
~ Pergamon 
Int. J. Heat Mass TransJer. Vol. 40, No. 8, pp. 1795 1805, 1997 

@" 1997 Elsevier Science Ltd 
Printed in Great Britain. All rights reserved 

0017 9310/97 $17.00+0.00 

PII : S0017-9310(96)00251-7 

Optimal geometric arrangement of staggered 
plates in forced convection 

A. J. F O W L E R  

Mechanical Engineering Department, University of Massachusetts Dartmouth, North Dartmouth, 
MA 02747-2300, U.S.A. 

and 

G. A. L E D E Z M A  and A. B E J A N t  

Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 
27708-0300, U.S.A. 

(Received 15 March 1996 and in final form 9 July 1996) 

Abstrae~This paper reports the results of an experimental and numerical study of the optimal geometric 
arrangement of staggered parallel plates in a fixed volume with forced convection heat transfer. The 
objective of the geometric optimization effort is to maximize the total heat transfer rate between the given 
volume and the given external flow, when the maximum temperature at a point inside the volume cannot 
exceed a certain level. The geometric arrangement was varied systematically, by changing the spacing 
between plates, the number of plates installed in one row, the plate swept length, and the degree to which 
the plates are staggered. In the first part of the study, it is demonstrated experimentally that there exists an 
optimal spacing between two adjacent row of plates. Experimental results are reported for air in the range 
1000 ~< ReL <<. 6000, where L is the swept length of the fixed volume. In the second part of the study, 
extensive numerical results support and extend these findings to 100 ~< ReL <<, 10000. In addition, it is 
shown that there is an optimal way to stagger the plates. In the concluding part of the paper, the 
optimal spacing and maximum heat transfer rate results are correlated based on the theoretical method of 
intersecting the two asymptotes (small spacing, large spacing) of the geometric arrangement. © 1997 

Elsevier Science Ltd. All rights reserved. 

1. INTRODUCTION 

The development of  cooling techniques for electronic 
equipment places a new emphasis on 'augmentat ion '  
as a fundamental  problem in the field of  heat transfer 
[1]. The new aspect is that in electronic packaging the 
augmentation of  heat transfer must be accomplished 
subject to volume constraint. The objective is to 
assemble as much circuitry as possible (i.e. maximum 
heat generation rate) in a given space exposed to a 
given coolant, such that the maximum temperature 
attained by a certain point in that space (the hot  spot) 
does not  exceed an allowable level. This type of  heat 
transfer augmentation is 'global ' ,  i.e. not local or 
elemental as in the classical techniques (e.g. fins, 
ribbed surfaces). 

It is important  to note that the volume-constrained 
augmentation of  heat transfer offers a new opti- 
mization opportunity : in some applications it may be 
possible to vary the relative positions of  the electronic 
components in the fixed space such that the total heat 
generation rate can be increased. For  example, if the 
interstitial spaces permit, more components can be 
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placed in those regions where the temperatures are 
lower than the hot-spot temperature. 

This opportunity was recognized in several fun- 
damental studies of  cooling techniques. The simplest 
class of  fundamental  results in this new area is rep- 
resented by the optimal spacing between two adjacent 
components  when a large number of  such components 
are mounted in a fixed space. For  natural convection 
cooling the optimal spacing between vertical smooth 
plates was developed by Bar Cohen and Rohsenow 
[2], Bejan [3], Kirn et al. [4] and Anand et al. [5]. 
The optimal spacing between horizontal cylinders in 
natural convection was determined numerically and 
experimentally by Bejan et al. [6]. For  forced con- 
vection cooling, the literature contains results for the 
optimal spacing between parallel plates with smooth 
surfaces [7-10], plates with flush-mounted or pro- 
truding heat sources [11] and cylinders or pin fins 
mounted in a fixed space [12, 13]. 

