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AN ALGEBRAIC MULTIGRID SOLVER FOR NAVIER-STOKES 
PROBLEMS IN THE DISCRETE SECOND-ORDER 

APPROXIMATION 

R. WEBSTER 
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SUMMARY 

An algebraic multigrid scheme is presented for solving the discrete Navier-Stokes equations to second-order 
accuracy using the defect correction method. Solutions for the driven cavity and asymmetric, sudden expansion 
test problems have been obtained for both structured and unstructured meshes, the resolution and resolution 
grading being controlled by global and local mesh refinements. 

The solver is efficient and robust to the extent that, for problems attempted so far, no underrelaxation of 
variables has been required to ensure convergence. Provided that the computational mesh can resolve the flow 
field, convergence characteristics are almost mesh-independent. Rates of convergence actually improve with 
refinement, asymptotically approaching mesh-independent values. For extremely coarse meshes, where dispersive 
-cation errors would be expected to prevent convergence (or even induce divergence), solutions can still be 
obtained by using explicit underrelaxation in the iterative cycle. 

WY WORDS algebraic multigrid; defect cormtion; unsbuciured meshes 

1. INTRODUCTION 

Solution of the equations of motion for viscous fluids in the discrete approximation demands powerful 
computing resources. This is because the flow fields of practical interest are invariably complex, 
requiring a high degree of spatial resolution. Resolution of length scales spanning many orders of 
magnitude may be necessary even for stable laminar flows. If Q is some measure of the linear resolving 
power of a discretization (such as an appropriately scaled inverse of the nodal separation), then the 
number of discrete equations to be solved, N, will scale as 

N - e d ,  (1) 
where d is the number of spatial dimensions. Since, moreover, the computational work will scale as $, 
where /3 depends on the solution method (B 2 I-O), then the required computing time Twill scale as 

T - p .  (2) 
Clearly T can be a very strong function of the required resolution. For example, for equation sets that 
require direct solution methods (such as Gaussian elimination), the exponent can be as large as nine (i.e. 
j = 3 ,  d=3) .  Since in fluid dynamics we are looking for orders-of-magnitude improvements in 
resolution, it is essential to develop efficient solvers with optimum scaling (B = 1 .O). It is also important 
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that this scaling hold good for non-uniform, unstructured meshes so that the nodal economy can be 
maximized by matching the density of nodes to the required resolution, which may be both anisotropic 
and inhomogeneous. 

In a previous paper’ a new iterative solver was presented for the discrete Navier-Stokes equations in 
the fint-order approximation which addressed these requirements. The method was based on a fully 
implicit algebraic multigrid (AMG) scheme. This paper describes changes to the scheme which can 
virtually eliminate the need for underrelaxation in the iterative cycle. Performance data are provided for 
the driven cavity and asymmetric, sudden expansion test problems for both structured and unstructured 
computational meshes. The solutions for these tests have been obtained to second-order accuracy using 
the defect correction method. 

2. THE DISCRETE APPROXIMATIONS 

The discrete equation sets for the flow variables are derived from a finite volume discretization of a finite 
element mesh by enforcing the conservation of mass and momentum for an incompressible fluid. The 
simplest possible linear element is used, the triangle (in 2D), which is capable of giving second-order- 
accurate equations. Control volumes are constructed round each vertex node by joining the centroid of 
each element to the centre of each side (Figure 1). Within any given element, just one flux value is used 
for the control surfaces so formed and this is obtained by a special interpolation, the centroid providing 
the single interpolation point. A second discretization within the element is used to derive the 
interpolation equation. Figure 2 shows three examples of the subcontrol volumes that have been 
used; the smallest is the one chosen for this work. The scheme is similar to those proposed by Pxakash? 
Hookey,3 Schneider and Raw4 and Burns and Lonsdale.’ 

LINEAR ELEMENT E L E W  ASSEksLY I CONTIWL-VOLW TESSEUlWN 

Figurc 1. Linear bangular element, element assembly and construction of ‘control volume tesselation’ (one control volume is 
highlighted): 0, location of element interpolation point for element velocities v,; 0, location of nodal velocities v and pressures p 
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Figure 2. Interpolation for element velocities: three subcontrol volumes that have been used for local discrete solution of equation 
of motion 

If v represents the set of nodal velocities, v, the set of interpolated velocities within elements and p 
the set of nodal pressures, then enforcing the conservation laws for both nodal control volumes and 
element subcontrol volumes delivers the following set of algebraic equations: 

A(v,)v + Gp = S, (3 1 

Dv, = 0, ( 5 )  

where A and G are the nodal advection-difision and gradient operators respectively, A, and Fare each 
part of the advection-diffiion operator for elements, G, is the element gradient operator, D is the nodal 
divergence operator and s and s, represent the momentum source/sink arrays for the nodal control 
volumes and element subcontrol volumes respectively. 

The matrix A, is diagonal, so the solution of equation (4) is trivial, i.e. 

v, = &-l(s, - Fv - G,p). (6) 

Direct substitution into equation ( 5 )  enables the following subset of coupled equations to be formed for 
the nodal variables: 

The solution of equations (6) and (7) is obtained by direct iteration using a predictor-corrector strategy 
for v, and [vp], the AMG solver providing the coupled solution of equation (7) for [vp]. 

If upstream values are used in the enforcement of momentum conservation for the nodal control 
volumes, then equation (7) will be first-order-accurate. For this work a second-order approximation is 
also required. The simplest possible second-order approximation was adopted using equal proportions 
of upstream and downstream values for the advected momentum across the control surfaces, equivalent 
to the central differencing of finite difference methods. 
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3. THE ITERATIVE SOLUTlON METHOD 

3.1. Defect correction method: outer iterative cycle 

Writing equations (6) and (7) in the more concise form 

v, = A;'(s, - HQ), 

L(v,)cp = f ,  

where 

and writing the first- and second-order approximations of L(v,) and f as LI, LZ and f l ,  fz respectively, 
the following iterative procedure can be constructed:6 

where m marks a suitable point in the iteration sequence for switching on the defect correction 
{ [L, (e) - f1] - [L2(v3 - f ; ] ]~" (m = 2 has been found satisfactory for the test problems described 
in Sections 4 and 5) .  At convergence, Q"+' Q" x Q and the second-order equation 

L,(v,)Cp = G (1 1) 

will be satisfied within the permitted tolerance. The convergence should, moreover, proceed at a rate 
determined more by the properties of LI than those of L2 (see Section 4). 

