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Abstract

In the paper we consider the complexity of constructing optimal policies (strategies) for some
type of partially observed Markov decision processes. This particular case of the classical problem
deals with finite stationary processes, and can be represented as constructing optimal strategies
to reach target vertices from a starting vertex in a graph with colored vertices and probabilis-
tic deviations from an edge chosen to follow. The colors of the visited vertices is the only
information available to a strategy. The complexity of Markov decision in the case of perfect
information (bijective coloring of vertices) is known and briefly surveyed at the beginning of the
paper. For the unobservable case (all the colors are equal) we give an improvement of the result
of Papadimitriou and Tsitsiklis, namely we show that the problem of constructing even a very
weak approximation to an optimal strategy is NP-hard. Our main results concern the case of a
fixed bound on the multiplicity of coloring, that is a case of partially observed processes where
some upper bound on the unobservability is supposed. We show that the problem of finding an
optimal strategy is still NP-hard, but polytime approximations are possible. Some relations of
our results to the Max-Word Problem arc also indicated.

1. Introduction

1.1. We consider a particular case of Markov decision processes (e.g. see [17]) from
the point of view of computational complexity. This case concerns stationary processes
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with imperfect information (partially observed) with a finite number of states and
actions, and under a concrete cost criterion. Qur motivation is, on the whole, standard,
i.e. the analysis of situations where the processes entailed by our actions are predictable
only with some probability. What is common in these problems is that we consequently
make decisions to undertake certain actions that change the state of the system, with
a goal to reach some desirable state or to realize some behavior. As neither the exact
result of the action nor the current state are known precisely, we are in a situation of
twofold uncertainty: we are subjected to probabilistic deviations from planned results,
and we get only partial information about the state where we arrive at.

The traditional formalization considers a finite set of states, a finite set of actions (or
decisions) permissible at a state, with every action implying a transition of the system
to another state with a known probability. The traditional terminology (e.g. see [17])
seems to be too cumbersome for our particular case, so we slightly deviate from that
system of notions, giving, however, references. The states can be interpreted as vertices
of a graph whose directed edges go from a vertex to all other ones reachable by some
action with nonzero probability. In other words, we act on a colored digraph supplied
with a function describing the probability to deviate from an edge chosen to go along.
A strategy, or a policy, is a function from strings of colors (histories of realizations)
to actions. While processing, the strategy traverses vertices, and the color of a reached
vertex is the only new information available at this vertex. The problem is to construct
a strategy fulfilling some task. One of the simplest tasks is to reach a target vertice
from a source vertex with maximum probability.

Our specific motivations go back to robotics (e.g. [6, 8]) and to analysis of some
probabilistic models. The first goal was to analyze the complexity of constructing
strategies optimal in different classes, and as one of the further goals, to look at the
complexity of optimal strategies for situations with more diverse uncertainty. Different
models of uncertainty (e.g. [4, 18, 14, 16, 7, 19]) remain separated.

1.2. In Section 2 we give the basic notions from the field of Markov decision processes
related to the problems under consideration, and then specify the criteria of optimality
of strategies interesting from the point of view of our motivations, and make precise
some computational aspects. Here we also introduce a type of graphs convenient for
describing concrete processes. In this paper, as criterion we use the probability to reach
target states from a starting state.

Then in Section 3 the complexity of the case of perfect information (bijective col-
oring) is briefly surveyed.

In short Section 4 for the case of total uncertainty (unobservability) we strengthen
Corollary 2 from [15], and show that even very weak approximations to optimal strate-
gies are NP-hard.

The main results are contained in Section 5 where we treat the case of unobservability
bounded by a fixed parameter. In terms of colors this means that the number of vertices
of the same color is bounded by the parameter. In other words, the set of states is
partitioned into classes, the number of elements in every class is bounded by the
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parameter, and at any moment of execution of a strategy we know only the class
which the actual state belongs to. The parameter, say m, is called the multiplicity of
coloring. We show that even for m = 3 constructing an optimal strategy is NP-hard. But
for any m, polytime approximations are possible. Finally, relations with the Max-Word
problem are discussed.

2. Main notions

2.1. Uncertainty model. We consider only finite stationary Markov decision processes,
e.g. see [17].

Let V' be a finite set. Its elements are interpreted as states of a system to control.
The set V' is supplied with the following additional structure.

(a) cIr 1V — C is the coloring function where C is a finite set. It defines a
partition of the states into classes elr~Y(c), ¢ € C, which characterizes the uncertainty of
determining current state. In traditional terms the coloring defines partial observability
of the process.

(b) p:DxV xV — [0,1], where D is a finite set, is such that for all 2~ € D and
uelV

S (i uv) = 1. (1)
vel
For brevity pu(4,uv) is used for u(4,u,v).

The set D may be interpreted as a set of actions (or moves or even decisions), and
the function u describes the probabilities of results: u(4,ur) is the probability to arrive
at v from u if the action A has been made. For example, one can think of D as local
names of outgoing edges, and p gives the probability to follow an edge other than the
chosen one.

To avoid some trivialities, we assume |D| is polynomially bounded with respect to
V.

When treated as a part of input of algorithms, u is supposed to have rational values
and to be represented as a usual table of its values.

Thus, using the notations introduced above, the input for the algorithmic problems
to analyze is of the form (V, D, C, clr, p), or (V, D, C, clr, p, s) when a starting
vertex s is fixed. Such an object will be called a CU-graph (CU stays for Control
under Uncertainty). It is convenient to interpret this structure as a graph with the set
of vertices V' and edges uv defined by the condition 3/ € D u(~,ur) > 0, especially
for describing examples, and we will use it below.