The optimal spacings for components  in a fixed 
volume are also relevant to the geometric optimization 
of  heat exchangers. For  example, the fin-to-fin spa- 
cings of  the air cooled heat sink for an electronic 
module is relevant to selecting the tube-to-tube spac- 
ing for the core of  a heat exchanger. It is both appro- 
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NOMENCLATURE 

dimensionless contact area, equation 
(1) 
plate swept length [m], Fig. 1 
plate length (bundle width) [m] 
spacing between L-long parallel plates 
[m] 
bundle height [m], Fig. 1 
fluid thermal conductivity 
[W (m K ) ' ]  
bundle flow length [m], Fig. 1 
downstream length [m] 
upstream length [m] 
number of plate surfaces facing the 
elemental channel, Fig. 1 
pressure [N m 2] 
heat transfer rate per elemental 
channel [W] 
dimensionless overall thermal 
conductance, equation (3) 
total heat transfer rate from the bundle 
[w] 
Reynolds number, equation (2) 
plate thickness [m], Fig. 1 
temperature [K] 

T,, plate temperature [K] 
T average surface temperature [K] 
T~ free stream temperature [K] 
u, v velocity components [m s ]] 
U uncertainty 
U~. free stream velocity [m s -t] 
W channel spacing [m], Fig. 1 
I~ dimensionless channel spacing, 

equation (1) 
x, y cartesian coordinates [m]. 

Greek symbols 
fl stagger parameter [m], Fig. 1 
JSm~x maximum stagger parameter [m], 

equation (10) 
AP pressure difference scale (1/2)(pU2j), 

[N m 2] 
0 dimensionless temperature, equation 

(9) 
v kinematic viscosity [m 2 s -t] 
()max maximum 
()opt optimal 
( - )  dimensionless variables, equations 

(8) (10). 

priate and timely that we extend the volume-con- 
strained optimization method to one of the most 
common types of heat exchanger surfaces, namely, 
the staggered plates parallel to the incident flow, or 
the staggered flattened tubes. The literature on the 
heat transfer and pressure drop characteristics of this 
surface type is sizable, and can be reviewed in refs. 
[14-16]. More recent studies such as those of Gug- 
lielmini et al. [17] and Tanda [18], have focused on 
the interaction of the boundary layers of staggered 
plates. This interaction is the key to the optimization 
of any geometric arrangement. 

The present study focuses on the geometric opti- 
mization of staggered plates in a fixed volume. The 
problem is treated in a most fundamental (geometric) 
sense, without specific reference to an application 
(electronics cooling, compact heat exchangers). The 
paper has three parts. In the first, we demonstrate 
experimentally that optimal arrangements exist. For 
example, we show that the optimal spacing between 
adjacent rows of plates can be optimized. In the 
second part, the heat and fluid flow performance of 
the assembly is simulated numerically. The effect of 
varying the geometry is investigated by changing one 
geometric parameter at a time, and comparing many 
geometric configurations that differ only slightly from 
one another. The objective of the numerical part was 
to generate a large volume of optimization results 
that reveal the correct trends (scaling laws). In the 
concluding part of the study, we show that the optimal 
spacings can be correlated based on the same theory 

that produced scaling-correct correlations for optimal 
spacings in simpler forced convection configurations. 

2. GEOMETRIC AND OPERATIONAL 
PARAMETERS 

The geometric parameters of the space filled with 
staggered parallel plates are defined in Fig. 1. The 
total volume occupied by this ensemble is fixed : it has 
the length L in the flow direction, the 'height' H in the 
direction perpendicular to the flow and the plates, and 
the width B in the direction perpendicular to the plane 
of Fig. 1. The plates are identical : each has the swept 
length b, thickness t and breadth B. The fluid and its 
free stream velocity U~ are specified. 

The geometric arrangement of the plates has four 
degrees of freedom: the spacing Wbetween two adjac- 
ent rows, the number of plates mounted in one row 
of length L, the plate dimension b, and the stagger 
parameter fl (Fig. 1). It is convenient to express two 
of these degrees of freedom in dimensionless form by 
defining 

W Nb 
f f / = ~  A = ~ -  (1) 

where 1~-is the dimensionless spacing, and A is the 
dimensionless heat transfer area that faces the elemen- 
tal channel indicated by the dashed lines in Fig. I. In 
the A definition, N is the number of plates that are 
wetted by the flow through a single elemental channel 
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Fig. 1. The geometric parameters of a volume filled with staggered parallel plates subjected to forced 
convection in a parallel free stream. 

