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Abstract

The natural convective ¯ow and heat transfer in a ¯uid saturated anisotropic porous medium have been investigated using the

generalised non-Darcy model. A semi-implicit, Galerkin, velocity correction procedure has been employed to solve the governing

partial di�erential equations. Numerical results are presented for di�erent inclinations of the principal permeability directions, Ray-

leigh and Darcy numbers and permeability and thermal conductivity ratios. The comparison of present results with existing analytical

and numerical results shows that present formulation is accurate. A parametric study has been carried out and the di�erence between

the Brinkman and the generalised porous medium models in the context of anisotropic ¯ow is discussed. Signi®cant di�erence between

these models is noticed at higher Rayleigh and Darcy numbers. Ó 2000 Elsevier Science S.A. All rights reserved.
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Nomenclature

A aspect ratio (H/L)
COEFF coe�cient (Eq. (17))
cp speci®c heat
Da Darcy number (j1=L2)
g acceleration due to gravity
H height of the cavity
J viscosity ratio (leff /lf )
k thermal conductivity tensor (Eq. (10))
l length
k�1 k�2 thermal conductivity ratios (Eq. (11))
L characteristic dimension (width of the cavity, Fig. 1)
M mass matrix (Eq. (16))
N shape functions
Nu Nusselt number (� 1

l

R l
0
�ou=ox1� dx1 ± isothermal vertical walls Eq. (19) ± heat ¯ux

boundaries)
p pressure
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1. Introduction

The natural convection in an anisotropic porous medium is an important area of research due to its wide
range of applications including thermal insulation, ¯ow in mushy region of a solidifying alloy [1], ¯ow past
heat exchanger tubes [2], etc. Although convection in anisotropic porous media is modelled by many au-
thors, they are not general enough in the sense of the model used and the way in which directional
properties are handled. In many of these studies, the principal directions are assumed to coincide with the
coordinate axes. With these formulations, in¯uences of the principal directions of the permeability and
thermal conductivity upon ¯ow and heat transfer cannot be investigated. Thus we need a generalised
procedure and suitable numerical algorithm to solve ¯ow and heat transfer in an anisotropic porous me-
dium.

Based on the Happel and Kuwabara ¯ow models, Neale [3] correlated the anisotropies of ¯ow/di�usion
phenomena with medium porosity. Kvernvold and Tyvand [4] have investigated thermal convection in
anisotropic porous medium applicable to insulation systems. Ni and Beckermann [5] considered the in-
¯uence of anisotropic property ratios upon the natural convective heat transfer in a square cavity ®lled with
¯uid saturated anisotropic porous media. Thermal convection has been analysed by Chang and Lin [6] in a

Pr Prandtl number (Eq. (4))
q heat ¯ux
Ra Rayleigh number (Eqs. (4) and (5))
Ra� Darcy±Rayleigh number (�Ra Da)
T temperature
t time
jV j magnitude of velocity vector (

��������������
u2 � v2
p

)
ui; uj velocity components
xi; xj coordinate axes

Subscripts
c cold or center
f ¯uid
e� e�ective
h hot
max maximum
min minimum
s solid

Superscripts
n previous time level
� intermediate velocity components

Greek symbols
a thermal di�usivity (Eq. (4))
b coe�cient of thermal expansion
� porosity
ci vector; unity in vertical direction; 0 in horizontal direction
j permeability tensor (Eq. (7))
j1; j2 principal permeability values
l dynamic viscosity
m kinematic viscosity
w stream function
r ratio of heat capacities, (� (q cp)f + (1 ÿ � (q cp)s)/(q cp)f )
h direction of principal permeabilities
q density
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square cavity with ®nite wall thickness and convection in a cylinder ®lled with anisotropic porous medium
has been investigated by Chang and Haiso [7]. Recently, Degan et al. [8] studied the e�ects of principal
permeability directions and the in¯uence of permeability and conductivity ratios on natural convective heat
transfer. Their analysis predicts that the maximum heat transfer occurs when the principal permeability
directions are oriented in the direction of coordinate axes, with a higher permeability in the ¯ow direction.
Several studies have been reported in literature on natural convective heat transfer in enclosures heated
from below. For instance, Epherre [9], Castinel and Combarnous [10], McKibbin and Tyvand [11], Gjerde
and Tyvand [12] Nilsen and Storesletten [13] are few of them.