When treating a decision process as a graph we use the following notations. Let
G = (V, E) be a directed graph with vertices ¥ and edges £. Loops, i.e. edges of the
form vv, v € V, are permitted. An edge with the rail u and the head v will be denoted
by uv or (u, v). By OUT(v), resp. IN(v), we denote the set of all edges of G outgoing
from, resp. incoming to, v € V.
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2.2. Strategies. Given a CU-graph G, a strategy is a function ¢ : C* — D, where
we use the notation A1 for the set of all nonempty strings over alphabet 4. So, we
consider policies remembering history in the terminology of the theory of Markov
decision processes.

Below we define the notion of universal strategy that may seem to be a bit cumber-
some. To get some intuition, imagine we got lost in a forest or a city, and are seeking
to reach some goal. On what information would we base our decision where to go?
We would use a map (CU-graph in our context) that, however, does not allow us to
recognize directions for sure. Evidently, our decisions depend on our purpose, that is
on the criterion to value possible results of our actions (criterion %, below), and that
may be rather complex and contain, say, a description of regions that we would not
cross, or the time at our disposal. We would also take into account the history of our
wandering (a string W of colors).

We assume that possible criteria %, are encoded as strings » of some language 7,
concrete criteria will be described in Section 2.4.

Given a class of CU-graphs 4 and a class of criteria &, a universal strateqy (for
% and Z') i1s an algorithm ¢ whose input is of the form (G = (V, E, D, C, cir, u), r,
W), where G € 9, r ¢ ¥ and W € C™", and whose output is an action from D. For
fixed G and r, a universal strategy ¢ determines a strategy og, : C* — D.

Denote by 2¥ the set of all k-vertex paths in the graph G starting from x, and by
P*(T) the set of all paths having k vertices and containing a vertex from 7 C V.

Assume that a starting vertex s € V is fixed.

The “semantics” of a strategy ¢ is given by the probability distributions p° on 2¥
defined as follows:

.y
P’(vi. v w) = [Tu(a(elr(vr)...clr(v:), vivig)).
i=1

Informally speaking, p°(P) is the probability to follow a given path P of the length &
when executing o.

Actually, we denote by p° many different probability distributions on different dis-
crete spaces. It will be clear from the context what set p° is being considered.

One can treat the semantics of a strategy from another point of view, namely, con-
sidering a strategy as a family of transformations of the set Z(V') of probability dis-
tributions on V. If we have a probabilistic distribution 4 of the initial location then
the probability of being at a vertex v after exactly & steps of executing ¢ is

dF(A)(v) = Y Au) - > plP),

ucV PeAt & last(P)=t

where last(P) denotes the last character of a string P.
For a fixed string of colors ¢ ...c; we define also the conditional probability

Oley.c, (ANW) = 30 Au) - > r°(P).

ucV PePk & lasi Py=v & clr(P)=c/...cs

The semantics of a universal strategy o is the family of semantics of strategies o ,.
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Remark. If we were to follow our motivations one can notice that the history of
actions, i.e. the sequence of chosen actions, is an available information, and thus may
be included into the argument of . One can define the semantics of this type of
strategies in a similar way as above. However, it is easy to show that for every
strategy of this “generalized” type there exists a strategy that depends only on the
colors of visited vertices and determines the same probability distribution on the set
of paths.

Remark. As a starting position we could consider not a fixed vertex s but an initial
probability distribution on V. However. we can get this distribution by adding a purely
probabilistic first move.

2.3. Reliable moves and vertices. Simple graphs. An action (move) 2 € D is called
reliuble at v along e € OUT(v) if u(2,e) = 1. This edge e will be denoted by /b/(2, ).
Such edges will be also called reliable. A vertex is said to be reliable if every action
is reliable at this vertex. A vertex is random if the function u does not depend on
action on all the edges outgoing from this vertex.

A CU-graph where every vertex is either random or reliable will be called simiple.
Such graphs are convenient to describe them, and, in particular, they will be used
in our examples. We use the following notations, shown in Fig. 1, for our drawings
(sometimes we omit redundant information):

(1) reliable vertex colored by color c;

(2) random vertex colored by color ¢;

(3) reliable edge that corresponds to actions 4 and 0);

(4) edge outgoing from random vertex; p is the value of u (that does not depend
on actions);

(5) trup, i.e. a vertex where all actions lead back to itself.

One can show that the simple model (even under stronger constraints) is as powerful
as the original one.

2.4. Criteria of quality of strategies. General definitions of criteria can be found in
texts on Markov decision processes, e.g. [17, 3]. Here, by a criterion we mean a
function from the set of strategies to real numbers that depends only on the semantics
of strategies (i.e. on the probability distribution defined by a strategy). We define below
the particular criterion considered in the paper with a generalization studied in a related
paper, and just mention a criterion that probably was not considered and that may be
of theoretical interest.

(1) Probability to reach the target in not more than k steps: Let T C V be a target
set to reach. This criterion, denoted by Rz‘r(a), is defined as the probability to reach

1 @ Z)QC 3)_}‘!4_’ 4)_.p___> 5)

Fig. 1.
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any vertex from 7 starting at s in not more than % steps of execution of ¢. When s
and T are clear from the context we drop them and use the notation Rj(o).

(2) Probability of realizing a given behavior: Let L be a set of paths interpreted
as a set of allowed realizations. The criterion R%(c) is the probability to follow only
realizations from L (cf. [2] where finite automaton L’s are studied).

For criterion Ri’T (o) one can consider also its limit version

R (o) = Jim R (o).

Clearly, the criterion RZ’T (o) is nondecreasing on k, and hence the limit does exist.

