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ABSTRACT 

Duhamel’s theorem estimates the temperature of a heat conduction 
body exposed to time variable heat exchange medium temperatures 
(T,). Since the theorem is not applicable to variable convective, surface 
heat conductance (h), new general solutions are obtained for variable 
T, and h. These solutions are expressed in terms of normalized 
temperature response functions of a body exposed to step functional 
medium temperatures and include continuity constants to ensure 
temperature continuity at each time for a change in h. Sample 
applications of the theorem are presented for spherical food utilizing a 
published analytical temperature response function. 

NOTATION 

a 

bo,bl,b2,b3, 
;~;Wj~b(n-2), 

Bi 
cl,c2,c3 
c(n - 3), c(n - 2), 
c(n - 1) 
D 

Characteristic dimension of a sample body or spherical 
radius (mm) 
Multiples of At which represent times of sudden 
changes in the coefficient of surface heat transfer, 
Table 1 
=ha/k. Biot number 
Multiple of At which represents a time range for a 
constant h value, see Table 1 

Domain of a body excluding its surface 

*Currently with FMC Corporation, Food Ingredients Division, Philadelphia, 
PA 19103, USA. 
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=&/a 2. Fourier number 
Trial function which is dependent on location in a body 
When h is used without a subscript, it represents the 
coefficient of convective surface heat transfer 
applicable to any time range (w/mm2 c”) 
xth coefficient of convective surface heat transfer 
(w/mm2 Co) 
Summation index or thermal conductivity (w/mm C’) 
Outward normal vector on body surface (mm) 
Number of impulses after the last change in the 
coefficient of surface heat transfer (-) 
Radial variable (mm) 
Summation index 
Surface of a body 
Time (s) 
Time of the (x+ 1)st change in the coefficient of 
surface heat transfer. For example, at tbl the 
coefficient changes from hl to h2. (The first change at 
tbo from zero to h,) (s) 
Time of the (X + 1)st change in heat exchange medium 
temperature. For example, T,, changes to T,, at tl (the 
first change at t, from TO to Tal) (s) 
Location dependent continuity constant for thermal 
influence of (X + 1)st step-functional surrounding 
medium temperature, occurred in a time range where 
the yth coefficient of surface heat transfer, hY, is 
applicable. This constant is estimated at the time 
tbcz_-lj, when the coefficient of surface heat transfer 
suddenly changes from (z- 1)st value, h,_ 1, to the zth 
vaue, h,. When y and z are not adjacent integers, the 
continuity constant should be estimated successively 
starting with tb,_ y*y+l. Namely, one needs to calculate 
each of tbm,x, where i=1,2,3..., z-y. For example, 
ttz,, is the continuity constant for the first step 
functional surrounding medium temperature present in 
a time range where the first coefficient of surface heat 
transfer, hl, is applicable. This constant is estimated 
when the second coefficient, h2, was suddenly changed 
to the third coefficient, h3. The value of tkz,, is 
required before estimating the value oft&& (s) 
Temperature (“C) 
Surrounding medium temperature between (X - 1)st 
and xth step changes or of xth impulse (“C) 
=T-TO (Co) 
Function used to solve heat conduction equation 
Location coordinate vector (mm) 

Thermal diffusivity (mm2/s) 
Characteristic root for spherical heat conduction. /?_ 
signifies the sth root for the xth Biot number, see eqn 
(70) 
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Y 

l- 

At 

L 
Subscripts 

kn 
bo+ l,bo-2, 
bo+3,bo+cl 
bl+l,bl+2, 
bl +c2 
b3-t-1 
b(n-3)+c(n-2) 
b(n -2) + 1, 
b(n-2)+c(n-1) 
b(n-l)+l, 
b(n-1)+2 
b(n-l)+p 

0 

X 

1,2,3 

Expression defined by eqn (69) I’, signifies y for xth 
Biot number and sth characteristic room 
Expression defined by eqn (69). I, signifies I with xth 
Biot number and sth characteristic roll 
Uniform time interval (s) 
=r/a, dimensionless radial variable 
Normalized temperature response function for the xth 
coefficient of surface heat transfer 

