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A finite element computational procedure for turbulent boundary layer flows and an algebraic stress 
turbulence model are presented. The finite element method is based on the semi-discrete Galerkin 
finite element method, the convergence nature of which has been reported previously. The algebraic 
stress turbulence model used in the present study can be characterized by the following three aspects: 
firstly, the eddy viscosity expression was derived from the Reynolds stress turbulence model; secondly, 
the turbulent kinetic energy dissipation rate equation was improved by including a production range 
time scale; and lastly, the diffusion coefficients for turbulence equations were adjusted so that the 
kinetic energy profile extends further into the free stream region which can be found in most of 
experimental data. Example problems considered include: a fully developed channel flow, a fully 
developed pipe flow, a flat plate boundary layer flow, a plane jet exhausting into a moving stream, a 
circular jet exhausting into a moving stream, and a wall jet flow. Computational results compared 
favorably with experimental data for most of the example problems considered. Significantly improved 
computational results were obtained for the plane jet flow and the wall jet flow, whereas rest of the 
computational results were comparable to those obtained by finite difference methods using the 
standard k-e turbulence model. 

1. Introduction 

During the last decades, significant progress has been made in mathematically modelling the 
turbulent flows. Memorable events in the effort, among many others, would be the two 
Stanford conferences on turbulent flows [1, 2]. 

Development of turbulence models, and accordingly computation of turbulent flows too, 
were made, entirely to certain extents, using one or another form of the finite difference 
method. In the course of development using the finite difference method, turbulent boundary 
layer flows have been solved more frequently than elliptic flows. This can be attributed to its 
importance in engineering applications and, more importantly, to the simplicity of the 
boundary layer equations and abundant number of experimental data for different flow 
situations that can be used advantageously for verification of turbulence models. 

Only very recently, a few publications on finite element computation of turbulent flows 
began to appear. Among these are [3-9]. 
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A few difficulties observed in these finite element computations of turbulent flows are 
summarized below. In any turbulent flow, parabolic or elliptic, the turbulence dissipation rate 
and the production rate varies a few orders of magnitude in extremely small spatial distance. 
Consequently, a slight disturbance which may occur during the iterative solution procedure 
may render the system of equations hard to converge. Thomas et al. [6] presented an iteration 
procedure dedicated to overcome this difficulty. Hutton and Smith [8] expressed difficulty in 
preparing initial guess to obtain convergent solutions. Smith [3] also reported that the 
turbulent kinetic energy and/or the dissipation rate (e) may become negative during iterations 
so that these negative numbers were set to be positive to obtain convergent solution. In the 
present paper, a strongly convergent relaxation technique [10], which is more or less a 
standard procedure in the finite difference methods, was used to overcome this difficulty. 

It was also reported in some of these literatures that finite element computation of turbulent 
flows using the standard k-~ turbulence model yielded poor computational results. For 
example, Smith [3] reported that the standard k-e turbulence model yielded a kinetic energy 
profile with strong peak near the backward-facing step, but such peak was not found in 
experimental data for the same flow. Taylor et al. [4] reported that an unacceptably bad 
computational result was obtained for a backward-facing step flow, i.e., the reattachment 
length was by far too short compared with experimental data. The turbulence model presented 
in this paper significantly improved the computational results as can be found in the later 
sections. 

Unlike the finite difference computation of turbulent flows, there exists a further limited 
number of finite element computation of boundary layer flows. Among these are Taylor et al. 
[5] and Soliman and Baker [9]. In Taylor et al. [5] an elliptic flow solver was used to solve 
boundary layer flows using a k-8 turbulence model. In Soliman and Baker [9] linear 
Lagrangian elements were used to discretize the domain in normal to the flow direction, and 
nonorthogonal grid transformation was used to achieve computational efficiency. The finite 
element method proposed by Soliman and Baker [9, 11] showed convergence nature which is 
in good agreement with the theory of finite elements [12] for the linear element case, which 
has been used in their turbulent boundary layer flow calculation. The finite element computa- 
tional procedure for laminar boundary layer flows proposed in Kim and Payne [13] exhibited 
convergence nature which is consistent with the theory of finite elements for all the types of 
elements considered, i.e., the linear element, the quadratic element, and the Hermite cubic 
element. It was also shown in a previous study [13] that the linear element was inferior to the 
quadratic element; hence, only the quadratic element is considered in the present study. It can 
be concluded that the finite element computation of turbulent boundary layer flows is not as 
exhaustive as the finite difference computation of the same class of flows. 

