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Abstract

A sequential testing procedure for comparing survival distributions with binary responses is
considered. The data are monitored according to a discrete time process of reviewing the situation
at regularly spaced intervals of time by using the likelihood ratio as a test statistic. Sampling
continues until either a decision can be made about the hazard rates characterizing the survival
distributions to be compared or a prespeci�ed time limit is reached. Monte Carlo simulations are
used to model and estimate the power of the process. More speci�cally, the critical threshold
which allows one to control type-I error at a given level during the whole testing procedure is
also determined empirically by simulation. Particular attention is paid to the gain of e�ciency
resulting from the sequential approach. The better understanding of the relative incidence of
the parameters de�ning the experimental conditions on the power of the process is shown to
be helpful in planning a proper experimental design for a wide range of comparative studies
(e.g. clinical trials, environmental health studies). Two examples referring to survival data of
couples trying to begin a pregnancy and patients with bladder cancer, including environmental
or technical factors, are presented as an illustration. c© 1998 Elsevier Science B.V. All rights
reserved.

Keywords: Survival analysis; Sequential trials; Likelihood ratio; Censored data; Monte Carlo
simulation

1. Introduction

The statistical methods which are used in a great variety of biomedical or envi-
ronmental health investigations are often dealing with survival data analysis since the
principal interest during follow-up concerns the occurrence or non-occurrence of a par-
ticular event (e.g. death, local recurrence or any other clinical observation). Several
parametric and non-parametric approaches are available to design, and ultimately ana-
lyze the results of comparative studies or trials conducted in order to compare several
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survival distributions with respect to longevity (Bernstein and Lagakos, 1978; Gehan,
1961; Freedman, 1982; George and Desu, 1974; Peto et al., 1977).
In most of the conventional statistical procedures the duration of the study is prede-

termined and the total number of individuals required is calculated so as to ensure a
su�cient number of events to be observed. This is done in order to provide adequate
power to the comparative test at the scheduled termination of the trial. Following this
principle, a number of tables and monograms have been published (Freedman, 1982;
Shuster, 1993; Casagrande et al., 1978; Cochran and Cox, 1957; Machin and Camp-
bell, 1987; Peto et al., 1977; Schoenfeld and Richter, 1982) for planning the size and
duration of comparative tests and clinical trials.
Most of the previous methods emphasize the sample size, though the duration of

the study should also be considered an aspect of major importance when designing
a comparative test in many situations which are encountered in practice. On the one
hand, inferences about the parameters of interest or the power of the tests of comparison
obviously tend to improve as the available information which is accumulated over time
increases. On the other hand, considering the possible implications for public health
intervention, prevention policy or ethical aspects, it is desirable that the outcome of the
study be stated within the shortest possible period of time. A compromise between the
two previous antagonistic time constraints can be reached by reviewing the situation in
a sequential way at successive chronological terms. However, a crucial problem, when
performing interim analyses, is to control the type-I error rate at some prespeci�ed
level of signi�cance.
The purpose of the present paper is to outline a sequential procedure to perform

comparative analysis of survival distributions. It should be pointed out that sequential
analysis of survival data with prolonged observation of each individual has been pro-
posed by Whitehead (1992), among others. Several methods to derive exact stopping
boundaries for group sequential clinical trials were developed recently (Mehta et al.,
1994; Lin et al., 1991; Pawitan and Hallstrom, 1990). These methods are based on the
exact joint permutation distribution of rank statistics observed across all the monitoring
times. Lan and Zucker (1993) present a uni�ed conceptual framework for sequential
monitoring covering a wider variety of clinical settings. Reviews of some currently
used sequential methods in clinical trials are given by Fleming and DeMets (1993)
and Lee (1994).
The method suggested here introduces a new dimension of 
exibility into the analysis

