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Abstract 

In the paper we consider the complexity of constructing optimal policies (strategies) for some 

type of partially observed Markov decision processes. This particular cast of the classical problem 

deals with finite stationary processes, and can be represented as constructing optimal strategies 

to reach target vertices from a starting vertex in a graph with colored vertices and probabilis- 

tic deviations fi-om an edge chosen to follow. The colors of the visited vertices ih the only 

information available to a strategy. The complexity of Markov decision in the case of perfect 

information (bijective coloring of vertices) is known and briefly surveyed at the beginning of the 

paper. For the unobservable case (all the colors are equal) we give an improvement of the result 

of Papadimitriou and Tsitsiklis, namely WC show that the problem of constructing even a very 

weak approximation to an optimal strategy is NP-hard. Our main results concern the case of a 

fixed bound on the multiplicity of coloring, that is a case of partially observed processes where 

some upper bound on the unobservability is supposed. We show that the problem of finding an 

optimal strategy is still NP-hard, but polytime approximations are possible. Some relations of 

our results to the Max-Word Problem arc also indicated. 

1. Introduction 

1.1. We consider a particular case of Markov decision processes (e.g. see [ 171) from 

the point of view of computational complexity. This case concerns stationary processes 
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with imperfect information (partially observed) with a finite number of states and 

actions, and under a concrete cost criterion. Our motivation is, on the whole, standard, 

i.e. the analysis of situations where the processes entailed by our actions are predictable 

only with some probability. What is common in these problems is that we consequently 

make decisions to undertake certain actions that change the state of the system, with 

a goal to reach some desirable state or to realize some behavior. As neither the exact 

result of the action nor the current state are known precisely, we are in a situation of 

twofold uncertainty: we are subjected to probabilistic deviations from planned results, 

and we get only partial information about the state where we arrive at. 

The traditional formalization considers a finite set of states, a finite set of actions (or 

decisions) permissible at a state, with every action implying a transition of the system 

to another state with a known probability. The traditional terminology (e.g. see [17]) 

seems to be too cumbersome for our particular case, so we slightly deviate from that 

system of notions, giving, however, references. The states can be interpreted as vertices 

of a graph whose directed edges go from a vertex to all other ones reachable by some 

action with nonzero probability. In other words, we act on a colored digraph supplied 

with a function describing the probability to deviate from an edge chosen to go along. 

A strategy, or a policy, is a function from strings of colors (histories of realizations) 

to actions. While processing, the strategy traverses vertices, and the color of a reached 

vertex is the only new information available at this vertex. The problem is to construct 

a strategy fulfilling some task. One of the simplest tasks is to reach a target vertice 

from a source vertex with maximum probability. 

Our specific motivations go back to robotics (e.g. [6, S]) and to analysis of some 

probabilistic models. The first goal was to analyze the complexity of constructing 

strategies optimal in different classes, and as one of the further goals, to look at the 

complexity of optimal strategies for situations with more diverse uncertainty. Different 

models of uncertainty (e.g. [4, 18, 14, 16, 7, 191) remain separated. 

1.2. In Section 2 we give the basic notions from the field of Markov decision processes 

related to the problems under consideration, and then specify the criteria of optimality 

of strategies interesting from the point of view of our motivations, and make precise 

some computational aspects. Here we also introduce a type of graphs convenient for 

describing concrete processes. In this paper, as criterion we use the probability to reach 

target states from a starting state. 

Then in Section 3 the complexity of the case of perfect information (bijective col- 

oring) is briefly surveyed. 

In short Section 4 for the case of total uncertainty (unobservability) we strengthen 

Corollary 2 from [ 151, and show that even very weak approximations to optimal strate- 

gies are NP-hard. 

The main results are contained in Section 5 where we treat the case of unobservability 

bounded by a fixed parameter. In terms of colors this means that the number of vertices 

of the same color is bounded by the parameter. In other words, the set of states is 

partitioned into classes, the number of elements in every class is bounded by the 
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parameter, and at any moment of execution of a strategy we know only the class 

which the actual state belongs to. The parameter, say m, is called the multiplicity of 

coloring. We show that even for m = 3 constructing an optimal strategy is NP-hard. But 

for any m, polytime approximations are possible. Finally, relations with the Max-Word 

problem are discussed. 

2. Main notions 

2.1. Uncertainty model. We consider only finite stationary Markov decision processes, 

e.g. see [17]. 

Let V be a finite set. Its elements are interpreted as states of a system to control. 

The set V is supplied with the following additional structure. 

(a) clr : V 4 C is the coloring function where C is a finite set. It defines a 

partition of the states into classes c%‘(c), c E C, which characterizes the uncertainty of 

determining current state. In traditional terms the coloring defines partial observability 

of the process. 

(b) ,U : D x V x V ---f [0, 11, where D is a finite set, is such that for all /, E D and 

UE v 

(1) 

For brevity ,u(& uv) is used for p(j,, U, c). 

The set D may be interpreted as a set of actions (or motes or even decisions), and 

the function p describes the probabilities of results: p(j_, UU) is the probability to arrive 

at u from u if the action ,? has been made. For example, one can think of D as local 

names of outgoing edges, and p gives the probability to follow an edge other than the 

chosen one. 

To avoid some trivialities, we assume IDI is polynomially bounded with respect to 

/VI. 
When treated as a part of input of algorithms, ,U is supposed to have rational values 

and to be represented as a usual table of its values. 

Thus, using the notations introduced above, the input for the algorithmic problems 

to analyze is of the form (V, D, C, clr, p), or (V, D, C, clr, p, s) when a starting 

vertex s is fixed. Such an object will be called a CU-graph (CU stays for Control 

under Uncertainty). It is convenient to interpret this structure as a graph with the set 

of vertices V and edges ur defined by the condition gi E Dp(i,uv) > 0, especially 

for describing examples, and we will use it below. 