3.2. Linear solver 

The algebmic grid and point relaxation methods. The equation system 

L,(<)Q"+~ = f", (12) 

where f" is now understood to include the defect correction if n > m, may be represented graphically as a 
connected nodal network with a one-to-one correspondence between variables (equations) and nodes, 
the connections between nodes representing the coupling between equations. To distinguish this nodal 
network from the computational mesh, it will be referred to as the 'algebraic grid' or simply the grid. For 
a given variable there will be a one-to-one correspondence between grid nodes and mesh nodes and 
similarly between grid connections and mesh connections (i.e. the edges of elements). For the coupling 
between unlike variables, grid connections may be regarded as displacements in an abstract dimension. 

In an iterative solution procedure based on point relaxation, each node of the grid is visited in tun and 
that variable is updatedcorrected entirely on the basis of local information (i.e. from those neighbours to 
which the node has direct connections). Because of this, a single sweep through the grid system will 
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only see changes propagating short distances, i.e. of the order of one nodal spacing. Long-range 
propagation is a diffusion-like process that requires many iterative sweeps. If A, is a relevant propagation 
distance expressed in units of nodal spacing, then the number of iterations required, n;, will scale as 

(13) ni - 1.t = ( Q / Q , ) ~ ,  

where Q is the maximum resolving power of the mesh and Qi is the minimum resolving power required 
for the resolution of A;. Since, moreover, the computational cost of one iteration will scale as N, the total 
number of nodes to be visited, the required computing time will scale as 

T - N@ = @+’ 

/? = 1 + 2/d .  

(14) 

(15) 

and thus, from the grid system equivalent of equation ( 2 ) ,  

Clearly, solvers based on point/local relaxation can scale poorly, with / ? = 2  and 513 for 2D and 3D 
problems respectively. To achieve optimum /? = 1 scaling, it is clearly necessary to have an efficient 
propagation of corrections over all length scales simultaneously. This requires multigrid methods. 

Algebraic multigrid. AMG exploit a hierarchy of reduced equation sets (coarse grids) 
derived from and including the base set (fine grid). Ideally, coarse grid generation proceeds recursively 
such that each successive grid is a consistent representation of the problem at a reduced scale of 
resolution, Q,, associated with length scale i,. Just one sweep of a relaxation procedure at this level will 
be sufficient to propagate changes over i,, i.e. Q = Q, and hence, from equation (1 3), ni % 1. With a 
sufficient number of grids spanning the complete range of length scales relevant to the problem, an 
efficient propagation over all length scales can take place simultaneously within one relaxation sweep. 
Thus, considering the first level of coarsening, if K is a suitably chosen restriction operator, it may be 
applied to the base set (1 2 )  to form the reduced system 

LTqC = rc, (16) 

where 

L: = KL,KT. 

If rc is derived on the basis of the residual r, i.e. 

rc = Kr = K(f - L,cp), (17) 

then a solution of equation (16) provides a correction cpc that can be used to improve cp, i.e. 

cp+cp+KTcpC (18) 

The procedure is thus (i) restrict residual errors to the coarse grid using equation (17), (ii) reduce the 
coarse grid (long-range) errors by applying local relaxation methods to equation set (16), (iii) prolongate 
the coarse grid correction and update the fine grid solution using (1 8) and finally (iv) reduce the fine grid 
(short-range) errors by applying local relaxation to equation set (1 2). Clearly equation (1 6) has the same 
form as equation (1 2), so the procedure can be applied recursively to generate smaller equation sets for 
successively coarser scale corrections. In this way a ‘multiscale’ correction KTcpC can be assembled for 
updating cp. 

Coarsening procedure. A coarsening procedure based on that devised by Lonsdale’ for scalar field 
variables has been used to generate the reduced equation sets. This consists of seeking out the 
equations with the strongest coupling (the largest off-diagonals in the L-matrices) and joining them 
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together by adding the corresponding matrix coefficients. Some care is required in implementing the 
procedure.’ The elementary matrix representation of Lonsdale’s restriction operator K (dimension 
Ni x 4, where N, -= 4 < N), if required, can be formed by simply adding the appropriate rows of the 
Nj x 4 unit matrix. The reduction factors NANj may be freely chosen, though values of about 0.5 are 

Since here the equation system is for coupled vector and scalar fields, the procedure is implemented 
in a way which preserves the block structure of the L-matrix operator. Combining equations for different 
field variable types is thus forbidden; coarsening is only permitted in ‘real space’, equivalent to choosing 
a block diagonal K-matrix. Note that this does not prevent different coarsening for different field 
variables. 

The process can be terminated when no further reduction in the number of equations is possible and 
the matrix dimension is then equal to the number of continuum flow variables. In Reference 1 and in this 
work, however, the process is actually terminated earlier, at between about 30 and 60 equations. 

usually used. 

Restriction and prolongation. The elementary K-matrix restriction combines equations in equal 
proportion. However, a restriction that permits equations to be combined with different weights, 
reflecting the different relative importance of each at the lower level of resolution, should produce a 
more representative coarse grid approximation. For AMG solvers this is particularly important for both 
uniform and non-uniform discretizations alike, because, even if an initial fine grid is a regular array of 
identical nodes, the algebraic coarsening process is unlikely to preserve such uniformity. Here, 
therefore, provision is made for a more general, weighted restriction. Thus, if R and P are the actual 
restriction and prolongation operators to be used, then fine grid and coarse grid weighting operators W 
and Wc are introduced such that 

R = [Wc]-’ KW (19) 
subject to the scaling rule 

RIP = IC, 
where the unit operator I for the fine grid transforms under the action of R and P into the unit operator I‘ 
for the coarse grid. Combining these equations gives 

w = KWP. (21) 
For computational expediency, P has been chosen to be simply KT in this work so that the coarse grid 
weighting operator is simply the fine grid operator transformed using elementary restriction and 
prolongation. 

