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Abstract. We investigate learning in the simplest type of a layered neural network, the one 
layer perceptron. The learning process is treated as a statistical dynamical problem. 
Quantities we are interested in include the relaxation time (the learning time) and the 
capacity and how they depend on noise and constraints on the weights. The relaxation 
time is calculated as a function of the noise level and the number p of associations to be 
learned. We consider three different cases for input patterns that are random and uncorre- 
lated. In the first, where the connection weights are constrained to satisfy N - ' Z i w f  = S 2 ,  
there is a critical value of p ( < N )  separating regimes of perfect and imperfect learning at 
zero noise. In contrast, the second model, unconstrained learning, exhibits a different kind 
of transition at p = N,  and noise plays no role. In the third model, where the constraint 
is imposed only on the thermal fluctuations, there is a line of phase transitions terminating 
at p = N and zero noise. We have also considered learning with correlated input patterns. 
The most important difference is the emergence of a second relaxation time, which we 
interpret as the time i t  takes to learn a prototype of the patterns. 

1. Introduction 

Layered neural networks have been the focus of much interest recently. Most of that 
work has been concerned with the learning process-what is the most efficient learning 
algorithm and the best cost function to use? One of the best known algorithms is the 
delta rule [ 13 which is based on gradient descent of the cost function. Learning takes 
place when connections between the units are changed in such a way as to descend 
the cost function surface. In this paper we study this learning process as a statistical 
dynamical problem. 

A Langevin model is a natural choice for the study of learning in the presence of 
noise. It is well known from many physics problems and has obvious similarities to 
gradient descent. We will then study the effect of noise on learning and find the 
relaxation time of the learning process. 

A brief description of some of this work has appeared previously [2]. The cost 
function that we use is 

where 5: is the target for pattern p = 1,. . . , p ,  and unit i = 1,. . . , N and (7 is the 
input pattern for unit j = 1, . . + , N,  wij  are the connections from unit j to unit i. In the 
last term in (1 )  h i j  is an auxiliary field that is needed in our calculations in the limit 
hij  -* 0. The function f is the sigmoidal activation function of the output units, e.g. 
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2134 J A Hertz, A Krogh and G I Thorbergsson 

f (x )  = tanh(x). In a one-layer perceptron the non-linearity off  is unimportant if the 
saturation value off exceeds the target magnitude, so here we set f( x )  = x (Widrow- 
Hoff or adaline learning). We study only the simplest type of a layered network, the 
perceptron with one layer of connections. The cost function becomes 

It separates in the output unit index so we omit this index. The output units can be 
treated separately. 

The change in the connections is proportional to the negative gradient of E 

The chemical potential term with the constant A has been added to the cost function 
to keep the connections from growing to infinity. It is often considered an advantage 
to have a weight decay term of this form. We will investigate what effect it has and 
the importance of the value of A. 

There is another reason for including this term. It might be necessary to restrict 
the wi to a small number of values, e.g. binary ones w i = * S .  It is difficult to work 
with this condition. This difficulty is well known in the theory of magnetic systems, 
where a popular remedy is to replace the binary Ising model by the so-called spherical 
model where the spins can have a continuous range of values but their average 
magnitude is fixed. This condition is implemented by a term in the energy of the 
magnetic system like the A term in our cost function. In the learning problem it is 
then natural to choose A so that [ ( w f ) l s s = S 2 .  The bracket [ I t s  is an average over 
input and output patterns and ( ) is a noise average. 

It is natural to characterise the asymptotic state in terms of the parameter 

We can derive a general formula for it in the static limit, i.e. at time long enough that 
the connections have relaxed to a time-independent value. The relaxation time depends 
on the parameter q. 

We begin by studying random uncorrelated patterns. It turns out that noise can 
have the effect of decreasing the relaxation time. If there is no constraint on the 
connection strengths, A = 0, the noise has no effect. 

We also study correlated patterns characterised by a single common mutual overlap. 
Then two relaxation times appear. One of them is shorter and can be interpreted as 
the time it takes the network to learn the average features of the problem. 

The relaxation time that we calculate is the time it takes the network to learn 
whatever it learns. But it may not learn the training set perfectly. Therefore one should 
not necessarily conclude that a shorter learning time is desirable. 