Surrounding heat exchange medium 
Appended to t to represent continuity constant 
First, second, third and last impulse in time range of 
hl, respectively 
First, second and last impulse in time range of h2, 
respectively 
First impluse in time range of h3 
Last impulse in time range of h, --2 
First and last impulses in time range of h,_ ,, 
respectively 
First and second impulses in time range of h,,, 
respectively 
Last step change in the time range of h, (related to last 
temperature in the time variable T,) 
Initial value 
x th value 
First, second and third values, respectively 

INTRODUCTION 

Duhamel’s theorem has been used to derive an analytical heat conduction 
solution for a body exposed to time variable medium temperatures using a 
normalized analytical solution of the same body (Carslaw & Jaeger, 1972). 
Several researchers (e.g. Hayakawa, 1971, 1972; de Ruyter & Brunet, 1973; 
Uno & Hayakawa, 1980; Lekwauwa & Hayakawa, 1986) have applied this 
theorem to estimate the transient state temperature of food subjected to 
heating or cooling processes. 

Food is frequently exposed to different heat exchange media within one 
heat transfer process. During this process, an overall coefficient for 
convective heat transfer (h) changes with time. For example, one heat 
sterilization process usually consists of heating and cooling phases. Packaged 
food is heated frequently by steam or a steam-air mixture during the 
heating phase and cooled by water during the cooling phase. Duhamel’s 
theorem cannot be used to estimate product temperature in this case since 
the theorem assumes constant h (a heat conduction equation with variable h 
being mathematically nonhnear while the theorem is applicable only to 
linear equations). The present paper shows a newly derived theorem 
applicable to heat transfer processes with variable h and variable medium 
temperatures. 
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MODIFIED DUHAMEL’S THEOREM 

Derivation of a new theorem is presented below starting with a simple case 
of two changes in the h value (two h values) and of two step-changes in the 
heat exchange medium temperature, T, (two medium temperatures). This is 
followed by a slightly more complex case of three changes in h and three 
step changes in T,. Any smooth change in T, may be approximated by a 
series of impulses with time variable h. Therefore, the third case is when 
one impulse in T, followed by any number of changes in h is considered. 
The result obtained is then used for the fourth case, a deviant thermal 
process with a sudden medium temperature drop in the heating phase. The 
last case is most general with any number of changes in h and with smooth 
changes in T, approximated as a series of gates of uniform width. 

1. ‘lbo step changes in T. with two changes in h 

Assumed changes in T, and h are shown in Fig. l(a). There are sudden 
changes in the medium temperature at times 0 (=tO) and fbi, increasing to 
T,, from TO at 0 and decreasing from T,, to T,, at t1 (the medium 
temperature being TO from -00 to 0). The coefficients of surface heat 
conductance, h, changes from zero to hl at 0 (=tbo=to) and from hl to h2 at 

A 

I 

0 ‘bl tb2 

Time 

t,=o t. J-1 tj-l+At ‘bi $(i+l) tb(i+2) tb(i+n-2) 
= t. 

J 

T a. 
J 

% 

5 

8 

r” 

D 
hi+i hi+2 hi+n-2 

r hi- ** .‘. * _ - 
1 II\\ 

to =o 'j-1 tbi %(i+l) %(i+Z) %(i+n-2) 

t. +At 
J-t 

= tj Time 

Fig. 1. Assumed changes in heat exchange medium temperature and in coefficient 
of convective surface heat transfer. 
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fbl (fbl=tl and h being zero from -#CC to 0). Any h value may be assumed 
from - CG to 0 without loss of the generality, since this does not influence 
the final results. 