We mention also the H*-criterion, which can be interesting from a theoretical point
of view:

H (o) = ¥ 0*(3:)(0) - Ina*(8,)(v),
veV

where J; is the distribution concentrated in s. To maximize this criterion means to
minimize the entropy (i.e. the uncertainty) of the location after £ steps of executing o.

When speaking about a universal strategy, we write %, for the criterion encoded
by a string r. Hereafter we consider only the criterion Rfc’T, k € NU{oo}, ie. the
probability to reach T from s in not more than & steps (for natural k) or its limit
version (k = oo). We assume that in the input of a universal strategy these criteria are
encoded in the form » = (k,s,T) where k is a natural number in the unary notation or
the symbol “oco”. If instead of a starting vertex we use a starting distribution 4, we
write R,f’T. If values of some of the parameters £, s, T or A are clear from the context
they will be omitted.

We will denote sup{R"" () : o is a strategy} by p™(v, T). Thus, p{*'(v,T) is the
“optimal” probability to reach 7" from v in not more than k steps.

2.5. Optimal strategies. A strategy ¢ is optimal with respect to a criterion %,, or
R-optimal if R.(¢')< R, (o) for every strategy o’

We say that a universal strategy ¢ (for a class of CU-graphs % and a class of criteria
Z) is optimal if for every G € 4 and r € & the strategy o, is %#,-optimal.

Obviously, an Ry-optimal strategy does exist for every finite k& since the number
of strategies different on the first £ steps is finite. However, there is no R..-optimal
strategy in the example described by Fig. 2.

Indeed, the actions after an odd number of steps are made at random vertices, and
they do not influence the further behavior. Before we make the action right after an
even number of steps for the first time, we observe only the color a, and after this
action we arrive either at frap or at target. Thus, any strategy is characterized by one
integer 2n: the number of steps after which we decide to go right. One can see that
the R.-quality of this strategy is 1 — 27",

In a known example given by Fig.3 the first action of an Ry-optimal strategy differs
from the first moves of R,-optimal strategies for all m < k with k being exponentially
greater than the size of the graph.
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Execution of & steps of a strategy ¢ determines a probabilistic distribution of the
current position oy, ., (d,) (under the condition that colors of visited vertices constitute
the sequence ¢ ...c¢x ), see Section 2.2. In many cases this distribution is the only infor-
mation needed for strategy. We say that a strategy o is a PT-strategy (PT stands for
probability and time dependent) if there exists a function f : Z(¥V)x N — D such that

olc...cx) = f(0|c|.4.q(5s)’k)-

For example, one can prove the following proposition:

Proposition 1. For every strategy o and for every k there exists a PT-strategy o'
such that Ry(a")= R (o).

3. Perfect information (bijective coloring)

3.1. M- and T-strategies. Here we recall the notion of Markov policies, stationary
and nonstationary, and we call them, for brevity, M- and T-strategies.

A strategy ¢ is called an M-strategy if it depends on the last color of the argument
only, i.e. if there exists a function ¢’ : C — D such that

YW o(W) = ¢'(last(W)).
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A strategy o 1s called a T-strategy if it depends on the last color and the length of
its input only, i.e. there exists a function ¢’ : C x N — D such that

YW o(W)=c'(lass(W),|W|),

where || denotes the length of W.

When speaking about an M- or T-strategy we assume that its argument is of the
form (v) or (v,m), respectively, where v € C and m € N. The underlying interpretation
is v = last(W) and m = |W|.

We say that a universal strategy ¢ is a universal M- or T-strategy if every strat-
egy og, is an M- or T-strategy, respectively. As above, the input of a universal
M- or T-strategy is assumed to be of the form (G,r,v) or (G,r,(v,m)), respec-
tively.

It is clear that M -strategies correspond to stationary Markov chains, and T-strategies
to nonstationary ones. Sufficient information on Markov chains can be found in
[13, 9].

In this section we review the case of bijective coloring (that is called the case of
perfect information in the theory of Markov decision processes), and assume C = V
and c/r = id.

3.2. Optimal M-strategies. The following theorem is known (see [17, Theorem 7.7] or
[12]) even for the general case of positive/negative gains. In our case it can be proven
by a direct combinatorial argument.

Theorem 1. For every CU-graph with bijective coloring an Rf;CT-Optimal strategy does
exist among M-strategies.

Using the standard technique of the theory of Markov chains, one can show that,
given a CU-graph G and an M-strategy o, the value R..(c) can be computed in
polytime (in the size of G), see [13, Propositions 3.3.5 and 3.3.8]. Since for every
CU-graph the number of M-strategies is finite (although exponentially large), this
allows us to reformulate the above theorem as follows:

Theorem 2. For the class of CU-graphs with bijective coloring and for the class of
Rf;oT—criteria, there exists an optimal universal M-strategy.

The following theorem is actually known (see [12, 3.5]), in our case it can be proven
rather simply (see [2]).

Theorem 3. For the class of CU-graphs with bijective coloring and for the class of
Rso’f-criteria, there exists an optimal universal M-strateqy with polynomial running

time.

This means that an optimal M-strategy can be computed in polytime.
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3.3. Optimal T-strategies. The following result is known (e.g. see [3]) and easily
provable by usual dynamic programming which proceeds backward in time starting
from the target set 7.

Proposition 2. For the class of CU-graphs with bijective coloring and the class of
R‘;’T—criteria, k € N, there exists a polytime optimal universal T-strategy.

