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Abstract 

This paper describes a complete simulation package for simulation of granular membranes and membrane filtration/back- 
flushing processes. It consists of two basic models, one (the sphere packing model) for the structure of granular membranes, 
and the other (the random network model) for the morphology of the interconnected pores in the membrane media; and 
procedures to use the generated model structure to simulate filtration/backflushing processes in three distinct cases, namely cake 
filtration (a >> ap),  internal fouling (a >> ap) and a transient case (a ~ ap) where both internal fouling and cake build-up are 
important. 
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1. Introduction 

Granular porous media are encountered in many 
industrial and natural processes such as membrane fil- 
tration and ground water migration. Hence the impor- 
tance of  simulation of the structure of  porous media 
and transport phenomena within the media. This paper 
describes two simulation models for such purposes and 
demonstrates how the models may be applied to 
membrane filtration in different modes. 

For many practical purposes, it is quite acceptable to 
use random packing of spheres to represent the struc- 
ture of  granular porous media. The random packing of 
spheres has long been a subject of  extensive study by 
both theorists and experimentalists from a wide diver- 
sity of  disciplines for academic interest and practical 
significance. Consequently, a number of  algorithms 
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exist to generate random packing of  spheres [ 1 ]. Our 
sphere packing model is based a ballistic algorithm 
proposed by Void [2].  The model can be used to sim- 
ulate the structure of  unconsolidated granular porous 
media. With some additional modifications to the gen- 
erated model structure, the more complex structure of  
sintered or consolidated granular porous media can 
also be obtained. 

To study particle transport in the porous media, it is 
essential to know the flow distribution inside the porous 
media. However, given the complexity of the problem, 
it is only feasible to adopt an approximate approach to 
the problem. The approximation operates at three levels 
or stages. First, the actual pores are approximated by 
some geometrically simple or well-defined shapes. The 
simplest and most commonly used is the cylindrical 
tube. More sophisticated models are available which 
use converging-diverging constricted tubes [3],  tet- 
rahedrons [4] ,  or rectangular tubes [5] to represent 
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Fig. 1. Packing porosity as a function 

the actual pores. However, given the approximate 
nature of  the approach, the more sophisticated models 
do not necessarily improve the overall accuracy of  the 
simulation results as much as to justify the extra effort 
needed. Therefore, we have chosen to employ the sim- 
ple cylindrical-tube representation in our simulations. 
Secondly, the interconnected pores in the porous 
medium are modelled by a network of cylindrical tubes 
(or some other chosen shapes). Both 2D and 3D net- 
works have been employed by various researchers, as 
reviewed by Dullien [6].  With few exceptions [7,8], 
all the networks used so far to model the porous media 
have been built upon a regular, typically a square (2D) 
or cubic (3D),  lattice. There are variations as to 
whether to consider explicitly the finite volume of  
nodes in the network [5] or not [9].  And finally, the 
flow through the porous medium is computed based on 
the random network, in a manner analogous to the 
calculation of  electrical current in a resistive circuit. It 

of sticking probability and size distribution. 

is worth noting that a disadvantage common to all the 
network models reported in the aforementioned litera- 
ture is the lack of  a direct morphological link between 
the network and the actual structure of the porous 
medium. The random network model  to be described 
in this paper has the obvious advantage of being able 
to provide such a link, through a tessellation algorithm, 
so that the flow distribution can actually be mapped 
onto the actual structure of  the porous medium. 

Once we have the model structure for the porous 
media and the random network built upon the model 
structure, we can proceed to simulate the actual filtra- 
tion and/or  backfiushing processes. Here, three distinct 
cases may be distinguished according to the size ratio, 
ot = a/ap,  where a is the mean particle radius and ap is 
the mean pore size which, in accordance with the model 
representation, is equivalent to the mean tube radius. If  
ct >> 1 (i.e. the particles are much larger than the aver- 
age pore size), cake build-up on top of  the porous 
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Fig. 2. Example of 2D random packing of spheres, with unit sticking probability. 

