu,,= from 
equations (32) and (33) agree excellently up to first 
four digits. 

N%,T = y Pr ln(l/T,). (34) 

Even though Prandtl number appears in the dimen- 
sionless energy equation explicitly, for all values of 

Prandtl number, the thermal entry solution, that is, the 
variation of predicted mean Nusselt number with 
Graetz number, obtained is the same. But the effect of 
Prandtl number is included in the parameter Graetz 
number which is defined as Pr/(X/4). 

(b) @ Condition 
The wall temperature is assumed constant around 

the perimeter at any given cross-section and to vary 
only with distance along the duct. At each step of the 
computation, a new value of walI temperature is 
computed from the boundary condition of equation 

(14). 
The finite difference form of the boundary condition, 

equation (14) is explained below. Expressing only the 
gradients in finite difference form gives 

J 1 3T2(j, l)-4T20’, 2)+T20’, 3)dy 

0 2h, 

+  J ’ 3T2(1, k)-4T2(2, k)+ T2(3, k) d;5 = 1 

0 2hY 

(35) 
Now, for @ boundary condition, by assumption, 

T2(j, 1) = T2(1, k) = T,j,+, (36) 

where 2, is the dimensionless wall temperature. 
Rearranging and solving for T,, and noting that h, 

= h, and symmetry across the diagonal exists, 

T,.l,+, =; J 
I 

T2(2, k)dZ 
0 

1 ’ 
-- J 3 0 

T2(3,k)dZ+;. (37) 

Note that the wall temperature appears in the 
integrals. Solving for T,f,+ , , using the finite difference 
form of Simpson’s l/3 rule for integrals, equation (37) 
reduces to 

‘C-Ii+ I i T2(2,k) 
k=2,4 

N-l 

-1-2 c T2(2,k)+T2(2,N+l) 
k=3.5 1 

; T2(3,k) 
k=2,4 

N-i 

+2 f: T2(3,k)+T2~3,N~l) . 
k=3,5 1 

(38) 

After each sweep through the field, the wall tempera- 
ture T, is computed using equation (38). Successive 
sweeps through the cross-section are taken until all 
values of T2(j, k) change by less than 10m6 on two 
successive iterations. The solution is then considered 
converged and another h, step taken downstream. 

The peripheral average local Nusselt number 

WC.“! and the mean Nusselt number NQ,, are 
evaluated in the following way. 
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1.0 
Nu,Jl* = ~ 

K.-T,) 

. 

(39) 

(c) @ Condition 
The energy equation in finite difference form is given 

by equation (25). The finite difference forms of the 
boundary conditions, equations (18) and (19) are 
explained below. Equation (18) in difference form is 
expressed as 

3T2(1, k)-4T2(2, k)+T2(3, k) = 1 o 
. . 

2hY 
(41) 

Equation (19) in difference form is expressed as 

3T2(i,l)-4T2(j,2)+T2(j,3)=10 
. . 

2hz 
(42) 

Equations (41) and (42) are solved for T2(1, k) and 
T2(j, 1) respectively. 

T2(j,1)=#hz+$T2(j,2)-+T20’,3) (43) 

T2(1, k) = $h,++T2(2, k)-$T2(3, k) (44) 

for j= 2,3,...,N+l 

and k=2,3 ,..., N+l. 

The solution method is now similar to that ex- 
plained already. The wall temperatures along with the 
interior temperatures are unknown. The values at axial 
position i are taken as an initial guess and the 
equations (43) and (44) are solved along with equation 
(26). After each sweep through the field, the new wall 
temperatures are computed from equations (43) and 
(44). Successive sweeps through the cross-section are 
taken until all values of T2(j, k) change by less than 
10e6 on two successive iterations. 

The peripheral average wall temperature T,, the 
local Nusselt number Nu,,~* and the mean Nusselt 
number Nu,,.,~ are evaluated after the solution has 
converged at each axial step in the following way. 

5 

1 

T,. = T2(j, 1)dY 
0 

=; 

[ 
T2(1,1)+4 ; T2(k, 1) 

k=2.4 

N-1 -I 

+ -1. T2(k,l)+T2(N+l,l) 1 (45) 
k=3.5 J 

2.0 
Nu,,,, = - 

(L-T,) 

Nu,,,"~ = f NuxsH2 dX. (47) 

4. RESULTS AND DISCUSSION 

Limiting Nusselt numbers 
The limiting Nusselt number Nu,, Nu,, and Nu,, 

for Newtonian fluids are presented in Table 1 with the 
results of other investigations. 