(e.g. N = 4 in Fig. 1). Clearly, A = 2 represents the 
limit where the plate ends (edges) touch. The free- 
stream velocity can vary, and is represented by the 
Reynolds number based on the flow length of the 
given volume, 

U~L 
R e  L 

v 

The geometry of the assembly mounted in the vol- 
ume L x H x B can be changed by varying ffz, A, N 
or fl, or a combination of these parameters. We are 
interested in the geometric arrangement that max- 
imizes the overall thermal conductance between the 
ensemble (plates, with the highest temperature equal 
to Tw) and the approaching fluid (T~). The thermal 
conductance is Q / ( T w -  T~), where Q is the total heat 
transfer rate, Q = q H / W  and q is the heat transfer 
rate from the elemental channel (Fig. 1). Since the 
overall dimensions of the volume are fixed, to max- 
imize the overall thermal conductance means to max- 
imize the ratio q/[ W ( T w -  T~)] of the elemental chan- 
nel. A dimensionless alternative to this ratio, which 
we found suitable in the experimental and numerical 
investigations described next, is 

q 
gl - W(T,~ -- T~)kB/L"  

Another way to arrive at this objective function is 
to think of Lx  H x  B as a given volume that is to 
be filled with heat generating components while the 
temperature Tw is fixed. To maximize the overall heat 
transfer rate is the same as maximizing the average 
heat generation rate per unit volume, 
Q/(LHB)  = q / (WBL) ,  which is represented by the 
dimensionless q defined in equation (3) because L is 
fixed. 

3. EXPERIMENTAL RESULTS 

The objective of the experimental phase of our study 
was to demonstrate through direct measurements that 
the geometric arrangement of the parallel plates can 
be optimized for maximum q. In other words, our first 
objective was to prove the existence of an optimal 

(2) geometric arrangement. To generate a large volume 
of design information on the optimal arrangement as 
a function of the variable parameters of the ensemble 
was the objective of the numerical phase of this inves- 
tigation (Section 4). 

The main features of the experimental apparatus 
are illustrated in Fig. 2. The apparatus is a suction- 
type wind tunnel fitted in its test section with a bundle 
of heated plates. The volume occupied by the bundle 
was the same in all the experiments; however, the 
total number and the geometric arrangement of the 
plates inside the bundle varied from one experiment 
to the next. We tested bundles with 4, 6, 8, 10 and 
14 plates; however, in all the bundles the elemental 
channel had N = 4. The size of the largest bundle 
(number of plates = 14) and the plates in the elemental 
channel (N = 4) were constrained by the construction 
of the test section of the tunnel. The stagger parameter 
was maximum (flmax) in all the experiments. In 
summary, the geometries tested experimentally had 

(3) only one degree of freedom : the row spacing l~. 
The lower part of Fig. 2 shows the test bundle with 

six plates and A = 1. Each plate was a thin thermo- 
foil heater MINCO HR5334 R17.2L12A (resistance 
17.2 f2), which was sandwiched between two alumi- 
num strips. The heater and the strips were bound using 
a highly conductive cement (#6 RTV). The plates 
were heated identically: they were connected in parallel 
and powered by a variable autotransformer that pro- 
duced voltages between 0 and 140 V. 

The experiments were conducted at four air speeds 
corresponding to the Reynolds numbers ReL = 1000, 
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Fig. 2. The principal features of the experimental apparatus and its test section. 

2000, 4000 and 6000, which indicate laminar bound- 
ary layer flow over the swept length L. The air stream 
was generated by the wind tunnel, which was built in 
our laboratory. The internal dimensions of  the wind 
tunnel are 125 × 130x600 ram. The air speed was 
measured using a Taylor anemometer  with an uncer- 
tainty of  5%. 

The temperature was measured with five precision 
thermistors YS1 44004 (resistance 2250 f~ at 25°C), 
which were calibrated between 20 and 80°C in our 
laboratory. The bias limit of  our temperature 
measurements was _+ 0.001K. It was deduced from the 
resistance vs temperature response measured during 
the calibration of  each thermistor [ d T / d R =  

- 1/14)K f~ '] and from the 0.01 ~ resolution of  the 
HP3468B ohmmeter  with which we read the ther- 
mistor resistance. 

The bot tom of Fig. 2 shows the thermistor 
positions. Three thermistors were attached to the 
upper surface of  one of  the trailing plates in the 
bundle, along the midline of  the surface. Their read- 
ings are labeled Tw,, Tw2, and Tw3. A fourth thermistor 
(T~4) was placed in the middle of  the upper surface of  
one of  the upstream plates. The fifth thermistor was 
positioned 65 mm upstream of the bundle, to moni tor  
the temperature of  the approaching free stream (T,~). 
In the case of  the thermistors embedded in the alumi- 
num plate surface, the contact gap between thermistor 
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and aluminum was filled with highly conductive heat 
sink compound. The outer side of the thermistor was 
covered flush with a small strip of aluminum foil, 
which was glued (with heat resistant plastic cement) 
to the aluminum surface. 

