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It has become increasingly clear to builders of knowledge-based systems that no
single representational formalism or control construct is optimal for encoding the
wide variety of types of problem solving that commonly arise and are of practical
significance. In this paper we identify a class of problem solving activities which we
have labeled routine planning. We consider the constructs necessary to represent the
problem solving which appropriately characterizes this class, and describe DSPL, a
high-level language designed specifically to encompass the required knowledge
structures and control methodology for routine planning. Finally, we consider what
type of structure is appropriate to represent an agent's understanding of how the
plan itself works.

1. Introduction

The task of planning is neither simple nor well-defined. Within AI, attempts to
achieve a better understanding of the task have ranged from proposals of general
theories (Wilensky, 1983; Schank & Abelson, 1977) to more specific approaches for
particular types of planning (Hayes-Roth et al.• 1979; Fox et al., 1983; Brown &
Chandrasekaran, 1985a). The purpose of this paper is not to present a highly
sophisticated general theory for complex planning tasks. Rather, we identify an
element or type of planning activity as a generic primitive of knowledge-based
reasoning, i.e. we identify a type of knowledge structure with an associated
inference or control mechanism as a building block in the construction of
knowledge-based systems. This particular generic structure is especially effective in
capturing a type of planning which we call routine planning.

1.1. PLANNING: AN APPROACH

Commonly, the problem solving activity in planning has been described as the
determination of sequences of actions in order to achieve desired goals in given
situations. That is, at the topmost level, planning has the character of a synthesis of
operations to be performed on the world. When approached from a formal
viewpoint , it is thus noted that planning and design are similar activities in that both
are attempting to produce a " product" which can achieve some goal ; they are both
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activities of construction or synthesis. Synthesis activities, from a computational
viewpoint, can be very complex. Generally the search spaces for plausible solutions
are very large and within that space there are only a few solutions that , in fact, meet
the goals.

One way to reduce this complexity is to use domain knowledge: in particular,

• knowledge about how to decompose the given planning problem into planning
problems in a smaller problem space , and

• knowledge about subproblems in the form of pre-compiled plans for solving
them, often obtained from earlier attempts to solve a similar subproblem.
These pre-compiled plans may be abstract, i.e., they may include pointers to
other plans for further instantiation.

It is worth pointing out that, in the early days of AI, Miller, Galanter & Pribram
(1960) proposed that much of an intelligent agent's knowledge may be in the form of
mini-plans of this type. The decomposition process typically leads to hierarchical
designs or plans. The dependence on partially compiled abstract plans leads to an
agent whose knowledge is rich in a vast array of plans, multiply indexed by relevant
goals and each pointing to other plans for possible use in completing the problem
solving process.

It is clear that planning is a knowledge-intensive activity. Thus, as in all
knowledge-based theories, the relevant questions concern the representation of
knowledge (in this case, planning knowledge) and the inference mechanisms for
problem solving.

We have long advocated that, in contrast to the current approaches where
knowledge and inference are separated, knowledge representation should be
tailored to the type of task, i.e . type of usage of knowledge. Knowledge should be
directly encoded at the appropriate level by using primitives that naturally describe
the domain knowledge for a given task. Problem solving behaviour for the task
ought to be controlled by regimes that are appropriate for the task (Chandraseka
ran , 1984). If done correctly , this would simultaneously facilitate knowledge
representation, problem solving, and explanation. In order to do this effectively,
one needs a theory of types of generic tasks in knowledge-based reasoning. In
Chandrasekaran (1986) we provide such a theory. In particular, we provide a
framework that gives a view of the level of abstraction at which it is productive to
look for generic types of problem solving. We argue that the level of rules-frames
logic is at too low a level for this characterization and provide an alternative level at
which the tasks become much clearer as knowledge level phenomena.

A theory of planning viewed as a knowledge-based activity thus has to account for
the following:

• an ontology of the planning task viewed as a generic activity (i.e., the generic
terms in which domain specific planning knowledge is encoded)

• how such knowledge is structured and organized for effective utilization during
the planning process

• what kinds of control processes are used to access this knowledge and synthesize
a plan.

In order to provide such an account , it is necessary to decide whether planning
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constitutes a relatively unitary generic problem solving activity or if it is a label
under which a number of rather distinct problem solving processes have been
coalesced. The variation in types of planning problems leads one to believe the
latter. For example, what is common between planning a day's activities in order
to complete a collection of errands (Hayes-Roth, 1980) and planning a therapy
(Shortliffe et al., 1981), or between generating a plan to arrange furniture in a room
and planning the construction of a house? The errand and furniture planning
problems have a significant formal similarity; they both have the character of
arranging things in some space following some constraints. On the other hand, the
routine versions of the therapy and house construction problems generally share the
flavour of hierarchical plan refinement. Each of these really corresponds to different
knowledge needs and different control processes.

In our research, we have identified one type of planning or design problem which
can be characterized as routine planning or design. In these kinds of problems, the
structure of the object under design is known, i.e. the planning problem can be
hierarchically decomposed and the hierarchy of parts is known, and also knowledge
for designing the components is available in the form of a set of abstract, compiled
and partial plans for each component. The plans are partial because they typically
involve calling upon plans for the subcomponents. Typically knowledge about
failures and how to back up is also available. This kind of task corresponds to what
experts in a given domain are usually faced with.

