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ABSTRACT 

Jakeman, A.J., Littlewood, I.G. and Whitehead, P.G., 1990. Computation of the instantaneous unit 
hydrograph and identifiable component flows with application to two small upland catchments. 
J. Hydrol., 117: 275-300. 

Our approach is based upon three factors: (i) the representation of total streamflow response as 
a linear convolution of the instantaneous unit hydrograph with rainfall excess; (ii) approximation 
of this representation in discrete time by a rational transfer function relationship which involves 
an efficient and flexible parameterisation; (iii) use of a simple refined version of the instrumental 
variable method of parameter estimation as the major tool to determine the number of identifiable 
flow components in the representation and to estimate their dynamic contributions to the instan- 
taneous unit hydrograph. Stream hydrograph separation is undertaken by convoluting rainfall 
excess with the identified components of the unit hydrograph. The procedure is applied to two small 
upland catchments in Wales. The results demonstrate that  at sampling intervals of the order of one 
hour, successful separation of quick and slow flow components can be achieved with short time 
series of rainfall and streamflow. 

INTRODUCTION 

Several approaches have been developed to construct models of streamflow 
response to catchment precipitation. These have been categorised by Chapman 
(1975) and more recently by Todini (1988) on the basis that the justification for 
a particular approach depends on the intended use of the model and the type 
of information available for its construction. The direct utility of any approach 
will also hinge on several factors including the information available for its use 
in prediction or simulation mode, the acceptability of its associated perfor- 
mance, the computer resources and time available, and the calibration skills 
required of the user. 

In this paper we are concerned with approaches which rely on approxima- 
tions of the convolution integral: 
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y(t) = i h(t - s )u ( s )ds  (1) 
. J  

0 

where point or spatially-averaged rainfall excess u(s) is operated on by h(t - s) 
and integrated over time t to yield flow y(t) at some stream location. The 
function h(t) is well known as the instantaneous unit hydrograph (IUH) (Chow, 
1964). In our paper it is the total streamflow response resulting from unit 
rainfall excess applied to the catchment over an infinitesimally short period. 
The concept of the unit  hydrograph was introduced by Sherman (1932). Its 
representation in eqn. (1) assumes a linearity between rainfall excess and 
streamflow response. Models based on the unit hydrograph concept attempt to 
describe the lumped dynamic response of the catchment to rainfall and are 
generally not used to represent the complexities of streamflow generation 
processes. They require that  observational data only on u(t) and y(t) be 
available for estimation of model parameters. In addition to this advantage of 
minimal data requirements, it will be argued that  the transfer function form of 
conceptual model for the instantaneous unit  hydrograph possesses the 
following properties: it has a plausible and adaptable physical analogy of 
linear reservoirs configured in series and/or parallel; in combination with an 
adequate statistical estimation procedure it can reproduce total streamflow 
and its dominant quick and slow components with convincing accuracy; and 
despite not representing a physically detailed approach it still has impressive 
utility. 

Instantaneous unit  hydrograph modelling of rainfall streamflow behaviour 
has a long history, a review of which, up to 1964, can be found in Chow (1964), 
including the important reservoir conceptualisations discussed in a later 
section. Eagleson et al. (1966) used a transformation of the convolution integral 
leading to the Wiener-Hopf equation with constraint conditions for which an 
approximate solution was obtained using linear programming. Subsequent 
methods which rely on a constrained optimisation to realise a non-negative, 
non-oscillatory hydrograph include those of Deininger (1969), Mays and Taur 
(1982), Bruen and Dooge (1984) and Raynal Villasenor and Campos Aranda 
(1988). Papers deriving or applying a system identification approach include 
those of Kashyap and Rao (1973), Clarke (1974), Whitehead (1979), Whitehead 
et al. (1979), Mahendrarajah et al. (1982), Jakeman et al. (1984) and Rao and 
Mao (1987). 

The contribution and plan of our paper are as follows. In the next section the 
assumptions and role for an IUH approach in characterising rainfall-stream- 
flow behaviour are summarised. However, a major aim is to present and apply 
an objective and accurate procedure for determining the instantaneous unit 
hydrograph and the number of separate flow components which it is possible 
to identify from the information in the rainfall-streamflow time series data. 

Our system identification procedure of flow component resolution and 
parameter estimation relies heavily on the choice of a suitable conceptual 
model of the unit hydrograph and a simple refinement of the instrumental 
variable method of parameter estimation. Some background and further 
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references to the model and the estimation method are presented in two 
separate sections. Depending on the properties of the stochastic errors in the 
IUH model the method may yield asymptotically efficient parameter estimates 
but the estimates are always consistent. Estimation methods previously recom- 
mended in the literature, such as least squares or basic instrumental variables, 
can be ineffective. They do not minimise an appropriate error criterion such as 
the optimal generalised equation error (OGEE) of Jakeman and Young (1983). 
Examples from two small upland catchments in Wales illustrate the applicabil- 
ity of the procedure. Discussion and conclusions are presented together in the 
final section of the paper. 

THE IUH APPROACH: ASSUMPTIONS AND ROLE 

The general assumptions associated with the unit hydrograph approach are 
well known (e.g. Chow, 1964) but are briefly reviewed here for completeness. In 
addition to the linearity of streamflow response to rainfall excess, these are 
homogeneity in the spatial distribution of infiltration capacity, rainfall and 
rainfall intensity. Clearly these conditions improve the theoretical adequacy of 
the convolution model and facilitate the construction of conceptually simpler 
transformations of rainfall to rainfall excess. However, variability in these 
quantities is a practical reality and it is accepted that  this variability generally 
increases with catchment size. 

To cope with the problem of a non-uniform areal rainfall, Chow (1964), 
among others, has proposed that  a basin may have to be divided into smaller 
sub-basins each of which may be subject to separate hydrograph analysis for 
rainfall that  can be assumed to be representative of the whole sub-basin. The 
basin hydrograph can then be obtained by routing of available or IUH 
computed hydrographs for the different tributaries. Liang and Nash (1988) 
have recently used this general approach and obtained good results for flood 
routing on the Yangtze River in China. 

This procedure would also help ease problems associated with variable 
infiltration capacity. However, Ward (1975) comments that  despite inhomoge- 
neity of infiltration capacity in practice, the (lumped) unit hydrograph 
technique works well. This is partly explained by the variable source area 
concept of Hewlett (1961) which recognises that  the quickflow-producing 
areas within a catchment at the beginning of a storm will be dependent on 
antecedent conditions. The variable source area concept also takes into 
account that  quickflow-producing areas may expand during storms. This 
increase probably occurs in a systematic way depending on initial conditions 
and the temporal pattern of rainfall intensity. The lumped IUH approach 
cannot of course model within-catchment spatial variations of infiltration 
capacity during storms but, since variations are likely to be systematic, it can 
account for them on a catchment average basis. 