For a finite volume discretization a natural choice for W is the diagonal operator formed from the set 
of nodal control volumes. Equation (21) can then be simply interpreted as control volume agglomera- 
tion and the restriction procedure R defined by equation ( 19) as (i) conversion of the fine grid equations 
into the more naturally additive net flux form (operator W), (ii) formation of the coarse grid equations 
(operators K and KT) and (iii) conversion of the coarse grid equations back to the n o d  form (operator 
[w”]-’). The coarse grid approximation so produced results in a robust and efficient solution 
algorithm. 

F-cycle schedule. Following the R-restriction of residual errors down through the grid hierarchy, v I  
relaxation sweeps at each level, the multiscale correction is assembled by the rev= procedure of the 
upward P-prolongation of solutions (possibly scaled by a, equation (23), this time applying u2 
relaxation sweeps following each prolongation. This is the well known V-cycle schedule V(v,,u2). In 
this work, however, the full multigrid cycle F(WI.U~)  has been adopted in which the upward leg of each 
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Fine grid 0 7 

-C- Transfer res lbal  -+ Transfer solution 

0 v1 pre-restriction relaxation sweeps 
0 v2 postprolongation relaxation sweeps 
rn Dired solver 

Figure 3. F-cycle strategy for hansfening residuals and comctions 

cycle itself contains nest V-cycles (Figure 3). Furthermore, because the coarsest grid only contains 
between 30 and 60 nodes, a direct solver is used to obtain an accurate solution. 

Local relaxation. Two relaxation schemes have been adopted, both based on point Gauss-Seidel 
(PGS) relaxation. For the intermediate coarse grids, PGS with optimum damping is used. If 
LC = L + D + U is the standard splitting for Gauss-Seidel relaxation, L being the lower triangular 
block, U the upper triangular block and D the diagonal of LF, then the algorithm for u relaxation 
sweeps is 

Before prolongation the coarse grid corrections are also scaled by the factor 

0 = ((LfcpClT, rC)/((L~cpclT, LCQ'). 
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For the fine grid an approximate fourdirection, point Gauss-Seidel algorithm for unstructured meshes 
is used (4-PGS). This involves some preprocessing for the formation of four continuous line orderings 
of nodes such that each node is visited once only within each line and lines attempt wherever possible to 
pass through each node from different directions. 

Residual reduction factors. The residual reduction factor or fractional emor reduction each F-cycle, 
p, depends on the efficiency of the local relaxation process (smoothing) and on the quality of the 
coarse grid a p p r o ~ i m a t i o n . ~ ~ ~ ~ ' ~  In Section 4, empirical p-factors are defined and results presented for 
several test problems. 

The system matrix LI .  Though Ll does not have to be positive definite, it must have diagonal block 
matrices that are suitable for solution by scalar AMG methods;' diagonal blocks must be at least 
positive semidefinite. The first-order discretization based on the advection of upstream momentum 
(Section 2) produces block diagonal matrices for the velocity component equations that should satisfy 
that requirement. The block diagonal matrix for the pressure equations is positive semidefinite in any 

Boundary conditions are implicitly contained in LI. At least one pressure node is implicitly fixed in 
all calculations. No special measures are necessary for dealing with boundary conditions at the lower 
levels of the grid system. The necessary information is automatically transferred by the restriction 
operator. 

case. 

Implicit underrelaxation. Implicit underrelaxation of both velocity and pressure is commonly used 
to ensure convergence of Navier-Stokes linear solvers. For this coupled AMG linear solver, 
underrelaxation has not beem necessary. Provided that the abovedescribed scaled, weighted restriction 
is employed, no underrelaxation has been required for any problems tackled so far. However, a small 
amount of underrelaxation can improve the rates of convergence for both inner and outer iterations. It 
can be implemented without prejudicing the long-range spatial coupling as follows. All entries in the 
offdiagonal blocks of LI are reduced by a factor u and/or all entries in the diagonal blocks are 
increased by l/o, with appropriate compensations of the right-hand side of the equation sets, evaluated 
using previous iterates, cp". Optimum convergence rates occur for U-values in the range 1.0 2 u 2 0.9. 

Note that it is also possible to relax the coupling between like variables by increasing just the diagonal 
entries of the relevant diagonal block and making the appropriate right-hand-side compensations. This 
is not recommended. It loosens the spatial coupling that AMG is supposed to be dealing with, resulting 
in a degradation of convergence performance (including the scaling). 

4. PERFORMANCE 

The solver has been applied to two well-established test problems: flow in a driven square cavity and 
flow in a channel with a sudden asymmetric expansion. These problems incorporate several features of 
complex fluid behaviour that can present difficulties for solvers, particularly at high Reynolds number, 
e.g. singularities, recirculation, boundary layers, entering flows, outlet flows. Some of these features 
have been isolated for special investigation by those involved in the development of multigrid 
methods."*'* Here the problems are presented direct to the solver; apart from considerations of mesh 
refinement and the need for spatial resolution, no special treatment is afforded to any particular flow 
feature. 
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Of interest are the quality of the second-order solutions, the rates of convergence and, in particular, 
the mesh dependence of both these aspects of performance. To assist in the presentation and analysis of 
results, it will be useful to introduce mesh resolution and grading factors and to define the convergence 
factors. 

Mesh resolution and grading factors 

The inverse nodal separation (linear resolution) and its variation with direction and position (grading) 
are used to characterize the meshes. The global extremes of the resolution and grading will be sufficient 
for most purposes. Thus reference is made to the maximum linear resolving power Q, the maximum 
global grading factor r and the maximum local grading factor y. Q is defined as the ratio of the largest 
characteristic length scale divided by the closest nodal spacing. is defined as the ratio of the maximum 
to the minimum nodal separation for elements in the mesh regardless of their position. The local grading 
factor for any node in the mesh is the ratio of the largest to the smallest separation of the node from its 
immediate neighbours (i.e. for elements common to the node). Directional aspects are thus largely 
ignored, except where reference is made to longitudinal and transverse resolution and grading factors 
Qx, rx, yn and Q, r,, and y,,, respectively. The aspect ratio yxu will also be referred to. In this case the 
nodal separations in any chosen element are both selected and weighted according to their degree of 
alignment with the relevant direction. 