media is the determining factor for flux decline and the 
process is called surface filtration. Cake formation may 
be conveniently simulated using the sphere packing 
model. For a given thickness of the cake, its resistance 
to the permeate flow may be computed via the random 
network model, or simply estimated using the Carman-  
Kozeny relation. If, on the other hand, a << 1 (i.e. par- 
ticles are much smaller than the pores), particles can 
penetrate into the porous media, causing the internal 

fouling of the membrane. In this case, the particles may 
be captured inside the porous media through either 
particle deposition, or pore blinding and blocking, or a 
combination of  these mechanisms. Here a particle tra- 
jectory analysis, similar to that used by Imdakm and 
Sahimi [9],  may be employed to predict the fate the 
penetrating particles. In between the two extrema (i.e. 
a ~ 1 ) is the case where both cake formation and inter- 
nal fouling are equally important. To simulate this sit- 
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Fig. 3. Example of 3D random packing of spheres, with zero sticking probability. 

uation, a combination of  the two basic models may be 
used. 

The simulation model can be applied to both dead- 

end filtration and cross-flow filtration modes, and as far 
as the simulation model is concerned, the only differ- 
ence between the two is that in the latter mode not all 
the particles reaching the surface of  the porous media 
can be retained by the porous media. To determine 
whether a particle reaching the membrane surface can 
actually be held on the membrane surface, a torque- 
balance analysis first proposed by Lu and Ju [ 10] and 
more recently generalised by Stamatakis and Tien 
[ 11 ], may be employed. 

Details of the two basic models are given below. The 
procedures for applying the models to the membrane 
filtration processes, together with necessary improve- 
ments and modifications, will be illustrated through 
some case studies. 

2. Model description 

2.1. Sphere packing model 

To generate the model structure of unconsolidated, 
or slightly consolidated, granular porous media, a sim- 



G. Davies, X. Jia/Journal of Membrane Science 106 (1995) 67-87 71 

Fig. 4. Photomicrograph of a sintered metal membrane. 

ulation model based on the algorithm of Vold [2] can 
be used. Details of  this ballistic sphere-settling algo- 
rithm have been given by Void [ 2],  but a brief account 
of  the model is given below. 

The model considers the stable configuration of  a 
distribution of  spheres in a containment volume. A 
Lagrangian description is used to form a random pack- 
ing by adding one sphere at a time to the assembly. The 
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Fig. 5. Photomicrograph of a sintered carbon membrane. 

assembly is formed by dropping a sphere from a ran- 
dom entry position in a fixed plane above the contain- 
ment volume. The simulation starts with the 
containment volume empty. When the first sphere is 
added it reaches the bottom or base plane of the volume 
and remains at the position of contact. The process is 
repeated adding one sphere at a time, an assembly 
builds up. The rules for determining the equilibrium 
position of each sphere are carefully defined. I f  a sphere 
reaches the base plane it remains in the arrival position. 
If  a sphere lands on a stack of spheres two conditions 
are tested. If  the sphere is similar in size to those at the 
arrival position then it is allowed to roll over the surface 

of the contact sphere(s)  until it reaches a stable loca- 
tion. It is possible to alter the fate of  the settling sphere, 
hence the struture of  the packing, by introducing a so- 
called sticking probability. Upon each contact the set- 
tling sphere makes with others a probability test is 
performed against this sticking probability to decide 
whether it will continue to roll or will " s t i ck"  to the 
sphere it has just contacted. I f  the particle is small in 
relation to the surrounding particles in the packing, then 
it may navigate through the pores in between the packed 
spheres. The model assumes that the actual path fol- 
lowed by the settling sphere can be represented as a 
series of  geometrical trajectories, a straight line when 
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Fig. 6. Dependence of the porosity on the expansion factor and primary/cluster size ratio. 

the sphere is free falling, or part of a circle when it is 
rolling over the surface of other spheres. 