In this paper we look at routine planning as a generic task . Using the domain of
tactical mission planning, we describe DSPL, a high-level language designed
specifically for the problem solving activity of routine planning. The advantages of
the explicit use of problem solving knowledge are discussed. Finally we consider
what type of structure is appropriate to represent an agent's understanding of a plan
and thus produce more perspicuous explanation of the planning process (Chandra
sekaran et aI., 1987)

2. The mission planning domain

Tactical mission planning in the Air Force essentially involves the assignment of
resources to various tasks. The resources are primarily aircraft and their stores
located at airbases across the theater of operations. The tasks are specified by an
"apportionment" order issued by the Joint Task Force Commander to a Tactical Air
Control Center (TACC). This order describes the overall military objectives as
determined by the Task Force Commander. The TACC is responsible for assigning
aircraft and personnel from specific military units to meet the objectives of the
apportionment order. The result of these assignments is an "Air Tasking Order"
(ATO) which summarizes the responsibilities of each unit with respect to the day's
missions. Each mission planned requires attention to such details as the selection of
aircraft type appropriate to the mission, selection of a base from which to fly the
mission, and coordination with other missions.

The MPA system we have developed currently addresses only a single type of
mission, the Offensive Counter-Air (OCA) mission. An OCA mission is an air
strike directed specifically against an enemy airbase. Our selection of the OCA
mission arose in part because of the availability of KNOBS and its knowledge base
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of relevant domain facts. More importantly, however, we are interested in the
planning process itself and the ability to explain the reasoning behind this process.

3. Routine design

Our approach to tactical mission planning treats the Air Tasking Order (ATO) as an
abstract device to be designed. The planning of the missions of the completed ATO
involves a process similar to the process a designer undergoes when faced with a
complex device to design. An overview of the design domain will illuminate this
analogy. For a more comprehensive description of the mechanical design domain
see Brown (1984).

The general domain of design is vast; it involves creativity, various problem
solving techniques, and many kinds of knowledge. Goals are often poorly specified,
and may change during the course of problem solving. However, a spectrum of
classes of design problems can be identified, varying in complexity from open-ended
to routine. The complexity of the design problems in each class depends on what
sort of knowledge is available to the problem solver prior to the start of design.

What we have called "Class 3 Design" characterizes a form of routine design
activity. We postulate that several types of knowledge are available prior to problem
solving. First, complete knowledge of the components of the device to be designed,
including their attributes, is available to the problem solver. Thus, the final design
consists only of components known in advance, and no novel components need to
be synthesized. Second, complete knowledge of design actions in the form of plan
fragments is available to the problem solver. The problem solving proceeds by using
recognition knowledge to select among the previously known sequences of design
actions. While the choices at each point may be simple, this does not imply that the
design process itself is simple, nor that the components so designed must be simple.
It appears that a significant portion of everyday activity of practicing designers falls
into this class. In order to represent this class of design problems we have developed
the high-level programming language, DSPL (Design Specialists and Plans
Language).

3.1. DSPL: A STRucrURED SOLUTION

A routine design task can be broken down into a hierarchy of planning tasks. At
each level of the hierarchy some design commitments are made. Lower levels of the
hierarchy further refine the design. In DSPL, a design problem solver consists of a
hierarchy of cooperating, conceptual specialists, with each specialist responsible for
a particular portion of the design. Specialists higher up in the hierarchy deal with the
more general aspects of the device being designed, while specialists lower in the
hierarchy design more specific sub-portions of the device, or other design subtasks.
Any specialist may access a design database (mediated by an intelligent database
assistant). This organization of the specialists captures the divide and conquer
nature of the designer's expertise in the problem domain.

Each specialist in the design hierarchy contains local design knowledge necessary
to accomplish its portion of the design. There are several types of knowledge
represented in each specialist, three of which determine the overall control strategy
of a DSPL system. First, explicit design plans in each specialist encode sequences of
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possible actions to successfully complete the specialist's task. Different design plans
within a specialist may encode alternative action sequences, but plans within a
particular specialist are always aimed at achieving the specific design goals of that
specialist. A second type of knowledge encoded within specialists is encoded in
design plan sponsors. Each design plan has an associated sponsor to determine the
appropriateness of the plan in the run-time context. The third type of planning
knowledge in a specialist is encoded in design plan selectors. The function of the
selector knowledge is to examine the run-time judgements of the design plan
sponsors and determine which of the design plans within the specialist is most
appropriate to the current problem context. These three types of knowledge, design
plans, plan sponsors and plan selectors, form the core of the control knowledge
within a specialist.

Constraints are another type of local, declarative knowledge in a DSPL specialist.
Constraints are used to decide the suitability of incoming requirements and data,
and on the ultimate success of the specialist itself (i.e., the constraints capture
knowledge about those things that must be true of the specialist's design before it
can be considered to be successfully completed). Other constraints embedded in the
specialist's design plans are used to check the correctness of intermediate design
decisions. The use of such constraints in the MPA system easily captures the kinds
of knowledge encoded as constraints in KNOBS, but incorporating the constraints
into a rich overall control structure further allows the constraint knowledge to be
utilized during problem solving in a sharply focused manner.

Control in a DSPL system proceeds from the top-most specialist in the design
hierarchy to the lowest. Beginning with the top-most specialist, each specialist
selects a design plan appropriate to the requirements of the problem and the current
state of the solution. The selected plan is executed by performing the design actions
specified by the plan. This may include computing and assigning specific values to
attributes of the device, running constraints to check the progress of the design, or
invoking sub-specialists to complete another portion of the design. Design plans
which refer to a sub-specialist are refined by passing control to that sub-specialist.

The discussion of the control strategies in a DSPL system has thus far only
included successful plan execution. However DSPL does include facilities for the
handling of various types of plan failures, and for controlling redesign suggested by
such failures (Brown, 1984; Brown & Chandrasekaran, 1985b).