Convergence factors 

defined as 
Convergence characteristics will be quantified in terms of the convergence factor p'"', where p'"' is 

p(") = II 6 d " )  II m/ II Wn- ') II 00, (24) 

with 6q#" the multiscale correction for the iteration index n. Thus the larger the rate of convergence, the 
smaller is the convergence factor. The average convergence factor p for a sequence of NNavier-Stokes 
(i.e. outer) iterations is 

The residual reduction factors p and p(') for inner iterations are defined similarly but in terms of the 
Euclidean norm of the residual errors, i.e. 

where in this case d') is the residual following the F-cycle of index (i). 
Various Fcycle schedules have been tried from F( 1.0) to F(8,2). On the fine grid, u2 = 1 actually 

corresponds to one application of the 4-PGS smoother. 
In practice, the important convergence parameter is the fractional reduction of error per unit of 

computing time, which may not be quite the same as the reduction of error per iteration as defined in 
equation (25). However, with a fixed number u of F-cycles per iteration, the computing time per iteration 
will be more or less constant; then, as long as p" << p, p will be equivalent to the convergence rate in 
time for all practical purposes. The number of Fcycles does not have to be large to satis@ this 
requirement. Also, there is little if anything to be gained by insisting that p" be extremely small, since 
much of the work done will be immediately undone when the non-linear terms are updated in the outer 
iteration. 
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4.1. Driven cavity test problem 

4.1.1. Problem definition and computational meshes. A two-dimensional fluid-filled square cavity 
has three solid, no-slip sides. The remaining side has a uniform tangential velocity which drives a 
circulation of the fluid in the cavity. This primary circulation may be accompanied by secondary and 
tertiary circulations at sufficiently high Reynolds numbers. Results have been published by many 
authors for Reynolds numbers up to lo4, on which there would appear to be general agreement.l3>l4 

Dunng the course of this investigation, calculations have been made for a large number of 
computational meshes and a wide range of values for Q, r and y, each factor having been varied by 
more than one order of magnitude. The results for just two basic mesh types have been selected for 
presentation. The prototype triangulations for uniform and non-uniform nodal distributions are shown 
in Figure 4 as mesh types A and B respectively. Actual meshes used are derived from these two 
prototypes by a regular nested splitting of each proto-element into q2 congruent triangles, where q is the 
level of refinement. Thus for mesh type A, Q = 2q, while for mesh type B, Q = rq (Qhn = q) if no 
smoothing of the mesh is employed. Smoother gradings of mesh B (i' reductiodminimization) are 
obtained by simple point relaxation, whereby the position of each node is moved to the centre of mass of 
its nearest neighbours, nodes being weighted uniformly or non-uniformly as required. Boundary nodes 
are not of course permitted to move out of the boundary surfaces. 

Both mesh types have been arbitrarily chosen. No attempt has been made to optimize them for the 
problem, other than to place the smaller elements for mesh B in the regions of strongest turning flow and 
steep pressure gradient. 

Dirichlet boundary conditions for velocity were enforced on all surfaces, with the non-corner nodes 
on the driving boundary having the same non-zero tangential component. For pressure, all but one 
boundary node were free. 

4.1.2. Linear solver: reduction factors. Reduction factors were typical of those to be expected for 
the PGS smoothers used.I5 Values averaged over F(1,O)cycles ranged between 0.08 and 0-3, 
depending on Re and the mesh. Thus less than about five F-cycles would usually be sufficient to reduce 
residuals by at least three orders of magnitude, which is more than sufficient (a 104-fold reduction in 
the residual has actually been observed to slow up the overall rate of convergence). Typical overall 
averages for mesh type B (Re= 10) are given in Table I. The low-Reynolds-number case is given 

A B 
Figure 4. Pmtorype biangulat~ons used fordriven cavity test problem: for mesh type A, Q,,,,,, = 2q, Q = 2q, r = 1; for mesh typc B, 

Qm=q. Prq, r =  10 
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Table I. Reduction factors for driven cavity test problem: mesh type B (Re = 10) 

N 273 513 1488 2838 5673 8103 
Q 4 6 10 14 20 24 
PrFU ,011 0.088 0.093 0.104 0.125 0.145 0.178 

because this is considered to be the most demanding from the point of view of multigrid efficiency for 
the simple intergrid transfer operators that are being exploited. A robust efficiency is evident, the 
reduction factors are small and the mesh dependence is weak. 

4.1.3. Non-linear solver: convergence pe$ormance 
Uniform meshes. Calculations have been performed for Reynolds numbers in the range 10- 1 OOO for 

discretizations with resolving powers Q ranging from 10 to 50. For the boundaq layers to be 
adequately resolved, Q should satisfy 

Q>Re'lZ. (27) 

In Figure 5 the convergence characteristics for three cases (Re = 100, 400 and 1000) are shown for 
meshes with Q-values in the range 10-50. It is clear that the better the resolution, the better is the rate of 
convergence, as if /3 < 1.0, i.e. an apparently superior scaling to the /? = 1.0 target. However, this is 
somewhat misleading. Comparing the p-values at Re = 100 with those from Reference 1 (Table 11) 
reveals a performance penalty for the second-order solution that would appear to be associated with 
truncation errors (since it reduces with mesh refinement). As the resolution improves, the convergence 
factors approach those for the first-order method; for Q >> Re'", /3 + 1.0. Note that the p' results are 
between first- and second-order, becoming second-order for Q >> Re'". 

CONVERGENCE 
Driven Cavity Re I 100 

CONVERGENCE 
Driven Cavity Re - 400 CWE~ff iENCE 

Driven C a w  Re = loo0 

0 5 10 15 200 10 20 30 40 5 0 0  20 40 60 80 100 
Iteralion Numhr IterPtion Number lhratim Number 

Figure 5. Convergence charaaeristics for driven cavity test problem at Re = 100,400 and I OOO for uniform meshes with resolving 
pawns in range Q= ~ 5 0  
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Table 11. Convergence factors for driven cavity test problem: uniform mesh type A 
(Re = 100; pl, mean convergence factor for firstkecond-order discretization; p, mean 

convergence factor for second-order discretization) 

N 363 I323 2883 5043 7803 
10 20 30 40 50 

0.30 0.28 0.29 0.28 0.26 P 
P 0.54 0-37 0.30 0-29 0.26 
Ql 

Similar behaviour is evident at Re = 400 and 1000. Table 111 compares the convergence factors for all 
three cases at different Q-values. Values in parentheses are for meshes with insufficient resolution 
(Q < Re”’), to be discussed further. Note that p-values are superior to those that could be expected from 
segregated solution methods. Even parenthesized results are better. 