When treating a decision process as a graph we use the following notations. Let 

G = (V, E) be a directed graph with vertices V and edges E. Loops, i.e. edges of the 

form UC’, L’ E V, are permitted. An edge with the tail u and the head v will be denoted 

by UZ) or (u, v). By OUT(u), resp. IN), we denote the set of all edges of G outgoing 

from, resp. incoming to, t‘ E V. 
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2.2. Strategies. Given a CU-graph G, a strategy is a function g : C+ + D, where 

we use the notation A+ for the set of all nonempty strings over alphabet A. So, we 

consider policies remembering history in the terminology of the theory of Markov 

decision processes. 

Below we define the notion of universal strategy that may seem to be a bit cumber- 

some. To get some intuition, imagine we got lost in a forest or a city, and are seeking 

to reach some goal. On what information would we base our decision where to go? 

We would use a map (CU-graph in our context) that, however, does not allow us to 

recognize directions for sure. Evidently, our decisions depend on our purpose, that is 

on the criterion to value possible results of our actions (criterion 9,. below), and that 

may be rather complex and contain, say, a description of regions that we would not 

cross, or the time at our disposal. We would also take into account the history of our 

wandering (a string W of colors). 

We assume that possible criteria 3!? are encoded as strings r of some language 57, 

concrete criteria will be described in Section 2.4. 

Given a class of CU-graphs 9 and a class of criteria 35, a universal strategy (for 

3 and S) is an algorithm 0 whose input is of the form (G = (V, E, D, C, clr, p), r, 

W), where G E 9, r E 5 and W E C+, and whose output is an action from D. For 

fixed G and r, a universal strategy c~ determines a strategy ~o,~ : Ci + D. 

Denote by 9.: the set of all k-vertex paths in the graph G starting from x, and by 

@(Z) the set of all paths having k vertices and containing a vertex from T C V. 

Assume that a starting vertex s E V is fixed. 

The “semantics” of a strategy r~ is given by the probability distributions p” on Pp,” 

defined as follows: 
k-l 

p”(Vl . ..Vk_]Vk) = n,U(f7(Clr(V[)...Clr(Vi)),ViVi+I). 

i=l 

Informally speaking, p”(P) is the probability to follow a given path P of the length k 

when executing g. 

Actually, we denote by p” many different probability distributions on different dis- 

crete spaces. It will be clear from the context what set p” is being considered. 

One can treat the semantics of a strategy from another point of view, namely, con- 

sidering a strategy as a family of transformations of the set 3(V) of probability dis- 

tributions on V. If we have a probabilistic distribution A of the initial location then 

the probability of being at a vertex v after exactly k steps of executing (T is 

ak@)(v) = CA(u) C P”v? 
UEV PEY” & hst(P)=1 I/ 

where last(P) denotes the last character of a string P. 

For a fixed string of colors ci . ck we define also the conditional probability 

q,...cr (A)(v) = C A(u) c P”(P>. 
LIEV PEY:, & last(P)=v& clr(P)=c,...cl, 

The semantics of a universal strategy c is the family of semantics of strategies gG,r. 



Remark. If we were to follow our motivations one can notice that the history of 

actions, i.e. the sequence of chosen actions, is an available information, and thus may 

be included into the argument of cr. One can define the semantics of this type of 

strategies in a similar way as above. However, it is easy to show that for every 

strategy of this “generalized” type there exists a strategy that depends only on the 

colors of visited vertices and determines the same probability distribution on the set 

of paths. 

Remark. As a starting position we could consider not a fixed vertex s but an initial 

probability distribution on V. However. we can get this distribution by adding a purely 

probabilistic first move. 

2.3. Reliable moves and vertices. Simple graphs. An action (move) /. E D is called 

~.(~liuhlc at 1‘ along e E OUT(u) if p(;_,e) = 1. This edge e will be denoted by Ih/(i., I’). 

Such edges will be also called reliable. A vertex is said to be reliclblr if every action 

is reliable at this vertex. A vertex is vu~?cfoorn if the function ,a does not depend on 

action on all the edges outgoing from this vertex. 

A CU-graph where every vertex is either random or reliable will be called sir?r$c. 

Such graphs are convenient to describe them, and, in particular, they will be used 

in our examples. We use the following notations, shown in Fig. 1, for our drawings 

(sometimes we omit redundant information): 

(1) reliable vertex colored by color c; 

(2) random vertex colored by color c; 

(3) reliable edge that corresponds to actions i and 0; 

(4) edge outgoing from random vertex; p is the value of /L (that does not depend 

on actions); 

(5) [RIP, i.e. a vertex where all actions lead back to itself. 

One can show that the simple model (even under stronger constraints) is as powerful 

as the original one. 

2.4. Criteria of quality of strategies. General definitions of criteria can be found in 

texts on Markov decision processes, e.g. [17, 31. Here, by a critrrion we mean a 

function from the set of strategies to real numbers that depends only on the semantics 

of strategies (i.e. on the probability distribution defined by a strategy). We define below 

the particular criterion considered in the paper with a generalization studied in a related 

paper, and just mention a criterion that probably was not considered and that may be 

of theoretical interest. 

(I ) Probability to mxl~ the turget in not more tlzun k steps: Let T C V be a target 

set to reach. This criterion, denoted by Ri:r(a), is defined as the probability to reach 
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any vertex from T starting at s in not more than k steps of execution of o. When s 

and T are clear from the context we drop them and use the notation Rk(cr). 

(2) Probability of realizing a given behavior: Let L be a set of paths interpreted 

as a set of allowed realizations. The criterion R;(o) is the probability to follow only 

realizations from L (cf. [2] where finite automaton L’s are studied). 