Vold's algorithm has been chosen mainly for its ver- 
satility and efficiency. Its efficiency stems from the 
algorithms deterministic nature. Its versatility may be 
seen from the following remarks. First, the algorithm 
can easily be adapted to utilise various boundary con- 
ditions. In our simulation, the absorbing virtual walls 
used in Vold's original algorithm are replaced by the 
periodical boundary conditions, in order to eliminate 
the edge effect. Secondly, the use of the sticking prob- 
ability makes it easy to control the structural properties 
(e.g. porosity) of the sphere packing. Variation of the 
porosity with the sticking probability for different mean 
standard deviation/mean size ratios (assuming normal 
size distribution) is shown in Fig. 1. And thirdly, the 
algorithm can be applied to both 2D and 3D space 
without any procedural changes. 

Fig. 2 shows an example of the 2D structure gener- 
ated using the modified algorithm. The sticking prob- 
ability in this case is set to be 1, which implies that 

during the simulation a sphere will stick and stay in 
place upon the first contact with others. The fractal-like 
structure resembles that of the dust deposits on fibres 
often found in air filtration. Fig. 3 shows a 3D packing 
generated with the sticking probability being 0, i.e. all 
spheres are in a mechanically stable position. The struc- 
ture is similar to that of a sintered metal membrane 
shown in Fig. 4. 

For some sintered granular membranes, the globules 
distinguishable under low or medium resolutions are 
actually made up of smaller (or primary) particles 
which can only be seen at high magnifications. Further, 
there are severe overlaps at both the primary and the 
secondary levels. An example of such membranes is 
given in Fig. 5, where the mean diameter of the glob- 
ules is about 0.5 /xm and the mean diameter of the 
primary particles is about 0.18 p,m. 

This kind of consolidated structure can be simulated 
by modifying the basic model structure as follows. 
First, increase the size of each packed sphere slightly, 
without changing their position, to create partial over- 
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Fig. 7. Simulated structure of the sintered carbon membrane. 

laps between the spheres. Then, replace each enlarged 
sphere with a spherical floc of roughly the same size as 
the enlarged sphere but consisting of smaller spheres. 
Finally, if necessary, increase the size of the primary 
spheres to create partial overlaps between the primary 
particles within each floc. The consolidation has a pro- 
found effect on the porosity of the resulting structure. 
The porosity is also dependent on the relative size of 
the primary particles, but to a lesser extent. This can be 
seen from Fig. 6. 

Fig. 7 is an example of the resulting structure, which 
compares well with the actual membrane shown in 
Fig. 5. It was constructed from an original packing of 
914 spheres with 0.5 mm mean diameter and 0.1 mm 
standard deviation. The original packing was first con- 
solidated with an expansion factor of 1.25, then the 
spheres were replaced by clusters consisting of 26485 
primary spheres of 0.18 mm mean diameter and 0.05 
mm standard deviation. Finally, the packing was con- 
solidated again using an expansion factor of 1.50. 
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Step 1 Step 2 

,2 •1 

Step 3 Step 4 

Step 5 Step 6 Step 7 Step 8 
Fig. 8. Schematic diagram showing the procedure of box-chopping algorithm. 

2.2. Random network model 

If the space occupied by a random packing of equal 
spheres is divided using the Voronoi tessellation, with 
the centres of spheres being the seeds, then each 
Voronoi cell contains a unique sphere, each vertex in 
the tessellation lies in the middle of a unique pore body, 
and each of the cell edges passes through a unique pore 
throat. These properties suggest that, for a packing of 
equal spheres, the Voronoi tessellation may be used as 
the skeleton upon which a random network of, for 
example, cylindrical tubes can be const,axcted to rep- 
resent the interconnected pores in the porous medium. 
The axes of the tubes coincide with, or parallel to, the 
edges. The lengths of the tubes are equal to the lengths 
of the corresponding edges. The radius of each tube is 
calculated based on the average distance from the tube 
axis to each of the surrounding spheres. Since the tube 
is not an exact representation of the actual pore geom- 
etry, the radius of each tube is less well-defined and the 
exact value depends on which property the model is 
meant to preserve. For instance, to maintain the poros- 
ity of the packing, it should be adjusted so that the sum 
of the tube volume equals the total free volume of the 
packing. As far as pore blockage/blinding is con- 

cerned, the tube radius should be given a value corre- 
sponding to the narrowest part of the pore. 