Considering the success of the finite element method in other areas of engineering 
computations, such as structural mechanics, laminar flow problems, and chemical process 
modelling to mention a few, it is quite unusual that the finite element method has been hardly 
used for computation of turbulent flows especially when k-e type turbulence models are used. 

A finite element turbulent boundary layer flow analysis code, which is based on the finite 
element laminar boundary layer flow analysis code, has been constructed to assess and/or 
validate turbulence models to be used for general finite element computation of turbulent 
flows. The numerical details on turbulence equations are described in later sections, whereas 
all the numerical details on boundary layer flow equations can be found in [13]. 
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Use of the present turbulence model in finite difference computation of turbulent boundary 
layer flows as well as elliptic flows improved the computational results in comparison with 
those obtained by using the standard k-e turbulence model [14]. 

2. Turbulent flow equations 

The standard turbulent boundary layer equations are given as: 

au 1 a 
ax + y" ay ( y ' v ) = o  (1) 

8u au_  1 a { 
u ~ + v  ay y-; o-~ (~ 

dp 
+ vt)Y" Oy ) = dx ' (2) 

where u and v are time averaged velocities in the flow direction and in the transverse 
direction, respectively, p is the pressure, v is the kinematic viscosity of the fluid, v t is the 
turbulent eddy viscosity, and r is an integer such that r = 0 for two-dimensional flows and r = 1 
for axisymmetric flows. 

3. Turbulence model 

3.1. Eddy viscosity equation 

The eddy viscosity expression can be obtained by contracting the Reynolds stress turbulence 
model [15] using an algebraic Reynolds stress transport assumption [16], In most of the 
algebraic stress turbulence models, the eddy viscosity is given as [16, 17]; 

v, = c~k2/e , (3) 

2 (1 - Cv2)(Cvl -- 1 "~ Cv2P/E ) 
C~ = "~ (Co , -  1 + Ply)2 

(4) 

where v, is the turbulent eddy viscosity; k is the turbulent kinetic energy; e is the dissipation 
rate; P, P = v,(Ou/ay) z, is the production rate; u is the time averaged flow direction velocity; y 
is the transverse coordinate; cv, = 3.7 + 0.7 tanh(P/e); and cv2 = 0.32. 

The functional form of cv~ was used to bring down % to 0.09 for equilibrium state (the 
production rate is equal to the dissipation rate of turbulent kinetic energy). The c~ curve is 
shown in Fig. 1 together with that of Launder [17]. A different c~ curve can also be found in 
[16]. Experimentally deduced % curves [16] are also shown in Fig. 1. Detailed discussions on 
the c~ function can be found in [16, 17]. 
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3.2. Turbulence equations 

The transport equation for turbulent kinetic energy is given as: 

Dt = P -  e + y, Oy y" =' + mOr, . ~  (5) 

Many of the experimental data, such as the fiat plate boundary layer flow due to Klebanoff 
[18] and turbulent jets exhausting into moving streams [19, 20] considered herein as example 
problems, show that the turbulent kinetic energy and its gradient are persistently big even 
after the velocity gradient has vanished near and in the free stream region. It is argued that 
the turbulent kinetic energy has been diffused outward from the high turbulence region due to 
the following reasons. Firstly, the velocity gradient has vanished and there is no production of 
turbulent kinetic energy in the region. Secondly, the boundary layer flows are spreading in the 
down-stream direction, hence the turbulent kinetic energy couldn't have been convected from 
the up-stream region. Thirdly, the decay rate of turbulence, as can be found in the grid 
turbulence, is so small that the same level of turbulent kinetic energy should exist throughout 
the free stream region if it has been convected from the high turbulence region. Consequently, 
the diffusivity of turbulent kinetic energy has to be bigger than that of the momentum 
equation, and hence the diffusion coefficient, Ork, for turbulent kinetic energy has to be smaller 
than unity to achieve the observed diffusion process of the turbulent kinetic energy. 