4. Approaches to mission planning: hierarchical decomposition and
template instantiation

4.1. MISSION PLANNING AS ROUTINE DESIGN

We view tactical mission planning as essentially a routine design task. The problem
can be decomposed into the design of subcomponents of the mission plan. In the
device design domain, the design of a device is decomposed into the design of
sub-assemblies and their components, etc, where each sub-assembly or component
can be designed in a fairly independent fashion. In the tactical mission planning
domain the ATO is decomposed into various missions or groups of missions of
known types. Furthermore, each mission or group of missions can be planned
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relatively independently of the others, except for resource contention considera
tions. In both the mission planning and the mechanical design domains, of course,
each of the solutions to the subproblems must be appropriately combined into the
solution for the problem which they decompose. Due to the well known limitations
of human problem solving capacities, it is apparent that a human problem solver can
be successful in such a situation only to the extent that he can also decompose the
problem into a manageable number of somewhat independent subproblems which
can be solved separately and combined into a final solution. Using DSPL as a
natural mechanism for representing and structuring the necessary knowledge, the
MPA system closely mirrors these ideas. To better illustrate the power of this
approach, we have ana\~sed the strategy of the KNOBS system, which takes a less
explicit approach toward planning.

4.2. mE KNOBS APPROACH

KNOBS (Engelman et al., 1983; Searl et al., 1984) is a planning system which had
been applied to the domain of tactical mission planning. In fact, the domain
knowledge found in the MPA system was mostly derived from this system. KNOBS
presents an alternative to the hierarchical decomposition of planning problems
suggested by the DSPL system. This section briefly describes this approach and
some of its weaknesses.

KNOBS uses template instantiation to control the planning process. When
problem solving begins, a template of the desired plan is instantiated. As problem
solving progresses, slots in the template are filled with acceptable values. Each slot
represents an attribute of a pre-determined component of the final plan. This aspect
of the planning process is similar to our view of routine design and the DSPL
methodology: all of the components and all of the attributes of the components are
known prior to the start of planning. The mechanism used to organize the selection
of values, however, is significantly different.

In this system, the order in which the slots are considered is defined in advance by
the plan template. Acceptability of slot values is based on constraint satisfaction .
The constraints are organized as a list of "buckets", ordered to express priority in
constraint satisfaction. Each bucket contains an unordered list of constraints. The
testing of slot values is accomplished by traversing and checking constraints in the
order specified by the priority buckets.

In order to determine acceptable choices for values of slots, KNOBS associates a
generator with each slot to enumerate potential values. The generator produces a
subset of all possible values of the slot. The generator is derived by "inverting"
constraint knowledge pertinent to the slot.

Given the slot ordering, constraints, and generators, problem solving proceeds as
follows: the generator of the first slot is asked for its first candidate, the generator
for the second slot is asked for its first candidate, and so on. At each slot filling, all
applicable constraints are checked. If any are not satisfied, then the slot generator is
asked for another candidate. If another candidate exists, it is tried, and so on until
either all slots have accepted values or a generator runs out of candidates. When no
candidates are available, the system backs up to the most recently filled slot
mentioned in the failing constraint, and generates a new value. Planning is
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successful when all slots are filled and all constraints are satisfied. The basic planning
strategy can be described as generate and test with dependency-directed
backtracking.

While the generate and test approach to planning represents a general solution to
a broad range of planning problems, it does exhibit several drawbacks. The
methodology will not typically scale up well, since, as the size of problem space
increases, the exhaustive depth-first nature of the search makes the technique
computationally infeasible. Also, the ability to automatically generate explanations
of the planner's behaviour is limited since most of the planning knowledge is implicit
(and thus hidden) in the ordering of the slots and the constraint buckets.

These problems arise in part because the system does not have significant amounts
of explicit knowledge about planning strategies. Explanation is limited to answers
based on constraint knowledge-either a value is bad because it fails a constraint, or
it is good because it satisfies a constraint. There is no knowledge of why the system
should satisfy a constraint (its functionality) nor why this constraint (vs any other) is
being considered now (plan strategy). Thus, neither the planning control strategy
nor the functional knowledge of the domain can be justified. For a planner to
achieve explanation of this type, the planning and functional knowledge must be
represented with appropriate explicit structures.

5. The MPA system

The following discussion gives a general description of the planning strategies
particular to the MPA system as currently implemented in DSPL. It should be noted
that several caveats are in order concerning the domain of the MPA system. The
MPA system currently only handles the planning of OCA missions, although we
believe other missions could be handled in a similar fashion. Our prototype system
docs not address several minor bookkeeping aspects of mission planning, which
although of no theoretical interest, would be necessary to a fully functional mission
planner. Such items as assigning radio frequencies to a flight and designating mission
call-signs fall into this category . Finally, although the specific military knowledge in
the MPA system is adequate for demonstration purposes, it is by no means meant to
reflect complete or even accurate knowledge of aircraft capabilities. We believe that
the knowledge represented is representative of the knowledge utilized by a human
mission planner, and that the problem solving exhibited by the system fairly
represents the human problem solver's activities.

The prototype MPA system contains six specialists. The hierarchy of specialists is
shown in Fig. 1. The topmost specialist, OCA, accepts the mission requirements and
ultimately produces the final mission plan. The OCA specialist divides its work
between two subspecialists, base and aircraft. The base specialist is responsible for
selecting an appropriate base, while the aircraft specialist selects an aircraft type.
The aircraft specialist has three subspecialists, one for each of three aircraft types
known to the MPA system. As needed, one of these specialists will select an
appropriate configuration for its aircraft type.