We fix now a CU-graph G and a goal set T, and will be interested in the behavior
of the Rj-optimal T-strategy when & grows. It is straightforward that for a T-strategy
o the value of the criterion R;(¢) can be computed in time polynomial in k& and the
size of G. We mean here that ¢ is represented as a table of its actions up to the kth
step, since the later steps do not matter for R;. Indeed, the probability distribution
of being at vertices after i steps of executing ¢ can be computed by multiplying i
transition matrices determined by ¢ in a standard way.

Notice that pipt(s, T) is the value of the R;’T-criterion for an RZ‘T—optimal T -strategy.,
and p'(s, T) is the value of the Ri’.g -criterion for an optimal M -strategy. It is clear that
pi'(s, T) converges to p2'(s, T) when k tends to infinity. The actions of R} -optimal
T-strategies also converge to the actions of an optimal M-strategy in the following
weak sense.

Denote by Dy(v), v € V, the set of actions of all R;’T—optimal T -strategies on the in-
put (v, 1). Thus Di(v) is the set of possible first moves of strategies that lead to T from
v in not more than k steps with optimal probability. Then there exists a natural N such
that for every k=N there exists an optimal M -strategy ¢ such that o(v) € Dy(v) for
every vertex ¢. Such minimum N is not more than exponentially large on the size of &
(that can be proved by using estimations on root separation for the characteristic poly-
nomials). However, this convergence actually may be exponentially slow, see Fig. 3.

Moreover, the sequence of sets Dy(v) not necessarily stabilizes when & grows, see
Fig. 4.

It is not hard to see that the first action of an R, -optimal T-strategy depends on
k mod 4: Dajy1(s) = Dasa(s)y = {r, 1}, Dai(s) = {r}, Daa(s) = {I}.

In this example Di(v) depends on & (ultimately) periodically. However, this is not
the general case:

Theorem 4 (Beauquier et al. [1]). There exists a CU-graph G such that the sequence
Dy (s) is not (ultimately) periodic on k.
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4. Unobservable processes

4.1. Statement of results. In this section we consider the class of CU-graphs with one
color, i.e. with the set of colors consisting of one element. We will call such graphs
noncolored. The argument of a strategy is a string of one and the same character,
and hence it contains only the information on the number of executed steps in unary
notation. Thus, the action of a strategy depends only on time, and we consider a
strategy ¢ as a function ¢ : N — D that may be represented also by the string of its
values dd; ... So, this is a particular case of the T-strategy. The following result was
proven in [15] as a corollary of a more general theorem on the complexity of partially
observed Markov decision processes.

Theorem 5 (Papadimitriou and Tsitsiklis [15, Corollary 2]). The following problem is
NP-complete: Given a noncolored CU-graph with k vertices, a starting vertex s,
and a set of target vertices T, recognize whether there exists a strategy ¢ with
R ()= 1.

The following theorem shows that the problem of computing an optimal strategy in
the case of total unobservability does not admit even very weak approximations.

Theorem 6. The following problem is NP-hard: Given a noncolored CU-graph with k
vertices, a starting vertex s and a set of target vertices T (such that p,” '(s, T) equals
1 or is less than exp(—v/'k)), recognize whether there exists a strategy o which leads
from s to T in k steps with probability not less than exp(—vk).

We prove Theorem 6 below.

4.2. Notations on the 3S47-problem. The proof is based on a polytime reduction of
the 38547 -problem, which is a classical NP-complete problem, see [11]. Let

F= N 'V z (2)
I<i<m 1<j<3
be a 3CNF-formula over n variables xi,...,x,, where z;; are literals, i.e. elements of
the set

Z=A{x1,...., %0 X1,..., %n}, n<3m.

To visualize the formula we represent it as a table of height 3 and length m; the ith
column of the table corresponds to the ith clause (disjunction) of the formula, see Fig.5.

A pair z|,z; of literals is said to be contrary iff z) < z;.

A path in F is a horizontal path P in the table composed by picking up one literal
of every clause, in other words, P is a list of literals of the form

Z1jis 22,05 Zmyjy 1 <Ji K3, 1<i<im,
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Z1,1 | 22,0 | eeeeenes Zm,\
212222 | +vevnens Zm,2
Z13 1223 | cerneens Zm3

Fig. 5. 3CNF-formula F as a table.

determined by the sequence (string) jij2...jn. We interpret such a path as an assign-
ment of its literals by the value #rue . If such a path does not contain a contrary (and
thus contradictory) pair of literals, it gives a boolean model of the
3CNF-formula. We call a path in F without contrary pairs an open or satisfying
path, and a path with a contrary pair of literals a closed or contradictory path.

4.3. Proof of Theorem 6. Given a formula F, we construct the following simple CU-
graph Hp.
o The set of actions D = {1,2,3}.
o Reliable vertices: {t,trap, 1,2,....m — 1} U(Z x {1,2,...,m— 1} x {1,2}), s = L.
¢ Random vertices: D x {1,2,...,m — 1}.
o Reliable edges for action 4:

IBI(A, ) = (¢t,¢), IbI(A,trap) = (trap, trap),

bl(2,0)y = (1, (2,1)),

bl(4,(z,0,a)) =

case 1.1: a =1 & z =27, = edge to trap;

case 1.2: a=1&z #z;71; = edge to (z,i,2);

case 2.1: a=2&i <m—1 = edge to (z,i + 1,1);

case 22:a=2&i=m—1 = edge to t.
o Two random edges from a vertex (4,i), i < m — 1. an edge “right” to i + 1 with
probability (m — i — 1}/(m — i) and an edge “down” to (z;;,i,1) with probability
1/(m —i); and one edge “down” to (z,,—1;,m — 1,1) from vertex (i, m — 1).
For an example of graph Hr see Fig. 6.