Dimensional temperature T is transformed to U( =T - T,) for 
convenience. The heat conduction equation and applicable boundary and 
initial conditions, expressed in I/, are: 

aUK?t=rxV’U O(=&,=t,,,,)<t and XED (1) 
kUl&z=h,(U-U>,,) O(=t,,) <f<rb,(=t,) and XCS (2) 

ki3Ul&z=h,(U-Uaz) t,,,(=r,)<t and XES (3) 

U=O when t=O and XED IJS (4) 
Assume heat conduction function U at any location being a sum of two 

functions cl and u2. 

u=v, +23* 

The functions II, and r2 are the solutions of the following equations: 

For c,: 

a2:,/at=clv21p o<t XED 

kac,lan=h,(v, -U,,) O<flfb, X&S 
kao,/an=h2(L’, -0) fhl<t XES 

c,=o t=O XED US 

For ~‘~1 

al;Jat=uv%l thl<f XED 

kaPJJan=h*(l?2-uCIa2) tbl <t XES 

u*=o fltb, XED US 

(5) 

(6) 
(‘1 
(8) 
(9) 

(10) 
(11) 
(12) 

It is clear that the sums of corresponding equations [i.e. eqns (6) and (IO), 
(7) and (X2), (8) and (ll), and (9) and (12)] produce the original eqns 
(l)-(4) provided that eqn (5) is satisfied. Function u1 is the temperature 
response to the thermal environment between 0 and th,, an impulse repre- 
sented by a step-up-change from 0 to U,, at the zero time and a 
step-down-change from U,, to 0 at th,. Function L’~ is the temperature 
response to a step functional thermal environment beyond fb,, a step-up- 
change from 0 to Ua2. Note that influence of h, exists on 0, at t>t,,, 
although the thermal environment is removed at t,,,, eqn (8). 

To solve u, and v2 the following normalized temperature response func- 
tions $, and $2 are used. 

For $,: 

ati/,iaf=uv2*, o<t XED 
kw,m;=bp, - 1) o<t x&s jt:j 

1 r=O xeDUS (15) 
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For &: 
a$2lat=av’$, 0<t XED 

kawa~=~,d*2- 1) o<t XED 
2 t=O XED US (18) 

Note that functions 11/r and $2 are the normalized functions related to hI 
and h2, respectively (a body of a zero initial temperature exposed to a heat 
exchange medium temperature of unity). 

When O<t<tbl, eqns (6) (7) and (9) become identical to those obtained 
by multiplying both sides of eqns (13), (14) and (15) by Ual. Therefore, one 
obtains: 

vl=U,l$l(t) when O<t<t,,, (19) 

For brevity, $, (t) is used to imply Ic/1 (t, x) and a similar, simplified symbol 
for rj2. 

Function v1 for t > tbl is the temperature response to the surrounding 
temperature impulse which begins at 0 and ends at tbl. This function may be 
determined by taking differences of two temperature response functions for 
these two step functional environmental temperature histories: one begin- 
ning at 0 and another beginning at tbl. Therefore, one assumes: 

ul=u,,[G(t)-~z(t-tbl)] t>tbl (20) 

where G(t) is an unknown, monotonously increasing function. By substitut- 
ing eqn (20) into eqns (6) and (8), one gets: 

u,lka[G(t)-~z(t-tb,)]iat=u,lctV2[G(t)-~2(t-tbl)] t>fbl (21) 

U,lka[G(t)-~,(t-tb,>]lan=U,,h,[G(t)-IC/,(t-tb,)] 

=U,lh,[{G(t)-l}-{~,(t-t,1)-1}] t>tbl (22) 

Since tj2 is the solution of eqns (16), (17) and (18), eqns (21) and (22) 
become as follows: 

aGlat=c?V2G t>tbl XED 
kaGlan=h2(G - 1) t >tbl Xd [ii,’ 

The values of u1 estimated by eqns (19) and (20) should be continuous at 
tbl. Therefore one has: 

jii$ ti&)=>i$ [G(t)-~,(t-tbl)]=~~~~ G(t) (25) 

Equations (16) and (17) are identical to eqns (23) and (24) except for the 
applicable time range. 