Problem solving begins when the OCA specialist is requested to plan a mission.
Currently, the OCA specialist contains only a single design plan which first requests
the base specialist to determine a base, and then requests the aircraft specialist to
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FIG. I. The MPA hierarchy of specialists.

determine (and configure) an appropriate aircraft for the mission. The current base
specialist simply selects a base from a list of candidate bases geographically near the
target. The aircraft specialist uses considerations of threat types and weather
conditions at the target to select an appropriate aircraft for the mission. The aircraft
specialist and its three configuration subspecialists represent the most elaborate
aspects of domain knowledge in the MPA system.

In the current version of the MPA system, the aircraft specialist is entered with a
tentative selection for the base already specified. The target and required probability
of destruction are known from the input requirements of the mission. When the
aircraft specialist is entered, each of its plan sponsors are executed by the DSPL

(SPONSOR A-to
(BODY
target (KB-FETCH TARGET)
timeOverTarget (KB-FETCH TIMEOVERTARGET)
threat

(TABLE
(MATCH (airborne)(AAA)(SAM))

(IF F F F THEN PERFECf)
(OTHERWISE UNSUITABLE))

conditions
(TABLE

(MATCH (night)(weather»
(IF F CLEAR THEN PERFECf)
(IF F PARTIAL THEN SUITABLE)

(OTHERWISE UNSUITABLE»
REPLY (COMBINE THREAT CONDITIONS)))

FIG. 2. DSPL code for a Design Plan Sponsor.
The general form for the body of plan sponsors, plan selectors and steps is a list of pairs of variable

expression, where the value of the expression is assigned to the variable. REPLY is a special variable
whose value is returned when the execution of the body is complete.
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(PLAN A-lO
(BODY

(TASK assign-mission aircraft)
(DESIGN A-lO)
(TASK determine-mission-pd)
(TASK assign-squadronjj)

FIG. 3. DSPL code for a Design Plan.
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interpreter. The DSPL code for one such plan sponsor and its associated plan is
given in Figs 2 & 3. The three plan sponsors determine the appropriateness of their
respective plans. In this case, each of the three plans determine which of the three
aircraft types should be used for the mission. Thus the three plan sponsors
determine the appropriateness of using, respectively, F-l11s, F-4s, or A-lOs for the
mission. Plan sponsors may access a global database as necessary in their execution.
In the MPA system, items such as target characteristics and weather conditions are
requested in determining the appropriateness of a particular aircraft type. After the
suitability of all plans in the aircraft specialist has been determined, the DSPL
interpreter executes the plan selector in the specialist. Figure 6 contains the DSPL
code of the plan selector. The plan selector, given the suitabilities of each of the
aircraft types, can then determine which aircraft is most appropriate for the mission.
The plan selector returns the name of the plan to the specialist , which then executes
the plan. If no plan is found to be applicable, the plan selector returns the primitive
NO.PLANS·APPLICABLE to the specialist.

Suppose the mission requirements call for a night raid. The plan sponsors for both
the A-I0 and F-4 would rule out the possibility of using these aircraft, since (in our
domain model) neither of these aircraft have night flying capability. The F-l11 plan
sponsor, since it is an all-weather fighter with night capabilities, would not be
excluded. The plan sponsor for the F-l11, based on this and other considerations
(range, ability to carry appropriate ordinance, target characteristics, etc) would find
the F-lll suitable for the mission . The plan selector in the aircraft specialist, finding
that two design plans have ruled out, would select the "suitable" F-ll1 design plan,
and return this information to the specialist. The specialist executes the F-l11 design
plan, which includes setting the aircraft type in the mission template to "F-l11", and
invoking the F-l11 configuration specialist which in turn decides an acceptable
ordinance load for the F-lll for this mission. Note that the design plan in Fig. 3
indicates an invocation of a subspecialist by the DSPL notation (DESIGN
specialist-name). Once the configuration of the aircraft is known, the single aircraft
probability of destruction in the mission context can be computed. Finally, knowing
the mission capabilities of each aircraft, the required number of aircraft can be
determined in order to achieve the required probability of destruction, and the
required aircraft can be reserved from the proper unit . The DSPL code for the
squadron task and one of the steps in that task is given in Figs 4 & 5, respectively.

The MPA system could be readily extended in several directions. Additional
situation knowledge at the OCA level would allow for more robust planning with
less backtracking. One example of this is discussed in some detail in the next
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(TASK assign-squadron
(BODY

(STEP SetNumberOfAircraft)
(STEP SelectSquadron)
(STEP AssignBase)
(STEP Getkange)

FIG. 4. DSPL code for a Task.

(STEP SetNumberOfAircraft
(BODY

(KNOWNS
configuration (KB-FETCH MISSION CONFIGURATION)
required-PO (KB-FETCH MISSION REO-PO)
targetType (KB-FETCH TARGETTYPE))

(DECISIONS
number ... (compute number of

aircraft for the
mission based on
- configuration
- required-PO
- targetType)

REPLY (KB-STORE MISSION
AIRCRAFI'-NUMBER
number))))

FIG. 5. DSPL code for a Step.

(SELECTOR AircraftSelector
(BODY
REPLY (IF (MEMBER A-lO SUITABLE-PLANS)

THEN A-IO
ELSEIF (MEMBER F-4 SUITABLE-PLANS)

THEN F-4
ELSEIF (MEMBER F-ll1 SUITABLE-PLANS)

THEN F-ll1
ELSE NO-PLANS-APPLICABLE)))

FIG. 6. DSPL code for a Design Plan Selector.
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section. More complete knowledge of the OCA mISSIon for specifying various
aspects of the flight plan, etc., could be added. Also, as previously mentioned, other
types of missions could be encoded in hierarchies similar to the OCA hierarchy. The
most theoretically interesting addition to the MPA system would be abstractions
above the single mission level. Clusters of coordinated missions and even a complete
ATO abstraction should be possible within the Routine Design framework. For
example, extended range OCA missions requiring coordination with refuelling and
escort missions should be able to be planned in a straightforward fashion. The single
greatest hindrance to such work is the lack of access to experienced domain experts.