Claim. [f the path P = z1 4,22.4, ... Zm,4,,_, determined by a strategy o = did, ...d4,
is contradictory then o traverses Hp from s to t with probability not more than

1 —1/(m—1).
If P is open then R;;,ffl(o) =1
Indeed, if P is a contradictory path we have z; 4, |, = Z; 4,,_, for some 1 <i < j<m.

When executing o, we follow from the vertex 1 to D x {1} then “right” to 2 and to
D x {2} etc. until the first “down” move. The probability to go “down” from the
D x {i} is exactly 1/(m — 1). Then at the (2 — 1)th step we arrive at the condition
of case 1.1 and go to trap. Thus, such a strategy traverses Hr successfully from s to
¢t with probability not more than 1 — 1/(m — 1).

The proof of the second assertion of the claim is similar. O]
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Fig. 6. Some of the reliable vertices of the set Z x {1,2,...,m — 1} x {1,2} are labeled by ail their
coordinates and others are marked by their first coordinate.

Graph Hp contains less than 20m? vertices (for m large enough). We construct now
the desired graph Hr as follows. Take 20m* copies of Hr denoted by HJ,..., H2"".
We consider the vertex 1 = s of H} as a starting vertex for Hy and the vertex ¢
of H2"' a5 a target vertex for Hp and redefine the reliable edges from vertices ¢ of
Hi’s. We put a unique reliable edge from ¢ of HE to s of HX! for all i < 20m*. Thus
we get sequential composition of the initial graphs. Obviously, A has not more than
k = 20m? - 20m* = (20m*)? vertices.

Consider a strategy ¢ = dy...dyy. 00, for traversing Hp from starting to target. If
the Paths 2),dy,,1e1 22 domsiyss - - - Zmndiamy i1, r€ contradictory for all 0<i < 20m*
then the claim implies that ¢ traverses each of Hi"' with probability not greater than
1 — 1/(m — 1), and hence the total probability for ¢ to traverse Hp from starting to
target is not more than (1 — 1/(m—1))®"" < exp(—20m®) = exp(—vk). Thus for any
strategy ¢ whose probability of success is not less than exp(—v/k), one of the paths
Z1,d s (et 220 g s+ + Zmydame i1y 18 Open, since K is not more than polynomially
greater than the size of F. [
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5. Bounded unobservability

It was shown in [15] that the problem of computing an optimal strategy for partially
observed processes is PSPACE-complete. We consider here the partially observed pro-
cesses when this uncertainty concerning observability of states is bounded by a fixed
parameter.

5.1. Graphs with a fixed multiplicity of colors. We say that a CU-graph has a coloring
of multiplicity m if the pre-image of each color contains not more than m vertices.
That is, when the color is known, the location is determined up to not more than m
vertices. Obviously, bijective coloring corresponds to multiplicity 1. As an intermediate
case between bijective coloring and total unobservability we consider CU-graphs with
a fixed multiplicity of coloring m > 1. The notion of PT-strategy gives a reasonable
generalization of T-strategies for this case, and Proposition 1 shows that in some sense
it suffices to consider PT-strategies only.

Consider the first nontrivial case m = 2, and assume for simplicity that the set of
moves D is {right,left}. For a color v € C we denote by ¢' and ¢~ the two vertices of
this color. When traversing the graph we actually have just one “hidden parameter” (+
or —) that influences, however, the probabilities of further transitions. Having arrived
at a color v after k steps a PT-strategy ¢ makes its next action basing it on & and on
the probabilities p* and p~, p* + p~ =1, of being at ¢ and ¢, respectively. Thus,
o induces a partition of [0, 1] into two sets L and R such that o goes right if p! € R
and goes left otherwise. One might expect that if it is more profitable to go right from
vt and to go left from v~ then there should exist some boundary probability py such
that if p' = py then it is better to go right, and if p™ < pq then it is better 1o go lef.
But this is not the case. In fact, the sets R and L may contain exponentially many (on
k) intervals that alternate.

5.2. Complexity of optimization. The following theorem shows that computing an
optimal strategy for graphs with a small multiplicity of colors is NP-hard.

Theorem 7. Every optimal universal strategy for the class of CU-graphs with a col-
oring of multiplicity 3 and the class of R,‘:’T-criterfa, k € N, is universal for NP (with
respect to polytime Turing reducibility). In simpler words, constructing an optimal
strategy for CU-graphs with a multiplicity of coloring 3 is NP-hard.

It is an interesting open question related to the Max-Word Problem (see Section 5.3)
as to whether the theorem holds for multiplicity 2 and/or for a class of CU-graphs
containing only one graph.

We can reformulate Theorem 7 as NP-hardness of recognizing whether there exists
a strategy with probability of success not less than a given parameter.

However, contrary to the case of total uncertainty, the problem of computing an
optimal strategy for graphs with a small multiplicity of colors does admit a reasonable
polytime approximation.
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A universal strategy o is said to be g-optimal if it is optimal up to an additive error
g, le.

T T,
R (oGusm) =R (0) — ¢

for all G, k, s, T and for all strategies .
We can consider the property to be e-optimal as a criterion with the value 1 on
e-optimal strategies and O otherwise.

Theorem 8. There exists an optimal universal strategy a with respect to the crite-
rion of e-optimality such that for the class of CU-graphs with a fixed multiplicity
of coloring m it is computable in time polynomial on the size of input graphs and
1/e. In particular, this means that for a fixed multiplicity of colors optimal strategies
admit polytime approximations with an additive error.

Theorem 8 is interesting in the context of Theorem 7, taken as itself it may seem
very natural.
The proofs of Theorems 8 and 7 are given in Sections 5.4 and 5.7.

