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P r o b l e m s  with Universa l  Kriging 1 

M. Armstrong 2 

INTRODUCTION 

Ordinary linear geostatistics is now well established, both theoretically and prac- 
tically, as a method for estimating stationary phenomena. Its use is widely ac- 
cepted in the mining industry. In other fields, however, such as meteorology, 
bathymetry and reservoir engineering, the variables under study are clearly not 
stationary. 

In 1969, Matheron proposed the theory of universal kriging, which pro- 
vided linear estimates of a variable eren when a trend or drift was present. By 
1973, however, this theory had been discarded in favor of the theory of intrinsic 
random functions of order k (IRF-k). Newcomers to geostatistics often wonder 
why. Some clues as to the reasons are given in the NATO papers (Guarascio, 
David, and Huijbregts, 1976). When introducing the then new IRF-k, Delfiner 
(p. 47) alludes to orte of the problems: that of identifying the underlying covari- 
ance or variogram. In the same volume, Sabourin (p. 101-109) explores two pos- 
sible methods for getting at the underlying covariance, but the methods seem 
rather cumbersome. To get some more detailed answers on this question, one has 
to go back to the Centre's internal reports (Matheron, 1969, 1971), which are 
mostly in French and are not easily accessible to outsiders. 

The organizers of a recent summer school curriculum felt the need for a 
more comprehensive account of the problems encountered in UK. This led to 
the production of an internal note in English (Chauvet and Galli, 1982). The alm 
of this article is to provide a summary of that note and to indicate to readers 
other references on the subject. 

DESCRIPTION OF UNIVERSAL KRIGING 

A study of the sea floor by Journel (1969) provoked Matheron's interest in 
the problems of nonstationarity and led to the development of universal kriging. 

1Manuscript received 8 December 1982. 
2Centre de Geostatistique et de Morphologie Mathématique, École des Mines de Paris, 35 
Rue St.-Honoré, 77305 Fontainebleau, France. 

101 
0020-5958/84/0100-0101503.50/0 © 1984 Plenum Publishing Corporation 



102 Armstrong 

The approach parallels that of  trend surfaces, where the phenomenon of  interest 
is split into two components -a  deterministic trend (or drift) plus a random error 
(or fluctuation, as the geostatisticians prefer to call it). The difference between 
the two approaches is that the fluctuations used in geostatistics are not assumed 
to be independent, as they are in trend surfaces. 

In mathematical terms, the random function Z(x), representing the variable 
under study, is split into a deterministic drift ra(x) plus a random function Y(x) 
with zero mean 

Z(x) = m(x) + Y(x) 

It is assumed that the drift can be expressed locally as a linear combination 
~l at f t (x)  of  k known basis functions f r (x)  (generally polynomials) with un- 
known coefficients a» The choice of  the basis functions is important: the unique- 
ness of  the solution to kriging systems depends on their being linearly indepen- 
dent on the sample points. For example, the linearly dependent functions (1, 
cos x, sin x, cos 2 x, sin 2 x) cannot be used, not could the monomials x n if the 
data are linear and if the degree of  the drift is greater than or equal to 1. (See p. 
29-30 of  Chauvet and Galli, 1982, for more details). 

In order to make any statistical inferences about Z(x), some hypotheses 
taust be made about the stationarity of  Y(x). Two cases are considered 

1. Stationary Hypothesis. Y(x) is assumed to be weakly stationary with 
covariance function Kxy 

Kxy = E [ r ( y )  r(x)]  

This is then assumed to depend only on (x - y). 

2. lntrinsic Hypothesis. The increments Y ( y ) -  Y(x) are assumed to be 
weakly stationary. Their variogram 7xy which is defined as 

27xy = E[Y(y )  - Y(x)] 2 

is assumed to depend only on x - y.  