Each run began with setting the voltages for the 
plate heaters and the fan. We monitored for two hours 
the changes in the temperature readings 
(Two, Tw2, Tw3, Tw4, T~.) and the power input to the 
plate heaters. We assumed that the steady state was 
reached, and the actual measurements could start, 
when the changes in the temperature readings were 
less than 0.2°C. In each experimental run we took 
25 resistance readings from each thermistor, and 25 
voltage readings from the plate heaters--all during 
a period of 30 min. The temperature range of our 
experiments is bordered from below by 25°C, which 
was one of the air stream temperature readings, and 
from above by 70°C, which was reached by one of the 
trailing plates. 

In equation (3) we used Tw~ in place of Tw to cal- 
culate the overall thermal conductance q. The position 
of the Twt thermistor is shown in Fig. 2 : this choice 
was not critical because the temperature of the trailing 
plate was essentially uniform. In all the runs, the 
maximum difference between Twi, Tw2 and Tw3 w a s  

less than 3°C. The maximum nonuniformity of 3°C 
occurred when Twt = 70°C and Twl- T~ = 45°C. In 
other words, the maximum relative nonuniformity in 
(Twj - T~) was 7%. The temperature of the plates in 
the central rows (Fig. 2) were not measured because 
they fall between Tw4 and Two; in other words, the 
relative nonuniformity of temperature over the central 
plates is expectedly less than 7%. The air properties 
were evaluated at the film temperature (]rw+ T~)/2, 
where Tw = (Twl + Tw2+ Twaq- Tw4)/4. 

We evaluated the experimental uncertainties using 
the procedure described by Moffat [19] and the propa- 
gation line of Kline and McClintock [20]. The bias 
limit of 0.001K determined during the calibration of 
the thermistors agrees with the bias limit reported by 
Howle et al. [21] and an instrumentation handbook 
[22]. The bias limits for the voltage across the plate 
heaters and their resistance are 0.001 V and 0.1 fL The 
length measurements (L, H, B) have a bias limit of 
1 ram. The uncertainty in the tabulated properties 
of air (k, v) was taken as 5%. 

The precision limit of measured quantities such as 
the temperature and the voltage power dissipated by 
the heaters was estimated as two times the standard 
deviation. In the case of temperature the precision 
limit values were as high as 0.4K, which made the bias 
limit contribution negligible. The estimated uncer- 
tainty in Reynolds number was 7% in all the runs. 
The calculated uncertainty in the overall thermal con- 
ductance was always less than 7.6%. 

Figure 3 illustrates our experimental results for the 
overall thermal conductance, as a function of spacing 
(if/) and air speed (RED. Since in the experiments 
there is flow around the bundle, in the calculation of 
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Fig. 3. Experimental results showing the effect of plate-to- 
plate channel spacing and ReL on the overall thermal con- 

ductance (A = 1, N = 4, ~ = 1, Pr = 0.72). 

q (cf. equation (3)) we used only the heat released 
through the surfaces present in the volume L x H × B 
shown in the inset of Fig. 3. We chose this volume 
in order to make the geometry of the tested bundle 
approach as much as possible the geometry sketched 
in Fig. I. 

The results of Fig. 3 are for the test bundle with 
N = 4, A = 1, and fl = f l r n a x -  It is clear that when the 
air speed and all the other parameters (except if,') are 
fixed, there is an optimal channel spacing I~ such 
that the overall thermal conductance is maximized. In 
Section 5 we show that these results agree qualitatively 
and quantitatively with the corresponding results 
based on the numerical study that is described next. 

4. NUMERICAL RESULTS 

We simulated numerically the heat and fluid flow 
fields for the system of Fig. 1 in the laminar range 
represented by 10 2 ~ ReL <~ 104. In view of the plate 
dimension b assumed in the simulations, this ReL 
range corresponds to 1.6 ~< U~b/v <~ 5000. At such 
low Reynolds numbers the wake behind each plate is 
straight (e.g. ref. [23]), and there is no mass flow across 
the long boundaries of the elemental channel sketched 
in Fig. 1. We further assumed that there are enough 
elemental channels in the bundle (H >> W) such that 
the flow through a single channel is representative of 
(or a repeating building block in) the flow through 
the complete bundle. Consequently, we conducted our 
numerical work in the two-dimensional com- 
putational domain represented by one elemental chan- 
nel (L x W) fitted with an upstream section (Lu x W) 
and downstream section (Ld × W). The lengths Lu and 
Ld were selected based on an accuracy test described 
later in this section. 