of survival data within the framework of a stepwise assessment by taking explicit
account of the discrete nature of the data. The method is based on a discrete time
expression for the hazard while examining the di�erent study subjects individually.
It is therefore appropriate to deal with data sets which may contain a large number
of censored values and=or tied failure times as a result of the sequential process of
reviewing the situation when carrying out a follow-up study with staggered entries.
Moreover, the critical threshold in the testing procedure is determined so as to maintain
type-I error risk under a prespeci�ed level during the whole experiment. To this end,
the stopping criterion and decision rule of the sequential procedure are based on the
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distribution of the likelihood ratio statistic under the null hypothesis. In practice, the
critical threshold of the test or the parameters of interest (e.g. duration and power of
the process, mean number of events, proportion of inconclusive trials) at termination
of the sequential procedure can be estimated by Monte Carlo simulations which are
performed for a number of di�erent experimental designs. Conversely, the results of
this empirical approach for estimating the parameters are useful to de�ne appropriate
designs, in the sense that they will provide adequate power to detect a given di�erence
in the hazard rates associated with the groups to be compared. This is to be done
within the shortest possible period of time.
The di�erent aspects of the method presented here are illustrated by means of two

numerical examples from the survival literature. These examples are concerned with:
(i) studying the e�ect of smoking on the fecundability of couples trying to begin a
pregnancy, and (ii) a trial on super�cial bladder cancer.

2. Statistical methods

2.1. The model

Let us consider g groups of individuals and let ptij be the hazard rate corresponding
to the jth individual (j=1; : : : ; ni) of the ith group (i=1; : : : ; g) at time t. Note that
the hazard is given as a discrete expression of the time i.e., the hazard function is
supported on the integers (t=1; 2; : : :). Clearly, ptij is the probability for individual j
in group i to fail at time t provided that the individual was still at risk at time t−1. The
random variable associated with the survival corresponding to this individual is denoted
as Yij. If Yij is censored on one side, the observed survival time of the corresponding
individual will be denoted as ycij. Note that both right or left single censoring may be
considered hereafter.
As a preliminary approach, the further development will be focussed on the special

case which arises when the hazard rate characterizing all the individuals belonging to
the same group is time-�xed, i.e. ptij =pi (t=1; 2; : : : ; j=1; : : : ; ni). In other words,
this means that the survival times are exponentially distributed. The exponential model
is often considered an appropriate underlying hypothesis and it is therefore commonly
used in survival data analysis (Bernstein and Lagakos, 1978; Maul, 1994; Prentice,
1973; Schoenfeld and Richter, 1982). Assessment of the adequacy of the exponential
model is easy to perform on partially censored data by using the cumulative hazard
function corresponding to each lifetime (Maul, 1994; Lawless, 1982). Hence, the fur-
ther developed technique will be referred to as discrete time Bernoulli likelihood ratio
sequential (DTBLRS) method.
We have

Pr(Yij =yij)= (1− pi)yij−1pi;
Pr(Yij¿ycij)= (1− pi)y

c
ij ; (i=1; : : : ; g; j=1; : : : ; ni; yij or ycij =1; 2; : : :):

(1)
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However, in order to be of practical use (e.g. randomized controlled clinical tri-
als, environmental health or biomedical follow-up studies) the results obtained for the
DTBLRS method are shown to be applicable to much less restrictive situations. In
particular, assessing the critical threshold and choosing a sampling scheme so as to
control type-I error under a prespeci�ed level is applicable, more generally, to situa-
tions involving: (i) staggered entries, that is when the subjects arrive in sequence, (ii)
any type of single censoring, and=or (iii) time-dependent hazard rates.

2.2. Sequential comparison of survival distributions

2.2.1. Test statistic
Testing the equality of the g survival distributions under the underlying assumption

of an exponential distribution of survival times can be performed by testing the equality
of the g hazard rates in p=(p1; : : : ; pg), i.e. H0 :p1 =p2 = · · · =pg.
The observed survival times which are available for group i (i=1; : : : ; g) at stage

t (t=1; 2; : : :) in the sequential procedure are: yt
i
=(yi1; : : : ; yi; ni−kti ; y

t
i; ni−kti+1; : : : ; y

t
i; ni)

where the last kti observations are censored (i.e. individuals still at risk at time t). Note
that t is then taken as the censoring value.
The likelihood function of the sample yt =(yt

1
; : : : ; yt

g
) at stage t is given by

L(yt |p)=
g∏
i=1

{
ni−kti∏
j=1
[(1− pi)yij−1pi]

ni∏
j=ni−kti+1

(1− pi)ytij
}
: (2)

The test statistic, −2 ln�t , calculated at stage t of the sequential process is expressed
in terms of the ln likelihood ratio. Hence,