These available studies on convection in anisotropic porous medium use Darcy's model which is limited
to well packed and low permeability media. Industrial applications such as ¯ow over tube bundles (as in
nuclear reactor core) and solidi®cation of metal alloys demand a non-Darcian approach which suitably
accounts porosity in addition to the non-Darcian forces such as viscous and drag e�ects. Although many
studies are available on generalised non-Darcian natural convection in enclosures for isotropic porous
media [14±20] the generalised approach to ¯ow in anisotropic porous media is not available.

There are few recent studies which use formulations in terms of principal values of properties and its
orientations [8,21]. However, these studies are again not generalised in terms of the model used. Many
features have been ignored in these recent studies. First of all, they are based on either the Darcy or
Brinkman models. Earlier study with the generalised model without o�-diagonal permeability terms [22]
suggests that the parameters such as porosity does have an e�ect on the results. It is therefore important to
formulate the anisotropic porous medium ¯ows using the generalised model due to its wide range of in-
dustrial applications. Also, many porous medium ¯ows need to be solved with respect to time to study the
impact of ¯ow evolution. It is also important to have a suitable and simple solution procedure to solve the
transient porous medium equations. In this paper, we describe the implementation of the velocity cor-
rection procedure for a more general hydrodynamically and thermally anisotropic porous medium. Several
numerical examples are presented and compared with the existing results. A parametric study is also carried
out for di�erent inclination angles, permeability ratios and Darcy and Rayleigh numbers using the present
generalised approach and the di�erences between the Brinkman and the generalised porous medium ¯ow
models are quantitatively determined.

2. Problem formulation and governing equations

A hydrodynamically and thermally anisotropic porous medium in an enclosure saturated with a ¯uid is
considered (Fig. 1). All the properties except the density are assumed to be constant. The density variation
is incorporated by invoking the Bousenesq approximation for buoyancy driven ¯ows. The generalised
governing equations for the porous medium ¯ow in non-dimensional form are (for buoyancy driven ¯ows)
[16±20]

Continuity
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The following scales are used to non-dimensionalise the above equations

xi � xi

L
; ui � uiL

af

; p � paf

qL2
; t � taf

L2
; T � T ÿ Tc

Th ÿ Tc

;

af � kf

�qcp�f
; Pr � mf

af

; Ra � gbDTL3

mfaf

; J � meff

mf

;

�4�

where the over-line indicates a dimensional quantity. Above scales are applicable for the di�erentially
heated cavity with isothermal vertical walls. When the enclosure is subjected to constant heat ¯ux, fol-
lowing temperature scale and Rayleigh number de®nition are used [23]

T � T ÿ Tc

qL=kf

; Ra � gbqL4

kfmfaf

: �5�

The detailed derivation of the governing equations are discussed elsewhere [14,16]. In the momentum
Eq. (2), the non-linear matrix drag is incorporated through the Ergun's correlation [24]. In the governing
equations, u and v are volume averaged velocity components; � the porosity of the medium and is assumed
to be uniform throughout the domain in the present study; Pr the Prandtl number (unity in this study); Ra
the ¯uid Rayleigh number; r the ratio of heat capacities; T the non-dimensional temperature, J the viscosity
ratio, (This ratio is taken as unity in the present study for the sake of simplicity.) jij and kij are permeability
and thermal conductivity tensors respectively; m the kinematic viscosity; q the heat ¯ux and a the thermal
diffusivity. Subscript f indicates ¯uid; `eff' indicates effective; h indicates hot and c indicates cold or center.
See Nomenclature for details.

The permeability tensor in the momentum equations is given as [8,21]

j � j1 cos2 h� j2 sin2 h �j1 ÿ j2� sin h cos h
�j1 ÿ j2� sin h cos h j1 sin2 h� j2 cos2 h

� �
; �6�

where j1 and j2 are the principal permeability values and h is the angle between j2- and x2-directions
(Fig. 1).