If the packing consists of unequal spheres, the 
Voronoi tessellation is no longer applicable because 
some of the edges, hence the tubes built on them, will 
cut through the packed spheres. In order to tessellate 
the packing of randomly-sized spheres, a general tes- 
sellation algorithm has been devised, which uses the 
following intersecting plane to draw the boundary 
between two spheres denoted by (xi, Yi, zi, ai) and (xj, 
yj, z i, aj), respectively: 

( x i - x j ) X  + ( y i - y j ) Y +  (zi--zj)Z 

1 2 =~[  (x, + yi2 + z 2 -  a~2) - (x~ + y~ + z~ -  a~) ] 

(1) 

The tessellation obtained in this manner has the follow- 
ing useful properties. First, for a given set of spheres, 
the tessellation is uniquely defined. Each cell surrounds 
a unique sphere, and the edges pass through the pores 
and do not penetrate the spheres. Secondly, if the 
spheres are of the same size, the Voronoi tessellation 
is obtained. Thirdly, it can be used for both 2D and 3D 
packings, with no restrictions on the packing density, 
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Fig. 9. Example of the skeleton of the generated random network. 

whether the spheres overlap with each other, or whether 
the spheres are randomly packed or orderly arranged. 
Analogous to the physical interpretation of Voronoi 
tessellation, this tessellation corresponds to a growth 
process in which the growth rate is different for each 
of the spheres and is size-related. 

Most algorithms available for the Voronoi tessella- 
tion cannot readily be adapted for use with this general 
scheme, because those algorithms rely heavily on some 
geometrical properties peculiar to the Voronoi tessel- 

lation. To implement this general tessellation scheme, 
a box-chopping algorithm has been used. To construct 
a cell surrounding a given sphere, an initial cubic box, 
centred at the given sphere and large enough to contain 
all the spheres close to the given sphere, is chopped 
step by step into the final shape, using the intersecting 
planes defined by Eq. ( 1 ). The procedure is depicted 
in Fig. 8, and a tessellation of a random packing of 
unequal spheres generated using this general algorithm 
is shown in Fig. 9. 
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There are many interesting properties of  the random 
network that can be calculated by the simulation pro- 
gram, of  which the most relevant include the distribu- 
tions of  tube length and tube radius in relation to 
packing characteristics because these directly affect 
flow distribution and particle capture efficiency of  the 
simulated porous media. 

In general, the average tube length is roughly the 
same as the mean sphere radius, and the tube radius is 
about half the mean sphere radius. For example, the 
random network generated based on a close random 
packing of  911 spheres, with 1.0 mean radius and 0.1 
standard deviation and 0.51 overall porosity, consists 
of  10822 tubes: 

flow network electric network 

Fig. 11. Analogy between fluid flow network and electrical current 
circuit. 

Tube radius: Min = 0.0, Max = 2 .54,  Mean = 0.51 

Tube length: Min = 0.0, Max = 5 .79,  Mean = 1.00 

Fig. 10 shows the distribution of  tube length and 
radius. It can be seen that most tubes have a size close 
to its lower limit, and the distributions may be better 

described by a log-normal than by a normal distribution 
function. 

It is well recognised that the topology as well as 

geometry of  a network affects the fluid distribution in, 
and hence predictions of  filter performance made from, 

the network. A key parameter describing the topology 
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of a network is the average coordination number, i.e. 
the number of pores joined at each node in the network. 
In a randomly packed granular medium such as sand- 
bed, the average coordination number is most likely to 
be 4, as indicated by results from the tessellation of 
random packing of spheres, rather than 6, as in a regular 
cubic lattice network. In this respect, a square lattice 
network, which has an average coordination number of 
4, is topologically a better representation of the granular 
porous media, and is simpler since it is a 2D model. 