− 2 ln�t =2
g∑
i=1

{
ln
(
1− p̂ti
1− p̂t

)
ni∑
j=1

y∗ij + (ni − kti ) ln
[
p̂ti(1− p̂t)
p̂t(1− p̂ti)

]}
; (3)

where y∗ij is for y
t
ij or yij according to whether Yij has been censored at y

t
ij or not,

respectively. In Eq. (3), p̂ti is the maximum-likelihood estimate of pi under H1 whereas
p̂t is the maximum-likelihood estimate of the common hazard rate under H0. Note that
if the number of events in group i is 0 then the contribution of group i to the likelihood
is 2 ln(1=(1− p̂t))∑ni

j=1 y
∗
ij.

2.2.2. Critical threshold
Performing the test in a sequential way requires one to adjust the critical threshold

so as to control type-I error at a speci�c level during the entire procedure. In this
regard, we address settings in which the data are monitored continuously in the sense
that t is increased by one at each step of the process up to some predetermined
practical limit tmax. Moreover, let D be the random variable in the sequential procedure
associated with the smallest integer t such that −2 ln�t is signi�cant, regarding a given
type-I error rate, �, and provided that t6tmax. This means that D is the duration of the
sequential procedure under the condition it does not exceed tmax. The critical threshold
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will be denoted by s(n1; : : : ; ng; �; tmax; H0) since it depends on the sample size of the
di�erent groups to be compared, the level of type-I error, the practical time limit and
the level of the common hazard rate as stated in H0. Its value is determined so as to
ful�ll the following constraint:

�=Pr(D6tmax |H0)=Pr(−2 ln�max¿s(n1; : : : ; ng; �; tmax; H0) |H0); (4)

where −2 ln�max represents the maximum value of −2 ln� which is observed on the
discrete time interval [1; : : : ; tmax].

2.2.3. Stopping criterion
The stopping boundaries are derived from the exact distribution of −2 ln�max ob-

served across all the monitoring times, given n1; : : : ; ng; �; tmax and H0. The decision
rule at stage t (t=1; 2; : : : ; tmax) is as follows:
• if −2 ln�t6s(n1; : : : ; ng; �; tmax; H0) and t6tmax, then continue;
• if −2 ln�t¿s(n1; : : : ; ng; �; tmax; H0) and t6tmax, stop and reject H0 (i.e. the hazard
rates are not equal). Then, the value taken by D is t;

• the trial is declared inconclusive if −2 ln�t has not reached a signi�cant value by
t= tmax.
Thus, � may be considered the probability of observing a signi�cant outcome be-

fore the practical limit, tmax, of the sequential procedure is reached, provided H0 is
true. In fact, the value of � is larger than the actual type-I error risk in case a de-
cision is made and the sequential process is stopped before tmax. In practical terms,
this is an error in the right direction since our approach leads to more conservative
tests.

2.2.4. Simulation procedure
Although the results presented in this work can be easily generalized to any number

of groups by following the simulation procedure which is outlined hereafter, the scope
of this paper will be focussed on the comparison of two survival distributions only. The
objective is to determine whether one treatment is better than the other with respect to
longevity. Monte Carlo simulations were carried out to assess:
(1) the critical threshold corresponding to a signi�cant outcome of the comparative

test;
(2) the incidence of both the parameters of the experimental design and type-I error

rate on the duration and the power of the DTBLRS method.
The curves and surfaces in this paper were estimated empirically by simulation.

The graphs have been interpolated between observations for convenience in plotting.
Each point estimate which was used for the construction of the curves corresponds to
r=5000 or 10 000 distinct sets of simulation runs. Power analysis showed that the
power of the sequential testing procedure reached its maximum level in the case of a
balanced allocation of the individuals in the treatment groups to be compared. All the
sequential comparative tests performed in this paper are therefore based on a balanced
randomization of the n individuals in the groups. The survival of the individuals at
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risk within each simulated trial was examined at each step of the sequential procedure
by following a Bernoulli random process. The parameter of the Bernoulli distribution
was set equal to the hazard rate characterizing the group to which the individual under
consideration belonged.