For each of  these two cases three estimation problems can be considered 

(i) estimating the value Z(x) at certain points 

(ii) estimating the drift m(x) at certain points 

(iii) estimating the drift coefficient at at certain points 

Case 1: Estimation Under the Stationary Hypothesis 

Estimating the Value Z(x) 

The objective is to find the linear combination 2; X~z(x~) of the sample 
values z(x l )  . . . . .  Z(Xn) , which is unbiased and which minimizes the estimation 
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variance. Since the estimator has to be unbiased whatever the value of  the coeffi- 
cients, Matheron called it a "universal" estimator. A set of  sufficient conditions 
for E[2; X~z(x~)] to be equal to E[z(x)] is that 

Z~~f l (xa)=f l (x )  for l = O, 1 . . . .  , k 

As in ordinary kriging, we use the Lagrange multipliers, ~I (l = O, 1 . . . . .  k) 
to minimize the estimation variance 

E [~-'X~Z(x~)-Z(x)12= ~~f'~X~)v~K~ß-2~X~K~x+Kxx 

subject to the preceding universality conditions. Setting the partial derivatives 
with respect to X« to zero gives rise to the following n conditions 

~_,X~K~{s+~~~ptf'(xo~)=Kc~x for c~=l . . . .  , n  

If we shorten fl(xe) to f~, these n equations plus the k universality condi- 
tions can be written in matrix form as: 

LI~ ,,oj LI}J 
When the solution of  this system is substituted back into the expression for 

the estimation variance, the kriging variance is obtained: Kxx- ~ XaKex - 
/~tfx i. Provided that kc~~ is strictly positive definite (which excludes the case of  

repeated sampling at sample points) the system is nonsingular and has a unique 
solution. 

Estimating the Drift ra(x) 

The equations for estimating the drift are obtained in the same way. The 
kriging system obtained is 

L~~ i ° ]  , 
Estirnating the Drift Coefficient a s 

In this case the kriging system becomes 

i o JL~,, , j  

Case 2: Estimation Under the Intrinsic Hypothesis 

In this context, the term "intrinsic" is to be taken in the narrow sense: that 
is, intrinsic but not stationary. In that case, we can handle only admissible linear 
combinations ALC, ~ ?MZ(xa)with G Xc~ = O. 
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The same procedure is used as before, except that the covariance Kxy is re- 
placed by - Txy. 

Estimating the Value E(x )  

The kriging system is now 

L-}J--I ö-] L a 3 
Estimating the Drift m(x)  

Since the drift itself is not an ALC, we can only estimate drift increments 
ra(x) - m(yo) .  If we let cB / denote f l  x - f~o' the system for estimating the drift 
increments is 

E »,lf: 1 ;~1 L~_~_~_, x~ = o 
l i 

It is instructive to expand the drift increment 

k k k 

ra(x) - m ( y o )  = ~ a t f ; (x )  - ~ a; . f t (yo) = ~_, a; [ f l (x )  - f;(yo)l 
o o 1 

The constant term a o is filtered out. 

Estimating the Drift Coefficient a s 

The system for estimating any of  the a t except the constant term ao is 

_7_~;_~ _~~ = o 

L f# !o-J Lm,,_ l  

Remarks 

The properties of  universal kriging (tensorial invariance and the additivity 
theorem) are presented in detail in Matheron (1969) and Chauvet and Galli 
(1982). Comparisons with least-squares and maximum-likelihood estimators are 
also discussed in these two references, as is universal cokriging. An interesting 
example of  cokriging is given in Chauvet (1977). 

We now go on to discuss two major problems in universal kriging. 

FIRST PROBLEM: THE INDETERMINANCY IN THE DRIFT 

As was mentioned in the preceding section, the constant term ao cannot be 
estimated when only the intrinsic hypothesis holds. We can ask if this problem 
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can be overcome by some minor modification of  the system or whether it is in- 
herent in the methodology. 

The universal kriging method is based on a decomposition of  the phenome- 
non under study into a deterministic drift (or trend) plus correlated fluctuations. 

In Section 2 we defined the drift to be the mean of  Z(x). This definition was 
chosen to provide a rigorous meaning of  the idea of  drift and to allow us to de- 
velop a mathematical theory. It is neither true not false. It is merely a choice 
that may prove to be fruitful or otherwise. What is more, it is not the only pos- 
sible choice. 

We also assumed that the drift could be expanded as 22 alfl(x). This hy- 
pothesis is designed to bring this definition closer to out intuitive idea of  a drift 
by constraining it to be regular. But this time the hypothesis can be rejected ex- 
perimentally (for example, if the basis functions were badly chosen or if there 
were not enough of  them). 