2. The Langevin model 

The delta rule is based on gradient descent by iteration of the cost function. If instead 
we introduce continuous time the learning process can be described by a differential 
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equation. In the presence of noise that is the Langevin equation [3] which models the 
relaxation of a physical system 

The learning rate parameter yo determines the microscopic timescale of the problem. 
We let q ( t )  be white noise with variance 

(Ti( t )v j (  t ’ ) )  = 2Tyoaija(t - t ’ )  (6) 

where T is the noise level, the analogue of temperature. 
The Langevin equation ( 5 )  with the cost function in (2) is 

a t  

where 

and 

( 7 )  

As in a physical system we are interested in the average behaviour in the limit of large 
N .  Here we have to carry out two kinds of averages-first over noise (thermal average, 
denoted by ( )) and then over the distribution of patterns (average over disorder, 
denoted by [ Is<). We begin by considering the static limit of (7 ) .  

3. Statics 

First we will look at the equilibrium properties of the system. Setting the auxiliary 
field h,, = 0 and averaging the Langevin equation (7 )  over noise, we find 

0 = -Yo[B, - (Ai, + A4,) (w, ) l  (10) 

g=(XI+A)-’ .  (11) 

( w, ) = g,,B, (12) 

g,, = A - -’A,, -k A -’A,kAk, - * * a .  (13) 

(sum on free indices-here j ) .  The unaveraged response function gi, is defined by 

We have then 

where g,, has the expansion 

This function describes the behaviour of the system in the limit of infinite time. 

3.1. The projection method 

For completeness we will show how this reduces to the projection method [ 4 , 5 , 6 ] .  If 
we use the definitions of A,, and B, and (13) then (12) becomes 

( w l )  = t Y [ A  - A - ’ N - ‘ t P t U  + A -3N-25P cr 
J J  k t k f ,  6) - *  * lN-”*l” 

= N - 1 ’ ~ ~ ~ ~ ” [ A - 1 - A - 2 ~ ~ ~ + A - 3 ~ ~ ~ ~ u ~ - ~  * * ]  (14) 
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where QPy = (1/ N) 2,676: is the overlap matrix. If (A6,, + Q F Y )  is regular it can be 
summed to 

( w , )  = ~- ‘ / ’g (  A I + a);;r”. ( 1 5 )  

In the case of A = 0 it reduces to the usual form of the projection method. If  the input 
patterns are linearly independent Q is regular and ( 1 5 )  can be used. If the p inputs 
are generated randomly it is unlikely that they will be linearly dependent for p < N, 
but for p > 1V there will of course be patterns that are linearly dependent and not all 
the patterns can be learned correctly. For a large system this shows that the capacity 
of the network for random patterns is at most p = N. 

3.2. Fixing the chemical potential 

We have chosen the spherical constraint on the size of the couplings 

[ ( W f ) l r i  = s’. ( 1 6 )  

c= [ ( w f ) - ( W i ) 2 ] S i .  (17)  

C = TN-’[tr glee. (18) 

TN-’[tr g], = s2 - 9 (19) 

where q is the parameter that was defined in ( 4 ) .  The parameter q is similar to the 
Edwards-Anderson order parameter in spin glasses. 

The average of w 2  is part of the autocorrelation function 

This is connected to the response function through the fluctuation-response theorem [7] 

Now from ( 1 6 )  and ( 1 7 )  

From ( 1 2 )  it is found that 

(sum on all indices). From the definition of g 

(22) 9 = - N - 2  P P Y [g 61 5 6, gdJl<L* 

If we denote the expression in the brackets of ( 1 4 )  by f,,, i.e. 

f P U  = A - ‘  - A - ~ Q  , v + A - 3 Q P m Q v p - -  - * (23 1 
then it is easily realised that A f P y  = 1 - N - ’ 6 7 g t J 6 ;  so that 9 can be written as 
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In what follows we will mainly be concerned with random outputs, i.e. the probabil- 
ity of 5 being +1 and - 1  is the same. Then (22) can be averaged over the outputs and 

From (13) it is seen that g obeys the Dyson equation 
g = A - ' l - A - '  

which simplifies the expression for q 

tr( A G )  (27) = N-' d 
a h  

where G is the pattern average of g 

G = [gl,,. (28) 

We have not made any assumption about the input patterns in deriving all these 
Equation (27) implicitly determines A. 

equations. 