Table 1. Nu,, Nu,, and Nu,, for Newtonian 
fluids-square duct 

Investigation 

Clark and Kays [lo] 
Lyczkowski et al. [4] 
Schmidt and Newell [ 1 l] 
Shah and London [l] 
Montgomery and 
Wibulswas [3] 
Present numerical 

solution 

Nu, Na,, Nu,, 

2.890 3.630 - 
2.975 - 3.230 
2.970 3.599 - 
2.976 3.608 3.091 

2.650 3.600 - 

2.975 3.612 3.095 

The excellent agreement obtained with the limiting 
Nusselt numbers for Newtonian fluids [1] for @ , 
@ and @ conditions establishes the credentials 
and validity of the numerical marching technique 
employed in the present investigation. Further, the 
accuracy obtained is sul%ient to warrant the use of the 
scheme to attack the thermal entry problems for 
pseudoplastic fluids also with a high degree of con- 
fidence. 

For hydrodynamically and thermally developed 
laminar flow of non-Newtonian fluid in a square duct, 
the limiting Nusselt numbers Nu,, Nu,, and Nu,,, 
when all four walls are transferring heat, are presented 
in Table 2 for 0.5 < n < 1.0. 

Table 2. Nusselt numbers for fully developed velocity and 
temperature profiles in a square duct for pseudoplastic fluids 

Flow behavior index, n Nu, Nu,, Na,, 

1.0 2.975 3.612 3.095 
0.9 2.997 3.648 3.106 
0.8 3.030 3.689 3.135 
0.75 3.050 3.713 3.152 
0.7 3.070 3.741 3.171 
0.6 3.120 3.804 3.216 
0.5 3.184 3.889 3.274 

It is observed from Table 2 that Nu, for the case n 
= 0.5 is 3.184 and is 7% more than the solution for 
Newtonian fluids. Similarly, for n = 0.5, Nu,, and 
Nu,, are 7.7 and 5.8% more than the solutions for 
Newtonian fluids respectively. 

For Newtonian fluids, the result for Nu, is 2.975. 
This value is 17.6% less than that for H1 condition 
and 3.9% less than the solution for 8 HZ condition. 
The result for @ condition is 14.3% less than the 
solution for @ condition. 

For n = 0.5, the result for Nuris 18.1% less than the 
solution for @ condition and 2.7% less than that for 

@ condition. The result for @ condition is 
15.8% less than the solution for @ condition. 
Similar behavior is observed for 0.6 < n < 0.9. 
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FIG. 2. Square duct-Nu,,,, Nu~,~, and Nu,.,, for fully 
developed velocity profile : n = 1 .O. 

Thermal entry solutions 
For hydrodynamically developed flow, the local and 

mean Nusselt numbers as functions of Graetz number, 
0 < Gz < 200, in square duct are presented for 0.5 < n 
< 1.0 for 0, @ and @ conditions. 

Nu,,r, Nu,,“, and Nu, H2 as functions of Graetz 
number ‘are presented in F&s. 2 and 3 for n = 1.0 and 
0.5 respectively. The numerical results of Montgomery 
and Wibulswas [3] for @ and @ boundary 
conditions for Newtonian fluid are compared with the 
present numerical solution in Fig. 2. 

The effect of flow behavior index, n, on Nusselt 
numbers for @ , @ and @ boundary con- 
ditions is shown in Fig. 3. The Nusselt number 
increases with decreasing value of flow behavior index. 