For criterion RjTr(a) one can consider also its limit version 

Clearly, the criterion Fir(a) is nondecreasing on k, and hence the limit does exist. 

We mention also the Hk-criterion, which can be interesting from a theoretical point 

of view: 

Hk(o) = OgVok(&)(v) . In &&>(v>, 

where 6, is the distribution concentrated in s. To maximize this criterion means to 

minimize the entropy (i.e. the uncertainty) of the location after k steps of executing cr. 

When speaking about a universal strategy, we write !S’I for the criterion encoded 

by a string Y. Hereafter we consider only the criterion R;*, k E N U {co}, i.e. the 

probability to reach T from s in not more than k steps (for natural k) or its limit 

version (k = CO). We assume that in the input of a universal strategy these criteria are 

encoded in the form Y = (k,s, T) where k is a natural number in the unary notation or 

the symbol “co”. If instead of a starting vertex we use a starting distribution A, we 

write R,f,T. If values of some of the parameters k, s, T or A are clear from the context 

they will be omitted. 

We will denote sup{Rzr(o) : CJ is a strategy} by ppt(v, T). Thus, piPf(v, T) is the 

“optimal” probability to reach T from v in not more than k steps. 

2.5. Optimal strategies. A strategy o is optimal with respect to a criterion &$, or 

9?fr-optimal if 9?~(cr’)<%?‘,(a) for every strategy 4’. 

We say that a universal strategy IS (for a class of CU-graphs 9 and a class of criteria 

X) is optimal if for every G E 9 and r E X the strategy 0~. is S&optimal. 

Obviously, an Rk-optimal strategy does exist for every finite k since the number 

of strategies different on the first k steps is finite. However, there is no R,-optimal 

strategy in the example described by Fig. 2. 

Indeed, the actions after an odd number of steps are made at random vertices, and 

they do not influence the further behavior. Before we make the action right after an 

even number of steps for the first time, we observe only the color a, and after this 

action we arrive either at trap or at target. Thus, any strategy is characterized by one 

integer 2n: the number of steps after which we decide to go right. One can see that 

the R,-quality of this strategy is 1 - 2-“. 

In a known example given by Fig. 3 the first action of an Rk-optimal strategy differs 

from the first moves of R,-optimal strategies for all m < k with k being exponentially 

greater than the size of the graph. 
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Fig. 2 

Fig. 3. 

Execution of k steps of a strategy (T determines a probabilistic distribution of the 

current position OI~,,,,.~ (6,) (under the condition that colors of visited vertices constitute 

the sequence cl ck), see Section 2.2. In many cases this distribution is the only infor- 

mation needed for strategy. We say that a strategy o is a PT-strategy (PT stands for 

probability and time dependent) if there exists a function .f’ : Y(V) x N + D such that 

4CI .‘Ck) = f(~~C,...C,(&>~O 

For example, one can prove the following proposition: 

Proposition 1. For every strategy o und,for- erer~~ k there exists u PT-strcrtq!~ (T’ 

such that Rk(a’)>Rk(o). 

3. Perfect information (bijective coloring) 

3.1. M- and T-strategies. Here we recall the notion of Markov policies, stationary 

and nonstationary, and we call them, for brevity, M- and T-strategies. 

A strategy cs is called an M-strategy if it depends on the last color of the argument 

only, i.e. if there exists a function (T’ : C + D such that 

VW : cr( W) = a’(lust( W)). 
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A strategy (T is called a T-strategy if it depends on the last color and the length of 

its input only, i.e. there exists a function 0’ : C x N + D such that 

VW: a(W) = o’(last( W), 1 WI), 

where lW( denotes the length of W. 

When speaking about an M- or T-strategy we assume that its argument is of the 

form (u) or (0, m), respectively, where v E C and m E N. The underlying interpretation 

is v = last(W) and m = IWI. 

We say that a universal strategy CJ is a universal M- or T-strategy if every strat- 

egy OG,r is an M- or T-strategy, respectively. As above, the input of a universal 

M- or T-strategy is assumed to be of the form (G, r, v) or (G, r, (u, m)), respec- 

tively. 

It is clear that M-strategies correspond to stationary Markov chains, and T-strategies 

to nonstationary ones. Sufficient information on Markov chains can be found in 

[13, 91. 
In this section we review the case of bijective coloring (that is called the case of 

perfect information in the theory of Markov decision processes), and assume C = V 

and clr = id. 

3.2. Optimal M-strategies. The following theorem is known (see [17, Theorem 7.71 or 

[12]) even for the general case of positive/negative gains. In our case it can be proven 

by a direct combinatorial argument. 

Theorem 1. For every CU-graph with bijective coloring an RkT-optimal strategy does 

exist among M-strategies. 

Using the standard technique of the theory of Markov chains, one can show that, 

given a CU-graph G and an M-strategy cr, the value R,(o) can be computed in 

polytime (in the size of G), see [13, Propositions 3.3.5 and 3.3.81. Since for every 

CU-graph the number of M-strategies is finite (although exponentially large), this 

allows us to reformulate the above theorem as follows: 

Theorem 2. For the class of CU-graphs with bijective coloring and for the class of 

RkT-criteria, there exists an optimal universal M-strategy. 

The following theorem is actually known (see [12, 3.5]), in our case it can be proven 

rather simply (see [2]). 

Theorem 3. For the class of CU-graphs with bijective coloring and for the class of 

RkT-criteria, there exists an optimal universal M-strategy with polynomial running 

time. 

This means that an optimal M-strategy can be computed in polytime. 
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3.3. Optimal T-strategies. The following result is known (e.g. see [3]) and easily 

provable by usual dynamic programming which proceeds backward in time starting 

from the target set T. 

Proposition 2. For the class of CU-graphs with bijectice coloring and the cluss of 

R:T-criteria. k E N, there exists a polvtime optimal uniaersal T-strategy. 