6. Performance of the MPA system

One important advantage of the DSPL architecture is the ability of the planning
system to be responsive to the situation at hand in a computationally efficient
manner. A planning system must be able to adapt its behaviour to the demands of
the problem. As an example of this, consider the use of two particular design plans
in the OCA specialist, shown in Figs 7 & 8. One plan, the best-case plan, prescribes

(PLAN best-case
(USED-BY OCA)
(BODY

(DESIGN aircraft)
(DESIGN base)
(REPORT-ON MISSION)))

FIG. 7. The best-case plan.

that the ordinance and aircraft subproblems of the OCA mission be solved first,
followed by the selection of a base and squadron. The second plan, the limited-fuel
resource plane, prescribes the reverse order. In this plan, candidate bases are
selected first followed by the solution of the ordinance and aircraft subproblems. Let
us examine two points: first, the conditions under which each plan would be used
and second, the impact each plan has on problem solving.

In mission planning the objective of the planner is to choose an ordinance which is
most effective against the target and a delivery vehicle which is most likely to
penetrate to the target and return safely. Various combinations of ordinance and

(PLAN limited-fuel-resource
(USED-BY OCA)
(BODY

(DESIGN base)
(DESIGN aircraft)
(REPORT-ON MISSION)))

FIG. 8. The limited-fuel-resource plan.
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aircraft type will be appropriate for different situations and targets. Thus the usual
strategy of the mission planner in searching for the most effective OCA mission plan
is to first select the optimal ordinance and aircraft for the mission and only then turn
his attention to the details of choosing a base from which to fly the mission. Under
ideal conditions (e.g., there is little contention for the resources necessary for this
mission, or negligible enemy interference), the most important job for the mission
planner is to match the ordinance/aircraft to the target. The planner first solves the
ordinance/aircraft problem, then solves the secondary problem of selecting a base
and squadron. Intuitively, to do otherwise may result in considerable backtracking
while searching for an acceptable mission plan.

However, the "ideal conditions" assumed for such a strategy may not always be
met. Consider the less than ideal situation (others certainly exist) in which the
mission planner knows that sufficient refuelling capabilities are unavailable at the
time of the mission. Further, suppose that the optimal ordinance/aircraft combina
tion is quite remote from the target and hence the proposed mission requires that
the attacking aircraft be refuelled in mid-flight. In this case, the more prudent
planning strategy is to first select potential bases from which to fly the mission. This
strategy anticipates planning failures due to selecting an aircraft which is only
available at a base too distant to fly the mission. If the mission planner constrains
the types of ordinance and aircraft considered to those found only at nearby bases, it
is more likely that the optimal mission plan will be quickly found. Importantly,
needless backtracking is reduced.

It is the order of these two activities that is important in finding the most direct
route to the best solution. The character of the search for the final mission plan
completely changes by merely changing the order of these two planning activities.

A constraint-based system using a generate and test algorithm can, with
backtracking during problem solving, arrive at solutions similar to the ones above.
However, as the size of the planning task increases so also does the size of the
problem space, and a reliance on backtracking can quickly make such a search
computationally infeasible. We are not suggesting that the use of a plan selection
and refinement strategy such as found in DSPL eliminates all backtracking.
Certainly, any given problem solving strategy will eventually fail and require
backtracking, except, perhaps, in trivial domains. However, the plan selection and
refinement architecture can reduce or even eliminate the need for backtracking in
many cases since the planning system can recognize the need for particularized
strategies and apply them to the problem solving context. These strategies, in the
form of design plans within a specialist, are thus more likely to find a computation
ally efficient solution to the problem.

7. Explanation in the MPA system

Explanation of the behaviour of an expert system is typically accomplished by
combining a trace of the behavior of the system with the code that produced the
trace. In a rule based system, for example, an explanation of why action B was
chosen is explained by reference to the known fact A, and rule IF A THEN B. The
rule plays the role of the source code, and the program trace produces the actual
value of A when the rule was fired. More difficult to explain, however, is the
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relevance of that particular piece of knowledge to the current problem solving
context. This problem is often addressed by the addition of meta-rules to the
production system.

In our system, the additional context of the DSPL control structure provides the
springboard for a more comprehensive explanation facility. In addition to the
necessary ability to examine particular attributes of a mission plan, the control
structure provides the ability to examine the problem solving strategies of the
planning system. This kind of explanation is not easily extracted from a system
which uses weak methods as its primary mechanisms for problem solving, since the
strategies are often hidden in code , i.e. implicitly represented . The identification of
routine planning as a generic task not only makes the strategies for problem solving
explicit, but also provides a framework of organized knowledge for efficient use.

The explanation of constraints in the MPA system illustrates this point. Analysis
of the success or failure of constraints, generated from the trace of the problem
solver's execution, yields explanation capabilities similar to that found in KNOBS,
but with the additional context provided by the rich DSPL control structure. For
example, a constraint may be associated with a particular design plan, and used to
monitor the progress of the planning process. Constraints may also serve to mediate
backtracking in a focused manner .