(a) @ Condition 

WT and Nu,,~ as functions of Graetz number are 
presented in Tables 3 and 4 respectively for 0.5 < n 
< 1.0. It is observed from Table 3 that the Nusselt 
number Nu,,~, in the range of 0.5 to 1.0 for the flow 

60- 

z’ - 

5.0 - 

10 2025 4050 100 150 200 
GZ 

Frc;. 3. Square duct-Nu,,,. Nu,,,, and Nu,,~~ for fully 
developed velocity profile; n = 0.5 and 1.0. 

behavior index considered, has a maximum value at 
the entry plane of the duct and decreases as the Graetz 
number decreases. Nu,,~ approaches the value of the 
limiting Nusselt number Nu,, for Graetz number less 
than 10. 

as a function of Graetz number is shown in 
Fi[F&d is compared with the results of [3] and [4]. 
Extremely good agreement is found with the results of 
Lyczkowski et al. [4] for X* > 0.075 and the results 
are identical for X* > 0.09375. There is an excellent 
agreement with the numerical results of [3] for Nu,,~ 
and Nu,,r from Graetz number 200 down to 20. 
However, for Gz < 10, the solution of [3] seems to be 
diverging rather than attaining a constant and steady 
value which is not the case in the present solution. 
Shah and London [l] observed that the results of 
Lyczkowski et al. [4] are more accurate. 

(b) @ and @ conditions 
NuxsH,, Nu,,“,, Nu,,“~ and Nu,,“~ as functions of 

Graetz number are presented in Table 5-8 respectively 

2.5 
5 10 20 25 40 50 100 150 200 

Gz 

FIG. 4. Square duct-Nu,,, for fully developed velocity profile ; n = 1 
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Table 3. Nu,,, as functions of Gz and n for fully developed velocity profiles 

Flow behavior index, n 

Gz 1.0 0.9 0.8 0.75 0.7 0.6 0.5 

0 2.975 2.997 
10 2.976 3.003 
20 3.074 3.100 
25 3.157 3.182 
40 3.432 3.458 
50 3.611 3.636 
80 4.084 4.112 

100 4.357 4.386 
133.3 4.755 4.787 
200 5.412 5.448 

3.036 
3.132 
3.214 
3.490 
3.670 
4.149 
4.424 
4.827 
5.492 

3.050 3.070 3.120 3.184 
3.055 3.076 3.126 3.189 
3.151 3.171 3.220 3.283 
3.233 3.253 3.302 3.365 
3.510 3.531 3.581 3.646 
3.690 3.711 3.763 3.830 
4.170 4.193 4.248 4.321 
4.446 4.470 4.528 4.604 
4.850 4.876 4.937 5.018 
5.518 5.546 5.614 5.702 

Table 4. Nu,,, as functions of Gz and n for fully developed velocity profiles 

Flow behavior index, n 

Gz 1.0 0.9 0.8 0.75 0.7 0.6 0.5 

0 2.975 2.997 3.030 3.050 3.070 3.120 3.184 
10 3.514 3.543 3.577 3.597 3.619 3.671 3.739 
20 4.024 4.055 4.091 4.112 4.135 4.191 4.263 
25 4.253 4.284 4.321 4.343 4.367 4.424 4.499 
40 4.841 4.877 4.917 4.941 4.967 5.029 5.110 
50 5.173 5.211 5.253 5.278 5.305 5.370 5.455 
80 5.989 6.033 6.080 6.107 6.137 6.209 6.304 

100 6.435 6.483 6.532 6.561 6.592 6.669 6.768 
133.3 7.068 7.123 7.175 7.206 7.240 7.322 7.429 
200 8.084 8.150 8.208 8.242 8.280 8.370 8.488 

Table 5. Nu,., , as functions of Gz and n for fully developed velocity profiles 

Flow behavior index, n 

Gz 1.0 0.9 0.8 0.75 0.7 0.6 0.5 

0 3.612 3.648 3.689 3.713 3.741 3.804 3.889 
10 3.686 3.722 3.756 3.789 3.817 3.882 3.968 
20 3.907 3.941 3.983 4.007 4.047 4.112 4.182 
25 4.048 4.083 4.124 4.149 4.191 4.256 4.325 
40 4.465 4.501 4.544 4.569 4.619 4.686 4.753 
50 4.720 4.757 4.802 4.828 4.882 4.951 5.017 
80 5.387 5.427 5.476 5.504 5.568 5.644 5.711 

100 5.769 5.811 5.862 5.892 5.962 6.042 6.109 
133.3 6.331 6.376 6.431 6.463 6.550 6.638 6.696 
160 6.730 6.778 6.836 6.869 6.952 7.043 7.114 
200 7.269 7.320 7.381 7.417 7.507 7.604 7.678 

HMT Vol. 20. No. 12-D 
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Table 6. Nu,,~, as functions of Gz and n for fully developed velocity profiles 