3. Model applications 

Table 1 
Summary of conditions and results of flow distribution calculation 

Parameter Value Units 

Mean sphere radius 0.25 /xm 
Standard deviation 0.025 /.tm 
Length of simulation box 5 /zm 
Number of spheres 975 
Packing porosity 0.438 
Number of nodes 6961 
Number of tubes 13674 
Mean radius of tube 0.0857 /xm 
Mean length of tubes 0.2204 /xm 
Pressure drop 418.7 Pa 
Superficial velocity 8.0 /zm/s 

3.1. Flow distribution in porous media 

In a porous medium such as a sintered carbon 
membrane filter, each pore accessible to the flow exhib- 
its a hydrodynamic resistance, together the intercon- 
nected pores form a resistive network. The whole 
network behaves like a single resistor to the flow. 
Therefore, to find the total flow rate for a given pressure 
drop across the network or vice versa, all we need to 
know is the total resistance of the network. Although 
the total hydrodynamic resistance of a given porous 
medium may be measured experimentally or estimated 
using some simple semi-empirical relation such as the 
Carman-Kozeny equation, neither can give details of 
flow distribution within the porous medium, and yet 
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Fig. 12. Flow distribution in a cross-sectional plane. 

such details are essential for a better understanding, 
design and control of the filtration process or equip- 
ment. 

With the random network model, it is possible to 
calculate the flow distribution inside porous media, pro- 
vided the resistance of each individual pore is known. 
In our simulation, each individual pores is represented 
by a cylindrical tube and the flow through the tube is 
assumed to be laminar so that the relation between the 
pressure drop Ap and volume flowrate Q can be 
expressed by Hagen-Poiseuille equation: 

LS~lJ 

k 

5.0 

~.B 

d 

0.0 
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where ap denotes the tube radius, l its length, and tz 
fluid viscosity. This relation states that the volume flo- 
wrate is linearly proportional to the pressure drop, and 
the hydrodynamic resistance R depends only on the 
properties of  the fluid and the tube: 

R = 8/xl 
7rr4 (3) 

Given the resistance of individual pores, the fluid flow 
through the network can be calculated by analogy with 
the current through an electrical network, as illustrated 
in Fig. 11. 

Two methods may be used to calculate the network 
flow. One is the so-called loop approach, in which the 
total resistance is be calculated by solving a set of  
equations written for each of  the individual nodes and 
distinctive loops in the network, according to Kir- 
choff 's  current and voltage laws, respectively. The total 
number of  equations to be written and solved is equal 
to the total number of  tubes in the network. Although 
conceptually straightforward, it is only suitable for sim- 
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Fig. 14. Pass rate as a function of size ratio for packing of equal 
spheres. 

ple networks because it entails identification of  all 
uncorrelated loops or removal of  all redundant loops in 
the network, which is a very tedious and error prone 
task. For large and complex networks, it is more con- 
venient to employ the so-called nodal approach. This 
approach only requires that a nodal pressure equation 
be written for each of  the nodes in the network: 

Fig. 13. The match between cross-sectional flow distribution and the packing image. 
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Table 2 
Comparison between random network model and Carman-Kozeny equation 

Packing dimension Number of spheres Ratio of difference Packing dimension Number of spheres Ratio of difference 

6.0 22 3.96688 6.5 29 3.74984 
7.0 35 2.96102 7.5 45 3.21356 
8.0 58 4.03328 8.5 68 4.63097 
9.0 83 3.13694 9.5 99 3.34843 

10.0 115 4.15248 10.5 136 3.45916 
11.0 158 3.34140 11.5 185 3.22293 
12.0 206 3.75335 12.5 236 3.81197 
13.0 264 3.5062 13.5 291 3.76426 
14.0 331 3.76518 14.5 370 3.81148 
15.0 412 3.56317 15.5 454 3.92081 
16.0 499 3.74674 16.5 547 3.96570 
17.0 613 3.75659 17.5 666 4.14895 
18.0 722 3.71770 18.5 790 3.89466 
19.0 857 3.63468 19.5 919 3.80523 
20.0 1000 4.20413 20.5 1078 3.74213 

E gijApi = 0 (4) 

Here gij is the hydraulic conductance, equal to the recip- 
rocal of  the resistance, of tube j connected to node i; 
and Pi is the nodal pressure. Since in our random net- 
work model the number of nodes is only about half the 
number of tubes, the nodal approach is much more 
efficient in computational terms. 