5.3. Relations with the Max-Word Problem for stochastic matrices. Recall that
the Max-Word Problem for stochastic matrices is the following one. Given a set
S = {M;}1<i<n of stochastic (m x m)-matrices with rational entries, M; = (M;ﬁ)’
> Miﬁ =1, two (row) vectors V,W with positive coordinates and an integer £ in
unary notation, the problem is to find a sequence M;,...,M; which maximizes the
product (V,(]—If:l WM,)).

It was shown in [5] that the Max-Word Problem for stochastic matrices is NP-hard
as well as its approximation version up to any multiplicative factor.

The Max-Word Problem for stochastic (m x m)-matrices can be reduced to the prob-
lem of constructing an optimal strategy for CU-graphs with a coloring of multiplicity
m (see (i) below in this subsection). Together with Theorem 8 this implies that for
every fixed m the Max-Word Problem for stochastic (m x m)-matrices admits polytime
approximations with every additive precision.

The problem of constructing an optimal strategy for CU-graphs with one color can
be straightforwardly reduced to the Max-Word Problem for stochastic matrices (see (ii)
below in this subsection). With Theorem 6 this implies that the Max-Word Problem for
stochastic matrices does not admit polytime approximations within additive precision
exp(—Vk).

The reductions mentioned above are described as follows:

(1) For an input M; = (M;B), 1<ign, V = (vy), W = (wp), 1<e,f<m and k
of the Max-Word Problem for stochastic (m x m)-matrices we build a CU-graph with
vertices 5, {Uiaf1<i<k+li<a<m, t and trap, and with the set of actions {1,...,n}.
Every action leads from s to v|, with the probability w,/} ", f<m WB and from vy g
to ¢ with the probability vs/ 3", 4, Up- An action i leads from v, to v;y 14 With the
probability M.
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A simple consideration shows that the probability of success of a strategy ¢ which
makes the actions (ipiy...ixik1) 1S

1 k
W[ M ] ).
2 <pem W < (_/:1 ) >

(i1) For a CU-graph with one color and the set of vertices {v; = 5,12,.... Uy = t}
and the set of actions {d|,...,d,} the problem of computing an optimal strategy to
reach ¢ from s in k steps is equivalent to the Max-Word Problem for stochastic (m > m)-

matrices with the input M; = (u(d;, v,rp))sp, W = (1,0..... 0). V=(0...., 0.1), k.

Remark. Approximabilities with additive and multiplicative errors are equivalent unless
the value of an optimization problem under consideration is more than polynomially
large or small. So, this difference occurs when either the value under approximation or
its inverse are too small.

5.4. Proof of Theorem 8. The proot shows that the partially observed problem is
smooth enough, and it may look tedious as compared with the underlying ideas which
are usual in the theory of Markov decision processes.

Enumerate the vertices of the graph G by 2 indices / and 7 such that the first one
isacolor,so V=A{v,: i=1,....,n, a2=1,..,m}.

We supply R” with /' metric ||(x;);—(v;)i]| = 3, |x;— »;]. and will consider Lipschitz
property with respect to this metric.

A point of the simplex S (in R™) defined by the inequalities

Hl

Z,\’,’ = 1, .\’,‘20
i=1

can be treated as a distribution of probabilities over the set {i;y..... timt of vertices
of color i.

Let P = (p),..., p’,) be this probability distribution, i.e. P'(vy) = psd;;, where d;;
is Kronecker’s delta.

Let Fu(P') be the probability to reach T starting with the distribution P’ in not
more than NV steps by an optimal strategy.

Lemma 1. A/l Fy; are Lipschitz-1 functions, i.c. |Fx(P)— Fy A <P — Ol for
P.O€CS.

Proof. Extend the functions Fy ; onto the points
- m

PeS= {(pl,...,pm): i<l & p,->0}
i=1

in the following way. We append a new trap to our graph, and treat P* € S as the
probability distribution of being at v;; with the probability p;d;; and at the new trap
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with the probability 1 — >, p;. Now the function Fy is defined in all the points
of the simplex S, again as the optimal probability to reach the target starting with the
distribution P*.

To verify the Lipschitz property of Fy 4 consider 2 points P,Q € §. Let d = ||P- (.
Then for some vectors 4; = (0,...,0,4;,0,...,0) with the only nonzero ith coordinate
we have ) |a;| = d, Q = P+, ., Ai- It suffices to check |Fy i (P+A4)—Fyi(P)|<a
where 4 = (0,...,0,4,0,...,0), a > 0 occupies the ith coordinate of 4 and P,
P+4eSs.

It is clear that Fy (P + A) — Fx(P)=0. Reasoning by contradiction assume that

|[Fyi(P 4+ A) — Fyi(P)| > a.

Then for some strategy ¢ we have R%JM y (6) > Fy4(P)+a. On the other hand (recall
that 2X(T) is the set of all k-vertex paths containing a vertex from T),

k
R (@)= ¥ (P+AFm) - pPwiws...wy)
Wiy EPY(T)

S PAow) - pPwiwa . oww)
wy.wy EPY(T)

+ > a- p’(vpwy...wy)
bwa..wy €EPN(T)

=R (0)+ > a- p’(ouwz...wy)<Fyi(P) +a,

DgWw2..wy €PN (T)

which is a contradiction. O

The family of functions Fy, satisfies the following recurrent system of equations:
n . .
Fnipis-.. pn) = max 32g5(P) - Fy -1, (T;(P)), 3)
=

where q}’d(P) is the probability to arrive at the color j starting with distribution P' by
the action d and T;’d(P) is the conditional distribution on the vertices of the color j if
this color has been observed after the move d from the distribution P?. More formally,

gF(PY =30 pu - 1(d, vis vjp) @)
a=1f=1
and
. 1
(TP = - 3 pa - 1, Vi ). )
’ q,(P) i o

Notice that ¢5/(P)>0 and

_}"flq;’fd(P) -1 )
pa
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5.5. Let 0 = ¢/2K, where K is the number of steps and ¢ is a chosen precision. Let
M be the smallest integer greater than 1/0.