4. Random uncorrelated input patterns 

Let the input patterns be random and uncorrelated, (r = *l, with equal probability. 
It is first shown that q does not depend on the distribution of the output patterns. 

If we write out (22) we get 

(29) 

where pairs of 5 are put in with every pair of 5 (5"l" = 1). When the inputs are random, 
so are the 55 and therefore the distribution of the output patterns is unimportant. The 
expression in the [.I5 will only have terms that are diagonal in both upper and lower 
index, p = v, i =j ,  so q becomes of the form ( 2 5 )  and is therefore given by (27). 

q = N - 2 d  [ A -  1 5, IL 5 IL 51 Y 5 -N- 'A-25~51L5~5"5 ,"5"5~5"+.  * I55 
a h  

Also, when the inputs are uncorrelated G = GI. Then 

a 
ah 

q=-(AG). 

4.1. Finding the response function 

The summation of the series for the response function, G, can be done by diagrammatic 
methods (figure 1; for details of the method see the appendix). If we define the 
self-energy C as [3] 

G - ' = A + c  (31) 
we only have to sum the irreducible diagrams. This diagram series can be simplified 
by 'dressing' the graphs, i.e. by drawing them with full Green functions G instead of 
the zero-order ones, A - ' .  Then we get the series in figure 2, which can easily be 
calculated. The calculation involves the evaluation of averages of the form 

r 
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E [ -  + - + -  + ... ] 
t 

Figure 1. The double line is -G, the line is - A - '  and the wiggly line symbolises A. The 
broken lines with the ' x ' connect ends of the As to indicate that those ends have the same 
pattern and unit index. For more details consult the appendix. 

-..__ .._. ___.. ..__ ___.... ,.J-.., , X ~ ~  I. .. 
, ,  , ,  
. /  , ,  

'.. 
= . c r v \ + w * - +  I ,  

x ir 'X 

Figure 2. The response function written in terms of the self-energy Z. Some of the diagrams 
for the self-energy and the dressing of the A line are also shown. 

where we have defined the load parameter (Y = p /  N. The series for the self-energy, Z, 
becomes 

Then the response function is 

From the last expression we find 

a . =- 
1 + G '  

a aG-' - 

The derivative of G-' is also found from (34) giving 

(33) 

(35) 
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Finally 

where (19) has been used. This expression relates G, S and a. It does not have a nice 
closed solution but we can examine the interesting limits analytically. 

First a trivial limit: if the temperature is large we find S2 - TG = aG2. Only the 
positive solution makes sense and G is 

G = S 2 /  T T >> 1. (38) 
Thus q = 0, i.e. nothing is learned. 

Then for low T 
The low-noise limit is more relevant and interesting. First assume that G is large. 

giving TG = S 2  - a / (  1 - a ) .  Because G becomes negative for a / (  1 - a )  > S’this clearly 
only holds for a less than a critical value 

S 2  
1 + s2’ a,=- 

If this inequality is satisfied, 

at low temperatures. We have assumed that G is large. For this to hold, we require 
that T << a,  - a. 

Right at  a = a c ,  or more generally, for la - a,I << T<< 1, the response function G 
becomes 

. = ( $ ) I ”  

At a > a,  we find G-’ by expanding around G-’( T = 0) = xo = - 1. Then 

T (  1 - a,)* 
G-’=xo+ T<< 1. 

2xoa,&7z (43) 

The transition at a ,  has the following meaning: below a,  all the patterns can be 
learned perfectly in the low-noise limit. We can see this using (34) because with the 
solution (41) A goes to zero as T+O and (15) for the ( w i )  reduces to the standard 
projection method result. Above a ,  A remains non-zero even for T + 0, so the patterns 
are imperfectly learned. 

4.2. Dynamics 

To find the relaxation time of the learning process it is necessary to consider the 
dynamics. The reponse function that we have introduced in the static limit is more 
generally 
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The response function is diagonal when the patterns are uncorrelated, but we will need 
the general form in the next section. 