It has long been recognized that the standard dissipation rate equation has a lack of variable 
energy transfer capability which will transfer more turbulent kinetic energy into the dissipation 



S.-W. Kim, Y.-S. Chen, FE computation of boundary layer flows 49 

range when production is high. The same line of efforts to  introduce a variable energy transfer 
function into the standard dissipation rate equation can be found in papers by Pope [21], 
Hanjalic and Launder [22], and Hanjalic et al. [23], among many others. 

In [24] it was proposed to let part of the dissipation rate (e) evolve according to a time-scale 
related to the production itself. The proposed dissipation rate equation is given as: 

De e (c~ p ' e) + P 1 a { ( ~'t ) O~y } 
Dt = - c2 ( c ; e -  + 7 y" " +  (6) o-,, 

where D/Dt represents material derivative; ¢r~ is a constant; and the rest of the notations is the 
same as before. In (6), k/e can be considered to be a time scale related to the dissipation rate, 
and k/P to the production rate. After simplification, (6) becomes: 

DE e£ E 2 p2 1 a {  ( __~) 8~y} 
Dt = c~ k C2 -k + c3 "-k "~ y" Oy y" v + . (7) 

The model constants used in the present study are: or k =0.75, ¢r~ = 1.05, c I = 1.15, 
c 2 = 1.90, and c 3 = 0.25. 

The present proposition that or k = 0.75 coincides with the statements that ¢r k = 0.74 im- 
proved the computational results as can be found in [25]. Further discussions on these two 
coefficients can be found in [26]. 

3.3. Wall function boundary conditions 

The standard wall function boundary conditions were used in the present study. These are 
given as: 

u = _1 ln(Ey+) , (8) 
U~. K 

k =  c-~l/2Tw[p , ( 9 )  

3/4--3/2~ e = c. r /Ky , (10) 

where u +, u ÷ = ulu,, is a nondimensional velocity; u,, u, = ~ /~ /p ,  is the wall friction velocity; 
~'w is the wall shearing stress; y+, y+= u,ylu, is the wall coordinate; g is the von Karmann 
constant; and E is an experimentally determined constant coefficient. The most frequently 
used values of K and E, i.e. K = 0.4 and E = 9.0, were used in the present study. The wall 
function boundary conditions are more appropriate for the wall coordinate, y÷, greater than 
80 and probably less than 300, as can be found in [27]. 

In the standard wall function methods, it is implicitly implied that the production rate is 
equal to the dissipation rate of turbulent kinetic energy, hence c, =0.09 at the near wall 
region as can be confirmed in (4). After some algebra, (8) can be rewritten as: 

1/4 1/2 + ~'w=-{prc .  k /ln(Ey )}u.  (il) 
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The boundary layer flows considered in the present study can be divided into two groups for 
convenience in discussions. These are: elliptic boundary layer flows such as the fully developed 
channel flow for which initial condition data are not required; and parabolic boundary layer 
flows such as the wall jet flow for which both initial and boundary conditions need to be 
prescribed to complete the problem definition. 

The validity of standard wall functions has been questioned by many turbulence inves- 
tigators including Chen [28]. A vast number of publications on the topic can be found in [28]. 
It would be enough to cite here that the wall function boundary conditions are approximately 
true. Therefore, Dirichlet boundary conditions as obtained directly from the experimental 
data were used for the near wall boundary conditions of elliptic boundary layer flows. For 
parabolic boundary layer flows, a Neumann (flux) boundary condition as given in (10) was 
used for the momentum equation and the Dirichlet boundary conditions as given in (8)and 
(9) were used as the near wall boundary conditions for the turbulence equations. 

A vanishing gradient boundary condition was used at the outer edge of the computational 
domain for all the cases. This boundary condition is mathematically dean [29] and does not 
introduce any approximation error for boundary conditions at the outer edge of the flow 
domain. 

4. Finite element computational procedure 

Details of the present finite element computational procedure for turbulent boundary layer 
flows are described below. Convergence study of the numerical method used can be found in 
[13l. 