We subdivide S into M™~! equal simplices by hyperplanes parallel to the faces of S.

Consider the class # of continuous functions on § whose restriction onto every tiny
simplex of our partition is linear,

For a function f we denote by f™ the unique function from F that coincides with
/ on all vertices of the simplices of the partition. It is clear that sup¢ |/ ~ /™| <4 for
every Lipschitz-1 function f.

5.6. Algorithm. For constructing our strategy we, firstly, define recursively the functions
Frni:S—R" N>0,and dy; : S — D, n>1.

N =0: FyP)=P(T O {v..... 0 }) where P(}) = 0.

N > 0: Put

Frnipi..... D) = T?Eag ZC]'}"[(P) -Fy —t( T;'(I(P))- Fyi = Fl, (7)
It J=1" X

and put dy,;(P) to be an element of D maximizing the right-hand side of (7).
Before the description of the desired strategy ¢ we prove Claims 1-3.

Claim 1. Fo; = Foy for dll k.
Proof. By the definition. [
Claim 2. |F; — F ;1< for all k.

Proof. We have £, = F;; because both the functions are defined by the same equa-
tions as given by Claim 1. Hence F; = F{.. and thus |Fy; — 13'1_/\.1 <0 since Fy; is
Lipschitz-1 (Lemma 1). [

Claim 3. |Fy; — Fy | <N& for all k.N.

Proof (Induction on N). As the base of the induction we use Claim 1. Suppose the
inequalities are valid for N — It

\Fy—ix ~ Fx_14] <IN = 1o (8)
Consider a point P = (p1,..., pm). The inequality (8) implies that for some ¢
Fx—1x(P) = Fyo1,(PY+ ¢, [ <(N = 1)3. (9)

By definition, we have

Fi(P) = max 3;(P) - Fy—1,/(T“(P)), (10)
It j=1 a

Fri(P) = max 32q7(P) - Fy 1 (T (P)). (1
4EL j=1 7 '
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From these equations and (9) we get
|Fni(P) — Fni(P)|

max 35g/(P) - (Fy—1 (TF(P)) + §) — Fr(P)
€D [

max {i'lq}"‘(l)) Fyoi ATHP)) + 4 (P)- c}
p=

debD j=1
" id id
_ . v (TH 12
f{}leagj;qj (P)- Fy—1 (T;7(P)) (12)
7 ) N
<0 Sgf P <V - 1)8 (13)
J=1

since the coeflicients qj-’d(P) are nonnegative with the sum equal to 1, see (6). Hence,
[Fnk — Fael S(V = 1)d. (14)

The point P = (p1,..., pn) lies in a tiny simplex of our partition, let it be a simplex
with vertices Xj,...,X,,. Then P =37, _,_, B:-X; for some nonnegative f;, > f; = 1.

Since Fiy is Lipschitz-1 and the diameter of our tiny simplex is not greater than
we have |Fy (P)—Fn(X;)| <0 for all i. Adding these inequalities with the coefficients
pi we get

|Fni(PY— 3B - Fn (X)) <0. (15)
On the other hand,
Fru(P) = Frp(P) = B - Fua(Xo), (16)

Together with (15) and (14) this gives the required inequality |Fyx(P)—F i (P)| <N6,
since the coefficients fi; are nonnegative with the sum equal to one. [J

Now we describe our strategy o. Firstly, it computes and stores all the functions
FN,,', 0<N <K, 1 €i<m, as tables of their values at the vertices of our partition. This
can be done in polytime. After that for every P € S the value of the function dp,;(P)
is computed in polytime due to (7) by trying all the d € D. For a string of colors
W = c|...cy the strategy computes the probability distribution of being at vertices of
the color cy. This distribution is represented as a point P of S. Then the action to
make is defined by a(W) = dy., (P).

Claim 4. |R% (0) — Fn:(P)|<N& for all i.

Proof. Similar to the proof of Claim 3 using the fact that Rf,' is Lipschitz-1 on the
argument P that can be shown as in Lemma 1. [J
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Claim 4 together with Claim 3 immediately imply
R (0)>Fy P — s,
which completes the proof of Theorem 8.

5.7. Proof of Theorem 7. Our proof is based on a reduction of the Partition Problem
[10], A3.2: Given a set {z;}4e4 of natural numbers indexed by natural numbers from
A, to find whether there exists a subset A’ C A such that 3° o, 2z, = 30, Zu IF
such a subset 4’ exists we say that the instance of the problem admits a partition.

As in the proof of Theorem § we treat the distributions of probabilities as points of
the appropriate simplex and vice versa.

For a given instance of the Partition Problem represented by a set {z,},c4 we con-
struct a CU-graph G in the following way.

Let k = |4|. p = > e, 2z and %, = nz;/p. Without loss of generality we can
assume that %, < 7n/2. Denote by R[ the matrix of rotation in R® with the axis x =
y = z and the angle %, and by H' the {3 x 3)-matrix with the eigenvectors (1,1.1),
(1,0.—1) and (1,—-2,1) and the eigenvalues 1’,677{ * and e”**, where ¢ is a constant
that guarantees the elements of the matrices M' defined below being positive. (Recall
that the positiveness of elements of a matrix M is equivalent to saying that M maps
the positive quadrant into itself.)