Fig. 1. Buoyancy driven ¯ow in a ¯uid saturated anisotropic porous medium.
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Now the inverse, non-dimensional permeability tensor is calculated as

�jÿ1� � 1

Da
cos2 h� j� sin2 h �1ÿ j�� sin h cos h
�1ÿ j�� sin h cos h j� cos2 h� sin2 h

� �
�7�

and the inverse of square root of the permeability tensor is

� ���jp �ÿ1 � 1�������
Da
p cos2 h� �����

j�
p

sin2 h �1ÿ �����
j�
p � sin h cos h

�1ÿ �����
j�
p � sin h cos h

�����
j�
p

cos2 h� sin2 h

� �
; �8�

where

Da � j1

L2
; j� � j1

j2

: �9�

The thermal conductivity tensor in its non-dimensional form is given by

�k� � k�1 0
0 k�2

� �
; �10�

where

k�1 �
k1

kf

; k�2 �
k2

kf

: �11�

In the above relations, Da is the Darcy number, k1 and k2 are thermal conductivities in x1 and x2 directions,
respectively. The o� diagonal terms in Eq. (10) are omitted for the sake of simplicity.

In the governing equations (Eqs. (1)±(3)), the complexity is mainly introduced by the anisotropic porous
medium terms (linear and non-linear terms). It is therefore necessary to devise a proper solution procedure
to handle these terms. To the knowledge of the authors, no literature is available on the solution of gen-
eralised anisotropic porous medium equations. It is rather di�cult to get any form of analytical solution for
these equations discussed above. In the following section, we give the necessary modi®cations required for
an anisotropic medium from an isotropic model proposed earlier [17]. Although the present procedure is an
extension of the previous work, it is not straight forward. Here we need to handle the anisotropic terms
which contains both the velocity components. Thus treating the whole porous medium terms implicitly as in
the previous work [17] is not possible and part of it need to be treated explicitly, which may pose some time
step restrictions.

3. Solution procedure and numerical method

The present work di�ers from the earlier one due to the anisotropy introduced here. Also some di�er-
ences in splitting the equations have been incorporated for the sake of easy handling. Now the x1 com-
ponent of the momentum equation (vertical direction, Fig. 1) can be rewritten as

1
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p �cos2 h
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j�
p

sin2 h�u1 � �1� ÿ �����
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p � sin h cos h

	
u2

��Ra PrT : �12�

In the absence of anisotropy, all porous medium terms can be treated implicitly [17,18]. However, here,
the porous medium terms cannot be handled implicitly due to the appearance of two di�erent components
of porous medium terms with two di�erent velocity components. Thus the porous medium terms need to be
split into two parts as discussed below.
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The Eulerian velocity correction procedure used in this study is well documented in many articles for
single phase ¯ows [25±28] and porous medium ¯ows [17,18]. The method can be summarised into following
steps

(i) Calculate the intermediate velocity components from the momentum equations after neglecting the
pressure term. In the earlier study [17] this step is straight forward and the intermediate velocities can
be calculated directly by implicitly treating the porous medium terms. However, in anisotropic porous
medium problems, both velocity components are present in both the components of the momentum
equations as dependent variables. Thus, when solving x1 component of the momentum equations, the
parts of porous medium terms which contains x2 component velocity can only be treated explicitly
and vise versa.
(ii) Find the pressure ®eld using the intermediate velocity components and the continuity equation (the
Poisson equation). Here a pressure Poisson equation derived from the continuity is used [25±28].
(iii) Correct the velocities using the pressure distribution obtained from step (ii) and
(iv) Determine the temperature distribution using the calculated velocity and pressure ®elds.
The four steps listed above constitute the standard velocity correction procedure followed in most of the

available literature. However, a modi®cation in step one can be made to separate the porous medium and
other terms (two steps). Thus programming will be systematic and single phase ¯ow can be solved by simply
eliminating the porous medium step. To separate the porous terms, we calculate the intermediate velocity
components in two steps. In the ®rst step, a velocity ®eld without the porous medium terms is obtained. The
true intermediate velocity components are calculated from the porous medium terms in the second step.
Now Eq. (12) can be discretized in time as (without pressure term)
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and
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where u�1 is the intermediate velocity component in x1 direction. In the above step (Eq. (14)), it should be
noted that the porous medium terms are split into two parts with one treated at n� 1th time level (terms
with superscript *) and the other at nth level (terms with superscript n). The spatial discretization using the
Galerkin method to Eq. (13) is straight forward and the mass matrix can be lumped to update the solution
[26±28]. Eq. (14) is also discretized in a similar manner and the coef®cients of the mass matrix can be
collected as
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where �M� is the mass matrix given as