We fix now a CU-graph G and a goal set T, and will be interested in the behavior 

of the R,+-optimal T-strategy when k grows. It is straightforward that for a T-strategy 

cr the value of the criterion Rk(a) can be computed in time polynomial in k and the 

size of G. We mean here that cr is represented as a table of its actions up to the kth 

step, since the later steps do not matter for Rk. Indeed, the probability distribution 

of being at vertices after i steps of executing rr can be computed by multiplying i 

transition matrices determined by o in a standard way. 

Notice that piPt(s, T) is the value of the RiT-criterion for an Ri:‘-optimal T-strategy. 

and pzt(s, T) is the value of the RsL -criterion for an optimal M-strategy. It is clear that 

pipt(s, T) converges to pzt(s, T) when k tends to infinity. The actions of R;‘-optimal 

T-strategies also converge to the actions of an optimal M-strategy in the following 

weak sense. 

Denote by L&(c), c E V, the set of actions of all Rh’T-optimal T-strategies on the in- 

put (c, 1). Thus &(u) is the set of possible first moves of strategies that lead to T from 

L’ in not more than k steps with optimal probability. Then there exists a natural N such 

that for every k > N there exists an optimal M-strategy CT such that cr(c) t DI, (r) for 

every vertex c. Such minimum N is not more than exponentially large on the size of G 

(that can be proved by using estimations on root separation for the characteristic poly,- 

nomials). However, this convergence actually may be exponentially slow, see Fig. 3. 

Moreover, the sequence of sets Dk(c’) not necessarily stabilizes when k grows, see 

Fig. 4. 

It is not hard to see that the first action of an Rk-optimal T-strategy depends on 

k mod 4: &+I(.Y) = &1+3(s) = {r, 1>, &1(s) = {r>, D4/+2@) = (1). 

In this example Dk(u) depends on k (ultimately) periodically. However. this is not 

the general case: 

Theorem 4 (Beauquier et al. [l]). Th ere exists a CU-graph G such thut the srqurncc 

Dk(s) is not (ultimately) periodic on k. 

Fig. 4 
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4. Unobservable processes 

4.1. Statement of results. In this section we consider the class of CU-graphs with one 

color, i.e. with the set of colors consisting of one element. We will call such graphs 

noncolored. The argument of a strategy is a string of one and the same character, 

and hence it contains only the information on the number of executed steps in unary 

notation. Thus, the action of a strategy depends only on time, and we consider a 

strategy Q as a function g : N --f D that may be represented also by the string of its 

values dl d2 . . So, this is a particular case of the T-strategy. The following result was 

proven in [15] as a corollary of a more general theorem on the complexity of partially 

observed Markov decision processes. 

Theorem 5 (Papadimitriou and Tsitsiklis [15, Corollary 21). The following problem is 

NP-complete: Given a noncolored CU-gruph with k vertices, a starting vertex s, 

and a set of target vertices T, recognize whether there exists a strategy rs with 

$+J) = 1. 

The following theorem shows that the problem of computing an optimal strategy in 

the case of total unobservability does not admit even very weak approximations. 

Theorem 6. The jbllowing problem is NP-hard: Given a noncolored CU-graph with k 

vertices, a starting vertex s and a set of target vertices T (such that p~pf(s, T) equals 

1 or is less than exp(- a)), recognize whether there exists a strategy r~ which leads 

from s to T in k steps with probability not less than exp( -a). 

We prove Theorem 6 below. 

4.2. Notations on the 3SAT-problem. The proof is based on a polytime reduction of 

the 3SAT-problem, which is a classical NP-complete problem, see [l 11. Let 

F = A v zi.j (2) 
I <i<m 1 <j<3 

be a 3CNF-formula over n variables xi,. . . ,x,, where Z~J are literals, i.e. elements of 

the set 

Z = {xl ,..., x,, Xl ,..., X,}, n<3m. 

To visualize the formula we represent it as a table of height 3 and length m; the ith 

column of the table corresponds to the ith clause (disjunction) of the formula, see Fig.5. 

A pair zi,zz of literals is said to be contrary iff zi ti Z;. 

A path in F is a horizontal path P in the table composed by picking up one literal 

of every clause, in other words, P is a list of literals of the form 

Zl,jl, Z2,,j2~.~~~Zrn,j,,,, 1 Gji<3, 1 <i<m, 
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Zl,l Z2,l ........ Zlil,I 

z1,2 z2,2 ........ z,,2 

21,3 Z2,3 ........ Z,,3 

Fig. 5. 3CNF-formula F as a table. 

determined by the sequence (string) ji j2.. . j,. We interpret such a path as an assign- 

ment of its literals by the value true . If such a path does not contain a contrary (and 

thus contradictory) pair of literals, it gives a boolean model of the 

3CNF-formula. We call a path in F without contrary pairs an open or satisJj,ing 

path. and a path with a contrary pair of literals a closed or contradictory path. 

4.3. Proof of Theorem 6. Given a formula F, we construct the following simple CU- 

graph HF. 

l The set of actions D = {1,2,3}. 

*Reliablevertices: {t,trap,1,2 ,..., m-l}U(Zx{1,2 ,..., m-l}x{1,2}),s= 1. 

l Random vertices: D x { 1,2,. . . , m - l}. 

l Reliable edges for action A: 

@1(/z, t) = (t, t), Ibl(/l, trap) = (trap, trap), 

lbl(i,, i) = (i, (I., i)), 

lb/(& (z, i, a)) = 

case 1.1: a = 1 &z = zi+i,i. 4 edge to trap; 

case 1.2: a = 1 & z # Zifl,j, ===s edge to (z, i, 2); 

case2,1:a=2&i<m-1 +edgeto(z,i+l,l); 

case 2.2: a = 2 & i = m - 1 --r. edge to t. 

l Two random edges from a vertex (j,, i), i < m - 1: an edge “right” to i + 1 with 

probability (m - i - l)/(m - i) and an edge “down” to (zQ,, i, 1) with probability 

l/(nz - i); and one edge “down” to (z,+l,;., m - 1,l) from vertex (A, m - 1). 