The transverse computational domain was extended outward several times the boundary 
layer thicknesses at the initial line of the flow direction computational domain, and orthogona! 
grids were used everywhere in the flow domain in order to avoid even the slightest source ot 
numerical uncertainty [13] that can be caused by nonorthogonal grid transformation. This 
scheme was found to be especially helpful in assessing turbulence models to be used for 
multi-dimensional elliptic flow computations [14]. 

In order to enhance the numerical stability [10] the turbulence equations were rearranged 
as2 

u -ff-x + ° O y - y"7 O'--y y" ~' + + k =  P ,  (12) 

U -~x + r O y  y" O y y" v +  "~y + c z -~ e = c , T + c 3 "-k" " (13) 

Contributions of the source terms, ( e / k ) k  and (c2e/k)e in (12) and (13) respectively, to the 
finite element system of equations for an element are given as: 

fa~ eltPl 
Bk  = kmq~ m ~Pi~jY" dy ,  (14) 
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e fa, el~Pl 
Bij = kmq~ m ~pi~pjy" dy  , (15) 

where B~ and B~ are the source matrices for the turbulent kinetic energy equation and the 
dissipation rate equation, respectively; ~Pl denotes a finite element interpolating polynomial; kl 
and e~ denote nodal values of the turbulent kinetic energy and the dissipation rate, respective- 
ly;/~e denotes an element; and any repeated index represents summation over the index for 
the number of nodes in an element. The rest of the discrete system of equations was obtained 
in the same way as in the flow direction momentum equation [13]. 

The above procedure was found to be especially useful for computation of the fully 
developed channel flow (which is a special ease of boundary layer flows as well as a special 
case of elliptic flows) such that extremely bad initial guess (e.g., flat profiles) for all of the 
variables could be used for a Picard-type iterative solution scheme. It was also necessary to 
freeze the eddy viscosity (~'t) profile (i.e., use the same eddy viscosity profile) in each iteration 
for the fully developed channel and pipe flows to enhance numerical stability. But these 
procedures were not necessary for parabolic boundary layer flows, because the flow direction 
derivative terms enhance numerical stability and hence the governing equations as given in 
(1), (2), (5), and (7) could be solved directly using the semi-discrete Galerkin method. It was 
found in the present study that both of the computational strategies yielded the same results 
for parabolic boundary layer equations within the limit of computer round-off error. 

The global finite element system of equations is obtained by assembling the element system 
of equations, and evaluation of the element system of equations is performed using the Gauss 
numerical quadrature [30]. In general, an N-point quadrature rule can integrate polynomials 
of degree ( 2 N - 1 )  or less exactly. In the present study, it was found that at least the 
four-point Gauss quadrature rule was required for the diffusion term for the resulting system 
of equations to be independent of numerical quadrature. 

The production term contains a velocity gradient, Oul Oy, which is best approximated at the 
two Gauss points when quadratic Lagrangian interpolating polynomials are used in the finite 
element analysis. The load vectors containing the production rate in (12) and (13) were 
integrated using the two-point Gauss quadrature rule, and rest of the terms were integrated 
using the four-point Gauss quadrature rule. In computing the term c,, (4), which contains the 
production rate, the velocity gradient (Oul#y)  was evaluated at the two-Gauss point and then 
interpolated and/or extrapolated to other locations inside of an element whenever necessary, 
which is a well-established technique in the finite element computational method [31, 32]. The 
production rate changes a few orders of magnitude in a small spatial distance, especially near 
the wall region. Hence a very fine grid need to be used near the wall region. But the present 
method was proved to be not so sensitive to grids used, and consequently, no special care 
need to be taken for grid generation other than that the grids near the wall region were 
approximately one-tenth of the largest grids in the outer free stream region. 

In each iteration, the turbulent flow equations (1), (2), (5), and (7) were solved in a 
segregated sequence using a Picard (direct) iteration method employing underrelaxation. The 
updated solution (a~.) was obtained as: 

* = (1 - a)a~. + aa7 +1 (16) aj  
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where a stands for u, k, or e; a is an underrelaxation number; the superscript n denotes the 
iteration level; and the subscript ] denotes the nodal degree of freedom, a < 0.6 was required 
for elliptic boundary layer flows; but a = 1 (no underrelaxation) was used for parabolic 
boundary layer flows. 