Once the nodal pressure distribution is obtained, the 
flow distribution and the total resistance of the network, 
can be calculated. Fig. 12 shows the flow distribution 
in a horizontal cross-sectional plane of a random pack- 
ing of spheres; conditions and results are summarised 
in Table 1. Fig. 13 presents the same data but in a 
different style in order to show the correlation between 
the flow pattern and the packing structure. 1:] 
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81ze ratio 
Fig. 15. Pass rate as a function of size ratio for packing of unequal spheres or randomly sized invading particles. 
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- q 

b," 

Tube flow direction 

Gravity direction 

Fig. 18. Schematic representation of particle transport and deposition in a tube. 

Carman-Kozeny relation is a well-established semi- 
empirical equation to calculate the pressure drop Ap 
required for a fluid of viscosity/x to flow at superficial 
velocity Us through the depth L of a packing of porosity 
e, consisting of identical spheres of diameter d: 

180~( 1 - e)  2LUs 
Ap = e.3a ~ (5) 

To validate the random network model, model pre- 
dictions have been compared with Carman-Kozeny 
estimations for a number of cases. This is summarised 
in Table 2 below. In all calculations listed in the table, 
the mean radius of spheres was 1.0 arbitrary units. The 
simulation box is cubic, whose sides are measured in 
the same units, and termed packing dimension in 
Table 2. It can be seen from Table 2 that, in most 
cases, the model predictions differ from the Carman- 
Kozeny estimations by an almost constant factor 
between 3 and 4. Thus, in practical applications of the 
model, a correction factor of 3.7243, obtained by aver- 
aging the ratio of differences listed in Table 2, may be 
used. 

3.2. Internal membrane fouling 

When a << 1, particles can penetrate into the porous 
media, causing intemal membrane fouling. Possible 

mechanisms for particle trapping include pore blocking 
or blinding and particle deposition. 

Simulation using sphere packing model 
If the focus of the simulation is on the mechanical, 

as opposed to chemical, trapping of the particles (via 
pore blocking or blinding), the sphere packing model 
may be used. The procedure is to first generate the host 
medium, then add small particles using the same algo- 
rithm. Since no physicochemical interactions are 
involved in the simulation, the absolute or real size of 
the particles is irrelevant. It is more convenient to use 
size ratio, a, here. Fig. 14 shows the predicted relation 
between the size ratio and the pass rate (defined as the 
ratio of the number of particles passing through the 
medium to the total number of particles added during 
the simulation). In this simulation, both the host grains 
and the suspended particles are uniform sized spheres. 
The sudden drop in the pass rate at size ratio between 
0.1525 and 0.1550 suggests that, for porous media of 
equal sized spheres, there exist a critical size ratio, 
above which almost all particles can be retained by the 
media but below which almost particles can pass 
through the media. Once the size ratio passes the critical 
value, the pass rate declines gradually and becomes 
virtually zero at about 0.2175. This indicates that the 
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a = 0 .05 
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now become a gradual decay. This can be seen in 
Fig. 15, where spheres forming the host medium have 
a 10% standard deviation in size, but the invading par- 
ticles are equal-sized. If the invading particles are ran- 
domly sized, similar effect can be observed. This is also 
shown in Fig. 15, where the particles have a 10% stan- 
dard size deviation but the host spheres are equal-sized. 

During the initial stage of filtration when all the pores 
are accessible, the invading particles have an equal 
opportunity over the entire depth of the porous medium 
of being trapped. Thus the initial penetration is fairly 
uniform. Once particles start to clog the pores, at the 
top of the porous medium, there is a reinforcing effect 

(b) 

a =o.10 

o 5 lO 15 20 25 3O 
Time of Operation (h) 

(c) 

a=O2O 

o s ~ 3o 10 1'5 20 
Time of Operation (h) 

Fig. 19. Flux decline for (a)  a = 0 . 0 5 / x m ,  (b)  a = 0 . 1  /zm and (c)  
a = 0.2/xm. 

pore throats in the porous media have a fairly narrow 
size distribution, ranging from 0.1550 to 0.2175. 