3. Results and discussion

Setting the value of s(n1; : : : ; ng; �; tmax; H0) at a level which is appropriate to ensure
a type-I error risk equal to � amounts to determining the quantile of order 1−� in the
distribution of −2 ln�max for any combination of tmax and hazard rates as in H0. Stating
the null hypothesis as p1 =p2 =p, several sets of r=5000 trials were generated for
a wide range of values of p and n. The maximum value of −2 ln�, observed on the
discrete time interval [1; : : : ; tmax], was computed for each trial.
The results of these simulations showed that the distribution of −2 ln�max depends

on tmax and H0, only. In particular, it should be emphasized that, under H0, the dis-
tribution of −2 ln�max may be considered approximately independent of the sample
size n; provided np¿1. This condition is easily ful�lled in consideration of the range
of values of n which is currently used in practice. Fig. 1 displays the variation of
the critical threshold (i.e. the appropriate quantile in the distribution of −2 ln�max)
in a three-dimensional plot. The surface in Fig. 1a shows the variation of the quan-
tile at level 0.95 in the empirical distribution of −2 ln�max under H0, as a function
of tmax and p. The visual information on the 3-D scatterplot shown in Fig. 1a can
be greatly enhanced (see Fig. 1b) by using a multivariate smoothing procedure such
as locally weighted regression (Cleveland and Devlin, 1988). As was to be expected,
the higher the value of tmax, the higher the quantiles. Moreover, it is interesting to
note that the surface shown in Fig. 1a and b is relatively 
at provided that tmax and
p are not too close to zero. This property concerning the general shape of the sur-
face applies to any other quantile. It is also important to note that the quantiles and
the common hazard rate in the null hypothesis vary in the inverse order. Clearly,
if p¡p′ then s(n1; n2; �; tmax; H0(p))¿s(n1; n2; �; tmax; H0(p′)). Thus, in consideration
of all these remarks it is always possible to set the value of the critical threshold
so as to control type-I error under any prespeci�ed level during the whole study.
This is actually one of the major bene�ts of the procedure presented in the present
work.
The conditional expectation of the duration time in a balanced experiment is pre-

sented in Fig. 2, which is concerned with studying the variations of E[D |D6tmax];
(tmax = 200), as a function of the sample size n. Taking p1 = 0:01, the di�erent curves
represented in Fig. 2 correspond to survival rates in the second group �xed at
p2 = 0:015; p2 = 0:02; p2 = 0:03; p2 = 0:04 and p2 = 0:05. From Fig. 2 it is clear
that E[D |D6tmax] decreases as (a) the hazard ratio p2=p1 increasingly diverges from
one, or (b) the number of individuals involved in the study increases. A similar state-
ment can be made if type-I error rate becomes larger.
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Fig. 1. Estimated quantiles at level 0.95 in the distribution of −2 ln�max under H0 (p=p1 =p2) as a
function of the common hazard rate and tmax (n=100; r=10 000): (a) Simulated data (b) smoothed surface
by using locally weighted regression.

We de�ne the power of the sequential test at time t; �(t), as the probability of �nding
a signi�cant di�erence, if it exists, by time t. In other words, �(t)=Pr(D6t) is the
probability of stopping by t. Then, the power at time t depends on the expectation
of the maximum value of the likelihood ratio statistic, −2 ln�max, which is associated
with the discrete time interval [1; : : : ; t]. The variation of the conditional expectation
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Fig. 2. Expectation of D (conditional on D6200) as a function of the sample size n (r=5000):

of −2 ln�max, as a function of the sample size n and the hazard ratio p2=p1, can be
obtained by Monte Carlo simulation, conditional on the event (time 6t). A graphical
illustration of power analysis is given in Fig. 3. From this �gure, it appears that the
conditional expectation of −2 ln�max, and thus indirectly the power of the test, may be
considered an increasing linear function of n. Moreover, the slope of the straight line
increases as the hazard ratio departs further from unity. Notwithstanding the increasing
relation between the cumulative power and time, it is also clear from Fig. 3 that
power increases as p2=p1; n and � increase. This remark suggests the use of power
analysis, namely, power curves, for determining the number of individuals needed for
carrying out a survival comparative test. The number of individuals to be involved
in the study increases as the hazard ratio becomes closer to one. In particular, the
straight lines in Fig. 3 give some quantitative grounds to the fact that a su�cient
number of individuals is required in order to avoid the possibility of ending on an
inconclusive experiment if there is a di�erence in the survival rates indeed. This is
also the reason why a practical time limit (tmax) has to be stated before starting a
sequential test.
Regarding practical purposes, it is possible to give more 
exibility to the DTBLRS