Non-uniform meshes. The results for B-type meshes are presented in Table N, which may be 
compared with those for uniform meshes in Table 111. In all cases the mesh grading has been smoothed 
to reduce y-values below 1.4 (and r from 10 to 4). As for the uniform cases, convergence factors 
improve with improved resolution, becoming less mesh-dependent when the resolution is sufficient to 
resolve the flow field. Note also that the values at higher resolution compare well with those for 
uniform meshes. At lower resolutions, however, it will be evident that mesh-type-B convergence 
factors are superior for a given number of nodes, suggesting that the non-uniform nodal distribution is 
more suited to the problem and that with an appropriate adaptive meshing scheme the convergence 
performance could be optimized. 

Further evidence of this is presented in Table V, where results are presented for mesh type B graded 
more steeply (y = 3, r = 10) to give 2.5 times the resolution near the top cornem of the cavity. For 
Qmln > 10 there is a 100/0-20% improvement in the convergence factors over those for smoother graded 
meshes (note that for Qmin 2 20 the p(T = 10) results are better than the p’ results in Table 11). 

Low-resolution meshes. Solutions obtained using computational meshes with insufficient resolution 
are of doubtful value. However, since the required resolution may not always be correctly anticipated, it 
is important to know what to expect should the resolving power prove to be inadequate. 

Table In. Convergence factors for driven cavity test problem: uniform computational meshes type A 

N 363 1323 2883 5043 7803 

p(Re = 100) 
10 20 30 40 50 

0.54 0.37 0.30 0.29 0.26 
p(Re = 400) (0.85) 0-63 0.58 0.56 0.55 

Q 

p(Re = 1000) (0.97) (0.91) 0.75 0.69 0.64 

Table Ic! Convergence factors for driven cavity test problem: non-uniform 
computational meshes type B (global grading = 4, local gradings y Q I .4) 

N 1488 2838 5673 8103 
QmUl 10 14 20 24 
p(Re = 100) 0.33 0.32 0.29 0.28 

p(&= IOOO) 0.789 0.725 0.665 0.66 
p(Re = 400) 0.604 0.557 0.549 0.533 
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Table c! Convergence factors for driven cavity test problem: non-uniform computa- 
tional meshes type B (global grading = 10, local gradings y < 3.0; global grading 

r = 4, local gradings y G 1.4) 

N 570 1488 2838 5673 8103 
QIlli" 6 10 14 20 24 
p(r  = 10) 0.39 0.33 0.29 0.24 0.24 
P F  = 4) 0.42 0.33 0.32 0.29 0.28 

In this finite volume formulation the Lz-operator was formed using equal proportions of upstream and 
downstream values for the momentum advected across control surfaces, so the discretization error will 
be dispersive. For coarse meshes the dispersion will be large, resulting in solutions that may contain 
spatial instabilities (wiggles). These may interfere with convergence. Ghia et al. l6 and Thompson and 
Ferziger" have both noticed reduced rates of convergence for centred flux differencing on meshes with 
reduced resolution. The latter authors tentatively attribute this to the effects of wiggles in regions where 
the mesh spacing is insufficient to resolve the fine scale structure in the flow field, improvements in 
convergence rate with refinement being most evident at high Reynolds number. 

In this work the improvement in convergence rate with refinement is also evident (Tables 111 and IV) 
and, like Thompson and Feniger, no obvious evidence of spatial instability has been found in the 
solutions for which the resolution criterion Q > Reln is satisfied. On the other hand, when the criterion 
is not satisfied, a marked degradation in convergence performance has been observed. This is illustrated 
in Figure 6 for Re = 1000 and Q = 22 (curve l),  where it will be evident that the reduction of residuals 
can stall completely (pi + 1 .O) at a residual level well above round-off error, sometimes preceded by an 
increase @, > 1 .O). Large differences between the Euclidean and infinity norms of the nodal comctions 
can develop, with II 6cp I (  oo becoming as much as one order larger than I )  6cp I I  2. This is just the type of 
response to be expected from a localized spatial instability and a close examination of the region of 
maximum residuals confirmed the development of wiggles. 

1 oo 

1 lU' 

f 
i! lQ2 

1 43 

1 u4 

0 20 40 60 80 100 
m N u m b w  

Figun6.CowergencecImmmm . 'cs fordriven cavity test problem at Re = loo0 on uniform computational mesh with insufficient 
resolution (Q < Re'n): c w c  I ,  with no explicit undcmlaxation; curve 2, with explicit relaxation factor of 08 
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Even in such extreme cases, convergence can nevertheless be achieved if an explicit underrelaxation 
of velocity is used in the iterative cycle (Figure 6, curve 2). Thompson and FeIziger used an explicit 
underrelaxation of velocity in all their calculations, with relaxation factors as low as 0-2 for Re = 5000 
(0.4 for Re= 10oO). The parenthesized convergence factors in Table 111 were obtained in this way, a 
relaxation factor as low as 0.5 being required for the Q = 10, Re = 1000 case. Note, however, that a 
convergence so produced is not necessarily wiggle-free. The very fact that an explicit relaxation is 
required probably indicates the presence of wiggles. 

Improvement in resolution would of course be the preferred way to achieve both a better convergence 
and a better solution. Sometimes it may be possible to achieve this without actually increasing the total 
number of nodes. Merely redistributing the existing nodes may provide the required improvement in 
resolution in the critical regions. An example of this is shown in Figure 7, where just smoothing the 
grading of mesh type B restores an otherwise stalled convergence. Note also that the non-uniform 
meshes used for the calculations of Figure 7 contain fewer nodes than the uniform mesh used for the 
calculations of Figure 6. 