�M � �
Z

X
N TN dX: �16�
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Substituting

COEFF � 1

�
� Pr

Da
�cos2 h� j� sin2 h� � 1:75��������
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p � ��������������
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into Eq. (15) and rearranging terms gives
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��������������
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p
�n�������

Da
p �1

(
ÿ �����

j�
p � sin h cos h�M �fun

2g
)
: �18�

The mass matrix �M � in the LHS can now be lumped to advance the solution in time by just updating at
each time step.

4. Numerical examples and discussion

The buoyancy driven ¯ow in a di�erentially heated square cavity with isothermal vertical walls is
considered as a ®rst problem (Fig. 1), which is a standard benchmark example used by many authors. The
natural convection inside the cavity is investigated for di�erent Rayleigh numbers, permeability and
thermal conductivity ratios and principal permeability directions. Present predictions are compared with
the available results wherever possible.

Fig. 2. Average nusselt number variation with Darcy±Rayleigh number for di�erent conductivity ratios, Da� 10ÿ6, �� 0.6, A� 1,

h� 0�.
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A ®nite element grid of size 51� 51 is used in all the examples considered in this study. The mesh is ®nely
graded near the walls of the enclosure to resolve the boundary layer accurately. The ®rst node from the
walls is placed at a non-dimensional distance of 0.005.

From the anisotropic relations, it is possible to ®nd many limiting cases of the porous medium ¯ows by
changing the inclination angles of principal permeability directions. For example, at h � 0� and 90�, the
o�-diagonal terms of the permeability tensor vanish and the principal directions coincide with the co-
ordinate axes. These limiting cases can be compared with the existing results without the o�-diagonal terms.
Such an exercise is carried out to validate the numerical method and the model. Figs. 2 and 3 show the
comparison of the present results with those of available in literature. The referred paper [5] used a di�erent
formulation where the Darcy±Rayleigh number (Ra�) is de®ned based on the principal permeability j2. In
order to match the available formulation, the present equations are also modi®ed for the sake of com-
parison. It is seen that the agreement is generally good in the Darcy±Rayleigh number range considered.
The di�erences at higher permeability ratios can be attributed to the Darcy model and uniform grid used in
the referred paper [5]. When the permeability ratio is unity, present predictions agree excellently with the
analytical solution [29].

Above results are for a limiting case without the o�-diagonal permeability values. Further results are
obtained for arbitrary variation of h and are discussed below. Another problem with ¯ux boundary con-
ditions is discussed and compared with the existing results later. The available results on anisotropic porous
medium with arbitrary variation of h and heat ¯ux boundary conditions use the Brinkman extension to the
Darcy model [21]. The full generalised model is essential in many applications as mentioned earlier. In this
section, therefore, di�erence between the Brinkman and generalised models is discussed ®rst. Here the
results are obtained for di�erent Darcy and Rayleigh numbers and principal permeability directions using
both the Brinkman and the generalised models.

Fig. 3. Average nusselt number variation with Darcy±Rayleigh number for di�erent permeability ratios, Da� 10ÿ6, � � 0.6, A� 1,

h� 0�.

420 P. Nithiarasu et al. / Comput. Methods Appl. Mech. Engrg. 188 (2000) 413±430



Tables 1 and 2 show the average Nusselt number predictions in Darcy and non-Darcy ¯ow regimes
respectively for di�erent Rayleigh numbers, permeability ratios and h values. In both the tables the average
Nusselt numbers predicted from both the Brinkman and generalised models are presented. In the Darcy
¯ow regime (Da � 10ÿ6, Table 1), the Nusselt numbers predicted by the generalised model are smaller than
that of the Brinkman model. This under prediction by the generalised model can be attributed to the in-
clusion of non-linear and porosity e�ects. The di�erence is higher at higher Rayleigh numbers and smaller
permeability ratios. A maximum di�erence of about 18% has been observed at Ra � 109.