For an example of graph HF see Fig. 6. 

Claim. If the path P = i?l,d,Z2,d,. ..~,,,,d~,,,_, determined by a strategy IS = dld2.. . dzrn 

is contradictory then CJ traverses HF from s to t kth probability not more than 

1 - l/(m - 1). 

IJ’ P is open then R$?, (a) = 1. 

Indeed, if P is a contradictory path we have z,J_, = ?j,d:,_, for some 1 <i < j <m. 

When executing O, we follow from the vertex 1 to D x {l} then “right” to 2 and to 

D x (2) etc. until the first “down” move. The probability to go “down” from the 

D x {i} is exactly l/(m - 1). Then at the (2j - 1)th step we arrive at the condition 

of case 1.1 and go to trap. Thus, such a strategy traverses HF successfully from s to 

t with probability not more than 1 - l/(m - 1). 

The proof of the second assertion of the claim is similar. 0 



Fig. 6. Some of the reliable vertices of the set 2 x {I ,2,. , M - I } x {I, 2) 

coordinates and others are marked by their first coordinate. 
arc labeled by all their 

Graph Hp contains less than 20m2 vertices (for m large enough). We construct now 

the desired graph &F as follows. Take 20m’ copies of HF denoted by H,& . . . , Hi*““. 

We consider the vertex 1 = s of HL as a starting vertex for 6~ and the vertex t 

of H:Orn” as a target vertex for &F and redefine the reliable edges from vertices t of 

Hji’s. We put a unique reliable edge from t of Hk to s of HP’ for all i < 20~2~. Thus 

we get sequential composition of the initial graphs. Obviously, ei, has not more than 

li = 20m2 20m4 = (20m3)* vertices. 

Consider a strategy ci = d 1 . . . d2m.20m 4 for traversing tip from starting to target. If 

the paths ~I,d,z~,~+,,,+,Z2,d,l.~+i,~+3 ...=,,d~2,~~+l),+(?ai-,i) are contradictory for all Odi < 20~” 

then the claim implies that CT traverses each of HP’ with probability not greater than 

1 - l/(m - I), and hence the total probability for B to traverse fly from starting to 

target is not more than ( I - l,/(m - 1 >)20m’ < exp( -20m3) = exp(-&), Thus for any 

strategy (r whose probability of success is not less than exp( -&), one of the paths 

=l,d,l,,,+, ,!+,~2,d,z,,~+l ,,+i . . s =~~,d,21,,+,,,+,llii~ I) is open, since k is not more than polynomially 

greater than the size of F. 0 
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5. Bounded unobservability 

It was shown in [IS] that the problem of computing an optimal strategy for partially 

observed processes is PSPACE-complete. We consider here the partially observed pro- 

cesses when this uncertainty concerning observability of states is bounded by a fixed 

parameter. 

5.1. Graphs with a fixed multiplicity of colors. We say that a CU-graph has a colorimq 

o,f‘ multiplicit>~ m if the pre-image of each color contains not more than m vertices. 

That is, when the color is known, the location is determined up to not more than III 

vertices. Obviously, bijective coloring corresponds to multiplicity 1. As an intermediate 

case between bijective coloring and total unobservability we consider CU-graphs with 

a fixed multiplicity of coloring m > 1. The notion of PT-strategy gives a reasonable 

generalization of T-strategies for this case, and Proposition 1 shows that in some sense 

it suffices to consider PT-strategies only. 

Consider the first nontrivial case m = 2, and assume for simplicity that the set of 

moves D is {right, l,,ft}. For a color c E C we denote by I’ ’ and c- the two vertices of 

this color. When traversing the graph we actually have just one “hidden parameter” (t 

or -) that influences, however, the probabilities of further transitions. Having arrived 

at a color c after k steps a PT-strategy 0 makes its next action basing it on k and on 

the probabilities p+ and p-, p’ + pP = 1, of being at c + and 2: , respectively. Thus, 

(r induces a partition of [0, l] into two sets L and R such that 0 goes rit_lht if p’ t R 

and goes k/i otherwise. One might expect that if it is more profitable to go riyhl from 

I.+ and to go lcfi from c- then there should exist some boundary probability p() such 

that if pi 3 p() then it is better to go riyht, and if p+ < p() then it is better to go /c:fi. 
But this is not the case. In fact, the sets R and L may contain exponentially many (on 

k) intervals that alternate. 

5.2. Complexity of optimization. The following theorem shows that computing an 

optimal strategy for graphs with a small multiplicity of colors is NP-hard. 

Theorem 7. Ewry optirnul unicrrsul strategy jijr the chss qf CU-gruphs u,ith (1 c,ol- 

wing qf’multiplicity 3 and thr cluss oj R;.T-critrriu, k E N, is unirersul,f2)r NP (u-ith 

respect to polytinw Turing reducibility). In simpler ~~.ords, constructiruq un optirwrl 

Lstruttgl’ fiw CU-graphs +z?th II multiplicit), qf colorimq 3 is NP-hurd 

It is an interesting open question related to the Max-Word Problem (see Section 5.3) 

as to whether the theorem holds for multiplicity 2 and/or for a class of CU-graphs 

containing only one graph. 

We can reformulate Theorem 7 as NP-hardness of recognizing whether there exists 

a strategy with probability of success not less than a given parameter. 