4.1.4. Navier-Stokes peflormance. The solutions for the driven cavity at low @<Re'") and 
intermediate (Q 2 Re'") resolution are here compared with published results of others. The 
comparisons are with calculations made on computational meshes of either similar or greater 
resolution, the main objective being to show that the method gives accurate solutions when the 
discretization has a sufficient resolving power. 

The results of Ghia et al. are used as a reference data set. Comparisons will be limited to the velocity 
profiles across the mid-axes; an example for Re = 1000 is given in Figure 8. The data points are from the 
tabulated results of Ghia et al. for Q = 128; the full curves are the profiles calculated here for Q = 50. To 
simplify other comparisons, just the extrema of these profiles, urnin, v,,, and v-, and their spatial 
location will be used. Ghia et a1.k reference values are reproduced in Table VI. For comparison, Tables 
VII and VIII give the results of this work for type A (Q = 50) and type B (Qmin = 24, r = 4) meshes 
respectively. For Re < 3200 both sets of results agree with those of Ghia et al. to within 1.2% of the 

COARSE MESH CONVERGENCE CHARACTERISTICS 
Drhfen C a v h  at Re=lOOO 

0 20 40 60 80 100 
Iteration Number 

Figure 7. Convergence characteristics for dnven cavity test problem at Re = lo00 on non-uniform computational meshes with 
insufficient spatial resolution, em,= 10. The curves arc for the same mesh type B but with three different gradings y 
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DRIVEN CAVITY VELOCITY PROFILES 
Re-loo0 

Y 

0 5  

025 

0 0  

425 

4 5  
0 5  425 0 0  025 0 5  

Figure 8. Velocity profiles along horizontal and vertical lmes b u g h  centre of driven cavity at Re= IOOO. The full curves 
represent calculations ma& on a uniform mesh of resolvmg p o w  Q = 50. The data pomts are those of Ghia el 01. l 6  obtained using 

a uniform mesh of Q = 128 

X 

maximum reference velocity. At Re=3200, where the resolution does not satisfy Q>Reln, the 
magnitudes of vmi, still agree to within 5.8% and 3.7% for the uniform and non-uniform meshes 
respectively. The positions of the extrema agree to within 1.5% and 1.2% of the cavity dimension for the 
two respective cases. Considering that the resolution of Ghia et al. is 2.25 times better than the type A 
mesh and up to 5.3 times better than for some regions of the type B mesh, this is a remarkable agreement 
that warrants closer examination. 

Table VI. Extrema in driven cavity velocity profiles: refmnce data of Ghia et (Q= 128) 

Re Vmm X umin Y v,, X 

0, = 0.5) (x = 0.5) 0, = 0.5) 

100 - 0.24533 0.3047 -0.21090 - 0.0469 0.17527 - 0.2656 
400 - 044993 0.3594 - 0.32726 -0.2187 0.30203 - 0.2734 

lo00 -0.51550 0.4063 - 0.38289 - 0.328 1 0.37095 - 0.3437 
3200 - 0.54053 04453 -0.41933 - 0.3984 0.42768 - 0.4062 

Table VII. Extrcma in dnven cavity velocity profiles: uniform mesh type A (Q = 50) 

Re v m  X %ill Y ~m X 

100 - 0.25244 0.3200 - 0.21275 - O*o400 0.17873 - 0.2600 
400 - 0.45029 0.3600 - 0-32408 - 0.2200 0-30065 - 0.2800 

lo00 - 0.52487 0.4200 - 0.38388 - 0.3400 0.37524 - 0.3400 
3200 - 0.59815 0~4600 - 0-46181 - 0.4200 044384 - 0-4OOo 
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Table VIII.  Extrema in driven cavity velocity profiles: non-uniform mesh type B (Qmin = 24, = 4) 

Re %in X Urnin Y Vmm X 
0, = 0.5) (x = 0.5) 0, = 0.5) 

100 - 0.25292 0.3 170 - 0.21296 - 0.0510 0.17873 - 0.2715 
400 - 0.453 I 1 0.3590 - 0.32746 - 0.2200 0.30390 - 0.2740 

1000 - 0.52763 0.4 160 - 0.38563 - 0.3370 0.38017 - 0.3380 
3200 - 0-5781 1 0.45 10 - 0.42586 - 04070 0.43908 - 0.3970 

Thus in Table 1X the data for Re = 1 OOO (Q = 50 and 128) have been singled out for comparison with 
the higher-resolution data of Bruneau and J ~ u r o n ' ~  (Q = 256). These authors also use a second-order- 
accurate discretization, but it is based on a second-order upwind differencing scheme for advection. The 
comparison confirms the accuracy of the present scheme. The extrema vmax(Q = 50) and umin(Q = 50) 
are both within 2% of the corresponding values at Q = 256, while vm,,,(Q = 50) is within 0.7% of 
vmi,(Q=256), i.e. actually closer than it is to the result of Ghia et al., v-(Q= 128). The spatial 
positions of the extxtma for Q = 50 agree with those for Q = 256 to within 1% of the cavity dimension, 
which is as good as could be expected for this resolution (i.e. 2% nodal spacing). Here again, some 
results are actually closer to the higher-resolution data than they are to the data of Ghia et al.. 

Velocity magnitudes for the present scheme are overpredicted, and as Q is reduced, the overprediction 
increases roughly as Q - 2  (Table X), consistent with a dispersive second-order truncation error. Since 
the scheme of Bruneau and Jouron underpredicts velocity  magnitude^,'^ the above differences will 
represent conservative estimates of the accuracy of the present scheme. 

4.2. Asymmetric, sudden expansion test problem 

To test the solver on a problem with inflow and outflow boundary conditions, it has been applied to 
the asymmetric, sudden expansion problem. This is a high-aspect-ratio problem, so it offers a 
convenient test for the performance of the solver on meshes with highly elongated elements. 