For all of the cases, the convergence criterion used was given as: 

I(a7 + l - a T ) / a T * l l < e ,  j =  l ,  . . . , N ,  n o  s u m  o n  j , (17) 

where N denotes the total number of degrees of freedom; and e -- 1 x 10 -7 was used. It can be 
seen that the present convergence criterion is extremely more demanding than that of Taylor 
et al. [5] where e = 5 × 10 -3 was used. 

5. Computational results 

In all of the following computations, the governing differential equations were solved on the 
physical domain using physical dimensions. Whenever necessary, the values of 1,225 kg/m 3 
and 0.17854 x 10 -4 kg/m-sec were used for density and molecular viscosity, respectively. 

For parabolic boundary layer flows, initial condition data for velocity and turbulent kinetic 
energy were obtained from experimental data, whereas the turbulence dissipation rate (e) was 
prepared using the Boussinesq eddy viscosity assumption, that is: 

1 Ou 
e = ~ % f k  2 (18) 

- U ' O '  Oy ' 

where the Reynolds stress, - u ' o ' ,  and Oul ay  were also obtained from experimental data, and 
c~,f = 0.09 has been used in (18). 

For all of the example cases, 45 unequally spaced quadratic elements were used to discretize 
the transverse domain, unless otherwise specified. 

.¢1. Ful ly  d e v e l o p e d  c h a n n e l  f l o w  

The experimental data for the fully developed channel flow used herein can be found in 
[33]. One half of the channel width of 0.0635 meters, centerline mean velocity of 7.07 m/s (the 
Reynolds number based on these two parameters is approximately 30,800), a pressure 
gradient of -1.405 kg-m/s2-m 3, and a wall friction velocity, u,, of 0.270m/s were used. 

The computational domain which extends from y = 0.005 m near the wall, which corres- 
ponds to y+=  100, to y =0.0635 m at the center of the channel was discretized using 20 
equally spaced quadratic elements. Near y÷ = 40 and below, high Reynolds number turbul- 
ence models may not yield good predictions unless these are modified by including low 
turbulence Reynolds number effects. 

The Dirichlet boundary conditions for u and k a t the  near wall region were obtained from 
experimental data, whereas the boundary condition for e was obtained from the mixing length 
assumption given below: 

l =  J/4,, I m K y ,  % f k  3/ (19) Cl t  f I 1  m , = E = 2]1 , 
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Fig. 2. Fully developed channel flow. 

where 1 is the turbulence length scale and I m i~ the mixing length. The near wall boundary 
conditions used are: u = 5.084 m/s; k = 0.213 me/se; and e = 10.64 me/s 3. 

The convergence criterion stated earlier was achieved in 84 iterations. The computational 
results for the velocity, the turbulent kinetic energy, and the Keynolds stress are compared 
with the experimental data in Fig. 2. For the fully developed channel flow and the fully 
developed pipe flow, the flat profiles were used as initial guesses, and approximately 100 
iterations were required to obtain the aforementioned convergence criterion. But in most of 
the parabolic boundary layer flows, the same convergence criterion was achieved in approxi- 
mately 10 iterations, since the solution on the previous line-level, which is already close to the 
convergent solutions, was used as initial guesses. 

It was found that the level of agreement between the present computational results and the 
experimental data was almost equivalent to that of finite difference computation of the fully 
developed channel flow using the standard k-e turbulence model. 

5.2. Fully developed pipe flow 

The fully developed pipe flow is another case of elliptic boundary layer flow. The 
experimental data used can be found in [34]. The diameter of pipe is 0.24688 m, the center 
line velocity is 30.48 m/s,  the Reynolds number based on these two parameters is 500,000, the 
pressure gradient in the flow direction is equal to -23.05 kg-m/s2-m ~, and the wall friction 
velocity is equal to 1.078 m/s. 
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Fig. 3. Fully developed pipe flow. 