As far as the assumption of spatial uniformity of rainfall intensity is 
concerned, we would argue that  the errors deriving from any variability in this 
respect for small catchments will often be small in comparison to errors arising 
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from other assumptions. And, as with other errors, if a number of storms are 
analysed the resultant unit hydrograph can be chosen to reflect a weighted 
averaging of those errors. 

The wide ranging role of the IUH approach will now be considered. A major 
rationale for its use may be to interpolate streamflow records or to predict 
streamflow. Real-time forecasting is also possible with the IUH approach. The 
simple recursive nature of the conceptual model and the potential to model the 
errors stochastically allows for temporal updating, for example through 
Kalman filtering of the equivalent state-space formulation (e.g. Todini, 1978). 

The results presented in this paper indicate that  the unit hydrograph 
approach based on the convolution integral (eqn. (1)) can also be employed to 
understand at catchment scale the relative importance of the dominant flow 
components of the rainfall runoff process and their dynamics. A minimum 
by-product can be conceptualisation of travel or storage times and dynamic 
contributions to streamflow hydrographs of the dominant quick and slow flow 
systems of particular catchments. 

Another modelling objective which extends the utility of IUH models is to 
relate the derived parameters of unit hydrographs to physiographic and 
climatic catchment variables. In this way information can be amassed for 
predicting streamflow behaviour that is not directly observable, for example in 
ungauged catchments or in catchments which may be subject to land use 
changes. Two of the earliest attempts at synthesising unit  hydrographs from 
catchment and climatic characteristics were carried out by McCarthy (1938) 
and Snyder (1938). 

A prerequisite for success in modelling with respect to any of these 
objectives is system identification of a dynamic model which reproduces 
existing behaviour well. In general it is also important that  the model 
parameters are estimated with significantly small standard errors. In this 
connection, Jakeman and Young (1980a), among others, have argued the par- 
ametrically efficient virtues of a rational transfer function approximation to 
the convolution integral in eqn. (1). This dynamic model form is the one 
adopted in our paper and its mathematical representation and physical inter- 
pretation are presented in the next section. 

THE MODEL 

There are two basic components to our model of the rainfall stream- 
flow process. One is a non-linear rainfall filter (RF) which is used to produce 
a rainfall excess or "effective rainfall" which takes into account both short- 
term conditions, mainly the soil moisture status, and longer-term effects such 
as evapotranspiration and storage. The concept of effective rainfall is well 
developed in the hydrological literature (e.g. Chow, 1964). Basically, the RF we 
use in this paper provides a transformation which allows linearisation of the 
rainfall-streamfiow relationship by considering, as model input u(t) in eqn. (1), 
only that  part of the rainfall available to contribute to streamflow during the 



COMPUTATION (IF THE INSTANTANEOUS UNIT HYDROGRAPH 279 

period of interest. Second order effects such as depression storage and intercep- 
tion by vegetation are not accommodated explicitly in our rainfall excess 
model used here for moorland catchments. Being a crude model, it may need 
refinement in some instances, for example, when afforested catchments are 
subject to intermittent light rainfall leading to significant interception losses. 
However, it can be regarded as a useful exploratory starting point for a model 
construction exercise. The second component of the model presented in this 
paper identifies the remaining linear relationship using eqn. (1) as the 
underlying mathematical representation. 

T h e  r a i n f a l l  f i l t er  ( R F )  

The rainfall filter model involves three simple operations. The first is a 
modulation of the measured rainfall r~ at time step k by a temperature 
dependent factor to compensate for evapotranspiration losses. A simple 
operation that  has worked well (e.g. Whitehead et al., 1979; Mahendrarajah et 
al., 1982) is given by: 

r~[ = tml(tm -- tk)rk (2) 

w h e r e  t m is a reference temperature greater than the recorded maximum for the 
location in question and, for calculating r~ in any given month, tk is the 
observed mean temperature for that month. 

If model calibration of the IUH and subsequent prediction is undertaken 
over a period of reasonably constant temperature, eqn. (2) may not be needed. 
For example, for periods of the order of a couple of months, temperature 
variation will generally be insignificant compared with other model approxi- 
mations. On the other hand, when such variation is significant, models more 
complicated than eqn. (2) may sometimes be required. Evapotranspiration in 
upland forested catchments, for example, can be quite large and prediction of 
its effect on streamflow may require more physical detail than provided in eqn. 
(2). 

The second operation in our RF model is an adjustment which allows for 
antecedent precipitation effects on the soil moisture. A discrete first-order 
filter of the temperature modulated rainfall r~' assesses the soil moisture 
content as: 

sk = sk 1 + r l(r~,_ S~_l) (3) 

which, with z-1 as the backward shift operator (z  is k = sk_ 1), can be expressed 
as an operation which is more obviously linear, viz. 

s,~ = Ir 1/[1 - (1 - r 1)z l]}r~ 

As with tm in eqn. (2), the term r is a constant to be optimised. The larger the 
value of r the longer the effect of antecedent conditions on the soil moisture 
status. 

Like the well-known Antecedent Precipitation Index (API) the operation in 
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eqn. (3) attempts to quantify the current  soil moisture status to determine how 
much of any present rainfall will be available for runoff. As argued by 
Whitehead et al. (1979), eqn. (3) is a simple parameterisat ion of an API which 
achieves exponential  weighting with the past very efficiently. Indeed it 
involves just one parameter, 3. 

The effective rainfall uk is computed using the results of eqns. (2) and (3) as: 

u~ = const, r~[sk (4) 

In this paper the constant  term in eqn. (4) is chosen so that  the volume of 
effective rainfall, uk, over the calibration period is equal to the total streamflow 
volume minus a volume of flow corresponding to the antecedent  discharge rate. 
The ratio of the temporal sum of the output of a system (streamflow) to the 
temporal sum of the input (effective rainfall) is approximately the steady state 
gain which we define more rigorously later in the paper. We denote it by ssg 
(const.) to signify the dependence on the value of the constant  term in eqn. (4). 
Since: 

ssg(const.) = ssg(1)/const. 

and 

ssg(const.) = crf 

where crf is the factor which converts rainfall units to flow units for the 
catchment of interest, then: 

const. = ssg(1)/crf 

It should be noted that  the constant in eqn. (4) is not required for model 
calibration as the transfer function model estimation procedure to be described 
can compensate for any missing multiplicative constants. 