Table IX. Mid-axis velocity extrema in driven cavity: (a this work; (b) data of Ghia et (c) data of Bruneau and Jouron' 1 '  (Re= IOOO) 

Vmin X urn Y v,, X 

50 (4 - 0.5247 0.420 - 0.3839 - 0.34 0.3752 - 0.34 
128 (b) - 0.5155 0.4063 - 0.3829 - 0.3281 0.3710 - 0.3437 
256 (c) - 0.5208 0.4102 - 0.3764 - 0.3398 0.3665 - 0.3477 

0, = 0.0) (x = 0.0) 0, = 0.0) 
Q 

Table X. Mid-axis velocity extrema in driven cavity: dependence on mesh resolving power (Re= 1OOO) 

Vmin X Umin Y 
(y = 0.0) (x = 0.0) 

Q 

10 - 0.6191 0.4 - 0.4818 - 0.3 
20 - 0.5580 0.45 - 0.4247 - 0.35 
30 - 0.5316 0.433 - 0.3944 - 0.333 
40 - 0.5276 0.425 - 0.3862 - 0.325 
50 - 0.5247 0.420 - 0.3839 - 0.34 

vmax X 
(y = 0.0) 

0.5361 - 0.3 
0.4089 - 0.35 
0.3843 - 0.333 
0.3763 - 0.325 
0.3752 - 0.34 
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Figure 9. Prototype triangulation for asymmetric, sudden expansion test problem consisting of 8 1 protoclernents: a = srA; Q~ = 3 r ~ ;  q, lwel of nested refinement; r, = 32; r, 
=4; yn=4; 7*=4; y,=53 

4.2.1. Problem dejinition and mesh. Flow enters a two-dimensional channel with a parabolic inlet 
velocity profile. some distance from the inlet there is a one-sided step increase in channel width to 3/2 
times the original. Flow separates at the re-entrant comer and a recirculation zone is established after 
the step. The axial extent of the circulation is marked by the point of reattachment or the point at which 
unidirectional flow is reestablished across the entire width of the channel. This depends on the 
Reynolds number. Results have been published for Reynolds numbers up to and in some cases 
exceeding Re = 250, Re being based on step height and mean inlet velocity (note that this definition 
gives values six times smaller than those based on hydraulic diameter and maximum inlet velocity). 

A significant length of the expanded channel (exceeding say three hydraulic diameters) needs to be 
modelled to ensure that the imposed outlet boundary condition does not unduly influence the behaviour 
upstream. Thus the problem is bound to be one of large aspect ratio ( - lo), and in view of the need for 
fine resolution near the point of separation, the discretization could prove to be nodally expensive if 
uniform meshes are used. Thus only non-uniform meshes have been adopted for this investigation and 
results for just one unstructured mesh type have been selected for presentation. 

The prototype triangulation is illustrated in Figure 9. It consists of 8 1 protoelements which have been 
assembled to give the highest resolution at the point of separation and so that the lateral resolving power 
Qy is maintained moderately high up to the point of reattachment. The actual meshes used were obtained 
by a q-fold nested refinement of each proto-element into as many as q2 = 64 congruent triangles, giving 
a fmest mesh of 5 184 elements (27 17 nodes). The mesh is anisotropic and inhomogeneous, with grading 
factors yu = 4, y,,,, = 4, yV = 5.3, r, = 32 and ry = 4. Dirichlet boundary conditions for velocity and 
free pressure boundary conditions apply on all surfaces except the outlet. The latter (continuitive and 
constant pressure) was placed 38 step lengths from the expansion. 

4.2.2. Linear solver: mduction factors. The reduction factors for this test problem were again within 
the expected range for point Gauss-Seidel relaxation. Table XI gives the average values for a low 
Reynolds number. Both definitions of Reynolds number are used, i.e. the first, Re, based on step height 
and average inlet velocity, the second, RI?, based on hydraulic diameter and maximum inlet velocity. 
The latter has been added to give a more appropriate pointer for comparisons with the driven cavity 
data (Table I). 

Table XI. Reduction factors for asymmetric, sudden expansion test problem (Re= 16.67, 
Reh = 100) 

n 1236 2133 3273 4656 8151 
4 3 4 5 6 8 

0.109 0.159 0-184 0.2 15 0.306 
llF(2,1)1 0.042 0.059 0.091 0.1 14 0.143 
CcF( 1 m 1  
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Table XII. Convergence factors for asymmetric, sudden expansion test problem (level 
of refinement, q = 8; number of unknowns, N = 8 1 5 1) 

~ 

Re 16.67 50 100 150 200 
Reh 100 300 600 900 1200 

P 0.426 0.587 0.684 0.154 0.816 

4.2.3. Non-linear solver: convergence performance. Convergence factors for the hest mesh for the 
same range of Reynolds numbers are presented in Table XII. Both definitions of Reynolds number are 
again used to facilitate comparisons with the driven cavity data (Table 111). This reveals slower rates of 
convergence but, nevertheless, still better than those for segregated solution methods. The mesh 
dependence of the convergence (Table XIII) is similar to that for the driven cavity. In Table XIII, 
typical values for p are given at four different levels of refinement at just three selected Reynolds 
numbers. 

Dick and Linden" obtained second-order-accurate coupled solutions to the same test problem 
discretized using a flux-difference-splitting approach. They also used a defect correction scheme, but 
their solver was based on a geometric (FAS) multigrid method. Their published result for the case 
corresponding here to Re = 100 was p = 0.8 1, which compares with p = 0.68 in Table XII. The reason 
for the difference is not clear (however, see Section 5) .  Dick and Linden also reported a deterioration in 
convergence performance with mesh refinement which has not been observed in this work. The 
evidence is for constant or improving convergence rates with mesh refinement (Table XIII), as for the 
driven cavity test problem. 