The Fourier transform of the Langevin equation ( 7 )  is 

w , ( w ) = w P ( w ) - G ~ ( w )  CA,,w,(w) (45) 
I 

where 

and 

By iterating the equation we get a series expansion for w, 

W ,  = WP - G,A,,W:+ GiA,,A,kW; - * * . . 
The response function (44) is then 

GI,(@) = [ Go(w) - GiCw )AI, + GiCw )Ad&, - * * I t<.  (49) 

Note that the series in (49) is similar to the series for the unaveraged response function 
g,, in (13 ) .  Apart from the pattern average, equation (13) is the static limit, w + 0, of 
(49) because G,(O) = A- ' .  We can use the results of the previous section by replacing 
A by A -io/ yo .  From the response function we can find the characteristic relaxation 
time 

Note that 

so from (36) we find 

a 

Yo 

The static limit G(0) of the response function which was determined before is needed 
to find the relaxation time. 

There are three interesting cases, corresponding to eq (41)-(43). When a < a ,  the 
response function is given in the low-T limit by (41). The relaxation time is then 

In the critical region (la -a,l<< T<< 1 )  we use (42) and find 

2S2( 1 + S2) 1 '=( T ) y , ( l - a ) '  (54) 
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Finally when a > a ,  we find from (43) 

for T<< a -a,<< 1. 
These equations also tell us something interesting about the learning process. From 

(53) we see that although the patterns can in principle be learned perfectly for a < a=, 
it takes forever to do so. At finite temperature the learning time is finite but at the 
cost of imperfect learning (because then A is non-zero). Note also that for fixed T the 
learning time shrinks as a approaches a,, but this does not mean that the learning is 
improving. Rather the asymptotic performance is getting worse, so it takes less time 
to reach this state. 

Right at a ,  the learning time does not diverge as rapidly as T +  0 (like T-1'2 instead 
of T-I), but this advantage is of course offset by a correspondingly more severe 
degradation of the asymptotic performance by small amounts of noise. 

Above a,  the learning time is always finite even at zero temperature (though it 
diverges as ( a  - a,)-').  Correspondingly the asymptotic performance is never perfect. 

5. Unconstrained learning 

When there is no constraint on the couplings, A = 0, the response function in (34) 
becomes 

a 
G-'(w) = -iw/y,+ 

1 + G(w) '  

Some care is needed when the relaxation time is determined from this equation. The 
response function has a pole which indicates that there is a non-relaxing contribution. 
We subtract this pole to get a finite relaxation time. Putting z = -iw/yo the solution 
of (56) is 

1 - a  - z + J ( z + c r  -1)Z+4z 
G(z)  = 

2z 

Consider first the case a < 1. In the limit z + O  

1-a  
G(z)  =-. 

Z 

(57 )  

This pole has the following meaning: for A = O  and no noise the dynamics (7)  takes 
place only in the subspace spanned by the patterns. Any component of the initial state 
in the complementary subspace will not relax. The residue of the pole in t rG at z = 0 
is just the number of these non-relaxing components. 

To study the dynamics in the subspace spanned by the patterns we subtract this 
pole off, defining the function 

A 1 - a  a - 1 - z + J ( z + a  - 1)2+4z 
G(  Z )  = G( Z )  --= (59 )  

Z 22 
The relaxation time is then 

1 
7 =- & O )  lim - a d - ' ( z )  - - 

yo z - ~  az yo(i - a ) * '  
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When a > 1 there is no  pole in G. The relaxation time is 

a 
- G(0) aG-'(z) 

7 = - lim ~ - 
yo az ~ ~ ( ~ u - 1 ) ~ '  

To summarise 

l/[Yo(l - f f  121 
ff/[Yo(ff 

when a < l  
when a > 1 ' 

r = {  

The critical value of the load parameter is a,= 1 in agreement with results by Opper 
[8]. Note that with A = O  the noise does not play any role in the problem. 