However, contrary to the case of total uncertainty, the problem of computing an 

optimal strategy for graphs with a small multiplicity of colors does admit a reasonable 

polytime approximation. 
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A universal strategy 0 is said to be &-optimal if it is optimal up to an additive error 

E, i.e. 

for all G, k, s, T and for all strategies [. 

We can consider the property to be s-optimal as a criterion with the value 1 on 

s-optimal strategies and 0 otherwise. 

Theorem 8. There exists an optimal universal strategy o with respect to the crite- 

rion of E-optimality such that for the class of CU-graphs with a jixed multiplicity 

of coloring m it is computable in time polynomial on the size of input graphs and 

I/E. In particular, this means that for a fixed multiplicity of colors optimal strategies 

admit polytime approximations with an additive error. 

Theorem 8 is interesting in the context of Theorem 7, taken as itself it may seem 

very natural. 

The proofs of Theorems 8 and 7 are given in Sections 5.4 and 5.7. 

5.3. Relations with the Max-Word Problem for stochastic matrices. Recall that 

the Max-Word Problem for stochastic matrices is the following one. Given a set 

s = {Mi}IQi<n o f stochastic (m x m)-matrices with rational entries, Mi = (A4$), 

C,M$ = 1, two (row) vectors V, W with positive coordinates and an integer k in 

unary notation, the problem is to find a sequence Mi,, ,Mi, which maximizes the 

product ( V, (HZ 1 WM, )). 

It was shown in [5] that the Max-Word Problem for stochastic matrices is NP-hard 

as well as its approximation version up to any multiplicative factor. 

The Max-Word Problem for stochastic (m x m)-matrices can be reduced to the prob- 

lem of constructing an optimal strategy for CU-graphs with a coloring of multiplicity 

m (see (i) below in this subsection). Together with Theorem 8 this implies that for 

every fixed m the Max-Word Problem for stochastic (m x m)-matrices admits polytime 

approximations with every additive precision. 

The problem of constructing an optimal strategy for CU-graphs with one color can 

be straightforwardly reduced to the Max-Word Problem for stochastic matrices (see (ii) 

below in this subsection). With Theorem 6 this implies that the Max-Word Problem for 

stochastic matrices does not admit polytime approximations within additive precision 

exp(-v4). 
The reductions mentioned above are described as follows: 

(i) For an input Mi = (M$), 1 di<n, V = (v,), W = (wb), 1 <a,fi<m and k 

of the Max-Word Problem for stochastic (m x m)-matrices we build a CU-graph with 

vertices s, {ri,ol}l <i<k+l,l $a<mt t and trap, and with the set of actions { 1,. . . ,n}. 

Every action leads from s to vi,% with the probability w,/ c, GBGm we and from vk+i,fi 

to t with the probability up/C, GBGm VP. An action i leads from v,,~ to uj+i,p with the 

probability A&. 



A simple consideration shows that the probability of success of a strategy (T which 

makes the actions (ioil ikik+j ) is 

(ii ) For a CU-graph with one color and the set of vertices { 2’1 = s, ~2,. . r,,, = t } 

and the set of actions {di, . , d,,} the problem of computing an optimal strategy to 

reach t from s in /i steps is equivalent to the Max-Word Problem for stochastic (ttl x UI )- 

matrices with the input A4; = (p(di, ~,r,i))~,,l, W = ( 1.0.. .O). V = (0.. _. .O. I ), I,. 

Remark. Approximabilities with additive and multiplicative errors are equivalent unless 

the value of an optimization problem under consideration is more than polynomially 

large or small. So, this difference occurs when either the value under approximation or 

its inverse are too small. 

5.4. Proof of Theorem 8. The proof shows that the partially observed problem is 

smooth enough, and it may look tedious as compared with the underlying ideas which 

are usual in the theory of Markov decision processes. 

Enumerate the vertices of the graph G by 2 indices i and Y such that the first one 

is a color, SO V = {Di,r : i = 1,. , n, x= 1 ,...,M}. 

We supply R"' with 1’ metric 11(x,), --(~;);11 = C, /x, -.I’, j. and will consider Lipschitz 

property with respect to this metric. 

A point of the simplex S (in R"') defined by the inequalities 

,,I 

c .Y, = I, x, 30 
/:I 

can be treated as a distribution of probabilities over the set { c;,~. . ri,,,i} of vertices 

of color i. 

Let P’ = (pi,..., pi) be this probability distribution, i.e. P’(c,k) = phci,,. where ii,, 

is Kronecker’s delta. 

Let F,v,,(P’) be the probability to reach T starting with the distribution P’ in not 

more than N steps by an optimal strategy. 

Lemma 1. All F,v., me Lipschit:-1 ,functions, i.r. IF\.,(P) - F,v,,(Q)(</lP - pii for 

P, p E s. 

Proof. Extend the functions F,v.k onto the points 

PES= (PI )...) pm): Fp,$I &p,>O 
{ 1-I I 

in the following way. We append a new trap to our graph, and treat Ph E .? as the 

probability distribution of being at cl/ with the probability p,dk, and at the new trap 
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with the probability 1 - cy:, pi. Now the function FN,k is defined in all the points 

of the simplex 3, again as the optimal probability to reach the target starting with the 

distribution Pk. 

To verify the Lipschitz property of FN,k consider 2 points P, Q E S. Let d = liP-Qll. 

Then for some vectors Ai = (0,. . . , 0, ni, 0,. . . , 0) with the only nonzero ith coordinate 

we have c Jail = d, Q = PSC, GicmAi. It suffices to check IF.v,k(P+A)-F,vk(P)I <a 

where A = (0 ,..., O,n,O ,..., 0), a > 0 occupies the ith coordinate of A and P, 

P+AE% 

It is clear that FN,k(P + A) - F,t,k(P)>O. Reasoning by contradiction assume that 

IFN,k(P + A) - FN.P(P)I > a. 