The implementation of explanation in DSPL is based on the organizing principle
that the agent which makes a decision is responsible for justifying it. The DSPL
agents which contribute to the final plan are : Specialists, Design Plans, Design Plan
Selectors, Design Plan Sponsors, Tasks, Steps, and Constraints, In the present
implementation there are some 200 of these agents, though not all of them
contribute to any particular plan. All of these agents perform tasks which are
epistemically significant so that explanation of anyone agent's problem-solving
decisions can be given in terms of the goals of the agent which uses it, and the
function of the agents it uses.

The final answer produced by the MPA can be viewed as a list of attribute-value
pairs as in KNOBS.

That is, a list of the form:

Target = Berlin
Aircraft Type = F-l11
Number Aircraft = 6

We have decided to concentrate on questions of the form, "How was it decided?"
which can be asked of the value of any attribute. For example , selecting F-Ill in the
above list would initiate a dialog on the question of how MPA decided to use F-Ill
as the value of Aircraft Type. More particularly, an explanation window would
appear containing the answer to "How was it decided?" produced by the agent
which actually set the value of Aircraft Type to F-III . In this window certain other
things would be selectable. Selecting any of them will produce another window with
a similar explanation for the proper agent. In this way the user will be able to pose
follow-up questions by steering through the decision dependencies.

To support "How was it decided?" explanations we determined three basic
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questions which all agents must be able to answer:

(1) "Give me the bottom line: what did you do?" This question would be
answered with a one-sentence summary of the result of the agent's action.

(2) "What is your purpose?" This question would be posed by sub-agents who
want to have knowledge of the context they are operating in, and should be
answered by a short description .

(3) "How did you do it?" This question would be answered by displaying a
window with a complete explanation of the context of the agent's activation
followed by a functional description of its action. The agent may have to ask
its sub-agents question 1 and its super-agent question 2.

Then, in general , the explanation for "How was it decided'?" is the answer to
question 3 above. The answer to question 3 is a combination of the answer to
question 2 for the calling agent and question 1 for all sub-agents . So an explanation
window contains:

In the context of (answer to question 2 for calling agent)
we did the following:

(answer to question 1 from sub-agent 1)
(answer to question 1 from sub-agent 2)
(answer to question 1 from sub-agent 3)

Our work to this point is about generating explanation fragments and does not
address other issues of explanation such as summarization, user modeling, or human
factors.

The following is an example of explanation automatically generated from a run of
the MPA system. The explanation is generated by combining a trace of the system
with the DSPL source code that was executing when the trace was generated. The
example is of a plan sponsor , which is attempting to determine the suitability of its
associated plan during problem solving. A sponsor matches characteristics of the
plan to information about the problem at hand and produces a measure of how
useful the plan will be on a scale of: Ruled-Out, Unsuitable, Don 't-Know, Suitable,
and Perfect. The code for the A-lO plan sponsor is given in Fig. 2. It first sets some
local variables by looking them up in the database (using the KB ·FETCH built in
function which fetches values from the global database). It then uses the TABLE
construct, which is essentially a group of rules which all depend on predicates of the
same values. For example, the table setting the variable conditions contains a single
rule which depends on the values returned by the functions night and weather. The
rule requires night to return F and weather to return CLEAR. If the predicates are
true, then conditions will be PERFECT. The rules of the table construct are
executed in order, and the table is finished when a rule matches. If no rule matches,
the OTHERWISE clause is used. REPLY tells DSPL that what follows is the final
result of the sponsor's computation.

The explanation for this sponsor is given in Fig. 9. Values for the local variables
are given, those fetched from the database are not justified while those determined
by tables are given justification. The final REPLY is used to determine the actual
decision made by the sponsor.
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The context of selecting an aircraft to consider for the mission determined that:

• target is BrandenburgSAM

• timeOverTarget is 1300

• threat is UNSUITABLE because:
• SAM is TRUE

• conditions are PERFECf because:
• night is FALSE
• weather is CLEAR

I determined the value of plan A-10 to be RULE-OUT because:

• threat is UNSUITABLE.

FlG. 9. Explanation for a Design Plan Sponsor.
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8. How a plan works: understanding a mission plan

In expert system problem solving there exists a close relationship between structures
of understanding and explanation capabilities. For a system to "understand itself", it
should be able to examine its own knowledge structures, its problem solving
strategy, and its problem solving behaviour particular to a specific case. The
previous sections focused on the representations necessary to achieve these goals for
the task of planning. In this section we concentrate on the structure needed to
provide a system with the capability to justify its knowledge.

We have shown how, during planning, the knowledge base accesses plan
fragments which are instantiated and assembled into longer plans. On occasion, the
problem solver may be called upon to explain the rationale behind the plan
fragment, i.e. why is this particular fragment appropriate or relevant. Knowledge of
this type can be obtained in a number of ways: appeals to authority (books,
manuals, etc.), statistical generalizations, or justifying the fragments by showing
how they are derived from a deeper understanding of the domain . Here, we will
focus on the latter: the use of deep models.

To illustrate the variability of explanation capabilities arising from knowledge
structures within a system, consider the task of OCA mission planning. The routine
planning task accomplished by the MPA system involves specification for a set of
pre-established components. That is, the planner knows the mission needs a certain
type of component-its job is to make a concrete commitment as to which specific
component of that type would be best. The planner requires only a limited
knowledge of these components in order to make such decisions. Its understanding
of the resultant mission plan is thus restricted.

More specifically, suppose a user of the mission planner asks the question, "Why
was an F-15 used?" Depending on the intentions of the inquirer, the question could
be answered in different ways. For a particular mission, the question might be
addressed directly by the mission planner. Here, the inquiry is interpreted as, "Why
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did you use an F-15 instead of any other aircraft for this mission?" Explanation
would indicate what makes the F-15 appropriate (speed, weather compatible, etc.).
Since this is the specific information the system used in making its decision, the
planner should be able to explain it.