In view of G being a monotonously increasing function which satisfies 
eqns (23), (24) and (25), G should be nil at a certain value of t. Therefore, 
t is transformed to t, which becomes zero at this certain value oft. 

t,=t+t,-tfbl (26) 

Therefore, in terms of the transformed variable t,, heat conduction 
around any location is represented by: 

aGIat,=aV2G 
kS-f/i3n=h2{G-1) 

G=O 

t,>o XED 
t,>o Xd 

t,=O XED US 
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Since the above equations are identical to eqns (16) (17) and (18) one 
obtains: 

G(t,)=~2(tm)=~2(t++tmx-tbl) (27) 

The value of t, is then estimated by using eqns (25) and (27) 

~1(thl)=1l/2(tmr)=~2(t~~,~) (28) 

Note that tk&, is location dependent since $I(tbl) is location dependent. 
Therefore 

G(t,)=~,(t~,2,o+t-tb,) (29) 

Finally, there is the following solution 0, using eqns (20) and (29). 

ul=rlgl[~,(t~,2,,+t-tbl)-~2(t-tbl)] for lb1 <t (30) 

The solution of eqns (lo), (11) and (12) may be easily obtained by 
comparing them with eqns (16) (17) and (18). 

VZ=Ua&(t-th,) thl It (31) 

From eqns (5), (19) (30) and (31), one finally has the following solution 
for U: 

O<t<fhl (32a) 
u,,[lClz(t~~,,,+t-tb,)-1C12(t-th,)+Ua2~2(t-th,) &,I <t (32b) 

where 

Wbl)=WXo) (32~) 

The constant tk&,, in eqn (32b) ( continuity constant) is required to ensure 
the temperature continuity at the time of the change in h from h, to h2. This 
constant may be estimated easily by eqn (32~) because of known 
temperature response functions $, and tj2 and of the given tbl. 

2. Three step changes in T, with three changes in h 

Next is a case for one additional change in h and T,, Fig. l(b). Dependent 
variable T is transformed to U as before. 

Food temperatures before the second changes in h, 0 <tl&, and 
between the second and third changes in h, tbl <tltb2, may be estimated by 
eqns (32a) and (32b), respectively. A solution for estimating food 
temperature after the third h change, t2 tb2, is derived below. 

Heat conduction [eqn (l)] and the initial condition [eqn (4)] are 
applicable to the present case together with the following boundary 
conditions: 

kW%z=h,(U-U,,) O(=t,=t,,)<t,,(=t,) Xd (33) 

kXJlan=h2(U-Ua2) thl(=t,)<t<tb2(=t2) Xd (34) 

ki3U/an=h3(U-Ua3) &(=t2)<t Xd (35) 

Normalized temperature response function applicable to hl, h2 and h3 are, 
respectively, represented by $,, ti2 and tj3. For example, $3 is the solution 
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;I gring equations obtained replacing the subscript ‘1’ of eqn (13)-(15) 

We assume that the solution U in t>tb2(=t2) are expressed as the sum of 
three functions: 

U=Vl +V2+V3 (36) 

These functions are the solutions of the following equations. 

For vl: 

kvJ3T=VaV2v1 
kvll&z=hl (vl -U,,) 

kvl/&z=h2(v, -0) 
k~v,/~n=h3(v~ -0) 

v,=o 

&(=O) <t XCD 
tbo(=O)<t<tbl XES 

tbl <t <t,Q XES (37) 

fbZ<f XES 

tbo(=o) xeD US 

For v2: 

av2/at=av2v2 
kav21an=h2(v2- U,,) 

kav2/an =h3(v2 - 0) 

v2=0 

tbl <t 
thl <t<tb2 

tb2 <t 

t<tbl 

xeD 
xd 

XES (38) 
xeD US 

For v3: 

av,lat=aV2u, lb2 <t XCD 
kavdam;qb - u,,) tb2<t<tb2 xd (39) 

3 t<tbZ xszD US 

The solution of eqns (37) may be derived through an analysis similar to the 
one presented previously. 