The transfer function model 

Consider the discretized version of eqn. (1) with an error  compensation term 
~ assumed to represent the additive nature of all uncertaint ies arising from 
sampling, measurement and model errors, the lat ter  including unrepresented 
model inputs. It is writ ten as 

Yk = houk + h~uk 1 + h2uk 2 + . . .  + hk ~u~ + ~k 

= (h0 ÷ h l z  ~1 + ]12 z - 2  4- . . .  + hh ~z ~ ) u h  + ~k 

- H(z 1)u h + ~k (k = 1 , 2  . . . . .  N )  

It should be noted that  the coefficients of the polynomial H(z 1) are the desired 
unit hydrograph ordinates. However, even if the convolution representat ion is 
an excellent underlying model of the rainfall excess-streamfiow process, the 
mildly ill-posed nature  of eqn. (1) guarantees that  even small errors in u~ and 
Yk lead to instabilities in the h coefficients (Jakeman and Young, 1980a, 1984). 
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We therefore need to proceed with a stabilisation technique. Rational 
functions are known to provide efficient approximations of polynomials (e.g. 
Froberg, 1970), hence the representation: 

H(z 1) = B,z(z  1 ) /A , ( z  -1) 

where we let the as yet unidentified orders of the polynomials in the numerator 
and denominator be m and n, respectively. Thus we define: 

B, , ( z  1) = bo + blZ 1 + . . .  + bmz " 

A , ( z  ~) = 1 + a~z ~1 + . . . a , z  " 

Then the new discrete version of eqn. (1) becomes: 

xk = [B,~(z 1)/A~(z-1)]uk ,~ (5) 

y~, = xk + ~k (6) 

The variable xk is the deterministic noise-free output of the transfer function 
or system model Bm (z 1)/A~(z 1). This variable is corrupted by error ~ to yield 
the observed variable Yk. Notice that  a pure translation term of 5 integral time 
steps is explicitly inserted in eqn. (5) although this could have been accom- 
modated by the possibility of the first 5 coefficients of B,, (z 1) being set to zero. 
The explicitness allows us to consider m as related to (one less than) the 
number of parameters in the B~ (z 1) polynomial rather than the degree of the 
polynomial which is less important from an identification viewpoint. 

In order to construct a physical analogy of this transfer function model, it 
is helpful to decompose the right-hand side of eqn. (5) into its constituent 
components. When all the roots of A,z(z l) are unequal, the decomposition is: 

x~, : ~ [~i/(1 + ~ z  l)]uk ,~ (7) 
i 1 

which represents a model of a linear reservoir with n branches all connected 
in parallel. For each i-th branch the parameter ~ is related to the time (or 
storage) constant K~ by K~ = - A / l n ( - ~ )  with A the discrete time interval 
width. The time constant is the time it takes the i-th order component of the 
IUH to decay to exp( - 1) or about 37% of its peak value (e.g. Young, 1984). The 
parameter fl, is related to the fractional throughput f~ for each branch where 
f = fl~/(1 + ~) .  The quanti ty L is also the steady state gain of the i-th branch 
relative to the total rainfall excess. The steady state gain of the dynamic system 
model (5) is defined as 

N N 

ssg = B~(1) /A~(1)  ~ ~ Yk/ ~ uk 
k - 1  k l 

where the approximation improves with N. Note that  an approximation to the 
actual physical gain or loss of water through the system requires knowledge of 
crf to convert the rainfall units to the same units as the streamfiow. 

When all the roots of A, (z 1) are equal, the decomposition of eqn. (5) is 
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-- ~ 1VIa x~, [ f l i / ( 1  + ~ z  , ] k ,~ 

i 1 

which is a linear reservoir model where each of the n branches connected in 
parallel can be further decomposed into first-order polynomial cells. These cells 
are connected in series and for the i-th branch there are i cells. All cells have 
the same denominator polynomial coefficient ~ and hence time constant but the 
fractional throughput can vary. 

Of course, various combinations of these two cases are theoretically possible 
depending on the form of the roots of A,(z 1). It is easily shown (e.g. Spolia and 
Chander, 1974) that  many of the conceptual models such as those of Nash 
(1957), Diskin (1964) and Kulandaiswamy (1964) proposed in Chow's survey of 
unit hydrograph methods are special cases of the transfer function model. The 
model of Dooge (1959) is a little more general, allowing linear channels and 
reservoirs connecting basin sub-areas. 

Like those linear reservoir models, the transfer function model has the 
analogue of rainfall excess in the catchment following certain broad pathways 
to the stream, each with a characteristic time constant and steady state gain. 
It is unlike them in that  it need not involve prior judgements on the number and 
configuration (series vs. parallel) of pathways. 

PARAMETER ESTIMATION METHODS AND THEIR PROPERTIES 

A general feature of the application of recent approaches (e.g. Ljung, 1977; 
Jakeman and Young, 1983) to estimate time series parameters is use of the 
instrumental variable (IV) technique. The interested reader is referred to 
Soderstrom and Stoica (1983) and Young (1984) for a comprehensive discussion 
of the IV technique. The treatments are complementary with the former more 
theoretical in presentation and the latter more tutorially oriented for the 
benefit of the practitioner. 

The main aim of this section and the appendix is to summarise the basis of 
a particular IV technique, the simple refined instrumental variables (SRIV), in 
relation to its major competitors: least squares (LS), basic instrumental 
variables (BIV) and refined instrumental variables (RIV). SRIV was construct- 
ed and used for multivariable discrete-time systems by Jakeman (1979). The 
recursive form of the basic equations are reported there, while Young (1985) 
and Jakeman et al. (1989a, b) also indicate how simplification of RIV to SRIV 
equations can be obtained for the single variable input-output  case applicable 
in this paper. 

As with all IV techniques, SRIV yields by definition consistent parameter 
estimates. Unlike the well-known LS and BIV techniques, SRIV can identify 
slow IUH components as shown later in this paper. Young (1985) also demon- 
strates the importance of using SRIV when the input is an impulse obtained, 
for example, by injection of a tracer. While SRIV is conceptually and computa- 
tionally simpler and allows more general assumptions on the stochastic term 
L_'k than asymptotically efficient (more refined) versions of IV, it does have their 
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major useful properties. The appendix to this paper provides more details of the 
properties associated with the often used LS and BIV estimators as well as with 
the more sophisticated SRIV and RIV estimators. 