Nu,,,, 

Flow behavior index, n 

G.2 1.0 0.9 0.8 0.75 0.7 0.6 0.5 

0 
10 
20 

: 
50 
80 

100 
133.3 
160 
200 

3.612 3.648 3.689 3.713 3.741 3.804 3.889 
4.549 4.586 4.610 4.657 4.666 4.735 4.847 
5.301 5.340 5.388 5.416 5.447 5.522 5.619 
5.633 5.674 5.723 5.752 5.784 5.861 5.962 
6.476 6.521 6.575 6.606 6.641 6.725 6.835 
6.949 6.996 7.052 7.085 7.122 7.210 7.324 
8.111 8.163 8.225 8.262 8.302 8.399 8.526 
8.747 8.801 8.867 8.905 8.948 9.050 9.183 
9.653 9.711 9.780 9.822 9.867 9.975 10.117 

10.279 10.339 10.412 10.454 10.502 10.614 10.761 
11.103 11.166 11.241 11.286 11.335 11.453 11.607 

Table 7. Nu,,,, as functions of Gz and n for fully developed velocity profiles 

Flow behavior index, n 

Gz 1.0 0.9 0.8 0.75 0.7 0.6 0.5 

0 3.095 3.106 3.135 3.152 3.171 3.216 3.274 
10 3.160 3.185 3.213 3.232 3.252 3.298 3.358 
20 3.359 3.382 3.410 3.427 3.445 3.490 3.548 
25 3.481 3.504 3.532 3.549 3.567 3.611 3.669 
40 3.843 3.866 3.893 3.910 3.928 3.972 4.031 
50 4.067 4.089 4.117 4.133 4.152 4.196 4.255 
80 4.654 4.677 4.704 4.721 4.740 4.785 4.846 

100 4.993 5.015 5.043 5.060 5.078 5.124 5.187 
133.3 5.492 5.514 5.542 5.559 5.578 5.625 5.688 
160 5.848 5.870 5.898 5.915 5.934 5.981 6.046 
200 6.330 6.352 6.379 6.396 6.415 6.463 6.529 

Table 8. Nu,,,, as functions of Gz and n for fully developed velocity profiles 

Num,,, 

GZ 1.0 0.9 0.8 0.75 0.7 0.6 0.5 

Flow behavior index, n 

0 3.095 3.106 3.135 3.152 3.171 3.216 3.274 
10 3.915 3.938 3.965 3.982 4.000 4.045 4.104 
20 4.602 4.623 4.650 4.667 4.685 4.729 4.788 
25 4.898 4.920 4.946 4.963 4.980 5.024 5.084 
40 5.656 5.676 5.702 5.718 5.736 5.780 5.840 
50 6.083 6.103 6.128 6.144 6.162 6.206 6.266 
80 7.138 7.157 7.181 7.196 7.213 7.257 7.318 

100 7.719 7.737 7.760 7.775 7.792 7.835 7.895 
133.3 8.551 8.567 8.589 8.603 8.619 8.661 8.721 
160 9.128 9.143 9.164 9.178 9.193 9.234 9.293 
200 9.891 9.905 9.924 9.937 9.95 1 9.980 10.048 
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for 0.5 f n < 1.0. The observations made in the case of 
@ condition hold good in these cases. 

It is observed from Fig. 2 that the present numerical 
solution Nu,,,, is consistently higher than that pre 
sented in [3]. This difference is due to the different 
numerical schemes adopted. Specifically, Mont- 
gomery and Wibulswas [3] used a different procedure 
for evaluating the wall temperatures. For the same 
reason, the Nu,,,,, are also higher than the results of 

I3 

5. CONCLUSIONS 

In this paper numerical solutions are obtained for 
laminar flow forced convection heat transfer of 
pseudoplastic fluid in the thermal entrance region of a 
square duct for (a) constant and uniform wall tempera- 
ture peripherally as well as axially, (b) constant axial 
wall heat flux with uniform peripheral wall tempera- 
ture and (c)constant axial wall heat flux with uniform 
peripheral wall heat flux. 

The extrapolated Liebmann method is used for the 
iterative scheme to obtain the numerical solutions. The 
numerical solution for Newtonian fluid gives values of 
the limiting Nusselt numbers which agree excellently 
with those calculated by others [l, II]. This indicates 
that the finite difference method employed here is 
accurate and effective. 