When tbl <t<tb2, v1 includes function *2 with one continuity constant 
applicable at tbl, continuity between rjl and $2. This is identical to eqn (30). 
When tb2<t, v1 includes fj3 with two continuity constants applicable at tb2, 
continuity between $r and tj3. The solution obtained is: 

vl=u,l[~3(t~~,o+t_tb2)-~3(f~~,1 +t--b2)] t>fb2 (40) 

In the above equation, t+b3(t) is a normalized temperature response func- 
tion for h3 [the solution of the equations obtained by replacing hl and 11/r of 
eqns (13)-(U) by h3 and tj3, respectively]. Equation (40) represents the 
thermal response at any time beyond tb2 for an impulse that occurred 
between 0( =&,) and tbl (=t& 

The value of ttz,* in eqn (40) is a continuity constant related to the 
thermal influence of the step functional surrounding medium temperature 
history beginning at the zero time or tbo(=to, the first step function). This 
temperature history is indicated by subscript ‘0’ of the continuity constant 
[zero being equal to 1 (first) - 11. This subscript convention was used since 
the first step change is usually at a zero time. The step change is within the 
time range where the first h value, hl, is applicable. This is signified by 
superscript ‘1’. The continuity constant is estimated at the third change in h 



Modified Duhamel S theorem for variable coefficient 133 

(h2 to h3) at tb2. This is indicated by superscript ‘3’. The constant is required 
to estimate the body temperature in the time range where h3 is applicable. 
The constant may be estimated sequentially using the normalized tempera- 
ture response functions tjl, tj2 and $3 and using continuity conditions at tbl 
and tb2 as shown below. 

til(tbl)=$2(fl%,o) (41) 

$2(tlxo +tb2-fb,)=$3(k:,o) (42) 

Continuity constant t k$,, is related similarly to the second step-functional 
medium temperature change at t, (subscript 1=2- 1). 

$1 (tbl -t1)=$2(tk,2, I> 

$2(fl%,, +fh2-tbl)=$df~i?J) 

Since the second step change occurs at the end of the h, time range, 
t, =thl, $e first equation becomes $,(O)=$,(t&). This equation becomes 
;h;t;(~+“) b ecause of the initial condition of t,k,. Furthermore, one obtains 

&-0 because of the initial condition of function $2, ti2(0)= 1. The 
second equation becomes: 

S1/2(tb2-fhl)=~3(t~,3.1) (43) 

Function u2 is the thermal response of the impulse, beginning at tb, and 
ending at tb2, in the time range of h.?. Function c2 determined through 
deviations similar to those resulted in eqn (30). 

~2=&2[\1/3(f%l +t-fb2)-$3(t--b2)] t>tb2 (44) 

Noting that tl =tbl, one has: 

~z(th2_th1)=~3(t~~,,) (44a) 

Comparing eqns (43) and (44a), one finds: 
I,3 - 2.3 

tb&, 1 -thri, I (44b) 

Finally, vj is determined through derivations similar to those for eqn (31). 

C’3=Ua3$3(t-fh2) t>th2 (45) 

Therefore, from eqns (40) (44) and (45), one has: 

u=u,,[~,(t~~,,+t--h2)-~3(t~~,l+t-fh2)] 

+Lla2[~3(t~~,I+t-tb2)-~3(t-th2)]+Ua3~3(t-tb2) 

The above equation is transformed as follows using eqn (44b): 

u=u,,~,(t~~,,+t--h2)+(u,2--~;,,)~3(t~~,I+t-fb2) 

+ (Ua.3 - Ua2) $3 (t - th2) (46) 

3. One T,-impulse and n effective hs 

Any curvilinear change in T, with any number of changes in h may be 
approximated with a sum of impulses, each of them followed by any number 
of changes in h. Therefore, one considers an impulse followed by (n - 1) 
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changes in h, the n values of h [Fig. l(c)]. As shown in the figure, the 
impulse is between ti and tj+ At with an applicable h value of hi and 
followed by h changes at tbj to hi, 1, at tb(i+ 1) to hi+z, at tb(i +2) to hi+J, . . . 
at fb(i+n-3) to h+n-2, and at fb(i+n-2) to hi+,-I. 