M O D E L  S T R U C T U R E  I D E N T I F I C A T I O N  

The method of identification or specification of the model s t ructure for the 
rainfall streamflow process involves two basic components. One is the deter- 
mination of the most appropriate model parameterisat ion (n, m) of the system 
model, The other component is identification of an appropriate rainfall filter 
(RF) to account for soil moisture conditions and evapotranspirat ion effects. 
Consider these two components in reverse order. 

D e t e r m i n a t i o n  o f  R F  s t r u c t u r e  

The RF structure represented by eqns. (2)-(4) has generally been found to 
work well by the authors. In addition to the evidence presented later in this 
paper, satisfactory applications of this rainfall filter s tructure have been 
documented in Whitehead (1979), Whitehead et al. (1979), Mahendrarajah et al. 
(1982) and Rao and Mao (1987). However, other structures may perform satis- 
factorily. Indeed, different structures may be required in situations where 
antecedent conditions and water storage processes are exceedingly complex. 

Different RF structures may therefore need to be compared in relation to 
their ability to provide an explanation of the streamflow behaviour of interest 
with acceptable predictive uncertainty.  Predictive uncer ta inty  depends not 
only on the uncertainty of the parameters in the rainfall filter s t ructure but 
also that  ensuing in the parameters of the transfer function between effective 
rainfall and streamflow. Therefore, for an hypothesised RF structure, an 
objective procedure for characterising the overall parametric (and hence 
predictive) uncer ta inty  is required, This needs to include an assessment of 
appropriate model structures (n, m) which is the other  component of model 
identification. 

All of the above is objectively facilitated by use of a maximum likelihood 
framework. Conveniently, however, simpler approaches than maximum 
likelihood yield satisfactory determination of an adequate model s t ructure and 
estimation of the parameters of a rainfall filter. In this paper, the rainfall filter 
model s t ructure and its parameter(s) are chosen as a balance between 
parametric uncertainty and model fit to streamflow observations obtained by 
SRIV. The result chosen is one which yields a tolerable variance in the model 
residuals ~t,. and estimates of the transfer function model parameters which are 
well defined and time-invariant. To estimate the parameter  r, Rao and Mao 
(1987) minimise an objective function which represents a combination of the 
total relative standard deviation of the estimated a,( i  = 1 . . . . .  n)  and b e (j 0, 
1 . . . . .  m) parameters and the model residuals. We would recommend against 
placing total faith in one combined statistic and prefer to consider a com- 
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prehensive range of independent statistics, especially when estimation takes 
place within a framework that  is more arbitrary than maximum likelihood. 

Determination of transfer function model order 

A trade-off between two major statistics is employed to help determine the 
transfer function model order. The first of these statistics is the average 
relative parameter error 

ARPE(n,m) (m + n + 1) 1 I ~  ~2 ~" ~ ~ "1  = ai/a; + ai .... 1/b; (8) 
/ = l  i = 0  

where the estimated parameter variance ~ is the estimated variance of the i-th 
element in gl = (al, a2 . . . . .  an, bo, bl . . . . .  bin) T, with the superscript T denoting 
the vector transpose. These variances are available as byproducts of the SRIV 
algorithm. 

The second statistic for assisting with model order identification is the 
model fit criterion 

R' = 1 -  a!/o-~ (9) 

with ~ and ~ the variance of the residuals and output (streamflow), respectively. 
As model parameterisation increases, the value of R 2 (model fit) reaches a 

plateau while the ARPE increases substantially after this plateau has been 
attained. The model order selected is the lowest one above which no significant 
improvement in R 2 is found but a significant increase in ARPE occurs. This 
behaviour of these two major first-pass identification criteria is supported by 
substantial empirical observation (e.g. Young et al., 1980; Jakeman et al., 
1989b) in connection with both real data and simulated data from known 
systems. The ease of objective selection of model order is demonstrated in the 
results section of this paper. 

A summary of the identification procedure 

Based on the previous discussion and the work of Young et al. (1980), we 
propose a multi-step procedure for identifying the appropriate rainfall filter 
parameter(s) and model order for a linear-in-the-parameter transfer function 
model. 

(1) Use prior information to specify the range of both the order of the system 
model and the RF parameter values. Initially omit the rain filter (RF) transfor- 
mation(s). 

(2) For each system model order candidate (i, j), compute the following: 
(a) ARPE (i, j) by SRIV 
(b) R 2 according'to eqn. (9). 
(3) Select an initial system model parameterisation (n, m) by trading off the 

two statistics in 2. 
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(4) Search the RF parameter space. For each parameter sample, calculate 
those model fit statistics deemed important and ARPE (n, m). 

(5) Select the RF parameter values by trading off the fit and ARPE (n, m) 
statistics obtained in step 4, and apply the RF to the input rainfall data. 

(6) Repeat step 2 to verify that  the identified model order (n, m) remains the 
same. 

(7) Perform diagnostic and validation checks on preliminary models. 
It should be noted that  if the relationship between rainfall and streamflow is 
highly non-linear, then the parameter values in the RF transformation may 
affect the model order identified. 

SITE DESCRIPTION AND DATA 

The approach was applied to hourly rainfall and streamflow from two small 
upland catchments in Wales. Catchment CI6 drains 0.72km 2 of moorland 
eastwards into the Camddwr tributary of the Afon Tywi above Llyn Brianne. 
It has a main stream slope of 67.1 m km 1 and a considerable amount of valley- 
bottom peat. Catchment CI5 drains 0.34 km 2 of moorland westwards into the 
Afon Camddwr. It has a main stream slope of 113mkm 1 and is reported to 
feature piping, particularly in an area to the south of the stream. The 
streamflow gauging sites for CI5 and CI6 are a few hundreds of metres apart. 
The catchments are underlain by Ordovician shales, grits and mudstones; have 
podzolic and some peat soils; are open pasture used for sheep grazing; and 
receive about 1800 mm rainfall annually. 

Streamflow is measured at thin-plate rectangular-notch weirs and rainfall is 
measured by single tipping bucket rain gauges at the streamflow gauging sites. 
Short gaps due to instrument maintenance in the 15-min interval stage data 
were filled by subjective interpolation. Instantaneous rates of streamflow at the 
end of each hour were calculated from corresponding stage values and theoreti- 
cal stage-discharge relations for the weirs. Independent measurement of 
streamfiow by dilution gauging corroborated the stage-discharge relation for 
CI6 but there was some discrepancy for CI5 (I.G. Littlewood, unpublished data, 
1989). Nevertheless, the theoretical stage-discharge relation for CI5 was used 
for our analysis. Where it was clear from simple inspection of the rainfall 
records that  a tipping bucket gauge had malfunctioned for a short period, 
rainfall data from another nearby gauge were used. 