6. Learning with constrained thermal fluctuations 

There is an  alternative model to the one we have considered which is also interesting. 
We can assume that the thermal fluctuations rather than the connection strengths are 
constrained. This is implemented by the following condition 

[ ( w f ) - ( ~ i ) ~ I c <  = S2. (63) 

The expression on the left-hand side is the autocorrelation function for the connections. 
Now the fluctuation-response relation is simply 

S2 = C (  t = 0) = TG(0). (64) 

This was the model we considered in [2], though there was an error in equation (19) 
of that paper. The relaxation time in (50 )  is then 

The relaxation time diverges at a critical value of the load parameter 

a ,  = (1 + T/S2)'. (66) 

In our previous paper [2], we were mostly interested in the transition as a function 
of a for fixed finite T, so we ignored the factor 1/T in (65). 

A few words need to be said about the value of a,(T): the system cannot learn 
more than N patterns because they are then linearly dependent. However, there is 
nothing that prevents us from investigating the relaxation process above a = 1. What 
the equations we have derived mean is that the relaxation process breaks down at 
a = a,( T ) .  They d o  not imply that the system can learn more than N patterns. 

The breakdown at cy = a ,  can be seen clearly by considering the effect of the 
requirement that the relaxation time be real and positive. This limits the range of a 
in which the above discussion is true. The solution of (34) for G (at w =0)  can be 
written as 

We must choose the + branch to get a positive value of 7. The analytic properties of 
this function depend on the value of a. When a < 1 the function G ( A )  has a pole at  
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A = 0. It is then always possible to satisfy the equation G = Sz/ T When a > 1 there 
is no pole at  A = 0. The response function G has a maximum at A. where 

(68) A o  = -( 1 - &)’. 

It follows that S 2 /  T must be less than the maximum or 

The condition a < (1 + T / S 2 ) 2  = a,  follows. There is no stable solution to (63) for 
a > a=. 

7. Correlated patterns 

We now consider input patterns that are biased, letting the probability that (7  = *1 
be (1 * a ) / 2  so the average of the 6 is a. In this case the response function in (13) is 
no longer diagonal but the series expansion for G, is still valid. The diagram technique 
used in the previous section must then be generalised. 

7.1. The eigenvalues of the response function 

First, notice that G is of the form 

go gl * . ‘  

This matrix has the eigenvalues yI  = g o +  (N- l ) g ,  and y z =  g o - g , ,  which is 
( N  - 1)-fold degenerate. 

We sum the series using the following diagram technique (details are in the 
appendix). The state of an  input unit for a pattern p can be written (f = x: + a. The 
average of the new variable, x t ,  is zero. The series for G, is drawn as before and  in 
figure 3 ( a )  we explain how the averaging diagrams are drawn. The self-energy Z can 
be defined in a matrix equation equivalent to (31) 

G-’  = AI+Z. .  (71) 
The diagrams for the self-energy can be summed by ‘dressing’ both the response 

function and the pattern line A,,. In  figure 3(b) the dressing of the pattern line is 
shown. With this notation there are four diagrams that must be evaluated. We define 
these diagrams to be X:,!’, . . . , ZC’. The dressed pattern line in figure 3(b)  is 

N 
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( a )  

X 
X x 

t = 2 -  
i 

: . r x  
+ . .  . I ,  I FZ=s-+ = -*-t- 

( b )  
Figure 3. ( a )  Some of the diagrams for G when the patterns are correlated. A broken line 
ending in a x indicates an a. If two A are connected it means the same as before 
(uncorrelated patterns) except that [y is replaced by x: = - a .  Some of the self-energy 
diagrams are also shown. ( b  1 The four families of diagrams in the self-energy. They are 
expressed very compactly by dressing the A as shown in the bottom. The self-energy is 
1 = Z " ' + .  .+Z" ' ,  but only the first two are important, as described in the text. 

We will now show that XI3' and X ( 4 '  can be ignored. Consider for the moment 
pattern lines that are not dressed. Then the two lowest-order diagrams in figure 3 ( b )  
give the contribution 

Z = c Y a 2 E + a ( l - a 2 ) l  ( 7 3 )  
where E is the N x N matrix with every element equal to one and  I is the N x N unit 
matrix. Since G- '  is given by (71)  we have that its elements are 

G, '=G, '+a (74) 

G-' = (yo2 ( 7 5 )  

on the diagonal and 
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off the diagonal. In this approximation the eigenvalues are v l =  1 / y ,  = 
G;’ + cy + ( N  - l ) a a 2  and v2 = l / y 2  = G,’ + a (  1 - a’). Obviously v1 is much bigger 
than v2 so y ,  must be very small because of the factor N in vl. We conclude that 
y ,  -0  or g ,  - - g , / N .  This allows us to drop the third term in I: in figure 3(b) .  It is 

This involves the sum ZkGlk which is the small eigenvalue y ,  . A similar argument can 
be used for E!;’. It is then self-consistent to take P = X ( l ) + X c 2 ) .  