The equations for the conservation of mass, 
momentum and energy in the two-dimensional steady 
flow of a fluid with nearly constant properties are 
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Ou 0v 

~u t?u 1 OP 
u a x + V ~ y -  p a x  +vV2u 

~v 0v 1 ~?P u ~  +v~), p a)' +vV2v 

FiT c~T 
+V~y = 7V2T (7) b/~X 

where V 2 = ~2/c~x2+ 02/0y 2, and x is aligned with the 
flow direction (U~ in Fig. 1). In order to select the 
appropriate nondimensionalization of the phenom- 
enon near the optimal geometric configuration we 
relied on the numerical approach developed in earlier 
studies [8, 24] : specifically, (i) the conclusion that near 
the optimum the elemental channel looks 'long' such 
that the boundary layers meet in the middle of the 
channel (i.e. viscous diffusion has time to travel W 
entirely); and (ii) the pressure difference across the 
bundle (L) is AP = (1/2)pU~. This pressure difference 
is particularly accurate in the case of wide bundles 
(H >> IV, as assumed above). The constant pressure 
difference captures the physics of the geometric opti- 
mum : larger W values allow larger flow rates through 
the elemental channel; however, since the channel 
volume increases the heat transfer rate per unit of 
channel volume decreases. In the opposite extreme, 
when W approaches zero, the channel flow rate 
vanishes and so does the channel heat transfer rate. 
This is why there is an intermediate (optimal) channel 
spacing for maximum heat transfer per unit volume. 
In conclusion, we used the nondimensional variables 

(x, y) (u, v) (:~, y) - (a, ~) - 
L (AP/p) 12 

results (i.e. simulations for many geometries, one 
(4) differing only slightly from the next), which were 

needed during the optimization phase of our numeri- 
(5) cal work. The finite-element results were tested against 

the benchmark results developed in the initial step. 
The numerical optimization results reported later in 

(6) this section were developed based on the finite element 
package. The grid was uniform in the Y direction and 
nonuniform in the £ direction. It was double-graded 
so as to put more nodes near the plate surfaces, to 
capture the boundary layers. Grid refinement tests 
at ReL = 102 and 103 indicated that the solution was 
insensitive to further grid doubling in Y or ~ (with 
changes in the channel heat transfer rate of less than 
1%) when we used 100 nodes per unit length (L) in 
the :~ direction, and an average of 100 nodes per unit 
length in the y' direction (averaged over the non- 
uniformity of the grid). At ReL = 104 the solution was 
insensitive to further grid doubling if we used 200 
nodes per unit length in both directions ; in this case, 
however, the solution converged significantly faster at 
300 nodes per unit length in both :~ and )7, which was 
the grid that we selected. Another set of accuracy 
tests indicated that the channel heat transfer rate was 
relatively insensitive (with changes less than 1%) to 
further doubling of the upstream and downstream 
lengths of the computational domain when LulL = O. 1 
and La/L = 0.3. Finally, since the flow and energy 
equations are weakly coupled, we solved the flow 
problem first and the heat transfer problem second. 
Complete runs varied from 2 to 10 min of CPU time 
on a DEC alpha station. 

We developed complete numerical solutions for the 
flow and heat transfer problems for Pr = 0.72 and 
Re~. = 102, 103 and 104. Our objective was to document 

(8) systematically the effect on q of each of the four geo- 
metric degrees of freedom, l~, A, N and ~, where 

P T - T ~  
P = ~  0 (9) 

Tw-T~" 

The flow boundary conditions were: ff = 1 at the 
inlet of the computational domain (Y = 0) ; zero nor- 
mal stress at the outlet [~ = (Lu+L+Ld)/L];  free slip 
(zero shear) and zero flow penetration along the 
imaginary planes between the elemental channel and 
the adjacent channels ; no slip and no flow penetration 
on all the plate surfaces; and free slip and no pen- 
etration on the longitudinal boundaries of the 
upstream and downstream sections of the com- 
putational domain. The temperature boundary con- 
ditions were 0 = 1 on the plate surfaces, and 0 = 0 
at the inlet (Y = 0). The remaining portions of the 
boundary were modeled as adiabatic. 

