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Abstract

This paper reports on how prior information was used as a source of data for sampling schemes as well as a
foundation for further salinity studies at different scales. The results at each of the scale levels are useful to the
degree of sampling intensity at which the information was obtained. While the regional study revealed the salinity
pattern is closely associated with climatic trend, the pattern of salinity at the county scale is less well-defined. The
salinity information at the field scale revealed high saline areas coinciding with an abandoned creek channel. The
salinisation process at this scale is probably due to deposition of soluble salts that have been flushed from the upper
reaches of an abandoned creek. There is preponderance of saline subsoil layers in and around Mungindi which
needs further investigation. Visualisation of information transfer through the scale continuum, as demonstrated by
this study, is presented and discussed.

Introduction

Field survey results are routinely applied at the farm
scale by Australia’s Landcare Groups [3]. These
Groups and many government agencies have also been
pro-active in trying to identify environmental issues
at the catchment scale, with further work carried out
at more detailed scales right down to the plot level.
Due to high cost of getting accurate and quantitative
information, much is relied upon readily acquired data
that are mostly descriptive and qualitative. There is
also no formal documentation for reliable, repeatable
salinity assessment and spatial and temporal transfer of
information through the scale continuum. This paper
is aimed at resolving these problems for the irrigated
cotton growing region of eastern Australia. The paper
focuses on the acquisition of quantitative information
on soil salinity with the purpose of determining broad
processes of salinisation in the region. For this, two
questions need to be answered. The first is whether we
can use existing information and a variety of statisti-
cal techniques to efficiently carry out field surveys that
would provide economic, soil information of known
quality at a variety of scales. Secondly, what is the
value of soil information at various spatial scale in the
assessment and monitoring of indicators of soil salin-

isation in the region? The focus therefore is on how
we can model and identify high saline and potentially
saline areas in the region.

Model specification

Physical settings as the bases for model assumption

The study region is characterised by regular patterns of
climate, geomorphology and geology producing sim-
ilar patterns of soil variation – varying in a similar
manner from east to west [8]. This means that exist-
ing information on soil in any part of the plains can
be used for sampling design and extrapolation onto
the other parts. Our primary interest therefore is to
utilise the only existing quantitative soil information
from a previous work [8]. The work involved a soil
inventory covering the Edgeroi 1:50,000 Topographic
Map Sheet. The Edgeroi County is located in the lower
Namoi valley, just north of Narrabri (Figure 1). The
soil data at the County scale was used in designing a
cost-effective sampling scheme to identify high saline
and potentially saline areas at the catchment (regional)
scale, and also to focus on a smaller saline areas within
the County at a finer scale.

ICPC: PIPS No.: 137489 BIO2KAP
frespf10.tex; 13/02/1998; 17:14; v.7; p.1



100

Figure 1. Location of the study region

The model

Our basic model is based on the assumption of sim-
ilar patterns of soil variation, which is supported by
the physical evidence of similarity of physiography
throughout the plains. The next step was to develop
a spatial model common to all the scales that could
predict the value of our target variable (i.e.; salinity
measured at a given depth) at unsampled locations.
The model in consideration is in the form:

E[z(x)] = � (1)

where E[z(x)] is the expected value of our target vari-
able; the general model of expectation is the value of
our target variables are assumed to be the population
mean (�). It is also assumed that � does not depend
on the position x. In reality, we know soil varies from
one region to another therefore equation (1) could be
modified as:

z(x) = �v + �v (2)

where �v is the mean value within region v; �v is the
spatially dependent residual from the mean (by impli-
cation �v = �(x) + �’(x); where �(x) is the spatially
dependent component and �’(x) represents the uncer-
tainty).