4.2.4. Navier-Stokes peflormance. The axial extent of the recirculation eddy following the step 
expansion will be used as the gauge for assessing the quality of the solutions. Experimental data are 
available, but not for a truly parabolic inlet velocity profile. Predictions of the experiment would 
therefore have to be based on the measured profile, which is known to result in a short eddy. Since 
overdiffusive calculational methods would tend to underpredict the eddy length anyway, there could 
well be fortuitously good first-order calculations of this experiment wherever a parabolic inlet velocity 
profile has been mistakenly used. Here such complications are avoided by assessing the performance 
against other calculations of the idealized problem only. Thus the results are compared with the higher- 
order-accurate calculations of Hutton and Smith" and with the first- and second-order-accurate 
calculations of Shaw. l 9  

For Reynolds numbers up to Re = 200 the resolution requirement should be satisfied for the mesh 
specified in Section 4.2.1. Results for the range Re = 16.7-200 are given in Figure 10 as the five full- 
circle data points. For comparison, two sets of data from Hutton and Smith are plotted, one as a full 
curve, obtained using a coarse mesh of 69 biquadratic rectangular elements (246 nodes), and the other as 

Table XIII. Convergence factors for asymmetric, sudden expansion test problem 
(N, number of unknowns; q, level of refinement) 

N 
4 

2133 3273 4656 8151 
4 5 6 8 

p(Re= 16.7) 0.464 0.432 0.426 0.426 
p(Re = 50) 0.602 0.608 0.587 0.587 
p(Re = 150) 0.91 1 0.807 0.77 1 0.754 
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ASYMMETRIC SUDDEN EXPANSION 
Reaarurlallon eddy Im$h versus Reynokb numbr 
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Re 

Figure 10. Lmgth of recirculation eddy versus Reynolds number: comparison with published results of Hutton and Smith'* and 
S h ' 9  

four open-circle data points, obtained using a h e r  mesh of 256 quadratic triangular elements (565 
nodes). The agreement is within 2% in all cases. This is consistent with that achieved for the driven 
cavity. 

The open-square data points are from the calculations of Shaw using 600 rectangular linear elements. 
The two lower points at Re = 12.5 and 25 are second-order-accurate and consistent with Hutton and 
Smith's data. The remaining three points were obtained using a ht-order scheme for advection. They 
underpredict the length of the recirculation, by as much as 27% at Re = 100. Shaw attributed this to the 
coarseness of the mesh and the false numerical diffusion associated with the first-order upwind scheme. 

5. DISCUSSION AND GENERAL COMMENTS 

The above results are a representative sample of the tests to which the solver has been applied. On the 
basis of all tests the following general comments are made and the subsequent conclusions drawn. 

Inner iterations: linear solver pe$ormance 

It has not been found necessary to use any underrelaxation of variables to ensure convergence of the 
linear solver. The rates of reduction of the residual m r s  within inner iterations are typical of those to be 
expected for the PGS-based relaxation methods used and the simple intergrid transfer operators being 
exploited. Note that from the point of view of the coarse grid approximation the values quoted are for the 
worst Navier-Stokes cases, low Reynolds numbers. They are nevertheless more than adequate for the 
problems attempted. The dependence of p on mesh sue, albeit weak, is an inevitable consequence of the 
primitive intergrid transfer operators used. It is sufficiently weak, however, to have little if any impact on 
the scaling of p. A higher-order interpolation would be required for a better coarse grid approximation 
and this is unlikely to be costeffective. 
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Outer iterations: non-linear solver pe$ormance 

Provided that the computational mesh has a sufficient resolving power for the problem, rapid 
convergence superior to that possible with segregated solution methods is achieved. When, however, the 
mesh has insufficient resolution (e.g. Q < ReLi2 in the driven cavity case), the convergence can stall 
(JI + 1) unless an explicit underrelaxation of velocity is exploited. This is thought to be due to the 
influence of the dispersive truncation error on the convergence process. For finer meshes, explicit 
relaxation is not required and rates of convergence improve with refinement, asymptotically 
approaching mesh-independent values as the resolution is increased, i.e. B + 1 as Q + 00. No evidence 
has been found for f i  > 1 in any applications so far. If this proves to be a better performance than that 
achieved with other defect correction, multigrid algorithms, the accuracy of the present discretization 
may be responsible. 

Accuracy of solutions 

In Section 4 the comparison of solutions for this discretization at Q = 50 with those for the high- 
resolution meshes of Bruneau and Jouron at Q = 256 suggested exceptional accuracy. To give some 
perspective to this, compare the driven cavity solutions at Re = 1000 with those for other discretizations 
at similar resolving powers. 

Perhaps the most commonly exploited discretization is that based on the first-order upwind treatment 
of advection, popular because it produces diagonally dominant matrices that permit robust iterative 
solutions. Thus, for computational meshes with resolving power Q=40, Mukhopadhyay et aL2’ 
underpredict vmin by at least 30%, whereas with this discretization the overprediction is less than 1.5%. 
For a coarser mesh at Q = 20, Wang et al.” underpredict v,h by 14%, whereas here the overprediction 
is less than 7%. Note that these differences are consistent with the Q-’ and QP2 dependences that 
would be expected for first-order diffusive and second-order dispersive truncation errors respectively. 
The large underpredictions are of course due to the false diffusion which is also responsible for the 
robustness of the iterative solution. 

For second-order upwind differencing methods the error is smaller. Thus Bruneau and Jouron, for 
uniform meshes at Q = 64, underpredict v,,,,,,, u,in and v,, by at least 5%, 6% and 6.4% respectively, 
whereas the present discretization (at a slightly lower resolving power of Q = 50) overpredicts these 
extrema by less than 0.7%, 2.0% and 2.4% respectively. Using Vanka’s22 scheme on the Q = 64 mesh, 
Bruneau and Jouron find underpredictions of 15%, 18% and 17% for the respective extrema. 

The exceptional accuracy of the present scheme is due to the special interpolation (equation (6)). One 
of the originators of this type of discretization, S~hneider?~ has also commented on the accuracy of the 
method. 

6. CONCLUSIONS 

An efficient and robust iterative numerical method is presented for solving the coupled equations of 
motion for viscous fluids in the discrete second-order approximation. 

Provided that the discretization has sufficient spatial resolution for the flow field, a rapid convergence 
to machine accuracy is achieved which is almost mesh-independent in so far as the convergence rates 
either improve or are maintained for increased nodal concentration. 

With sufficient resolution the method is also robust to the extent that no underrelaxation of flow 
variables has been required to ensure convergence. However, small amounts of underrelaxation can 
improve convergence rates. Converged solutions can also be obtained when the mesh resolution is 
insufficient to resolve the flow field, but in the more extreme cases of low resolution some explicit 
underrelaxation is necessary to prevent the non-linear solver from stalling. 
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The discretization provides accurate solutions on relatively coarse meshes. This is probably due to the 
interpolation scheme used for the momentum flux within elements, which is based on a local discrete 
solution of the equations of motion within the element. 
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