The governing equations are given below. 

i3v,fi3t=aV2v, xtzD t>tj_l (47) 

k~v,/%z=h,(v,-&) tj-1 <t<tj-l +At(=tj) ’ 

k&,J3n=hi(v,-0) tj<t<tbi 

kCb,/&=hi+l(v,-O) fbi<tstb(i+l) 

k&,l%z=h~+2(~,-O) tb(i+l)<tstb(i+2) i 
(48) 

tb(i+n-2)<f 

where XES v,=O xeS US and t <ti (49) 

Without loss of generality, one assumes the impulse is in the time range 
of the ith value of h. The impulse is defined by the jth step change (step-up) 
which occurred at tj-1 and the (j+ 1)st step change (step-down) which 
occurred at tj (=ti_l +At). This assumption will simplify the application of 
the solution for vm to the general case (the fourth case). 

The solution of eqn (47) for t >tb(itn -2j may be determined through an 
approach similar to the one for deriving eqn (40). 

Vm=Uaj[~i+~-~(t~‘~~“-1+t-tb(j+n-_2))-~i+n__(t~~~~~-1+t-tb(i+n-_2))] 

(50) 

The two continuity constants in eqn (50) may be estimated successively 
using the normalized functions $i, I,+~ + t, . . . , 1+4~+~ _ 1. 

For t~~~~~ ‘: 

i it=-1. For tdmd . 
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Other equations for successively estimating t~~~~-’ are obtained by 
replacing subscript ‘bm,j - 1’ in eqn (51) with ‘bm,j’. 

When the impulse terminates at tbi, Fig. l(d), t&!&’ is equal to zero always 
as shown below. The left hand side of eqn (52) becomes $i(O) since t&=tj. 
Since $/i(O)=1 according to the initial condition of rji, one has: 
$i+ l(tbm,j Z,r+‘)=l. Because of the initial condition of $j+l(~i+I(0)=l) t$&+j’=O. 
The remaining continuity constants required to estimate t&$’ - ’ are 
nonzero. 

4. Divided or deviant thermal process 

Equations (50)-(52) are applied to derive formulae for estimating 
temperature responses of conduction heating of food undergoing thermal 
processes. The first sample application is for a process with one sudden 
medium temperature change in the heating phase without a change in h (a 
divided process) and the second for a process with a sudden drop from the 
holding level of a heating medium temperature followed by a temperature 
increase to the holding level, the drop due to a malfunctioned temperature 
control system (a deviant process). 

The equations derived previously for the three step T, changes are 
applicable to the divided process. However, h does not change with the T, 
change in the heating phase for some processes as assumed previously. 
Therefore, one assumes as follows for the present sample application. The 
medium temperature changes from T, to T,, at t”(=tbo), T,, to Ta2 at t, and 
Ta2 to Ta3 at t2(=tbl). Additionally, the h value changes from zero to h, to 
tbo(=to) and h, t0 h2 at tbI(=t2). 

Equations for estimating the temperature response when t 5 tbl may be 
derived applying the standard superposition theorem. 

> (53) 

When t 2 t2, the assumed heat exchange medium temperature is divided into 
two gates located between 0 and t, and t, and t2 (=tbl) before the change in 
h and one step after the change. The following equation is obtained by 
applying eqn (50) to each gate, noting i=l and n=2 for each, and applying 
an equation similar to eqn (19) to the step. 

u=Ua,{~2(t~~,o+t-tb1)-~2(t~~,1 +t-tbl)) +~,2{$2(~& +t-&,I) 

-$2(hk,2,2+t-tbl)) +Ua3$2(t--b) (54) 
The continuity constants may be estimated as follows, applying eqns (51) 

and (52): 

12 
fb’m,o: 

12 
tb’m, 1: 

12 
tb’m. 2: 

Since tbl =t2, 
follows. 

til(tbl -to)=~l(tbl)=~2(t~;n2,o) ’ 

til(fbl -h)=$2(d&) 

til@bl -t2)=$2@%2,2) 

(55) 

one finds that t’,2 - bm,2-0. Therefore, eqn (54) becomes as 
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U=Ud~2(ttk&3+t-tbl)+(Ua2-Ua1)1C/2(t~,2,1+t-tb*) 

+(Uz13-Ua2)$Z(t-tbl) 

Deviant process 

(56) 

An assumed medium temperature history is a step-functional medium 
temperature increase to T,, at a zero time (0=&,=&J, a sudden drop to Ta2 
at tl, an increase to T,, (=Ta3) at tZ, and a sudden drop to Tad at t3 (=tbl) 
for ending the heating cycle and starting the cooling cycle. The convective 
surface heat transfer coefficient up to t3 is hl and beyond t3 is hZ. 