The computational domain extending from y = 0 m at the center of the pipe to y = 0.1192 m 
at the near wall region, which corresponds to y + =  300, was discretized using 20 equally 
spaced quadratic elements. The near wall boundary conditions obtained from experimental 
data are given as: u = 20m/s ,  k =4.93 m2/s 2, and e = 1000m2/s  3. It took 100 iterations to 
achieve the same prescribed convergence criterion. The computational results are compared 
with experimental data in Fig. 3. 

5.3. Flat plate boundary layer flow under vanishing pressure gradient 

The Wiehardt and Tillmann flat plate boundary layer flow [35] is considered below. 
Another case of equilibrium boundary layer flow with zero pressure gradient can be found in 
[18]. Both of the flat plate boundary layer flows are self-similar flows. Experimental wall 
shearing o~-- ,,,l~sses are presented by Wiehardt and Tillmann [35], whereas self-similar Reynolds 
stresses are given by Klebanoff [18]. In the following computation, the initial condition data 
for velocity were obtained from Wiehardt and Tiilmann [35]; and the turbulent kinetic energy 
from Klebanoff [18]. 

The free stream velocity is equal to 33 m/s and the free stream turbulence level is 0.25 
percent. The transverse computational domain extending from y = 0.001 m at the near wall 
region, which corresponds to y+ = 100, to y = 0.112 m at the free stream region was discret- 
ized using 45 unequally spaced quadratic elements. The computational domain in the flow 
direction, which extends from x = 9.937 m up to x = 4.987 m was discretized using 600 line 
steps. 
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Fig. 5. Flat plate flow with zero pressure gradient. 
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Development of the wall shearing stress along the flow direction is shown in Fig. 4. The 
computed velocity profile, the kinetic energy profile, and the Reynolds stress are compared 
with experimental data in Fig. 5. Approximately 14 iterations were required for each line step. 
It can be seen in Fig. 5 that the velocity profile compares more favorably with experimental 
data than the turbulent kinetic energy and the Reynolds stress profiles. This may be due to the 
inconsistent initial condition data for the turbulent kinetic energy, which was obtained from 
another set of experimental data [18]. 

5.4. A plane jet exhausting into a moving stream 

A plane jet exhausting into a moving stream is considered, the experimental data of which 
can be found in [19]. 

The transverse domain extends from the centerline of the jet, y = 0, to y = 0.1 m, which is 
approximately 12.5 times the half jet width (the half jet width is defined as a distance from the 
centerline of the jet to a location where the excess velocity is half the centerline excess 
velocity). The computational domain in the flow direction starting from x = 0.095 m (x ld  = 10, 
d =0.009525 m is the jet exit width) to x =0.65 meters ( x /d  = 70) was discretized by 580 
line-steps. 

Decay of the centerline velocity and evolution of the half jet width along the flow direction 
compares favorably with experimental data as shown in Fig. 6. The computed velocity profile, 
turbulent kinetic energy profile, and the Reynolds stress are compared with experimental data 
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or, , f,e,, ,B,,, ,  ,,~," r . ~  

I i I 
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Fig. 6. A plane jet exhausting into a moving ~tream. 
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Fig. 7. A plane jet exhausting into a moving stream. 
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in Fig. 7 at two flow-direction locations. These profiles compare favorably with experimental 
data at the middle of the flow-direction domain, whereas these profiles compare less favorably 
with experimental data at the end of computational domain. These degenerated solutions may 
be due to the less appropriate c,, function. But the global features such as the growth of the 
half jet width were found to be less sensitive to the c~ function. 

An average of 11 iterations was required to satisfy the convergence criterion for each 
line-step. 

5.5. A circular jet exhausting into a moving stream 

A circular jet experiment due to Antonia and Bilger [20] is considered herein. The 
turbulent kinetic energy profile for initial condition data was prepared from the experimental 
data of V ~ ) / U o ,  where u' is the fluctuating velocity in the flow direction and u 0 is the 
centerline excess velocity, by assuming that the turbulent kinetic energy would be approxi- 
mately 1.2 times of the flow direction normal Reynolds stress. The computational domain in 
the transverse direction extends from y -  0 m, the centerline, to y--0.084 m, which corres- 
ponds to approximately nine times the half jet width. The flow direction domain starting from 
x = 0.2 m (x/d = 40, where d = 0.00528 m is the diameter of the jet) to x = 1.4 m (x/d = 265) 
was discretized into 1200 line steps. An average of 6 iterations was required for each line step 
to achieve the convergence criterion. 