The model concept is based on the theory of region-
alised variables [7] which is well known in the soil
science community. The model aim is to predict the
values of our target variable at unvisited locations from
measurements made in the neighbourhood, while min-
imising the component �’(x) in equation (2). Equation

(2) leads to [7]

var[�(x) � �(x+ h)] =

E[�(x) � �(x+ h)
2
] = 2
(h) (3)

where h is the lag or the separating distance between
each pair of observations; 
(h) is the variance of
the paired observations at this lag (h). Equation
(3) describes the condition termed quasi-stationarity
whereby the variance of the differences is constant
within the region of consideration only [13]. The esti-
mate of 
(h), usually referred to as semi-variance, can
be obtained by:


̂(h) =
1

2N(h)

N(h)X
i=1

(z(xi)� z(xj))
2 (4)

where N(h) is the number of pairs. The plot of the
experimental or calculated semi-variances against the
lag is termed as the variogram. The experimental var-
iogram can be modelled by a number of "safe" func-
tions, the most popular of which is the spherical func-
tion. The variogram parameters resulting from the
model are used for kriging, a best linear unbiased esti-
mator (BLUE). Since our spatial model is based on the
quasi-stationarity of variance, ordinary kriging [5] is
the appropriate interpolation technique to be used.

Upscaling (regional – lower Macintyre)

Percent clay content at 0.30–0.40 m depth for the
Edgeroi 1:50,000 map area [8] was selected as the
primary variable for our sampling design at the region-
al scale. We started by fitting a spherical model (
(h)
=109.25 + 0.231h (km) up to the sill) to the experimen-
tal variogram from which we derived sample observa-
tion density and the kriging error for the primary vari-
able using the resulting variogram parameters.Figure 2
shows the relationship between the density of sampling
and kriging error for the % clay. Up to a certain level,
decreasing the prediction error leads to improved accu-
racy of interpolated soil information as the sampling
intensity increases. This is similar to results reported
elsewhere [2]. Note that the relatively large minimum
kriging error of about 10.5 (% clay) is due to a large
nugget effect of the variogram used in the computa-
tion. The overall picture presented by Figure 2 is that
accuracy of soil information improves with increasing
density of observations that generate the information,
and this could only be to a degree determined by the
accuracy of the prior information used for the analysis.
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Figure 2. Plot of kriging error versus sampling density

After taking into consideration the time, cost and logis-
tic constraints, we determined the sampling density of
0.354 observations per km2 for the lower Macintyre
valley - much lower than the optimal sampling density
of about 2.4 observations per km2 (De Gruijter, pers.
communication). A total of 120 sites were visited and
sampled to 2.0 m depth. However, only three depths
(0.10–0.20, 0.60–0.70 and 1.10–1.30 m) were used for
this study.

Downscaling (Field scale – ‘Auscott’)

Our aim in downscaling was to determine the extent
and spatial distribution of saline soil layers within the
Edgeroi area termed Boolcarrol, which was revealed
by a prior study [11]. To test the hypothesis that salt
accumulation was either due to the effect of irrigated
cotton production or due to a natural phenomenon, a
more detailed study focusing on selected fields in the
Auscott farm, was carried out.

To determine a suitable sampling strategy, several
preliminary transects with sample points at 10 m inter-
val were laid across the selected fields. Two EM38 (an
electromagnetic induction instrument [12]) readings
were made at each site: in the vertical mode (EM0;V ),
where the instrument measures electrical conductivi-
ty (ECa) to a theoretical depth of 2.0 m; and in the
horizontal mode (EM0;H), which measures ECa to a
depth of 1.0 m. The resulting ECa were used to gener-

ate variograms that are important for designing sample
spacings for the detailed salinity investigation. How-
ever, the similar shape and range (ie. 0.35 km) of the
resulting variograms is indicative that the instrument
appears to be measuring the same phenomenon in both
modes of operation. The model for EM0;V is in the
form:


(h) = 0:3 + 5:714h for 0 � h � 0:35 km


(h) = 0:3 for h = 0 km (5)

and the model for EM0;H :


(h) = 0:2 + 3:142h for 0 � h � 0:35 km


(h) = 0:2 for h = 0 km: (6)

Considering the importance of local variation at this
scale level sampling interval of 0.05 km was generally
used across the fields. However, it was decided to
sample more intensively along the grid lines where
Boolcarrol was observed from the Edgeroi analysis.
Sampling intervals in the "suspect" areas were varied
from 1 m to 25 m.