When the pattern lines have been dressed the self-energy matrix becomes 

2 = R ~ U ~ E +  ~ a (  1 - a2)i. (77) 

The factor R comes from the dressing of the pattern line in ( 7 2 ) .  Since t r G =  
( N - 1 ) y 2 + y , =  N y Z  it is 

1 
R =  

The eigenvalues of G-’ are now 

1 -t (1 - a2)y2’ 

v l  = A + Ra[ 1 -I- ( N  - l ) a 2 ]  

and 

772 = A + R a ( 1 -  a 2 ) .  

(78)  

(79) 

These eigenvalues describe the static properties of the system. In the limit of a = 0 
(unbiased patterns) the two become identical and equal to the G-’ we found previously 
(34). Also note that the expressions for v2 and G-I are the same except for a scale 
factor 1 - a’, which actually turns out to make the calculations of q2 identical to our 
earlier calculations of G-I. 

7.2. Random output 

For simplicity we consider first the case of random uncorrelated outputs. Then we 
can use (27 )  to find q :  

4 = )Ay, .  

We now rescale, defining 

y’ = ( 1  - a 2 )  y* i j  = ( 1  - 2 ) q  

and get equations similar to (19) ,  (34) and ( 8 1 )  to solve for y’: 
;-I = i+ a / (  1 + y’) 
T ; = S = - i j  - - -  4 = ( a / a A ) h y .  

These equations are the same as for the case of uncorrelated inputs and therefore 
the equation for y” is the same as for G (37) ,  but of course in terms of the rescaled 
variables. 
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The critical load capacity, a c ,  now becomes (from (40)) 

3 (1 + a 2 ) S 2  
I + S  l + ( l - a 2 ) S 2  

ffc=y= 

and all other properties-static and dynamic-governed by the second eigenvalue y2 
scale accordingly. In  particular the relaxation times of this mode are given by equations 
(53)-( 55). 

To find the relaxation time for the other mode determined by vl, observe that from 
(79) and (80) it follows that 

v 1  = v 2 +  NRaa’. (87) 

Differentiating this and  using that 

Y z  a 7 2  

Yo a h  
7 2 = - -  

(see (50) and (51 ) )  we find to leading order in 1/ N 

Y l  a771 1-a ’  
yo a A  1 - ~ ’ + 7 7 ~ ‘  5-2 7 ---= 1 -  

The relative magnitude of the relaxation times is interesting. When v2 > 0, which 
is always true for finite T, is smaller than T ~ .  We interpret T~ to be the time it takes 
the system to find a ‘prototype solution’ to the learning problem before finding the 
finer details. 

7.3. General output 

If the outputs are correlated we cannot use (81) to find q. We will not go into detailed 
calculations for other distributions of the outputs, but argue that it will always give 
basically the same results as above except when all the outputs (except from a finite 
number) are the same. 

The Green function ffiy defined in (23) is very similar to g,, and the method of 
averaging is the same. The average Ffiy  = [ f f iYlr  looks exactly like G,, except from 
some factors of a in various places. That means that (24) will be dominated by the 
large eigenvalue (corresponding to 772) except when L f i l y  = 1 when the first eigenvalue 
is the only surviving part in (24). This is because the first eigenvalue has the eigenvector 
( 1 , 1 , 1 )  . . . )  1). 

This heuristic argument makes it reasonable to say that the small eigenvalue 
describes the relaxation of the system when essentially all the outputs are the same. 