In other words, if we want to develop a new representation for the drift 
that would allow us to estimate the constant term ao, we can change the defini- 
tion of  the drift but we will still require some sort of  regularity condition. 

In trend-surface analysis in classicat statistics, the coefficients of  the trend 
can be considered either as deterministic or as random variables. We can try to 
replace the deterministic drift coefficients by random variables. Clearly, some 
additional covariances between the various drift coefficients and between a given 
drift coefficient and the random function Y(x) are needed. Because of  the 
uniqueness of  the data set, these cannot be estimated. However, they can be 
eliminated from the equations by introducing some additional universality con- 
ditions, but this brings us back to the same system of equations as before. See 
Matheron (1971, p. 173-183) or Chauvet and Galli (1982, p. 78-86) for more 
details. 

The indeterminacy in the drift coefficient ao in the intrinsic case is one of  
the inherent indeterminacies of  universal kriging. Working with linear combina- 
tions of  differences, which we must do in the intrinsic case, effectively filters out 
the constant. This can be compared to the indeterminacy in integration. If we 
know only the derivative, the corresponding integral is known up to an additive 
constant. Going further, this comparison suggests that the higher powers in x 
might be filtered out by higher order differences, which is precisely the principte 
behind the IRF-k. 

SECOND PROBLEM: INDETERMINACY IN THE 
UNDERLYING VARIOGRAM 

The problem described in the preceding section is important from a theo- 
retical point of  view but does not condem the use of  universal kriging. The prob- 
lem discussed in this section has rar more wide-reaching implications. It means 
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that universal kriging can be used only in cases where the underlying variogram is 
known a priori. 

When the universal kriging system was developed earlier under the section 
on universal kriging the variogram (or covariance) was assumed to be known. But 
this is rarely the case in practice. One exception to this was a case study on sea 
floor estimation done by Chilès (1977). As there was no drift in one direction, 
the variogram for this direction was taken to be the underlying variogram in the 
other directions too. 

However if the underlying variogram is not known, we are faced with a 
chicken-and-egg problem: 

(i) We need the (unknown) underlying variogram (of covariance) for the 
universal kriging system. 

(il) If  we use instead the variogram of residuals 

"),R(h) = l E {  [Z(x + h)  - m * ( x  + h) - [Z(x) - m8(x)] }2 

we then need to know the estimated drift rn*(x). 

(iii) In order to calculate m * ( x )  we have to know the universal kriging sys- 
t e m - b a c k  to square one. 

At first sight it would seem to be possible to proceed iteratively, succes- 
sively refining the estimates of  both the variogram and the trend. Sabourin 
(Guarascio, David and Huijbregts, 1976) has presented two methods of  doing 
this. But two more difficulties then arise. 

First, the variogram of  residuals gives a very biased estimate (an underesti- 
mate) of  the true underlying variogram. Figure 1 (which is taken from Chilès' 
(1977) thesis) shows how bad the situation is. Equations for the blas term are 
given in Chauvet and Galli (1982, p. 90). 

I ur~~ev-~y.~aß varioßraFm 
I I / ' - ' \ .  

! i \ v.~~ 

/ i 
h" 

Fig. 1. Underlying variogram and the variogram 
of residuals, which is seriously biased. 
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Fig. 2. Variogram of residuals corresponding to either linear or quadratic drifts and other 
exponential or power function variograms. 

Second, it is extremely difficult to deduce either the degree of the drift or 
the type of the underlying variogram from the variogram of residuals. Figure 2 
(taken from Chilès, 1977) shows the variogram of residuals for two different 
underlying variograms (exponential and power function) for both linear and 
quadratic drifts. Seeing these, we can appreciate the truth of Sabourin's com- 
ment that "this procedure can lead to false interpretations of 7(h)." 

CONCLUSlON 

Although the theory of universal kriging is mathematically correct, the dif- 
ficulty in estimating the variogram and the drift at the same time makes it un- 
workable in practice, except for those rare cases where the variogram is known 
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a priori. The other problem (that of estimating the drift coefficient ao) shows 
that there are inherent difficulties estimating some terms under the intrinsic hy- 
pothesis, which can only be overcome by changing our definition of a "drift." 

On the positive side, it suggests that it might be better to filter out the drift by 

taking higher order differences. 
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