If the host medium consists of spheres of randomly 
sized spheres, the pore sizes will have a wider distri- 
bution. In addition, the sudden drop in the pass rate has 

Table 3 

Conditions used in simulations of fil tration/backftushing 

Parameter Value Unit 

Mean radius of host spheres 0.25 /xm 
Standard size deviation 10% /zm 
Porosity of host medium 0.45 
Mean tube radius 0.09 /xm 

Mean tube length 0.25 /zm 

Surface roughness 25 nm 

Mean radii of invading 0.05, 0.1, 0.2 /~m 
particles 

Standard size deviation 20 % 
Particle mass density 1.5 × 103 kg m -3 

Particle zeta potential - 6 mV 
Pore surface potential 25 mV 
Ionic strength 1 mol dm 3 
Effective Hamaker constant 1 × 10 -20 J 

Filtration pressure differential 1.25 × 108 Pa m -  1 

Backflushing pressure 1.25 × 108 Pa m -  1 
differential 

0.9 

0.9 

0.9 

0.9 

0.~ 
0 , 3  0 . 9  1 .5  2 . 3  

Ol 

Fig. 20. Backflushing efficiency as a function of the size ratio. 
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Fig. 21. Cut-off radius as a function 

and subsequent invading particles will find it increas- 
ingly difficult to penetrate. This results in an excessive 
accumulation of  trapped particles near the top of  the 
porous medium. Eventually, cake starts to build up on 
top of the porous medium. Particle concentration dis- 
tribution at these different stages can be seen in Fig. 16. 

Using Carman-Kozeny equation, the flux level at 
different time of particle penetration can be estimated. 
Examples are given in Fig. 17. 

Simulation using random network model 
To include the physicochemical adsorption, it is con- 

venient to use the random network representation of 
the porous medium. A procedure similar to that used 
by [9] can be employed. It calculates the particle tra- 
jectory to determine whether a particle can reach the 
surface of  a pore, and uses a mechanical criterion based 
on a torque balance to decide whether the particle can 

of crossflow and permeate flow velocities. 

be held on the surface. The trajectory equation is of  the 
following form: 

dy= 
dx 

NGsin O)+ NEI(NE2--eNDLa)" e--NDL~S NIXR 
" 1 --e--ZNDL 8 62 (2+6)  2 

4Gly R -  1 + 2GzyZR- 2 + G3NGCO s 

(6) 
Some of  the parameters used in the equation are 

defined graphically in Fig. 18, others have been given 
elsewhere [9].  The mechanical criterion is: 

Fy 2 - ah-h 2 

> 10.205~ra2%(a-h)  +3.776~a3rw (7) 

where rw is the shear stress at wall. 
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Fig. 22. Flux decline with time for different mean particle sizes. 

For particles whose sizes are comparable to the pore 
sizes, the criteria proposed by Rose and English [ 12] 
may be used to decide whether a particle can block or 
blind a pore: 

blocking if a > 1. Iap 

blinding if ap ~ a < 1.1 ap 

Pore blocking is considered to be reversible, because 
the particle is stopped at the entrance of the pore so that 
when the flow direction is reversed (during backflush- 
ing) the particle can be carried away and the pore 
entrance reopened. Pore blinding, on the other hand, is 
regarded as irreversible since the particle is stuck inside 
the pore and cannot easily be shifted away. This dis- 
tinction is important when considering backflushing 
efficiency. Sample results calculated using the above 
mention procedure are shown in Fig. 19, and corre- 
sponding conditions used in the simulation are sum- 
marised in Table 3. 

In principle, particles retained by surface attraction 
and/or hydrodynamic forces can be effectively 
removed through backflushing. However, for particles 
trapped by geometrical constraints, backflushing effi- 
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ciency depends strongly on the size ratio, because par- 
ticles shifted away from their original place may block 
or blind other pores during backflushing. Fig. 20 shows 
the backflushing efficiency as a function of the size 
ratio, obtained using the random network model. 