7.4. Unconstrained learning 

When there is no constraint on the couplings we can proceed in a similar way as for 
uncorrelated patterns (see 9 5 ) .  Notice that (80) for vz is of the same form as (56). 
By rescaling as above, f = yr( 1 - a’) and ?= z / (  1 - a 2 )  = - i w / ( l -  a 2 ) ,  equation (80) 
can be written 

- -  
y ’ = ; + a / ( l +  T )  (90) 
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which is the same as (56). The eigenvalue v2 gives us the relaxation time 7’ (cf (60) 
and (61)) 

where q2 is y2 with the pole subtracted. This equation holds for a < 1 and  for a > 1 
if y2 is substituted for q2 .  As in 9 5 we find 

(92) 
lAYO(1 -a2) (1- f f ) ’ l  when a < l  

T 2 = {  ff/[Yo(l - a 2 ) ( .  - 1)’l w h e n a > l ’  

Now the other relaxation time given by y1 is found. For a < 1, y2 has a pole in z = 0: 

I - a  ( 1 - a ) ( 1 - a 2 )  - y2=-- 
Z Z 

(93) 

This pole carries over to y1 and  has to be subtracted to find T ~ .  From (87) yI is found 
close to z = 0: 

(94) 
1 + (1 - a2)y2  1 + (1 - a’)  y2 

= Naa2+ v2+ 1 - a 2 =  Naa2 * 

Subtracting the pole from y, gives 

For a > 1 there is no pole and  yI is found from (87) to have the same expression to 
leading order in 1/ N Gust remove the hats in (95)). 

The relaxation time is then found by differentiation: 

when a < 1 
when a > 1 71 = { 

The critical value of the load parameter is a,  = 1 as for uncorrelated inputs and again 
T~ is always less than or equal to T ~ .  

8. Conclusion 

Constrained weight decay and noise thus have very interesting effects on learning in 
simple perceptrons. In the model we have concentrated on most, where [ ( w f ) l s r  is 
constrained to a fixed value S‘, there is a critical point in the T, a plane at a = a, (S) ,  
T = 0. This is the transition between perfect and  imperfect learning. At finite T (like 
finite external field in a ferromagnet) there is no transition. Learning is always imperfect 
( A  it 0), but there is a crossover which gets very sharp for low T. 

Near the transition the learning time and  asymptotic accuracy vary singularly 
strongly with the load ( a )  and  noise ( T )  parameters, and there is always a complemen- 
tarity between rapid and  accurate learning. The critical region is a qualitatively optimal 
operating region for learning, where the competing priorities of speed and  accuracy 
are well balanced. It therefore might be wise to tune S or A so that a is near a,. 

In  unconstrained learning, this transition is absent, and noise plays no role whatever. 
There is instead critical slowing down and  a dynamical freezing transition at  a new 
critical value, a = 1, which is the maximum capacity for this algorithm. 
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0 a, 1 0 1 0 1 2 
a U U 

Figure 4. Phase diagrams for the three models discussed in the text. ( a )  Constraint 
[ ( w : ) ] ~ ~  = S 2 .  Along the heavy line the relaxation time is infinite. The dotted lines indicate 
qualitatively contours of constant 7. ( b )  Unconstrained learning. ( c )  Constained thermal 
fluctuations, [ ( ( y  - ( w , ) ) ~ ) ] ~ <  = s*. 

In the third model we studied, where the constraint is on the thermal fluctuations 
of wi ,  independent of its equilibrium value, there is now a line of critical-slowing-down 
transitions in the CY, T plane, ending for T-,  0 at the capacity CY = 1 .  

These results are summarised in the ‘phase diagrams’ (in CY, T space) of figure 4. 
We have succeeded in generalising much of this picture to the learning of correlated 

patterns. The important new feature is the emergence of a second relaxation time, 
which can be interpreted as the time it takes to learn a prototype (mean) of the group 
of patterns. 

It would of course be highly desirable to see what kinds of phase transition occur 
in learning in less trivial networks with non-linear units and more layers. Perhaps the 
discovery of such rich structure in the simple linear perceptron can be a guide to some 
things to look for in these systems. 

Appendix: The diagram technique 

A l .  Uncorrelated patterns 

In G we have averages of the form (here shown for four A )  

[ w4 @ I  C I ra  1 1 -  C 12. 13 5 : 1 i : ‘ 5 : ’ C Y 2 5 ~ 3 5 : , 3 5 ~ 4 5 ~ 4 ]  c . ( A l l  

We have to pair the 5 to get anything different from zero, since 

[5:5;1( = &,S,,. (A21 
In the diagrams such a pairing is shown by connecting the terms by a broken line with 
a x . For example, putting p ,  = p2 and i = j in ( A l )  corresponds to connecting the 
two ends of the diagram for that term. All ends of the A have to be paired. 