In the above interpretation, the question was, "Why choose an F-15?". An
alternate interpretation could be, "Why is the F-15 used in the mission plan?". A
good response here might be, "The F-15 is an aircraft. Aircraft are used in OCA's
because they have the ability to fly and to deliver the ordinance. These functions
are used to get to the target location and to destroy the target-the primary goal of
an OCA mission." This explanation requires a deeper understanding of the domain
than the planner has readily available within its compiled planning knowledge. Here
we need a structure to represent distinctly how the plan works.

To represent this understanding, we propose use of a knowledge structure based
upon the Functional Representation of Devices as designed by Sembugamoorthy &
Chandrasekaran (1986). A device is any structure (concrete or abstract) which
serves a purpose. Thus, a plan can be viewed as an abstract device in that it has
components which fit together in such a way to achieve a desired goal. As such, we
will show how a plan can be represented functionally and how use of this
representation can provide a richer understanding of the planning process.

9. The functional representation: an overview

The first concept is that an agent's understanding of how a device works is organized
as a representation that shows how an intended function is accomplished as a series
of behavioural states of the device. The device itself is represented in various
levels. The topmost level describes the functioning of the device by identifying
which components and more detailed behaviours are responsible for bringing about
the various state transitions. If a transition is achieved using a function of a
component, the next level describes the functioning of this component in terms or
the roles of its subcomponents, and so on. Ultimately all the functions of a device
can be related to its structure and the functionality of the components within this
structure.

At each level of a device's representation there may be five significant aspects of
an agent's knowledge of the functioning of the device:

STRUCTURE: specifies the components of a device and the relations between
them.

FUNCfION: specifies what is the result or goal of an activity of a device or
component.

BEHAVIOUR: specifies how, given a stimulus, the result is accomplished.

GENERIC KNOWLEDGE: pointers to general knowledge that shows how key
states occur.

ASSUMPTIONS: under which a behaviour is accomplished.

The functional specification of the "abstract device" OCAMission is illustrated
below by describing the main function of an OCA-to destroy a target.
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FUNCI10N: DestroyTarget
ToMake: (Destroyed Target)
If: (Functional Target)
Trigger: (DesignatedLoadTime OCAMission crime)
Provided: (Operational Flight)
By: OCApian

The description indicates that the plan, OCAMission, has a function called
DestroyTarget. This function is appropriate if a target is operational (functional)
and is triggered when the designated load time for the specific plane is the current
time. When this function is used, the target will be destroyed by a behaviour called
OCAplan. This behaviour should succeed in accomplishing the goal of target
destruction provided the flight is operational throughout the behaviour.

The behavioural specification of a device describes the manner in which a function
is accomplished by using the functions of components, generic knowledge, and
sub-behaviours (further details of state transitions). The behaviour for OCApian of
the DestroyTarget function is described by a chain of events brought about by the
specified actions as seen in Fig. 10.

The structure is meant to represent the sequence (from top to bottom) of states
which occur as a result of actions taken. "OCAplan" indicates that the plan begins
when a Target is in a Functional state. At the designated load time, the function
PrepareFlight of the component AirBase is used to make the Flight Prepared. Upon
achieving this state, the plan uses the component Flight since it has the functionality,
i.e. OffensiveAir, to Destroy the Target. Finally, the Flight follows the flightplan
back to the homebase.

The structure of the OCAMission is defined by its components and relations as
shown in Fig. 11.

Links in the chain indicate subcomponents in the sense that the first component
uses the next in order to achieve its goals. The OCAMission uses the component
AirBase (more specifically, AirBases's subcomponent of GroundCrew) to prepare
the aircraft and the component Flight to get to the target and destroy it.

One additional specification is needed to fill out the "FUNCTION" construct.
This involves primitives used to identify functions as primary or secondary. In the
analysis of functions we have observed that some functions have a secondary nature.
These are functions which are present in support of another main function.
Specification of such functions is necessary to represent understanding of why the
function is present in the device and for determining equivalency when considering
replacement of components. Three types of secondariness have been delineated:

(1) Subfunctions:
-functions a device possesses simply as a means to establish preconditions
for a primary function. (e.g. "takeoff" for "fly" of aircraft)
-functions a device possesses to support a provided clause (assumptions)
on behaviours for a primary function. (e.g. a car can be used for
transportation provided the driver can see the road. The functionality of
windshield-wipers allows for this behaviour in inclement weather. Similarly
Electronic Counter Measures (ECM) are used on OCA missions to provide
protection so that the target can be reached and destroyed.)
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Behaviour Browser for OCAPlan

(Functional Target)

Uslngfunctlon rreparefllght

of AlrBne

(prepared Flight)

Uslngfuncllon OffenslueAlr

of night

(Destroyed Target)

uSlngfunction followrlanHome

Of flight

(Location Flight HomeBase)

FIG. 10. Behaviour OCApian for DestroyTarget.

(2) Secondary functions:
With respect to the desired use of the given device, these are extraneous
functions. Consider a kerosene lamp. One hundred years ago, its functi
onality was to give light. Today its use is often purely decorative. When
purchased for this purpose, the functionality of producing light is rarely

~AlrBale ----GroundCrew

OCAMlssion _______

FliQht Ordnonce

------ AHCrofl-----Pilol ----ECM

FIG. It. Components of plan OCAMission.
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used. Notice that secondary functions could be primary functions depending
on the device designer's and/or the user's purposes.