The periods used for model calibration are given in Table 1. In addition an 
independent period of data for CI6 was used to examine the validity of the 
model and this is also given in Table 1. Note that  in these applications we did 
not apply a temperature related modification of rainfall according to eqn. (2). 
It proved unnecessary to account for temperature dependent variations in 
evapotranspiration for the periods of calibration and validation considered. 

M O D E L  O R D E R  S E L E C T I O N  R E S U L T S  

Tables 2 and 3 show the results of model order identification for CI6 and CI5 
after applying the rainfall filter (eqn. (3)) to obtain effective rainfall u~, 
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TABLE 1 

Periods of model calibration and validation 

A.J.JAKEMAN ET AL. 

Catchment Calibration period Validation period 
(Number of hourly 
samples, N) 

CI6 1/9/87- 18/9/87 (400) 1/7/87 1/9/87 (1500) 
CI5 5/9/87 30/9/87 (600) 

TABLE 2 

Model order identification results for the CI6 catchment with the rainfall filter parameter in eqn. 
(3) set a t r  = 86h 

Parameterisation %ARPE R 2 
(n,m) 

(1,0) 0.0319 0.8191 
(2,0) 21.2976 0.8206 
(2,1)* 0.0214 0.9455 
(3,0) 0.3637 0.8449 
(3,1) 0.8216 0.9014 
(3,2) 38.1116 0.9078 

Asterisk denotes identified model structure. 

TABLE 3 

Model order identification results 
(3) set at r = 221h 

for the CI5 catchment with the rainfall filter parameter in eqn. 

Parameterisation %ARPE R 2 

(1,0) 0.0356 0.7314 
(2,0) 23.3210 0.7344 
(2,1)* 0.0411 0.8516 
(3,0) 1.1131 0.7539 
(3,1) 2.1571 0.7884 
(3,2) Unstable model 

Asterisk denotes identified model structure. 

a c c o r d i n g  to  eqn.  (4). T h e  r a i n f a l l  f i l t e r  p a r a m e t e r s  w e r e  se t  n e a r  t h e i r  o p t i m a l  

va lue s ,  r = 8 6 h  and  r = 221h,  r e s p e c t i v e l y ,  in o r d e r  to d e m o n s t r a t e  t h e  

b e h a v i o u r  o f  o u r  m a j o r  c r i t e r i a .  F o r t u n a t e l y ,  we h a v e  found  t h a t  mode l  o r d e r  

s e l e c t i o n  a c c o r d i n g  to  A R P E  and  R 2, d e r i v e d  f rom the  S R I V  e s t i m a t o r ,  is 

l a r g e l y  i n s e n s i t i v e  to t he  v a l u e  o f  t he  p a r a m e t e r  r, t h e r e b y  e l i m i n a t i n g  t h e  n e e d  

to s e a r c h  t h e  e n t i r e  s p a c e  of  poss ib l e  m o d e l  o r d e r s  and  r v a l u e s  j o i n t l y .  In  T a b l e  

2, n o t e  t h a t  t he  m a x i m u m  v a l u e  of  R 2 c o r r e s p o n d s  w i t h  t he  m i n i m u m  A R P E .  
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This may not always occur, as seen in Table 3. Generally, the level of model 
parameterisat ion selected is the one above which either decreases or only small 
increases in R 2 coincide with large increases in ARPE. 

OPTIMISAT[ON-RESULTS FOR THE RF PARAMETER 

Once the model order is selected, our procedure applies the major criteria to 
any selected range of rainfall filter parameters. Tables 4 and 5 show that  for the 
two catchments the minimum ARPE and maximum R 2 coincide closely and it 
matters little which value of r is chosen within the possible range of coinci- 
dence. We have chosen r = 86 h and T = 221h for CI6 and CI5, respectively. 

Figures 1 and 2 show plots of the rainfall and effective rainfall for CI6 to 
demonstrate the effect of the rainfall filter. The effective rainfall can be scaled 
by equating the volumes of effective rainfall and flow in steady state as shown 
earlier in the paper. Notice that the damping of rainfall peaks is greater  the 
longer the periods of low antecedent rainfall. 

PARAMETER ESTIMATION RESULTS 

The identified system model for CI6 obtained by application of SRIV over the 
calibration period in Table 1 is: 

TABLE 4 

Results for the opt imisat ion of the rainfall filter parameter  ~ for CI6 

,~ %ARPE R 2 

5 0.0305 0.9047 
10 0.0280 0.9164 
15 0.0285 0.9110 
40 0.0255 0.9099 
50 0.0244 0.9178 
60 0.0231 0.9277 
70 0.0220 0.9365 
80 0.0215 0.9429 
82 0.0214 0.9438 
84 0.0214 0.9447 
86* 0.0214" 0.9455 
88 0.0215 0.9461 
90 0.0215 0.9467 

102 0.0223 0.9484 
104" 0.0225 0.9485* 
106 0.0227 0.9485 
108 0.0229 0.9484 
110 0.0232 0.9483 
120 0.0247 0.9470 
130 0.0266 0.9448 

Asterisks denote range of opt imum values. 
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TABLE 5 

Results for the opt imisat ion of the rainfall  filter parameter  z for CI5 

A.J.JAKEMAN ET AL. 