The first important observations is that ‘crossing’ diagrams are of order 1/N or 
less compared to the non-crossing ones. By crossing we mean that the broken lines 
cross as in the diagram shown in figure 5 ( b ) .  Calculating the size of the diagrams in 
figure 5 ( a )  gives (except for A - 5 )  

[N4 C C’i5:15~25~~5t’5’,i5’,15:1] =W4 l = a 2  (A3) 
P I . P 2  I l r l 2  5 PI.C2 I I . 1 2  
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( a )  ( b )  

Figure S. The two diagrams described in the text. ( a )  contributes to G but ( b )  does not 
because it is a crossing diagram. 

and for the diagram in figure 5 (  b )  gives 

From now on we therefore ignore all crossing diagrams. 
The second important observation is that we always have to put i = j  for the pairing 

to be possible without getting crossing graphs. That makes all the terms diagonal and 
then G is diagonal also. 

This diagram technique counts some special parts of the average many times. For 
example, the term from having i = i, = i2 = i3 and I*.' = = p4 in the average ( A l )  is 
included in all the diagrams we draw with four A. It is easy to see that in the limit 
of large p double-counting terms like this are unimportant. 

By reducible diagrams we mean diagrams that can be split into two or more diagrams 
without breaking any dotted lines. The sum of all possible (surviving) irreducible 
diagrams is called the self-energy, C and is shown in figure 2 where it is also shown 
how G can be written in terms of 2. The power series for G is now easily summed: 

r I 

b 0  G = Go 1 - G o ~ + ( G o ~ ) 2 - ( G , C ) 3 + *  . . ] =- L 1 + GJ 

which can also be written as 

The self-energy can be expressed in terms of 'dressed' diagrams as shown in figure 
2.  Dressing means that the diagrams are changed by using double lines for G instead 
of lines for A - ' .  This makes the series much simpler and the averages occurring (32) 
are now trivial. 

A.2. Correlated patterns 

The trick here is to write the patterns tf as a sum of their average a and the rest, x Y ,  
which then has average zero and variance 

As before, the xY has to be paired and it is drawn the same way as above. Having 
an a appearing in an average is drawn with a dotted line ending in a x . Then, as an 
example, the average 

r 1 

can be drawn as in figure 6. Here we have not drawn terms that have an odd number 
of x-they will always average to zero-and crossing graphs that can again be neglected. 
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X 

Figure 6. All diagrams with two As that contribute to G 

The self-energy is defined as before but has off-diagonal elements also, so all the 
above equations should now be read as matrix equations. Also G is of course a matrix 
and therefore the double lines in the diagrams now carry different indices in the two 
ends. 

There are now four families of graphs in the self-energy. A few examples from 
each family are drawn in figure 3 ( b ) .  Only the first two will survive as described in 0 7. 

The first family is the same as we had in the case of uncorrelated patterns, thus 
the only one that exists in the limit of small a. The second family is the off-diagonal 
equivalent of the first. By 'renormalising' G all families can be expressed very compactly 
as also shown in figure 3(  b ) .  

References 

[l]  Rumelhart D E, Hinton G E and Williams R J 1987 Parallel Distributed Processing ed D E Rumelhart 
and J L McClelland (Cambridge, MA: MIT Press) p 318 

[2] Hertz J A, Thorbergsson G 1 and Krogh A 1989 Phys. Scr. 'I25 149 
[3] Ma S-K 1976 Modern Theory of Critical Phenomena (New York: Benjamin) 
[4] Kanter I and Sompolinsky H 1987 Phys. Rev. A 35 380 
[SI Kohonen T 1984 Self-organisation and Associate Memory (Berlin: Springer) 
[6] Personnaz L, Guyon I and Dreyfus G 1985 J. Physique Lett. 46 L359 
[7] Landau L D and Lifshitz E M 1980 Statistical Physics (Oxford: Pergamon) 
[8] Opper M 1989 Europhys. Lett. 8 389 