Our numerical method was developed and docu- 
mented during the course of similar numerical opti- 
mization studies [8, 24], and consisted of two steps. 
In the first, we developed and tested our own finite- 
difference code, the results of which we used as bench- 
mark. In the second, we used an existing finite element 
package [25] to generate the large volume of numerical 

L--b  (10) 
[~'= and /3 .... - N - I '  

The relative stagger parameter varies from ~ = 0 
(plates in line) to ~ = 1 (perfectly staggered plates, 
e.g. Fig. 2). During each sequence of runs we varied 
only one geometric parameter while holding the other 
geometric and flow parameters fixed. 

The strongest effect on the overall thermal con- 
ductance is due to varying the channel spacing l~. 
This effect is illustrated in Fig. 4 for A = 0.7, N = 4, 

= 1 and ReL = 103. The effect is qualified as 'strong' 
because if the optimal spacing is missed by a factor of 
2 or 1/2, the resulting thermal conductance is only 
about half of what it could be. 

We repeated the optimization series of Fig. 4 for 14 
additional combinations of A and ReL, which cover 
the range 0.5 ~< A ~< 1.3 and 10 ~ ~< ReL <~ 104. In each 
series we located the optimal spacing by fitting the 
three highest ~ points with a parabola and solving 
&7/0 I~ = 0. The resulting I~opt values are summarized 
in Fig. 5. The optimal spacing decreases as ReL 
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Fig. 6. The effect of channel heat transfer area (A) on the 
overall thermal conductance (1~= 0.075, N = 4, fl = 1, 

ReL = 103, Pr = 0.72). 
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overall thermal conductance (N = 4, fl = 1, Pr = 0.72). 

increases: in fact, as we shall see in equation (12), 
ifopt is closely proport ional  to ReZ ~/2. The A effect is 
such that ifop, increases only slightly as A increases; 
however, the apparent weakness of  this effect may be 
due to the narrowness of  the A domain. 

We studied the A effect in greater detail in the opti- 
mization series reported in Fig. 6. This time we fixed 
the spacing ( i f =  0.075, along with N = 4, fl = 1, 
ReL = 10 3 and Pr = 0.72) and varied the area par- 
ameter A. Our numerical runs are more numerous 
near A ~ 1 to emphasize the existence of  an optimal 
A at constant if .  Very important  are also the two 
limits, q = 163.9 at A = 2, and q = 0 at A = 0. In the 
latter, the elemental channel L × Wbecomes a channel 
with continuous solid walls (e.g. ref. [7]). The asym- 
metry of  the q maximum in Fig. 6 is worth noting. 

Figure 7 is a different way of  looking at the import- 
ance of  maximizing t] with respect to if .  Each point 
in this figure ( i fopt ,  A)  w a s  obtained by executing 
the series illustrated in Fig. 4, by changing A from 

,oo] 
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Clmax 

200 
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i 

0 - 

::: .  i 
L 0 .105 - Wop t 

90,079 . 0.096 0 08 

0.0 

1 2 

A 
Fig. 7. The effect of the channel heat transfer area A on the 
maximum overall thermal conductance at optimal spacing 

(N = 4, fl = 1, ReL = 103, Pr = 0.72). 

one series to the next and by determining in each 
series the ifop, that maximizes q. An important  feature 
of  Fig. 7 is the weak q maximum in the range 
0.5 ~< Aop t ~< 1.3, which corresponds to the optimal 
spacing range 0.069 ~< ifop~ ~ 0.105. The practical 
message of  Fig. 7 (in combination with Figs. 4 and 6) 
is that as soon as A is given a value comparable with 
1, the critical choice in the maximization of  q is the 
value of  if .  The particular choice of  A is unimportant  
provided W is set at or  near Wop,. 

Note further that since qmax is nearly independent 
of  A in Fig. 7, nearly the same maximum ~ values 
emerge when ~( i f ,  A) is maximized with respect to A 
while holding i f  fixed, as was illustrated in Fig. 6. On 
the other hand, if  in Fig. 7 we maximize 4m~x one more 
time (this time with respect to A), then the twice- 
maximized overall thermal conductance is qm . . . . . .  