%ARPE R 2 

10 0.0553 0.4632 
20 0.0510 0.5967 
30 0.0519 0.4805 

100 0.0436 0.7232 
150 0.0444 0.7780 
200 0.0456 0.7889 
216 0.0406 0.8430 
218" 0.0403* 0.8486 
220 0.0406 0.8513 
221" 0.0411 0.8516" 
222 0.0418 0.8511 
230 0.0560 0.8317 
240 0.1210 0.7996 

Aster isks  denote range of opt imum values. 

r~ = r k 

s~ = sk 1 + (1 /86) ( r~ ' -  sk 1), So 
u~ = cons t ,  r*sk 

= 0 (10) 

20.4317 ( + 0.4056) - 19.9046 ( + 0.3840)z- 1 
xk = (11) 

1 - 1.7836 (_+ 0.0070)z 1 + 0.7859 (_+ 0.0068)z 2 uk 

18.8796 1.5521 

1 0.7947z_ ~ uk + uk (12) 1 - 0.9890z 1 

The  q u a n t i t i e s  i n  p a r e n t h e s e s  r e p r e s e n t  SRIV e s t i m a t e s  of t he  s t a n d a r d  e r ro r s  

on  p a r a m e t e r s .  F i g u r e  3 shows  the  r e s u l t s  of  SRIV e s t i m a t i o n  on  mode l  fit to 

m m  

• ' " l O O  . . . .  1 5 o  . . . .  2 

H o u r s  f r o m  1 2 0 0  

o . . . .  2 s o  . . . .  3 6 o  . . . .  3 ~ o  . . . .  6 o  

1 s t  S e p t e m b e r  1 9 8 7  

Fig. 1. Hourly rainfall  time series for ca tchment  CI6 for cal ibrat ion period in Table 1. 
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mm 

' . . . . . . .  ~ "  " " ) -  . . . . . . .  I , l  • , +  . ] + ,  • • • ^' ' ' " 'so ~ 2 ~ o  2 ~ o  + o o  + + o  , o o  0 50  1 0 0  1 

Hours from 1 2 0 0  1st September 1 9 8 7  

Fig. 2. Effective rainfall corresponding to rainfall in Fig. 1. 

the streamflow data. It is interesting to compare the strong definition of the 
system parameters obtained by SRIV with the results of the better known LS 
and BIV estimators in Table 6 which show high standard errors on some 
parameters. In particular, the estimates of a2 in Table 6 are not significantly 
different from zero. These results from both the LS and BIV algorithms wrongly 
suggest that there is only one identifiable IUH component. The model fits 
obtained by both LS and BIV estimation further indicate the inferiority of this 
identification. Figure 4 displays the corresponding fit obtained by BIV 

2 o o :  

Flow 1 sO 

(I.s -1) 

100" 

50" 

- -  O b s e r v e d  

. . . . . .  M o d e l  fit 

• ' ' " I . . . .  I . . . .  l . . . .  I " ' " + 
0 50  1 0 0  1 5 0  2 0 0  25q 

. . . .  i . . . .  i . . . .  ] 

3 0 0  3 5 0  4 0 0  

Hours from 1 2 0 0  I s t  S e p t e m b e r  1987 

4°t 1 2 0  

Error 

(,.=---1) o i + . . ~  • +-"-O-' + , o ' ~ " -  . . . .  V" " 3 ,+o  " 

- 2 0 - ~  

Fig. 3. Model fit to CI6 streamflow data using SRIV estimation over calibration period. 
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TABLE 6 

Identification resul ts  for CI6 using LS and BIV 

A.J.JAKEMAN ET AL. 

a I a 2 b 0 b 1 %ARPE R 2 

LS - 0.8804 0.0424 15.3466 6.9673 14.6269 0.7916 
(+ 0.1982) (+ 0.1709) (± 1.780) (+ 4.321) 

BIV 0.7733 -0.0381) 15.2651 8.7720 722.9256 0.7947 
(± 0.2364) (+ 0.2032) (± 1.606) (+ 5.028) 

estimation. The fit obtained by least squares estimation was very similar, both 
BIV and LS estimation techniques performing reasonably well in matching 
peaks of the streamflow hydrograph but seriously underestimating the 
recessions. 

Equation (12) gives the decomposition of the SRIV-identified model (11) as 
two parallel first-order systems. The difference in the response coefficients (or 
time constants) and steady state gains of these two systems should be noted. Let 
quantities associated with the quicker response (smaller time constant) be 
denoted by the subscript q and those for the slower response by the subscript 
s. Then using the definitions for time constant and steady state gain, the 
relevant quantities for CI6 are: 

K. - 1/ln(0.7947) = 4.4h 

2 0 0 -  

1 5 0 -  
F low 
( i . s  - 1 )  

1 0 0  

5 0 '  

- -  O b s e r v e d  

. . . . .  M o d e l f i t  

50  1 0 0  1 5 0  2 0 0  2 5 0  3 0 0  3 5 0  4 0 0  
Hours from 1 2 0 0  1st S e p t e m b e r  1 9 8 7  

 o.O I ,  , o 
o ~  :....~Tj~-'~...~, , ~ , .  .~v [ f . ~  

Fig. 4. Model fit to CI6 streamflow data using BIV est imation over cal ibrat ion period. 
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SSgq = 18 .8796 / (1 -  0.7947) = 92 

K~ = - l / in  (0.9890) = 90.1h 

ssg~ = 1 .5521 / (1 -  0.9890) -- 141 

Thus  the  re la t ive  a m o u n t  of  effect ive ra infa l l  d i scharged  f rom the c a t c h m e n t  
via the qu ick  response  sys tem is, on average ,  SSgq/(Ssg~ + ssgs) = 0.395 while  
t ha t  t h r o u g h  the  s lower  p a t h w a y  is ssgs/(ssgq + ssgs) = 0.605. The re la t ive  
con t r ibu t ions  to the  peak  of the I U H  can  be ob ta ined  f rom the n u m e r a t o r s  in 
eqn. (12). These  yield 0.924 for the  qu icke r  p a t h w a y  and 0.076 for the slower.  

The divis ion of the po lynomia l  B m ( z  1) by A n ( z  1) yields H ( z  1) whose 
coefficients are  the  i n s t a n t a n e o u s  uni t  h y d r o g r a p h  ordinates .  H o w e v e r  these  
o rd ina tes  can  be ob ta ined  more  s imply by se t t ing  u~ = 5ki (the K r o n e c k e r  del ta  
funct ion)  in eqn. (11) and  solving it r ecurs ive ly  as: 

x l  = b o u l  = 20.43175kl - 20.4317 

x2 - - a ~ x l  + bou2 + b l u ~  = 1.7836 × 20.4317 - 19.9046 

xk  = - a ~ x ~ _ l  - a2xk  2 - 1.7836xk_1 - 0.7859x~ 2(k = 3, 4 . . . . .  N) 

S imi la r ly  the  I U H  ord ina tes  for the  individual  quick  and slow response  sys tems  
can be found s epa ra t e ly  by app ly ing  the K r o n e c k e r  del ta  funct ion  defini t ion to 
uh in the s epa ra t e  componen t s  of  eqn. (12). Note  t ha t  the  peak  of the I U H  is x~. 
The componen t s  of  the I U H  and the i r  sum are  shown in Fig. 5. The r e s u l t a n t  
inf luence of these  componen t s  on s t reamflow for the ca l ib ra t ion  per iod is 
d isplayed in Fig. 6. Not ice  the  more  dominan t  effect  of  the slow componen t  
dur ing  low ra infa l l  per iods  despi te  its small  con t r ibu t ion  to peak  s t reamf low as 
seen in Fig. 5. 