In Table 2, the non-Darcy ¯ow regime results are presented. At a Darcy number of 10ÿ2, the non-
Darcian forces will be much higher than that of the Darcy regime considered earlier. Here the Darcy model
and extensions to the Darcy model can not predict accurate results. It is clear from Table 2 that the
generalised model predicts a much lower Nusselt number than that of Brinkman model for the given pa-
rameters. Especially at higher Rayleigh numbers, the non-linear e�ects strongly in¯uence the Nusselt
number predictions. A maximum di�erence in Nusselt number of about 28% is observed between the two
models. This shows the in¯uence of the non-linear terms included in the present generalised model.

Table 1

Comparison of average Nusselt number predictions between the Brinkman and the generalised porous medium models in the Darcy

¯ow regime, Da � 10ÿ6

Sl. No. h j� Ra Nu

Brinkman General

1 0� 0.1 108 3.792 3.737

2 45� 0.1 108 4.529 4.507

3 90� 0.1 108 9.357 9.385

4 0� 10 108 2.692 2.741

5 45� 10 108 1.291 1.288

6 90� 10 108 1.118 1.097

7 0� 0.1 109 13.836 13.505

8 45� 0.1 109 18.865 17.938

9 90� 0.1 109 33.596 28.353

10 0� 10 109 11.970 11.490

11 45� 10 109 4.119 4.155

12 90� 10 109 3.253 3.422

Table 2

Comparison of average Nusselt number predictions between the Brinkman and the generalised porous medium models in the

non-Darcy ¯ow regime, Da � 10ÿ2

Sl. No. h j� Ra Nu

Brinkman General

1 0� 0.1 104 1.892 1.587

2 45� 0.1 104 1.870 1.573

3 90� 0.1 104 1.891 1.579

4 0� 10 104 1.140 1.106

5 45� 10 104 1.153 1.119

6 90� 10 104 1.141 1.106

7 0� 0.1 105 4.393 3.475

8 45� 0.1 105 4.425 3.456

9 90� 0.1 105 4.491 3.499

10 0� 10 105 3.203 2.761

11 45� 10 105 3.191 2.853

12 90� 10 105 2.951 2.636
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In Figs. 4±7, a detail account of ¯ow and isotherm patterns for di�erent Darcy and Rayleigh numbers, h
and permeability ratios have been presented using the generalised model. In the Darcy ¯ow regime
(Da � 10ÿ6), the thermal and momentum boundary layers become thinner with increase in h values for a
permeability ratio of 0.1 and Rayleigh number of 108 (Fig. 4(a)±(c)). This is an indication of higher energy
transfer between the cold and hot walls with increase in h. As the principal permeability j1 is assumed to be

Fig. 4. Flow and isotherm patterns for di�erent h and permeability ratios in the Darcy ¯ow regime, Da� 10ÿ6, Ra� 108, �� 0.5,

k�1 � 1, k�2 � 1: (a) j� � 0.1, h� 0�, wmax� 6.041; (b) j� � 0.1, h� 45�, wmax� 6.154; (c) j� � 0.1, h� 90�, wmax� 13.741; (d) j� � 10,

h� 45�, wmax� 1.666; (e) j� � 10, h� 90�, wmax� 0.804.
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constant in this study (i.e. Darcy number is based on j1), increase in h makes j2 direction approach x1

(vertical direction). As understood from the earlier studies [22], if the permeability value in the vertical
direction increases, the ¯ow becomes faster and increases the convective transport. This is clearly seen in
Fig. 4(c) where h � 90� and j2 coincides with x1. As j2 is higher than j1 in Fig. 4(a)±(c), increase in h
increases the strength of the convection and thus increases the energy transport (Table 1).