= 320, which occurs at if'opt = 0.08 and Aop t = 0.8. 
The effect of  increasing the number of  plates in 
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Fig. 8. The effect of the number of plates (N) on the optimal 

spacing (A = 1, ~ = 1, Pr = 0.72). 
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Fig. 10. The effect o f  the stagger parameter when the spacing 
is fixed at Wopt (/3 = 1) (N = 4, ReL = 103). 
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Fig. 9. The maximum thermal conductance corresponding 
to the optimal spacing shown in Fig. 8z, and the effect of 

changing the number of plates (A = 1,/3 = 1, Pr = 0.72). 

each channel (N) is illustrated in Fig. 8. Physically, to 
increase N while holding A fixed is to divide a fixed 
plate area into more plates with smaller b values. 
When N is of the order of 10 or smaller, the optimal 
spacing increases sensibly as N increases. At 
sufficiently larger values of N, the optimal spacing is 
insensitive to further increases in the number  of plates. 
It is interesting that the ReL effect on l~op, continues 

l~"f ~ o  I / 2  to be as in Fig. 5, namely ,, optl,~L = constant, 
regardless of whether N is large or small. 

The maximized overall conductances that cor- 
respond to the optimal spacings of Fig. 8 are presented 
in Fig. 9. Here we see that the effect of N on cTm,x 
is almost nonexistent, especially at ReL = 10 z. This 
conclusion has practical relevance, because it means 
that there is little benefit in dividing a fixed heat trans- 
fer area into smaller plates (i.e. smaller swept lengths 
b). A weak qmax maximum with respect to N develops 
near N = 4 as the Reynolds number  increases. The 
strong effect on qmax is due to ReL, in fact, #max increases 
almost proportionally with ReL regardless of the 
values of N. 

0.08 A - 0.5 . 320 

N = 4 ] ~ q , . , x  

0.07 310 

0.06 , ~ = ~ 300 

0 0.2 0.4 0.6 0.8 

Fig. 11. The effect of the stagger parameter on the optimal 
spacing and the maximum overall thermal conductance 

(A = 0.5, N = 4, Re1~ = 103). 

The effect of changing the stagger parameter ~ was 
investigated in two ways. In Fig. 10 the spacing I~was 
set equal to the optimal value l~opt that corresponds 
to perfectly staggered plates (9 = 1). As the stagger 
parameter varies over the 0-1 interval, the overall 
thermal conductance exhibits a maximum at a certain 

value (called ~op,). This maximum becomes sharper 
as A decreases below A = 1 : in this range the stagger 
associated with maximum q is closely approximated 
by ~opt = A. Perfectly staggered plates (~ = 1) are 
always better than in-line plates (/~ = 0); however, 

= 1 is not  the optimal stagger parameter when 
A < 1. Figure 10 also shows that when A > 1 the effect 
of ~ on q is relatively insignificant. 

The alternative is to determine the optimal spacing 
that corresponds to each value of the stagger 
parameter, namely I~opt(/~). This route was followed 
in the construction of Fig. 11, where A = 0.5, N = 4 
and ReL = 1 0  3. The optimal spacing increases by 
roughly 7% as ~ decreases from 1 to 0. In other words, 
the optimal spacing for in-line plates is slightly larger 
than for perfectly staggered plates. The corresponding 

effect on the maximized overall conductance is also 
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small (within 6%). There is a weak q maximum at 
~ 0.5, and, as might be expected, we learn again 

that perfectly staggered plates (fl = 1) perform better 
than in-line plates (fl = 0). 

5. DISCUSSION 

In this study we demonstrated experimentally the 
existence of an optimal spacing for staggered plates 
in a fixed volume with forced convection. We then 
simulated the main features of the heat transfer con- 
figuration numerically, and investigated sys- 
tematically the effect of spacing (I,V), channel contact 
area (A), number of plates in one channel (N), and 
stagger parameter (fl). The objective of the numerical 
work was to compare the performance of many geo- 
metric arrangements that differ only slightly from one 
another. For this we had to rely on a numerical 
approach that was cost-effective, accurate and tested. 

For  all these reasons, the numerical work was not 
designed to reproduce in fine detail the geometry that 
was tested in the laboratory. The experimental con- 
figuration (Fig. 2) was limited by the size of the tunnel 
and the size of the instrumented plates, while in the 
numerical configuration (Fig. 1) we had to assume a 
large array (H >> W) so that we can perform cal- 
culations in a single elemental channel. In the exper- 
imental set-up, there was also a certain amount of by- 
pass air flow around the array (along the walls of the 
tunnel). In spite of these differences, a comparison 
between the experimental results and the 'closest' 
numerical results available is recommended. Such a 
comparison is presented in Table 1, which shows that 
there is reasonable agreement between the two sets of 
results. The agreement with respect to the optimal 
spacing is remarkable in view of the differences 
between the experimental and numerical models. This 
agreement adds to the earlier conclusion [7-13] that 
the volume-constrained geometric optimization is 
'robust' ,  in the sense that the optimal geometric 
arrangement is relatively insensitive to finer details of 
the solid surfaces (shapes, thermal boundary con- 
ditions). For example, ref. [7] showed that the optimal 
spacing is the same for parallel isothermal plates and 
parallel uniform-flux plates. 