Then for some strategy CJ we have RriA)” (IT) > FN,k(P)+a. On the other hand (recall 

that @(T) is the set of all k-vertex paths containing a vertex from T), 

R$+“)‘(g) = c (P+A)k(~,).~u(~,~~...~~) 
W,...I”Lt*‘V(T) 

c Pk(W,) .pU(w,w:!...w/t/) 
W,...w'\E.YV(T) 

+ c a. p"(ukjw2...w,tj) 
U~,lv~...W\ WV(T) 

=R$(a)+ C a p’(ukiW2.. . w ) <FN,k(P) f a, 

ck,wz...u’yE Y’(T) 

which is a contradiction. 0 

The family of functions FN,~ satisfies the following recurrent system of equations: 

FN,i(Pt,..., Pm) = ~~$q;;~“(p). FN-I,&‘~(~)), (3) 

where #(P) is the probability to arrive at the color j starting with distribution P’ by 

the action d and Tf,d(P) is the conditional distribution on the vertices of the color j if 

this color has been observed after the move d from the distribution Pi. More formally, 

(Cd(P)), = l fi ’ I$ or . /4d, Vi,x, uj,tz ). 
J 

2- 

(4) 

(5) 

Notice that qjTd(P)>O and 

Fqf.d(P) = 1. 
/=I 

(6) 



5.5. Let ii = ci2K, where K is the number of steps and I: is a chosen precision. Let 

M be the smallest integer greater than l/ci. 

WC subdivide S into IV”‘-’ equal simplices by hyperplanes parallel to the faces of S. 

Consider the class 9 of continuous functions on S whose restriction onto every tiny 

simplex of our partition is linear. 

For a function J‘ we denote by ,f‘* the unique function from F that coincides with 

f’ on all vertices of the simplices of the partition. it is clear that sups l,f’ - ,f *I <tS fat 

every Lipschitz- 1 function .f. 

5.6. ~4i~or~thm. For constructing our strategy we, firstly, define recursively the fLinctions 
_ 

F,v.i : S --i R”‘, N 20, and d:\a,i : S --+ D, n 3 1. 

N = 0: p,V.,(P) = P’(T n { I:~.). . . : I‘,.,,}) where /‘(vi) = 0. 

N > 0: Put 

(7) 

and put ~.v;(P) to be an element of f? maximizing the right-hand side of (7). 

Before the description of the desired strategy g we prove Claims 1-3. 

Proof. By the definition. i3 

Proof. We have Fl,h = F{.k because both the functions are defined by the same equa- 

tions as given by Claim 1. Hence pl ,k = FT,k, and thus IF1.k - fTl.i;i <d since F,,,< is 

Lipschitz- I (Lemma 1). 0 

Proof ~~l~(~~~~t~~~~~ on N). As the base of the induction we use Claim 1. Suppose the 

inequalities are valid for N - I: 

[Fjv-r,i, - &_i,j b(N - I)& f 8) 

Consider a point P = (PI,. , p,,). The inequality (8) implies that for some c 

&-,.x(P) = F,$l_,,k(P) + ;, I;1 <(N - 1)s. (9) 

By definition, we have 
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From these equations and (9) we get 

(12) 

(13) 

since the coefficients $d(P) are nonnegative with the sum equal to 1, see (6). Hence, 

1FN.I: - &,k I d(N - 116. (14) 

The point P = (PI,. . , p,,,) lies in a tiny simplex of our partition, let it be a simplex 

with vertices Xl,. . ,X,,. Then P = C , QiGm /3j .X; for some nonnegative &, C /I; = 1. 

Since FN,,. is Lipschitz-1 and the diameter of our tiny simplex is not greater than 6 

we have IF,Q(P)-FN,J(X~)~ <6 for all i. Adding these inequalities with the coefficients 

pi we get 

IP.w(P) - CP, FdxI)I Gd. (15) 

On the other hand, 

&,k(P) = G&(P) = CPL f%,km. (16) 

Together with ( 15) and ( 14) this gives the required inequality IFN,A(P) -pN.k(P)I < Nd, 
since the coefficients /3; are nonnegative with the sum equal to one. 0 

Now we describe our strategy CT. Firstly, it computes and stores all the functions 

PN,i, 0 <N <K, 1 <i<m, as tables of their values at the vertices of our partition. This 

can be done in polytime. After that for every P E S the value of the function do,; 
is computed in polytime due to (7) by trying all the d E D. For a string of colors 

W = cl c,t~ the strategy computes the probability distribution of being at vertices of 

the color CN. This distribution is represented as a point P of S. Then the action to 

make is defined by g(W) = dN,c, (P). 

Claim 4. IRG(a) - FN,i(P)I ,< N6 fi)~ ull i. 

Proof. Similar to the proof of Claim 3 using the fact that Rc is Lipschitz-1 on the 

argument P that can be shown as in Lemma 1. 0 
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Claim 4 together with Claim 3 immediately imply 

Rf&J)3F‘y,(P’) - 2:. 

which completes the proof of Theorem 8. 

5.7. Proof of Theorem 7. Our proof is based on a reduction of the P~~t~t~o~l Pt~hi~w 

[IO]. A3.2: Giwn a set {z,},~.,~ of natural numbers indexed by natural numbers from 

,4, fo ,jnd whether there exists a subset A’ c A such that xoE,J, z,, = Cot,,l,,,l, ;(,. If 

such a subset A exists we say that the instance of the problem cdrnits a partition. 

As in the proof of Theorem 8 we treat the distributions of probabilities as points of 

the appropriate simplex and vice versa. 

For a given instance of the Partition Problem represented by a set {L;,]~,~~,! wo con- 

struct a CD-graph G in the following way. 