Model validation at different scale

To validate and assess performance of our prediction
model at different scales, two criteria – mean error
(ME) and root mean square error (RMSE) of prediction
[9], were used. The ME measures the bias of prediction
and should be close to zero for unbiased methods. It is
defined as:

ME =
1
l

X
fz�(sj)� z(sj)g (7)

where l is the number of test sites; z(sj) is the actual
measurement of ECe at a validation site; z�(sj) is the
predicted ECe at the validation site. The RMSE is a
measure of precision of prediction and should be as
small as possible for precise methods. It is expressed
as:

RMSE =

r
1
l

X
[z�(sj)� z(sj)]2 (8)

Results

Basic statistics and variograms at different scales

Basic statistics of ECe measured at different scales
are presented in Table 1. The mean ECe at all scales
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Figure 3. Variogram models (a) regional, (b) county and (c) field scale

increases with depth. These results indicate a common
salinity profile which is characterised by low ECe in the
topsoil, increasing dramatically at about 0.60–0.70 m
forming a bulge in the 1.00–1.50 m depths [10]. There
is larger variability of subsoil ECe at the regional scale
than either the county or the field scales because the
measured ECe at the regional scale encompasses more
of the population variance than those at the county
or the field levels. One may ask whether this finding
is not in conflict with the basic assumption of quasi-
stationarity of means and variance at all the scales.This
is difficult to answer, but from the variogram models

in Figure 3 our assumption of quasi-stationarity seems
adequate.

We noted that the variograms are some measures
of variability of an attribute. As shown in Figure 3,
the variograms model for the ECe in the subsoil (1.10–
1.30 m) consistently exhibit the largest spatial ranges
and spatial variances followed by the upper subsoil
(0.60–0.70 m) and topsoil (0.10–0.30 m). This is con-
sistent with greater variation in salinity with increasing
depth as illustrated in the statistics presented in Table 1.
It is also apparent that owing to the greater intensi-
ty of sampling at the Auscott farm than the smaller
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Table 1. Basic statistics of ECe at different scales; note that R = Regional
(Macintyre), C = County (Edgeroi) and F = Field (‘Auscott’)

Scale n Mean (dS m�1) SD

0.10–0.20 R 119 1.038 0.708

C 272 0.849 0.408

F 3457 1.403 0.122

0.60–0.80 R 120 3.558 3.036

C 306 3.210 3.758

F 3457 2.361 0.636

1.10–1.30 R 118 6.805 5.376

C 281 3.887 3.204

F 3457 3.764 1.389

scale levels, the spatial ranges (Figure 3c) are greater
than the sampling interval of 50 m, at approximately
0.8 km, a value that is twice the spatial range for the
transects data. Similarly the Edgeroi county, sampled
at 2.8 km interval, has ranges more than double the
sampling interval. Remarkably, the range of the vari-
ogram model for ECe at 1.10–1.30 m is almost equal to
the range exhibited by the primary variable (% clay at
0.30–0.40 m) as shown in our discussion on upscaling.
Only the upper subsoil (0.60–0.80 m) has a variogram
range less than the sampling interval (6 km), which
is made possible by about 20 points that were located
closer than the average interval.

The nugget effect, representing the uncertainty of
Equation 2, also varies at different depths and scales.
With the exception of Edgeroi, it generally increases
with depth and increases as we upscale. In the case of
1.10–1.30 m, the nugget variance from less than 20%
of the sill in the Edgeroi (county) to 68% in the low-
er Macintyre (regional scale). Obviously, the results of
the lower Macintyre translated into sub-optimal predic-
tions of ECe at unsampled locations and undersampled
areas.

Prediction performance at different scales

As previously discussed, the validation set was used
to judge the performance of the interpolation using the
two indices, ME and RMSE. A clear finding, which
is not surprising, is that precision was greatest (lowest
RMSE) at the field scale and poorest at the regional
scale (Figure 4). This can be attributed to two factors.
Firstly, more intensive sampling is more precise than

less intensive sampling [14]. Secondly, with increasing
scale the uncertainty associated with the data increases
(contributing to the nugget effect) which ultimately
decreases the precision of prediction.

The case of ME as a measure of the performance of
the prediction model is less obvious than for RMSE.
The ME is only related to under- and over-prediction
of ECe, not the precision of prediction. For instance,
whereas the Macintyre ECe at 1.10–1.30 is slightly
overestimated, all the other ECe measurements are
slightly underestimated (Figure 4). For obvious rea-
sons, the ME values can be misleading, as the negative
and positive values tend to cancel each other, and are
very sensitive to outliers.