La M =R .-A =H -R.

The graph G is constituted by (the notations are of the same type as in the proof
of Theorem 8):

e the vertices: V = {v;,: i=1....k+1, a=123YU{t}U{trap}, s =v1;

o the edges go from every vertex v;, to all vertices v;.1, with the exception of the
last layer with i = & + 1 from where there are edges to both ¢ and trap:;

the set of actions: D = {skip, take};

the function of deviations:

H(skip,vigvin ) = 1, u(take, vi tivy p) = A;[;/;J *k+1,
U(Skip, vy 41) = pltake, Ly 5t) = 1,

pskip, vy trap) = [take, vy 4trap) = 1 — 1,
where 7, will be chosen later.

5.8. For every realization of a strategy ¢ up to the (4 + 1)th step the observed sequence
of colors is 1.2,....&k + 1, so a strategy is determined by a sequence of its actions
dy...d; since the last action does not matter.

After £ steps of executing ¢ the probability distribution of being in vertices vy,
is P“T! where P = Hd,:rake(l»QO)Ml- (Recall that we continue to use the notations
for P¥+! of the previous proof.)
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¥’
f Plane x+y+z=1

F\

o(m2)

>
7/(19.1/3,1/3) (1,0,0) x

Fig. 7. Geometric interpretation.

To deal with the distribution P¥*! we use the following geometric interpretation (see
Fig. 7). o _

Clearly, all our matrices R, A and M’ preserve the plane x + y +z = 1. Consider
the restrictions R/, H' and M’ of these matrices onto this plane. The matrices R’ are
rotations with angles «;, and H' are homotheties with coefficients e~%.

Supply the plane x + y +z = 1 with Cartesian coordinates (x',»’) centered at
(3,4,1), with the x"-axis containing (1,0,0). Consider the logarithmic spiral ¢(7) =
e”“(cost,sint), the parameter ¢ can be taken as the coordinate of a point on the spiral.
One can see that our matrices M’ preserve the spiral, and being restricted on the spiral
they act by adding &; to the coordinate t. Thus, the point P =[] dl:zake(l,0,0)M " lies
on the spiral and has the coordinate 1 =} 1., _ ) %-

Now choose a linear function L : R® — R, L(x) = (Ix), I =) e R, 0 <<l
such that the point ¢(7/2) maximizes L on the spiral. This can be done along the
following lines.

Let T be a tangent vector to our spiral ¢(¢) at the point ¢(n/2). Take a vector /
such that (,,T) =0, and L(e(n/2)) > L(1,1,1).

This vector / can be chosen by a small rotation of vector (3, 3,1) around 7.

We use the coordinates /., as transition probabilities to arrive at ¢ from the vertices
Uk+14- Thus the probability of success of ¢ is L(P). Notice that > o; = n. So, if a
subset of 4 with the desired property does exist then every optimal strategy has the

sum Z{i:d,:take} % = 77.'/2, and thus, Z{i:d,-:take} = p/2

5.9. The construction above does not take into consideration the rationality of the
probabilities of deviations. For this reason we take appropriate rational approximations
to the values defined above.
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Suppose that the set 4 admits a partition. Denote it by A.

Now we replace the values of the function y by some rational approximations with
a polynomial number of digits. We show that every optimal strategy for this CU-graph
also provides us with a partition of the set A.

Assume that >~ z;<e” and k<n.

To make necessary estimates we need the following inequality:

Lemma 2. For a constant (0 > 0

L (w (g)) -1 <<p (2}0‘)) >0e™"

whenever 3 ic v zi # 3 e p 40 2

Proof. Consider the function ¥ : [0,27n] — R, defined by (1) = L{@p(m/2) — (D).
The inequality to prove can be rewritten as

1/ (—725 - r) =0e™",

where = n/2 — 3", _ ., %. The bound on }_ z; implies that r>e™".
Clearly,
(1) Y(n/2) = 0 and (1) £ 6 for 1 # 7/2;
(i) ¥'(n/2) = L{(—¢'(n/2)) = ¢ > 0 (direct computation), Thus, using Tay-
lor expansion, we can state that for some absolute constants ¢ > 0 and # > 0 the
inequality

b (312 (3) -3 (5)-
holds for all 0<|r|<{¢ and thus we have

o (5-)l >4

for all 0<ir <e.
If |r| =& then for some absolute constant & > 0 we have

2

~nlr|

v (g - r) <.
Put 0 = min{d,1g}. Now the statement of the lemma follows from the above

inequalities.
Indeed, if || < & then

Otherwise, Y(n/2 —r)=0=de " =", [
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To complete the proof we compute in polytime matrices M' and a linear function L
such that

I~ M| <077,

1 — L] <5007
Then for every BC 4 we have
T - | <hoe a7
icB €8

since ||M]]<1.
Consider a strategy & with actions d; = fake whenever i € A.
The probability of success of & is

RG) =1L (HM") +(1,0,0)

icd

ied

(HM‘ (1,0, 0)) ~ 30e"

> ( TIM - (1,0, 0)) 30e™" — Lo
icd

(0(3)) -0

(We used (17), || TLesM'II<1 and I;<1.)
Let an optimal strategy ¢ have actions d; = take for i € 4’. Then

=1L

R(o) z[,(nzxz’) - (1,0,0)

icd’

< ( M- (1,0,0)> + 307

icA

<L ( [m (1,0,0)) + 3067 + Lo

icd’

=7 ((p (Z ocl-)) + %He”"i
icA’

Applying Lemma 2 and comparing R(c¢) and R(G) we see that the optimality of @
implies that 4’ is also a partition.
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