3.3. Cake  f o r m a t i o n  

When a>> 1, particles cannot penetrate into the 
porous medium but accumulate on top the of the 
medium to form the so-called cake. The cake formation 
may be simulated using the sphere packing model. If 
the filtration is operating in the crossflow mode, the 
torque balance analysis proposed by Lu and Ju [ 10] 
and more recently generalised by Stamatakis and Tien 
[ 11 ] may be employed. It uses the following inequality 
as the criterion to determine whether a particle reaching 
the membrane surface can stay or be swept away: 

Fy~/a 2 - ( a  - h )  2 >_ F x ( a  - h )  ( 8 )  

Solving Eq. (8) gives the cut-off radius aM: 
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Fig. 23. Permeability vs time at different size ratios: (a) a = 1 /xm, 
(b) a=3 p,m and (c) a=5/xm. 

h 
aM -- (9) 

1 
1 

2 2 1/F x/ Fy + 1 

Fig. 21 shows the variation of  the cut-off radius with 
crossflow and permeate velocities. Other things being 

equal, the cut-off radius is directly proportional to the 
protrusion height, h. Note that the value of  the protru- 
sion height is predefined. It is used not only to provide 
a mechanical barrier for holding particles against the 
crossflow but also to account for the effects of  all the 
surface interactions which are not explicitly considered 
in the simulation model. Since it is a lumped parameter, 
the choice of  the value inevitably involves a level of 
arbitrariness. One of the implications of  this uncertainty 
is that it can sometimes be difficult to compare the 
simulation results with experimental data quantita- 
tively, even though in principle the model is capable of 
simulating the essential physics involved in the process 
of cake formation. Qualitatively, however, the predic- 
tions are in good agreement with experimental obser- 
vations. Fig. 22 shows the flux decline for different 
mean sizes. 

3.4. Simultaneous cake build-up and internal fouling 

If the particles are comparable in size with the pores, 
the external cake build-up and internal membrane foul- 
ing will take place simultaneously. To simulate this 
situation, it may be necessary to combine the two basic 
models together. For particles smaller than the pores 
and hence able to penetrate into the porous medium, 
the random network model is invoked, whereas for 
those larger than the pores, the sphere packing model 
is invoked. Fig. 23 shows some examples calculated in 
this manner. 

4. Conc lus ions  

This paper describes an unified approach to simulate 
filtration/backflushing processes in both dead-end and 
crossflow modes, on the basis of  two simple geomet- 
rical models (the sphere packing model and the random 
network model). We have demonstrated how the ran- 
dom packing of  spheres can be used to represent the 
complex structure of some granular porous media 
encountered in membrane filtration processes, and how 
the concept of  Voronoi tessellation can be extended to 
construct a random network which has a morphological 
link with the model structure and hence is more realistic 
than existing network models. The simulation model 
outlined in this paper is self-contained, allowing us to 
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probe such important  p roblems as how the size distri- 

but ion o f  particles const i tut ing the porous media  influ- 

ences  the flow distribution, part icle capture eff ic iency 

and other  transport phenomena  in the porous media,  

without  resort ing to addit ional  assumptions which 

other  ne twork  models  have to make  regarding the cor- 

relat ion be tween  the media  and the networks.  

/~ fluid viscosi ty 

~'w shear stress at wall 
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5. List of  symbols 

a 

aM 

ap 

d 
F~ 

Y 

gi 
h 

1 

L 
Ap 

Pi 
Q 

R 

us 
Xo, Yo, Zo 

xi, Yi, zi 
X , Y , Z  
OL 

E 

particle radius 

cu t -of f  (or  m a x i m u m )  radius of  cake 

forming  part icles 

pore size (or  tube radius) 

part icle d iameter  

net  force in the direct ion o f  cross f low 

net  force in the direct ion o f  permeate  f low 

hydraul ic  conductance  o f  tube i 

protrusion height  

tube length 

depth of  the packed bed 

pressure drop 

nodal  pressure for tube i 

v o l u m e  flow rate 

hydraul ic  resis tance 

superficial  ve loci ty  

co-ordinates  o f  cell  seed 

co-ordinates  o f  surrounding seeds 

co-ordinates  defining the intersect ing plane 

size ratio ( = a/ap) 

porosi ty 
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