Another way to review the present results is to com- 
pare them with the correlating theory [7] that was 
developed for the optimal spacing between continuous 
parallel plates of length L and plate-to-plate spacing 
D. The theory is based on intersecting analytically the 

Table 1. Comparison of the experimental and numerical 
results obtained for A = 1 and N=4 

Experimental N umerical 

ReL l~op, tim.× l~op, qmax 

1000 0.095 484 0.089 319 
2000 0.092 595 0.062 646 

asymptotes for large spacing and small spacing of the 
heat transfer rate (Q) of the entire volume. The small- 
D asymptote showed that Q decreases as D decreases, 
because in this limit the channels close and the coolant 
flow ceases. Along the large-D asymptote, Q again 
decreases as D increases, because the total heat trans- 
fer area decreases. These trends guarantee that a 
maximum Q exists at an intermediate D, which can 
be estimated by intersecting the two asymptotes. The 
theoretical spacing (Dopt) for maximum Q predicted 
by the analytical method [7, 11, 26] is 

Popt ( p~ ,],.4 
L ~ 2.73 \L~AP/  . (11) 

To convert this estimate to the notation of Fig. 1 we 
replace L with b, and Dop t with Wop¢. In addition, we 
note [11] that the scale of the pressure drop across the 
entire assembly is (l/2)pU]f. Equation (11) becomes 

/ N \  1.2 
f'Popt ~ 3.2Pr-'/4 ~ReL-~) . (12) 

Figure 12 shows that if we replot the data of Fig. 5 in 
the manner suggested by equation (12) we obtain a 
very close correlation, in which the theoretical factor 
3.2 is replaced by 5.4. 

The maximum heat transfer rate that corresponds 
to the intersection of the small-D and large-D asymp- 
totes of the space with continuous plates of length L 
is of the order of [7] 

Q m , x  (PAP'] '/2 
B \ Pr ] Hcp(Tw-T~). (13) 

Recalling that Q = qH/W and AP ~(1/2)pU 2, we 
can rewrite equation (13) in terms of the dimensionless 
q defined in equation (3) : 

qmax ~ Prl/2ReL. (14) 
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Fig. 12. The correlation of the optimal spacing data shown 
in Fig. 5. 
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Fig. 13. The correlation of the maximum heat transfer rate 
data shown in Fig. 9. 

Figure 13 shows that this scaling law works very well 
towards correlating the data reported earlier in Fig. 
9. In addition, Fig. 13 shows that the numerical 
coefficient in the proportionality (14) is a number of 
order one, which is again in agreement with the theory 

of refs. [7, 261. 

6. CONCLUSION 

We have shown experimentally and numerically 
that the geometric arrangement of staggered plates 
can be optimized for maximum heat transfer (or 

maximum thermal conductance) when the opti- 
mization is subjected to an overall volume constraint. 

The staggered-plates arrangement is the latest in a 
series of basic, even simpler configurations (parallel 
plates, parallel cylinders) in which the opportunity for 
volume-constrained heat transfer augmentation has 
also been demonstrated, for both natural and forced 
convection [2-l 31. Furthermore, the theory of inter- 
secting the two asymptotes (small spacing vs large 
spacing) [7, 261, which had already been tested in 

several experiments [6, 8, 10-131, showed once again 
that it is possible to anticipate the optimal spacing of 

staggered plates, and the associated thermal con- 

ductance maximum. 
The present study was formulated as a fundamental 

volume-constrained geometric optimization problem. 
The direct application of its results depends on how 
closely Fig. 1 matches the configuration contemplated 
in the design of an actual device. There are additional 
fundamental configurations [6, 7, 1 l-131 with which 
the contemplated device could be compared so that 
its approximate optimal geometry can be predicted. If 
a more refined optimization is necessary, then this 
final phase could be pursued in the laboratory, or 
numerically, by testing only a small number of nearly 
optimal alternatives. An example of this more com- 
prehensive and interactive work is provided by ref. 
[27]. The important contribution of the present paper 
(in fact, the contribution of fundamental work in gen- 

eral) is ‘to show the way’ for the more applied work 
that will follow : specifically, we know now that geo- 
metric optima exist, and that they can be predicted at 
least approximately. 
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