approach. For instance, one may adjust the interval of time between two consecutive
tests in the sequential procedure so as to render the di�erent hazard rates concordant
with the values which are used in this paper. Moreover, the discrete time expression
for the hazard while examining the di�erent study subjects individually allows one to
carry out the sequential procedure in situations of any type of single censored data
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Fig. 3. Estimated expectation of the maximum value of the likelihood ratio statistic (conditional on D6tmax)
as a function of the sample size n (r=5000):

involving staggered entries; for example, with a fresh block of individuals entering
the study from one monitoring point to the next. This is a consequence of the mono-
tonicity of the expectation of −2 ln� which, under H1, is an increasing function of
both time and the number of individuals (see Fig. 3). Clearly, the expectation of the
likelihood ratio statistic, in case the subjects arrive in sequence, is in the preferred
direction of slightly underestimating the value of this expectation corresponding to a
simultaneous entrance of all the subjects from the beginning of the study. Further-
more, some of the previous results allow the sequential procedure to be applicable
to the analysis of survival data with time-dependent hazards which may incorporate
a variety of shapes. For instance, the two-sample comparison test may be extended
to a discrete time proportional hazards model, that is, assuming a constant hazard ra-
tio as the underlying alternative hypothesis. Indeed, the surface in Fig. 1 shows that
type-I error can still be maintained at any given level. To this end, one needs to con-
sider the highest value of the critical threshold corresponding to the range of values
of the hazard rate, which is expected to be encountered on the whole period of the
study.

4. Examples

The �rst example is concerned with studying the e�ect of smoking on fecundabil-
ity (Weinberg and Gladen, 1986). The duration variable is the time taken by couples



280 A. Maul / Journal of Statistical Planning and Inference 71 (1998) 271–285

Table 1
Data on the number of menstrual cycles to pregnancy (adapted from Weinberg and Gladen, 1986)

Time S Number of menstrual cycles
interval or

NS 1 2 3 4 5 6 7 8 9 10 11 12 ¿12

1 S 5 1 2 1 1
NS 21 5 7 2 3 1 1 1

2 S 1 2 1 1 1
NS 26 17 7 3 3 1 1 1 2

3 S 3 3 1 1 1 2
NS 16 12 4 1 1 2 2 1 2 3

4 S 2 2 2 2 1 1
NS 19 11 10 5 5 3 1 1 1 1 1 1

5 S 2 2 1 1 1 1
NS 28 5 5 8 1 2 1 1 1

6 S 3 1 2 2 1 3
NS 16 14 2 4 2 1

7 S 2 2 1 1
NS 20 16 2 2 3 2 1

8 S 5 2 3 1 1 1 1 2
NS 14 5 6 2 1 6 2 2 1 1 3

9 S 2 3 1 1 1
NS 24 6 4 5 4 1 1 1

10 S 4 2 2 3 1 1
NS 14 16 8 6 3 1 1 1 1 1 1 2

S: Smokers.
NS: Non-smokers.

who were attempting to conceive, until pregnancy results. To this end, the number of
menstrual cycles to pregnancy was recorded for each of the 586 couples involved in
the study. Couples are designated as “smokers” if the female partner smoked. The data
set used to illustrate the DTBLRS method is presented in Table 1. Thus, the entire
duration of the study was divided into ten intervals (months) and each observation
(couple) of the original data was allocated at random to one of these intervals of time.
The data in Table 1 were subjected to a prospective sequential analysis. As a further
justi�cation for this type of study, one can �nd its interest within the framework of
a trial aiming at studying, for instance, the e�ect of a new treatment against sterility.
The outcome of the testing procedure at each step of the DTBLRS method is given
in Table 2. The total number of events and the successive maximum-likelihood esti-
mates of the probability of conception at each cycle are also presented in Table 2.
These estimates were calculated (i) within the two groups of subjects (H1), or (ii)
by assuming there is no di�erence between the smokers and non-smokers (H0), with
respect to fecundability. The P-values displayed in the last column of Table 2 required
previous Monte Carlo simulations (r=5000) to determine the empirical distribution of
−2 ln�max (tmax = 10) under H0 (i.e. p1 =p2 = 0:30). It becomes clear from the results
in Table 2 that fecundability is a�ected by smoking. Thus, the depreciative e�ect of
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Table 2
Sequential analysis of the e�ect of smoking on the number of menstrual cycles to pregnancy