(3) Other design considerations:
-goals which arise out of the situation or context in which the device is
used. (e.g. The component Flight of device OCAMission has the function
FollowPlanHome. The main goal of an OCA is to destroy a target. With
respect to the device OCAMission, explanation of why FollowPlanHome is
needed involves "external" considerations. It is present because in the
process of destroying the target we also have the goal of protecting people
and conserving resources.)

An example of a function which is secondary in an OCA mission is the Protection
function of ECM.

Its functional description is as follows:
FUNCflON: Protection

ToMake: (NOT (Threatened AirCraft»
If: (Threatened AirCraft)
Trigger: (OR (UnderAttack AirCraft)

(ECMSpecified Currentl.eg)
Provided: (Loaded AirCraft ECM)
By: ECMUsage
SubFunctionOf: (DestroyTarget)
ExternalConsideration: YES

(Reason (to protect the aircraft and crew»

9.1 POTENTIAL APPLICABILITY

Understanding of plans (in this case, an OCA mission) can be illustrated through
the explanation capabilities inherent in its functional representation. The repre
sentation is capable of providing answers about mission devices, functions, and
behaviours because of the knowledge encoded using the primitives. The following
are some of the questions which can be answered directly from the representation:

Why is this device needed?
What subcomponents does this device require?
What are the secondary functions and their roles?

Why is this function needed?
What does this function accomplish?
How is this function achieved?
Where is this function used?

Consider, for example, an inquiry about the device ECM. If asked why the
component is needed, the system responds with, "The device ECM is present
because it has the functional capability to protect the aircraft and crew." A query
about the need for this function yields the response, "The function Protection is
needed for its capabilities to protect the aircraft and crew, to ensure that the aircraft
is not threatened, and to support conditions for the function DestroyTarget."t
Notice the sources of this information in the function's specification.

t Further inquiry shows that DestroyTarget has a Prol'ided clause of the flight being operational.
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The capabilities of the functional representation language to express the structure
of understanding are not limited to explanations of devices, functions, and
behaviours. A diagnostic compiler which takes as input the functional representation
of a device, and outputs an expert system for diagnosis of problems of the device has
already been implemented in our laboratory at Ohio State. If one views debugging a
plan as trouble-shooting of an abstract device, such a diagnostic system is useful for
reasoning about why a plan will or will not work.

Similarly, the functional representation should be useful for qualitative simulation
of plans. The planner deciding on the use of specific devices may wish to use this
potential to check the feasibility of his planning decisions.

Other areas of research concern include the creation of plans and making
adaptations to existing plans. Some important characteristics which make this
representation useful for the design and repair of devices/plans include:

(1) A component is specified independent of the representation of the device
which contains it. More specifically, the specification of a component does not
refer to the role of the component in the composite and thus is not limited to
use solely within the given device.

(2) Only the names of the functions are carried over to a higher level and not the
behaviour specifications of components. This property is important since an
agent may desire to replace a malfunctioning component by a functionally
equivalent but behaviourally different one. In such situations, what a function
achieves is more important than how it is achieved.

These properties make the task of replacement of components less complex since
they allow for the determination of allowable substitutions by simply comparing
functional capabilities of current components with alternatives. Since much of
planning involves adaptations of already established plans, these traits which allow
for such changes in components and behaviours are valuable, i.e. they make it
possible for an automated planner to create and modify plans based upon the goals
and the functional specifications of available components.

A "deep" model, such as the one outlined in this paper, is particularly persuasive
if it can support more than one type of problem solving activity. We have
demonstrated the usefulness of the functional representation in representing plan
understanding, and indicated its support of diagnostic reasoning.

10. Concluding Remarks

Research in planning at our laboratory has been based on the following notions:

(1) Design and planning are very similar cognitive activities in the sense that they
share types of knowledge and control mechanisms, and both involve
construction of a sequence of steps or operations to achieve a set of goals.

(2) Given a problem solving task, the system should be designed such that the
problem solving mechanism matches the appropriate task. That is, the
structure of the knowledge and control regime for the system should correlate
to an understanding of the task involved.

(3) There is a type of problem solving called routine design or routine planning in
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which complete knowledge of the components (or partial plans) and design
plans is available prior to the problem solving activity. Problem solving
proceeds by using recognition knowledge to select among previously known
sequences of design (or planning) actions to fit the current situation.

We have described the use of DSPL as a high-level language for the construction
of a routine planning system. The MPA system demonstrates that the plan selection
and refinement strategy used by DSPL is a useful technique for building routine
planning systems; the problem solving strategy focusing on the planning process
much more sharply than more general problem solving methods. The MPA system
also shows how the structure enforced through DSPL clearly and concisely
represents planning knowledge.

In general, information processing systems which are analysed and implemented
using a framework of generic tasks with associated types of knowledge and a family
of control regimes benefit through the following advantages: (i) Since typically the
generic tasks are at a much higher level of abstraction than those associated with
first generation expert system languages, knowledge can be represented directly at
the level appropriate to the information processing task. (ii) Since each of the
generic tasks has an appropriate control regime, problem solving behaviour may be
more perspicuously encoded. (iii) Because of a richer generic vocabulary in terms of
which knowledge and control are represented, explanation of problem solving is also
more perspicuous (Chandrasekaran, 1985).

In broader terms, this research is a part of our on-going effort to uncover the
multitude of generic structures and processes involved in knowledge-based problem
solving. Our continued work includes further identification of problem solving tasks
to enrich our collection of generic knowledge structures and mechanisms, integra
tion of these tasks for more complex systems and integration of explanation types
within systems to provide for richer system understanding.
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