Spatial patterns of soil salinity

Due to low variability of salinity in the topsoil (salt
accumulation in the topsoil is very low at all the scales)
only the results of 1.10–1.30 m layer is shown to illus-
trate the trend of salinity at various scales. In Figure 5a,
there is a general increasing trend in salinity from east
to west, with few patches of areas of high salinity,
around 6–10 dSm�1, south-west of Goondiwindi and
just north-east of Boomi. The most salt-affected areas
are found around Mungindi at the south-west corner
of Figure 5a. The main cause of salinity distribution
patterns in the lower Macintyre appears to be climate,
with the salinity trend following patterns of rainfall
and temperature [6]. In the east where the average
annual rainfall is large, the soluble salts are probably
flushed below 2 m depth. In the west where there is
greater proportion of evaporation than rainfall, there is
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Figure 4. Plots of prediction versus bias of prediction of ECe (a) regional, (b) county and (c) field scale

upward flux of soluble salts which accumulate within
2 m depth.

The distribution of salts in the Edgeroi county indi-
cates only a weak trend due to climatic consequence
(Figure 5b). Rather, the alluvial clay plains are thought
to have a greater influence in determining the distribu-
tion of salts as they generally accumulate more salts
at depth [8]. As the causes of subsoil salinity are less
obvious than at the regional scale, our field scale study
would perhaps give a clearer picture.

At the field scale the amount of soluble salts (1.10–
1.30 m depth) at Auscott is in the low to moderate
range- 3.5–6.5 dS m�1 (Figure 5c). Although this
range is lower than the critical value for cotton pro-

duction (about 7 dS m�1), there is an area near the
Galathera Creek, running from north to south-east in
Figure 5c, which is already a cause for concern to
the cotton grower. There are two possible explanations
for the occurrence of relatively higher salinity in this
area. The probable explanation is that the salts have
accumulated naturally by continual inundation of the
local ephemeral Galathera Creek. The soil of the upper
reaches of the Creek had been derived in situ from Pil-
liga Sandstone, and strongly leached of many nutrients
and soluble salts. As the Creek has no natural outlet the
flushed salts from the upper reaches are being deposit-
ed and now accumulate in this natural sink, areas where
the creek has previously flowed. This proposition has
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Figure 5. Interpolated ECe (dSm-1) at 1.10–1,30 m depth: (a) regional, (b) county and (c) field scale
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Figure 6. Model classification (after Hoosbeek and Bryant, 1992;
and Bouma, 1996)

been corroborated by an old satellite photograph which
shows the area of high salinity coinciding with an old
channel [10]. Thus the causes of increased salinity in
this area are due more to hydro-geomorphological fac-
tors than to human activities.

General discussion and conclusions

Before concluding, we discuss our approach follow-
ing the model visualisation scheme of Hoosbeek and
Bryant [4], with additions in accordance with Bouma
[1]. The down- and upscaling procedure of this work
is shown in Figure 6. We started from the level at
which prior information existed- at the Edgeroi coun-
ty. With medium intensity information at this scale, a
sampling strategy, constrained by cost and logistics,
was devised for the lower Macintyre - the regional
scale. This enabled prognostication of similar salinity
patterns at the county level to the regional scale, at
the quantitative end of complexity. We thus upscaled
to the region using a knowledge model K4 [1], which
involved a complex holistic model characterised by
"excellent" (quantitative) data from "carefully select-
ed soil samples which covered a characteristic range of

soil properties." At the regional scale, problem areas
were unravelled for further study at the field scale
- hence the proposed projection using a generalised
holistic K3 model (such as SALF or SODIC) to simu-
late salinisation processes.

We downscaled from the county (Edgeroi) to the
field scale again using a K4 model. The results at
the field scale were again downscaled using a similar
K4 model, combined with a K2 model (at the qual-
itative end) involving expert knowledge (of hydro-
geomorphology), to elucidate the probable cause of
salinisation at the pedon scale (Figure 6).

In conclusion, we have demonstrated how prior
information can be used as a source of sampling strate-
gy as well as a foundation for further studies at different
scales. In meeting the principal problem that presage
this work, we have generated quantitative information
on salinity, information that has formed the baseline
for future monitoring of salinisation processes in our
specific study region.
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