Time S Total p̂ Common p̂ −2ln�t
interval or number (under H1) (under H0)

NS of events

S 5 0.5000
1 0.5098 0.0048

NS 21 0.5122 P¡0:8546
S 7 0.3333

2 0.4126 0.6509
NS 52 0.4262 P¡0:7122
S 12 0.2927

3 0.4047 2.6245
NS 92 0.4259 P¡0:2794
S 19 0.2879

4 0.3823 3.0873
NS 132 0.4012 P¡0:2131
S 25 0.2717

5 0.3773 5.4507
NS 181 0.3987 P¡0:0473
S 31 0.2500

6 0.3521 7.2090
NS 213 0.3743 P¡0:0146
S 39 0.2500

7 0.3501 8.7784
NS 260 0.3725 P¡0:0051
S 48 0.2449

8 0.3474 11.7587
NS 306 0.3718 P¡0:0007
S 56 0.2258

9 0.3378 18.4780
NS 348 0.3671 P¡0:0001
S 69 0.2363

10 0.3295 15.2038
NS 385 0.3545 P¡0:0001

S: Smokers.
NS: Non-smokers.

smoking on fecundability could be stated from the seventh interval of time onwards
(P¡0:01).
The relative e�ciency of the DTBLRS method over the conventional statistical prac-

tices, which are still currently used for the analysis of clinical trials dealing with sur-
vival data, is illustrated by means of a second example referring to a trial on super�cial
bladder cancer (Freedman, 1982). In this example, it was assumed that with the current
method of treatment of super�cial bladder cancer (i.e. resection of tumor at cystoscopy)
the recurrence-free rate was 50% at 2 yr. The problem is to design a clinical trial which
is appropriate to show an increase in the previous rate to at least 70% using intravesical
chemotherapy immediately after surgery by the time of cystoscopy.
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If we assume that there is an exponential distribution of survival times, then the haz-
ard rates corresponding to the previous situations are: p2 = 0:02847 and p1 = 0:01475
per month, respectively. Rescaling the time from months to 21-day periods results in
35 time-periods (over 24 months). This is done for convenience to obtain values of
the hazards rates in agreement with those used in the present work. Hence, the values
of the hazard rates become p2 = 0:01934 (say 0.02) and p1 = 0:01 if the time unit
is changed to 20.57 days. The characteristics of the procedure suggested in this pa-
per are compared with (a) the approach based on the exponential model, assuming
an approximate normal distribution of the lnmaximum-likelihood estimate of the haz-
ard rates (Schoenfeld and Richter, 1982; Bernstein and Lagakos, 1978), and (b) the
non-parametric method using the logrank test (Freedman, 1982) under the assumption
that the hazard function is expressed as the well-known semi-parametric proportional
hazards model (Cox, 1972). To facilitate comparison between the di�erent methods,
all the patients are assumed to have been entered in the study at the same time, i.e.
t=0. Statistical analysis of the results by following methods (a) and (b) is assumed
to occur after a follow-up time which is �xed at tmax = 24 months.
The bene�t of the sequential approach over the other two methods is shown in

Table 3. It can be assessed by comparing the power and=or the total expected number
of events needed before a decision is planned to be made (methods (a) and (b)) or
can be made (DTBLRS method). However, when doing such a comparison between
the di�erent methods one should be aware that the proportional hazards model is used
in the approach developed by Freedman (1982) whereas the simple but also more
restrictive exponential model is used in the other two methods. The mean number of
events, which is mentioned in Table 3, was calculated by the end of each sequential
procedure (conditional on t6tmax) from r=5000 simulated experiments.
The results presented in Table 3 show that the DTBLRS procedure allows a decision