The above  app roach  was also applied to c a t c h m e n t  CI5 us ing  SRIV 
es t imat ion .  A s u m m a r y  of the cha rac t e r i s t i c s  of the sys tem model  for CI5 is as 
follows: 

221 h 

3.6124 (+ 0.1023) - 3.5257 (+ 0.0973)z 1 

xk = 1 - 1.8813 (+ 0.0072)z 1 + 0.8822 (_+ O.O071)z -2 Uk 

3.0372 0.5752 

= 1 - 0.8888z ~uk + uk 1 - 0.9925z -~ 

K 4 = 8.5h, K~ = 133.4h, ssgq = 27, ssg~ = 77 

For  the qu icke r  component ,  the  re la t ive  vo lume of effect ive ra infal l  and the  
con t r ibu t ion  to the peak  of the I U H  are  0.2262 and 0.841, respect ive ly .  For  the  
s lower  component ,  these  f igures are  0.738 and 0.159. F igure  7 shows the  SRIV 
model  fit to s t reamf low for CI5. 

F igu re  8 d isplays  the  co r re spond ing  I U H  and c o m p o n e n t  flows. I t  should  be 
noted  t ha t  the  re la t ive  con t r ibu t ion  of the  slow c o m p o n e n t  to the peak  of the  
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Fig. 5. The IUH and identifiable components for CI6. 
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Fig. 6. Contribution of quick and slow IUH components to CI6 streamflow over calibration period. 
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Fig. 7. Model fit to CI5 streamflow over cal ibrat ion period in Table l. 

IUH is larger for CI5 than for CI6. Figure 9 shows the individual quick and slow 
flow contributions to CI5 streamflow over the calibration period. 

To demonstrate the validity of the model for CI6 the identified model (10) and 
(11) was applied to an independent series of 1500 rainfall and streamflow 
observations for the period specified in Table 1. Figure 10 displays the results 
for the model fit to streamflow over the combined validation and calibration 
periods. 

DISCUSSION AND CONCLUSIONS 

The paper has presented an approach to relate data on rainfall and other 
climatic variables to streamflow. The resultant model identified for any 
particular case can have several uses. These concern inference of any one of 
the following given the other two: system inputs (rainfall), system outputs 
(streamflow) and system model characteristics at catchment scale (time 
constant of rainfall filter, and time constant and gain parameters of individual 
linear reservoirs). 

The approach is based upon a mathematical analogy for streamflow 
generation comprising a configuration of linear reservoirs and an adequate 
estimation technique. Taking the latter first, the estimator applied in this 
paper yields a combination of necessary statistical properties: consistency, 
relative efficiency, and stability. Importantly, the order of the model structure 
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Fig. 10. Model  fit to CI6 s t reamflow over  the combined v a l i d a t i o n  and c a l i b r a t i o n  periods, 

need not be specified in advance as the SRIV estimator yields statistics which 
readily allow selection of the s tructure deemed to be both consistent with 
streamflow observations and strongly identifiable from the rainfall and 
streamflow data. 

It was demonstrated in the previous section that  the use of the well-known 
least squares and basic instrumental  variables estimation techniques can lead 
to models with poor performance. The LS estimator is biased while the BIV 
estimator can be unstable. For the BIV this can sometimes result in computa- 
tional overflow but for LS and BIV it often leads to identification of a lower 
order model of inferior performance than SRIV or RIV. These results suggest 
an opposing view to that  in Rao and Mao (1987) who regard least squares as 
adequate at least for their  applications. We would recommend use of RIV or 
SRIV estimators as a matter  of course since the additional effort is conceptu- 
ally minor while the total computational effort is modest enough for imple- 
mentat ion on microcomputers. 

The mathematical  a t t ract ion of the IUH approach in this paper is 
parametric efficiency of the transfer function model and the associated sensitiv- 
ity of the model output to changes in model s t ructure  and parameter  values. Its 
physical plausibility and at t ract ion relates to the basic simplicity of the 
flexible system of linear reservoirs and their known applicability, from the 
work of many previous researchers, in simulating the catchment-scale rainfall 
runoff process. A forthcoming paper by Young and Jakeman (1990) provides 
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evidence that  systems of linear reservoirs in parallel can be used to charac- 
terise other basic processes in hydrology. 

These mathematical and conceptually attractive physical features add 
weight to the proposition that  if a strongly identified linear structure of quick 
and slow response systems holds well for a reasonable calibration period then 
it may also hold when the catchment is subject to different series of rainfall 
excess excitations. These features cannot be associated with another popular 
approach based upon direct estimation of IUH ordinates via constrained op- 
timisation. Deininger (1969), Mays and Taur (1982) and Raynal Villasenor and 
Campos Aranda (1988), for example, minimise various errors between 
streamflow and the IUH prediction of it subject to constraints imposed on the 
IUH ordinates. The constraints are necessary to counter problems associated 
with the high level of parameterisation of the solution, i.e. the number of unit 
hydrograph ordinates. The over-parameterisation leads to a unit hydrograph 
solution with oscillatory behaviour and negative ordinates unless the 
constraints are imposed. 

Bruen and Dooge (1984) have effectively specified an improvement to this 
constrained approach by imposing a smoothness penalty on the IUH ordinates, 
found by least squares for example, to damp their oscillatory behaviour. The 
technique is known by mathematicians as regularisation (see Jakeman and 
Young, 1984 and references therein) and includes the ability to impose 
smoothness conditions on any linear combination of derivatives of the IUH 
ordinates. The regularisation approach allows restriction of the class of 
possible solutions in a systematic way by choice of smoothness condition and 
level of penalty to the least squares cost function. It still suffers, however, from 
lack of an attractive conceptual interpretation of the catchment-scale rainfall- 
runoff process. 

There are four other noteworthy advantages of the approach in this paper. 
Firstly, there is no penalty in terms of additional data requirements compared 
with competing methods. Indeed, the parametric efficiency of the transfer 
function representation has a tendency to reduce the quantity of essential data. 
Instrumental  variable estimators of transfer function model parameters can be 
successful with small time-series data sets of only 4(~50 samples (e.g. Mahen- 
drarajah et al., 1982) even with second-order systems (e.g. Jakeman and Young, 
1980b). However, while only short data sets are required for model identifica- 
tion of the IUH, the calibrated model will perform better the more information 
in the data. The information content is basically a function of the range of 
rainfall and streamflow behaviour in the data set, the number of realisations 
of individual streamflows in that  range and the lack of autocorrelation in the 
rainfall series. 