Le:t k = I.4 1. p = CiEji 2, and x, = ~;,!p. Without loss of generality we can 

assume that xi < ni2. Denote by k’ the matrix of rotation in R’ with the axis .Y = 

_V = ; and the angle xi, and by fi’ the (3 x 3)-matrix with the eigenvectors (1. 1. 1 ), 

( 1,O. - 1) and ( 1, -2.1) and the eigenvalues 1, ee” and es-“” . where L‘ is a constant 

that guarantees the elements of the matrices h?’ defined below being positive. (Recall 

that the positiveness of elements of a matrix M is equivalent to saying that M maps 

the positive quadrant into itself.) 

Let A’ -_ ii A’ = f) A’. 

The graph G is constituted by (the notations are of the same type as in the proof 

of Theorem 8): 

l the vertices: V = {ri,r: i = 1,. . . .X + 1, x = 1.2.3) U {t} U {trap}, s = ~1.1; 

l the edges go from every vertex E’;,~ to all vertices ~‘,-r,~ with the exception of the 

last layer with i = k + 1 from where there are edges to both t and trap: 

l the set of actions: D = {sk@. f&r); 

l the function of deviations: 

ill(.ski/?,l’;,,~‘,+,,,) = l,~c(take,ci,lrj+I,/,) = L&,i # k + I, 

p(skip, ~‘k+~.~t) = p(tnke, ~‘~+l.~t) = I,, 

jt(skip, f.~+~.~trfq) = y(take, t’k+j.rtrap) = 1 - I,. 

where /1 will be chosen later. 

5.8. For every realization of a strategy 0 up to the (k + l)th step the observed sequence 

of colors is I, 2,. . . ~ k + 1, so a strategy is determined by a sequence of its actions 

rfr . . ti;; since the last action does not matter. 

After k steps of executing 0 the probability distribution of being in vertices t’~+r.~ 

is Pk+’ where P = nd =,akF( l,O,O)A?‘. (Recall that we continue to use the notations 

for P’+’ of the previous proof.) 
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Fig. 7. Geometric interpretation. 

To deal with the distribution Pk+’ we use the following geometric interpretation (see 

Fig. 7). 

Clearly, all our matrices d’, fii’ and A?’ preserve the plane x + y + z = 1. Consider 

the restrictions R’, H’ and M’ of these matrices onto this plane. The matrices R’ are 

rotations with angles ri, and Hi are homotheties with coefficients eecrf . 

Supply the plane x + y + z = 1 with Cartesian coordinates (x’, v’) centered at 

(i, 4, f ), with the x’-axis containing ( 1, 0,O). Consider the logarithmic spiral q(t) = 

e-“(cos t, sin t), the parameter t can be taken as the coordinate of a point on the spiral. 

One can see that our matrices A? preserve the spiral, and being restricted on the spiral 

they act by adding Mi to the coordinate t. Thus, the point P = nd,Eruke( l,O, O)I@’ lies 

on the spiral and has the coordinate t = Cri:n,Erukej x;. 

Now choose a linear function L : R3 + R, L(x) = (I,x), 1 = (li) E R3, 0 < Zi<l, 

such that the point ~(7-42) maximizes L on the spiral. This can be done along the 

following lines. 

Let T be a tangent vector to our spiral q(t) at the point q(742). Take a vector 1 

such that (I, T) = 0, and L(q(n/2)) > L(i, f, f). 

This vector 1 can be chosen by a small rotation of vector (f, f, f ) around T. 

We use the coordinates I, as transition probabilities to arrive at t from the vertices 

r&+1,x. Thus the probability of success of g is L(P). Notice that c xi = rc. So, if a 

subset of A with the desired property does exist then every optimal strategy has the 

sum C(i:d,=take) c(i = X/2, and thus, ~{r:d,=take)Z, = p/2. 

5.9. The construction above does not take into consideration the rationality of the 

probabilities of deviations. For this reason we take appropriate rational approximations 

to the values defined above. 



Suppose that the set ‘4 admits a partition. Denote it by A. 

Now we replace the values of the function p by some rational approximations with 

a polynomial number of digits. We show that every optimal strategy for this CU-graph 

also provides us with a partition of the set A. 

Assume that C zi de” and k <II. 

To make necessary estimates we need the following inequality: 

Proof. Consider the function $ : [0,2n] -+ R, defined by $(f) = L(cp(n,!l?) - (p(f)). 

The inequality to prove can be rewritten as 

where t’ = n;2 - CjEA, xi. The bound on >Iz; implies that F 3e-‘“, 

Clearly, 

(i) ci/(ni2) = 0 and r&(t) i: 0 for f i: ni’2; 

(ii) $‘(~2) = L(-<$[K/~)) = y > 0 (direct computation}. Thus, using Tay- 

lor expansion, we can state that for some absolute constants i: > 0 and I/ > 0 the 

inequality 

holds for all 0 < 1~1 <c and thus we have 

If /P/ >c then for some absolute constant. 6 > 0 we have 

Put 0 = min{ci, ,‘q}. Now the statement of the lemma follows from the above 

inequalities. 

Indeed, if /~j < F then 
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To complete the proof we compute in polytime matrices I$ and a linear function i 

such that 

//tii -- MJj <&He-“‘, 

Ill - LII < +jNe-“J. 

Then for every B c A we have 

since !lM’ll< 1. 

Consider a strategy (5 with actions di = take whenever i E A. 

The probability of success of 5 is 

(We used (17), jj&~Rl’/jdl and liG1.j 

Let an optimal strategy (T have actions di = take for i E A’. Then 

R(o) =i j&i?; *(i,O,O) ( ) iEA’ 

d L nMi. (l,O,O) 
( 

+ $jOe-n’ 
iEA’ > 

Applying Lemma 2 and comparing R(o) and R(5) we see that the optimality of (T 

implies that A’ is also a partition. 
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