to be made at a time, and subsequently a number of events, which are both consider-
ably smaller than those by the other two approaches. These two methods, in turn, are
comparable in terms of e�ciency. Nevertheless, it is interesting to note that the power
characterizing the sequential process at the time limit of the comparative study (i.e.
tmax = 24) is less than the corresponding power as calculated for the other two methods.
The di�erence is more marked when the power is low. This may be considered as the
counterpart to the possibility of stopping the sequential procedure at any step before
the time limit of the trial is reached while maintaining type-I error under a prespeci-
�ed level during the whole study. Seen another way, it must be emphasized that there
might be a marked di�erence in the hazard rates one is not necessarily aware of at the
beginning of the experiment. In this case, the possibility for early termination of the
trial constitutes the chief advantage of the sequential procedure over the �xed-time test.
It should be pointed out that if there are only two groups to be compared, a one-

tailed test might be more appropriate. Other simulation methods similar to those which
are used in this paper could be used to obtain a one-sided sequential test. These tests
would be more powerful than the DTBLRS method to handle the examples presented
in this work.



A. Maul / Journal of Statistical Planning and Inference 71 (1998) 271–285 283

Table 3
E�ciency of the sequential procedure compared with two other commonly used approaches in planning a
comparative test

Number Method Hazard rates corresponding to a 21 days – period of time:
of p1 =0:01 and p2 =0:02
individuals �=0:05 �=0:01

Normal �=0:323 m=20 �=0:142 m=20
Non-parametric �=0:309 m=20 �=0:125 m=20

n=50
�(6)= 0:040 �(6)= 0:006

Sequential �(12)= 0:097 �m=12:62 �(12)= 0:032 �m=14:02
�(24)= 0:189 �(24)= 0:079

Normal �=0:565 m=40 �=0:325 m=40
Non-parametric �=0:563 m=40 �=0:310 m=40

n=100
�(6)= 0:097 �(6)= 0:030

Sequential �(12)= 0:204 �m=23:44 �(12)= 0:083 �m=26:37
�(24)= 0:393 �(24)= 0:202

Normal �=0:852 m=80 �=0:665 m=80
Non-parametric �=0:861 m=80 �=0:667 m=80

n=200
�(6)= 0:202 �(6)= 0:084

Sequential �(12)= 0:426 �m=42:61 �(12)= 0:232 �m=50:65
�(24)= 0:713 �(24)= 0:507

Normal �=0:989 m=160 �=0:953 m=160
Non-parametric �=0:992 m=160 �=0:959 m=160

n=400
�(6)= 0:427 �(6)= 0:239

Sequential �(12)= 0:763 �m=65:42 �(12)= 0:574 �m=82:70
�(24)= 0:967 �(24)= 0:898

�: Power of the test at termination of the trial (i.e. tmax = 24 months).
m: Expected number of events needed to be observed.
�(t): Power of the sequential procedure at t months.
�m: Mean total number of events observed by the end of the test (t624) obtained by simulation (r=5000):

5. Concluding remarks

The sequential procedure presented in this paper provides a particularly convenient
and useful way for designing appropriate comparative tests. Namely, the approach
can be used for comparing survival distributions in a wide class of biomedical (e.g.
clinical trials) or environmental health (e.g. risk analysis) investigations. The critical
threshold which is used when stating the decision rule in the DTBLRS approach can
be determined empirically by simulation. The criterion for early stopping of the process
is obtained by computing the exact distribution of the likelihood ratio statistic under
the null hypothesis. The value of the threshold is thus determined on the basis of
satisfying statistical grounds so as to control type-I error at a speci�c level during the
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entire sequential testing procedure. In a comparative study between two populations the
gain of e�ciency resulting from the sequential approach may be particularly marked,
especially if the actual hazard ratio between the groups departs from unity more than
expected when planning the study. In such a situation, both the duration and the number
of events are substantially smaller than one could expect had one used a current method
based on the analysis of the data observed at a predetermined value of the time. Power
analysis shows that planning the size and duration of a comparative study can be
achieved on the basis of: (i) the combination of power and level of signi�cance to be
attained, and (ii) the prior knowledge of the hazard rates in each group or, similarly,
the smallest di�erence in the relative hazard rates one wishes the trial to be able to
detect reliably. The simulation procedure used while performing the DTBLRS test may
be considered a reference method for computing the critical threshold which can be
applicable to a large class of survival distributions. Finally, the great generality of the
statistical model considered accommodates the possibility of handling more than two
treatment groups with time-dependent hazard rates and staggered entries comprising
high rates of single censored values and=or tied failure times.
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