Fig. 5. Flow and isotherm patterns for di�erent h and permeability ratios in the non-Darcy ¯ow regime, Da� 10ÿ2, Ra� 104, �� 0.5,

k�1 � 1, k�2 � 1: (a) j� � 0.1, h� 45�, wmax� 2.766; (b) j� � 10, h� 0�, wmax � 0.933; (c) j� � 10, h� 45�, wmax� 1.117; (d) j� � 10, h� 90�,
wmax � 0.946.
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The reverse of the above discussed process happens when the permeability ratio is higher than unity as
shown in Fig. 4(d) and (e). The strength of ¯ow and convection reduces with increase in h when the per-
meability value is increased to 10. Also the thermal and ¯ow boundary layers are quite thick here due to
higher permeability ratio considered. Here, with increase in h, the system approaches a di�usion mode
where the energy transport is mainly due to conduction.

Almost similar ¯ow properties are observed in the non-Darcy regime (Da � 10ÿ2, Fig. 5) except the
single phase ¯ow like patterns [28] due to more permeable nature of the medium itself. Also the di�erences
between the isotherm patterns between di�erent parameters are seen to be similar. This is the reason
why the average Nusselt numbers are almost the same for di�erent principal permeability directions h
(Table 2).

Fig. 6. Flow and isotherm patterns for di�erent h and permeability ratios in the Darcy ¯ow regime, Da � 10ÿ6, Ra� 109, � � 0.5,

k�1 � 1, k�2 � 1: (a) j� � 0.1, h � 45�, wmax � 23.775; (b) j� � 0.1, h � 90�, wmax � 38.548; (c) j� � 10, h � 45�, wmax � 9.224.
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Some selected ¯ow and isotherm patterns at higher Rayleigh numbers are given in Figs. 6 and 7 in the
Darcy and non-Darcy regimes, respectively. The channeling is increased as the h value increases in the
Darcy ¯ow regime at a lower permeability ratio value (j� � 0.1). However, no channeling is observed in
the non-Darcy ¯ow regime (Fig. 7) with change in parameters for the Darcy and Rayleigh number range
considered. This can be attributed to the in¯uence of higher non-Darcian forces than that of the Darcy ¯ow

Fig. 7. Flow and isotherm patterns for di�erent h and permeability ratios in the non-Darcy ¯ow regime, Da � 10ÿ2, Ra � 105,

� � 0.5, k�1 � 1, k�2 � 1: (a) j� � 0.1, h � 45�, wmax � 7.051; (b) j� � 10, h � 0�, wmax � 4.618; (c) j� � 10, h � 45�, wmax � 5.586;

(d) j� � 10, h � 90�, wmax � 4.878.
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regime. Although signi®cant changes in stream line patterns are observed in the non-Darcy ¯ow regime,
only moderate changes are observed in isotherm patterns. In all these patterns discussed above, the Darcy
and non-Darcy ¯ow regimes are compared for a given Darcy±Rayleigh number Ra� (�Ra Da). This type
of comparison brings out all di�erences between the Darcy and non-Darcy ¯ow regimes.

Above discussed results are for the cavity with vertical walls subjected to isothermal conditions. The
second problem considered in this study is a cavity with vertical sides subjected to constant uniform heat
¯ux. It is assumed that heat enters through one vertical side and leaves through the other. A constant
temperature is imposed at the cavity center T � 0. In this problem the Nusselt number is calculated from
the following relation [8]

Fig. 8. Flow and isotherm patterns for di�erent h and permeability ratios, Ra� � 20, Da � 10ÿ6, � � 0.6, A � 4: (a) j� � 10, h � 0�,
wc � 1.328, Tmax � 1.177, Tmin � ÿ1.167; (b) j� � 10, h � 30�, wc � 0.725 Tmax � 0.708, Tmin � ÿ0.703; (c) j� � 10, h � 90�, wc

� 0.242, Tmax � 0.645, Tmin � ÿ0.645; (d) j� � 0.1, h � 30�, wc � 1.519, Tmax � 1.163, Tmin � ÿ1.173; (e) j� � 0.1, h � 60�,
wc � 2.184, Tmax � 1.061, Tmin � ÿ1.067 (f) j� � 0.1, h � 90�, wc � 3.114, Tmax � 0.869, Tmin � ÿ0.873.
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Fig. 9. Average Nusselt number variation with h for di�erent permeability ratios, Da � 10ÿ6, � � 0.6, A � 4.