Computational results showed that the flow field redeveloped due to the inaccurate 
turbulent kinetic energy data; and that a similarity state which is slightly different from 
experimental data was achieved in the far down-stream region. Decay of the centerline 
velocity and the growth of the half jet width are shown in Fig. 8, where it can be seen that the 
spreading rate at the far down-stream is close to that of the experimental data. 
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Fig. 8. A circular jet exhausting into a moving stream. 

Due to the redevelopment of the flow field, the computational results are compared with 
experimental data in similarity coordinates, Fig. 9. It can be seen in Fig. 9 that the velocity 
profile is flatter than that of the experimental data in the center region of the jet, and that the 
gradient of velocity profile is smaller than experimental data in the middle region of the jet. 
The Reynolds stress profile obtained by using the Boussinesq eddy viscosity assumption that 
- u ' v '  = v, Ou/Oy is higher than experimental data due to the smaller velocity gradient in the 
same middle region. These discrepancies are due to the deficiency of the c,, function, and 
these degenerate computational results were not obtained in the finite difference computation 
of the same flow case using a constant c~, [14]. 

5.6. A wall jet issuing into a moving stream 

The wall jet is a boundary layer flow which finds a great number of applications in 
engineering processes. It is used in many different situations of film cooling processes and in 
preventing separation of boundary layer flows. The wall jet provides a serious test case for a 
numerical method as well as for a turbulence model, since both of these must be able to 
predict the behavior of wall bounded boundary layer flows and jets separately. Finite 
difference computation of wall jet flows can be found in [36] among many others. 

One of the most complete experimental data for the wall jet flows can be found in [37]. A 
configuration of the wall jet is shown in Fig. 10, where b is the jet slot height, Uj is the jet exit 
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Fig. 9. A circular jet exhausting into a moving stream. 

velocity~, ue(x ) is the free stream velocity, u o is the maximum excess velocity, Um = U0 + Ue is 
the maximum velocity, Ym is a distance from the wall to a location where u = u m, and Y,/2 is 
the half jet width defined as the distance from the wall to the outer side location where 
u = ½u 0 + u~. Input data used in computation of the flow were obtained directly and/or by 
curve-fitting the experimental data [37]. These are: b =0 .00673 m; Uj = 6 0 . 6 4  m/s; and the 

- I 
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Fig. 10. Configuration of a wall jet flow. 
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external free stream velocity and the length-scale of the flow field are as given below: 

 20' 1.65 0.12052 X -0.448 

y0(x) = 0.04394(b) + 0.3819 (21) b 
The computational domain extends from y = 0 . 0 0 2 m  to y = 0 . 0 8 m  in the transverse 

direction; and from x = 0.5532 m (x/b = 82.2) to x = 1.6892 m (x/b = 251) in the flow direc- 
tion. The flow direction domain was discretized by 1135 line steps, and an average of 14 
iterations was required for each line step to achieve the same convergence criterion given 
previously. It can be seen in Figs. 11 and 12 that computational results compares favorably 
with experimental data in every detail. 
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Fig. 11. A wall jet flow. 
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Fig. 12. A wall jet flow. 

6. Conclusions 

A finite element computational method for turbulent boundary layer flows and an algebraic 
stress turbulence model were presented. As can be found in the elliptic boundary layer flow 
calculations, the method yielded converged solutions using an inaccurate initial guess for all 
the flow variables (u, k, e). 

The newly proposed variable energy transfer function term (C~p2/k) has been motivated 
from both the physical dimensional analysis (similitude analysis) and the multiple-time-scale 
concept. With the use of the cj, function which is based on experimental observations, the 
turbulence quantities (k and e) seldom violated realizability in the transition region. 

The successful computation of various turbulent boundary layer flows may be due to the 
numerical method as well as the turbulence model used. One of the accomplishment in the 
present study also lies in the accurate prediction of the turbulent wall jet flow without using a 
specifically tailored turbulence model for the flow [36]. 
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