Secondly, a guide to the sensitivity of the model parameters is directly 
provided by algorithms like the SRIV. An estimate of the covariance matrix of 
the parameters is a natural  byproduct of the recursive estimation procedure. 
Therefore, an appreciation of the certainty of any identified model and of the 
need to collect further data can be obtained. 
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The third advantage of the approach in this paper is that  baseflow (slow 
response) separation is an integral part of model identification and not, as in 
some methods which derive a unit hydrograph for quickflow only, a necessary 
prerequisite. The product of the method described here is an IUH correspond- 
ing to total streamflow and this IUH can be resolved into its slow and quick 
components. Convolution of each IUH component with effective rainfall yields 
component stream hydrographs. It appears that  a lumped, two-component IUH 
model is conceptually valid for describing streamflow behaviour in the small, 
humid region, upland catchments examined here. Additional applications of 
the approach are being undertaken to assess its general ability to identify 
component flows in a wide range of catchments. 

Fourthly, another advantage of the approach presented in this paper is that  
considerable time need not be spent selecting 'clean', single-peaked events for 
analysis, as required by some methods. Indeed, it is preferable to employ all the 
available verified rainfall-streamflow data to improve the precision and 
representativeness of model parameters. 

In conclusion the authors would like to point out that  a user-friendly 
computer package for this approach is at an advanced stage of preparation. It 
is called IHACRES which is an acronym for ¢Identification of unit Hydrographs 
And Component flows from Rainfall, Evapotranspiration and Streamflow data'. 
It also signifies joint development of the package by the Institute of Hydrology 
and the Australian (National University's) Centre for Resource and Environ- 
mental Studies. 
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A P P E N D I X  

Table A1 summarises the properties of four different estimators of time 
series model parameters: least squares (LS), basic instrumental variable (BIV), 
simple refined instrumental variable (SRIV) and refined instrumental variable 
(RIV) methods. While the least squares estimate possesses the lowest computa- 
tional complexity of the four, it is generally biased. All the IV estimators 
circumvent this problem by construction of an appropriate IV vector. However, 
we demonstrate in the results section that BIV shares a major drawback with 
the least squares estimator in that  it generally fails to identify second-order 
systems (n = 2) and presumably higher order systems where one of the two 
roots of the An(z l) polynomial is near the unit circle. This means that  the unit 
hydrograph response has a component, which may be quite important, that  
decays slowly. The results of Jakeman et al. (1989b) illustrate that, compared 
to the other competitors, BIV is also not as stable to outliers in observations. 

On the plus side, BIV and SRIV are relatively efficient. Using simulations 
with known system parameterisations, Young and Jakeman (1979) demonstrate 
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TABLE A1 

Proper t i es  of  leas t  squa re s  and  IV me t hods  

Proper ty  Me thod  

LS BIV SRIV RIV 

Unb ia sed  × \,' x,, 
Cons i s t en t  × . ,  .,' .,' 

× , Stable to .~, \: 
outliers 
Asymptotically × "~ /~, 
efficient 
Ability to Poor Poor Strong Strong 
identify 
slow IUH 
c o m p o n e n t  
Rela t ive  N N . I  N.I.(1 + ~:) N.2.I  (1 . 3e) 
c o m p u t a t i o n a l  
complex i ty  e 
Reeurs ive  V' x" v' ,/' 

BIV and  SRIV are  a sympto t i ca l ly  efficient only if sy s t em model  r es idua l s  a re  not  au tocor re la t ed ,  
have  m e a n  zero and  c o n s t a n t  va r i ance .  
~I deno tes  the  n u m b e r  of  i t e r a t ions  for convergence ,  N the  n u m b e r  of  r e cu r s ions  per i t e ra t ion  and  
the  re la t ive  complex i ty  of  f i l ter ing opera t ions .  Note  t ha t  usua l ly ,  1 < I < 10 and  0 < ~: ~ 1. 

this  for BIV while  J a k e m a n  (1979) demons t r a t e s  it for SRIV. A mu l t i va r i ab l e  
example  in the l a t t e r  pape r  provides  a rough  ind ica t ion  of the  pe r fo rmance  of 
the th ree  IV techniques:  the s t anda rd  e r rors  of  BIV p a r a m e t e r  e s t imates  were  
abou t  twice  those  of RIV while the s t anda rd  e r rors  of  SRIV were  abou t  twice  
those  of BIV. Impor t an t l y ,  the m a x i m u m  s t anda rd  e r ro r  for any  SRIV es t imated  
p a r a m e t e r  was abou t  10%. In o ther  words SRIV can  be efficient enough  to yield 
useful p a r a m e t e r  accuracy .  These  resul ts  were  ob ta ined  for a mu l t i va r i ab l e  
sys tem with  five p a r a m e t e r s  to be es t imated  f rom 1000 samples,  a p rob lem of a 
h igher  order  of  difficulty t han  the  ones  p resen ted  in the resul ts  sect ion.  Note  
also t ha t  BIV and SRIV will be a sympto t i ca l l y  efficient when  the sys tem model 
res iduals  ~k are  not  au tocor re l a t ed ,  have  mean  zero and  cons t an t  var iance .  

While  SRIV may  at  t imes suffer  some pena l ty  in t e rms  of efficiency of 
es t imates ,  it has  i m p o r t a n t  a d v a n t a g e s  over  the o the r  methods.  I t  can  ident i fy  
s lowly decay ing  I U H  componen t s  as can  RIV but  it does this wi thou t  
knowledge  of or  ma jo r  a s sumpt ions  abou t  the  model  res idua ls  ~k. I t  only  
requi res  t ha t  these  res iduals  be unco r re l a t ed  with  the sys tem ou tpu t  x~.. And 
because  it does not  requi re  e s t ima t ion  of p a r a m e t e r s  in a s tochas t i c  model  as 
does RIV, there  is an assoc ia ted  reduc t ion  in c o m p u t a t i o n a l  complexi ty .  This  
is especia l ly  i m p o r t a n t  when  ca r ry ing  out  sys tem model  order  ident i f ica t ion as 
it c i r cumven t s  the prob lem of hav ing  to consider  every  s tochas t i c  model 
s t r u c t u r e  opt ion with  every  sys tem model order  option.  
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