Fig. 10. Variation of stream function at the center of the domain with h for di�erent permeability ratios, Da � 10ÿ6, � � 0.6, A � 4.
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Nu � 1

DT
; �19�

where DT is the temperature di�erence between the mid-height nodes at the vertical walls.
In Fig. 8, the ¯ow and isotherm patterns are depicted for di�erent permeability ratios and h at an aspect

ratio of 4. These results are in good agreement with those reported in literature [8]. As expected, the iso-
therms emerge from the side walls due to the heat ¯ux boundary conditions imposed on the vertical walls.
As discussed in the previous example, at a higher permeability value, the heat transfer mode approaches
conduction with isotherms stand almost vertical (Fig. 8(c)). The reverse happens when the permeability
ratios is less than unity. In Figs. 8(d)±(f), the ¯ow and isotherm patterns for a lower permeability ratio (0.1)
are presented. Here, as the h value increases, not only the ¯ow becomes stronger but also the isotherms are
strati®ed with almost zero temperature gradient in the horizontal direction at the middle portion of the
cavity. This process where thermal and momentum boundary layers are thin and leads to more energy
transfer ®rst along the walls by both convection and di�usion and then to the opposite vertical wall. This
type of pattern is often called boundary layer heat transfer regime. On the other hand in Fig. 8(c), the mode
is conduction, where the heat transfer is mainly dominated by di�usion rather than convection. This kind of
patterns are observed in the earlier example also.

Fig. 11. Flow and isotherm patterns for di�erent Darcy numbers, h and permeability ratios, Ra� � 500, � � 0.6, A � 1: (a)

Da � 10ÿ5, j� � 10 ÿ3, h � 0�, wmax � 4.381, Tmax � 0.248, Tmin � ÿ0.248; (b) Da � 10ÿ3, j� � 100, h � 45�, wmax � 0.783,

Tmax � 0.570, Tmin � ÿ0.570; (c) Da � 10ÿ5, j� � 0.01, h � 90�, wmax � 5.154, Tmax � 0.236, Tmin � ÿ0.236; (d) Da � 10ÿ3,

j� � 0.01, h � 90�, wmax � 4.118, Tmax � 0.314, Tmin � ÿ0.314.
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Fig. 9 shows the Nusselt number variation with h. As observed in the ¯ow patterns (Fig. 8), the energy
transfer is higher with increase in h at a smaller permeability ratio (j� � 0.1). However, when the per-
meability ratio is higher than unity, a conduction mode of heat transfer is approached with increase in h to
90�. At permeability ratio equal to unity, the heat transfer predicted is constant. The comparison with the
available results is generally good. However, little di�erence in agreement can be attributed to the over
prediction of the Darcy model used in the referred paper [8]. The corresponding stream function values at
the center of the cavity is compared with the available results in Fig. 10.

Fig. 11 shows the ¯ow and isotherm patterns predicted for a cavity with aspect ratio unity and with heat
¯ux boundary conditions. These results are qualitatively in good agreement with the existing Brinkman
solution [21]. However, di�erences do exist in the quantitative results as shown in Table 3. The comparison
is generally excellent at higher permeability ratios and smaller h values. However, the e�ect of non-linear
terms in the present generalised model can be seen from the smaller Nusselt number values predicted at
smaller permeability ratios and higher h values (90�).

5. Conclusions

The natural convection in a hydrodynamically and thermally anisotropic porous medium has been in-
vestigated using a simple semi-implicit procedure and the Galerkin ®nite element method. Two di�erent
types of problems have been formulated and solved and the results are discussed in detail. The results show
that the present formulation is accurate in predicting the ¯ow and heat transfer. Although the tests have
been carried out only for natural convective ¯ows, it is straight forward to use this formulation for forced
convective ¯ows.

Further study is essential to understand the usefulness of present formulation for applications such as
alloy solidi®cation, ¯ow in heat exchangers etc. Such an analysis will give further insight into the advan-
tages and disadvantages of using the present semi-implicit formulation.
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