From a comparison of the numerical solutions it is 
concluded that for the same Graetz number and 
thermal boundary conditions a non-Newtonian fluid 
with flow behavior index less than one gives a higher 
heat-transfer coefficient than a Newtonian fluid. The 
laminar heat-transfer solutions can be used as a lower 
litit in design since experimental values of the heat- 
transfer coefficients, generally, are higher than the 
predicted ones. 

Due to reduction in friction power requirement [8] 
and the increase in heat-transfer rates, pseudoplastic 
fluids seem to be better working fluids in heat exchange 
equipment compared to Newtonian fluids. 
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CONVECTION THERMIQUE, FORCEE ET LAMINAIRE, POUR UN FLUIDE 
NON NEWTONIEN DANS UN CONDUIT CARRE 

R&urn&On prtsente les solutions numtriques pour le transfert thermique laminaire d’un fluide non 
newtonien dans la r6gion d’entrte d’un tube car&, pour trois conditions aux limites thermiques. Le 
modtle en loi puissance caract&ise le comportement non newtonien. Les rbsultats numtriques montrent 
que pour chaque indice de comportement, le nombre de Nusselt d&o%, depuis une valeur maximale g 
la section d’entrbe, jusqu’ii une valeur &mite quand les profils de vitesse et de temp&ature sont tous 
deux &ablis. Les r&ultats sont cornpar& avec les solutions connues pour les Auides newtoniens et on 

trouve un accord excellent. 

DER W~RM~~BERGANG EINES NICHT-NEWTONSGWEN FLUIDES 
BE1 ERZWUNGENER LAMINARER KONVEKTION IN EINEM KANAL 

MIT QUADRATISCHEM QUERSCHNITT 

Zusammenfassuog-Fiir den Wtirmeiibergang eines nicht-newtonschen Fluides bei laminarer Striimung im 
Einlaufbereich eines Kanals mit quadratischem Querschnitt werden fiir drei thermische Randbedingungen 
numerische Lb;sungen angegeben. Das nicht-newtonsche Verhalten wird durch ein Potenzgesetz be- 
schrieben. Fiir jeden StrGmungsfall zeigen die numerischen Ergebnisse einen Abfall der Nusselt-Zahl vom 
Maximalwert in der Einlaufebene auf einen Grenzwert bei voll ausgebildeten Geschwindigkeits- und 
Temperaturprofilen. Die Ergebnisse werden mit vorhandenen Liisungen fiir newtonsche Fluide verglichen; 

dabei ergibt sich eine ausgezeichnete Ubereinstimmung. 
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TE~~~~MEH ~EHb~T~HO~KO~ ~~~~ B KAHAJIE KB~PATHOrO 
CErfEm JX’%i Bb~~~EHHO~ KO~EK~~ B ~AM~HAPHOM l-IOTOKE 

Aziuaanmi- lIpencTaejlefibx q~~eHHbiepeureHHR3aAarHTe~~M~anpAna~~p~oMTegeRBA 

HenbmroxowKo~ xoim(OCfH na TemorsoM HawnbnoM yvaccrre Ramma np5woyronbnoro cesefIR5i 

JUDI apex MIIOB T~IIJIOB~IX rpa?rwmblx ~CIIOBH~. HCXMTOHOBCKOC noeenemrecpew OxapaKTepx- 

3OBaHO CreneHHOii MOAeJlbEO. %ZJIeHHbIe pe3yJIbTaTId lIOKa3bIBNOT, YTQ JJJIX -Or0 3lWieHHll 

EEJJt?KCa HeHbiOTOHOBOCIIi YEiUIO HyCWIbTa yMeHbmaeTcrr OT MaKCHMMbHOti BRnHYEiHbl Ha BXOAC 

A0 HeKOTOpGrO II~JWJIbHOrO 3HWieHIUI npH nOJIHOcTbl0 pa3BHTblX llpO@iJlKX CKOpoCnr H TeM- 

nepaTypbI. CpaBHemre nonyvemibrx pe3ynbTaTos c HMefouiubsica pemeHnnMH n.nK HeHbwTo- 

H~B~KHxKWLX~~W~ noKa3anoxopomeecooTBncTls~ehierrny HHMH. 