The food temperature (U) up to t3 may be estimated by 
standard superposition theorem. 

I mh(t> Oltstl 

U= u=l~,(t)+(Ua2--Ual)lC/l(t--tl) tl ltltz 

u=llcll(t)+(UaZ-Ual)~l(t-ttl)+(U,1-uUa2)~1(t-t2) 

t21tIt3(=tbl) 

applying the 

(57) 

The temperature response formula, when t3< t, is derived through an 
approach similar to the last example, dividing the assumed medium 
temperature history into three gates and one step. One obtains the following 
equation by applying eqn (50) to each gate (i=l and n=2 for all gates) and 
applying an equation similar to eqn (19) to the step: 

u=u,,~2(t~,2,o+t-tbl)+(Ua2-Ual)lCI*(t~,2,1+t-tb*) 

+(UZll-UZi,)$ (t 2 ~~,,+t-t,,)+(Ua4-Ual)~2(t-tbl) (58) 

where 

The next example assumes a change in h at each heat exchange medium 
temperature change considered in the above. Symbols representing the 
times of h changes are different from the above to reflect the assumed h 
changes. The medium temperature and h change from T, to T,, and from 
zero to hl at a zero time (=tbo= o , t ) T,, to T,, and hl to h2 at tbI (=t& T,, 
to T,I (=Ta3) and h2 to hl (=h3) at tb2 (=t2), T,, to Tad and hl to h4 at tb3 
(=ts). 

The food temperatUre between 0 and tbl, tbl and tb2, and tb3 and tb3 are 
estimated applying eqns (32a), (32b) and (46), respectively. 

’ ual$l(t) Oit<tbl(=h) (60a) 

u= u,llC/2(t~;n2,0+t-tbl)+(Ua2-Ual)lC/2(f-tbl) tbl<t<tb2(=f2) (bob) 

u,l{~l(t~~,,+t--b2)-~1(t~~,l+t-fb2)}+Ua2~l(t~~,l+t-tb2) 

+(ual-Ua2)h(t-tb) tb2sf<tb3(=&) (60~) 
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Note that function $, was used in the third time range [eqn (~OC)] since 
the applicable h is h,. The continuity constants in eqns (60b) and (60~) may 
be estimated as follows. 

1.2 
t,Xn,0: $,@b, -to)=~,(tb,)=~2(t~,‘.,,) (61a) 

t,X,,: IC12(f~;n2,“+th*-t,)=~*(f~;n2,,+th2-thl)=~,(t~~.o) (61b) 

G,: $,(&, -t,)=~,(fb,-tb,)=~,(0)=~2(t~~.,) 

Therefore 

t 1.2 -0 
hm, l- 

~2(ttz., +tb2-fl)=~2(th2-fb,)=wx,,) (61c) 

thIil.1: ~*(th2-t,)=~2(tb2-th,)=~,(t~~,,) 
2.3 

(614 

In the above equation, t, and tbi were used although both are the same in 
this case. 

From eqns (61~) and (61d), one has: 

t 1.3 - 2.3 
hm, 1 -thm, I (614 

Therefore, eqn (60~) becomes 

~=~,,~,(t~~.~+t--h2)+(~a2-~a,)~,(f~~.,+t-fh2)+(~a,-~a2)~,(t-f,,) 

th2sf<fb3(=t3) (62) 

When t > t,,3, the food temperature may be estimated through an 
approach similar to the last example [i=l, 2 or 3 and n=4 in the general 
gate equation, eqn (50)]. 

u=u,,[~4(t~~,o+t-th3)-~4(t~,“,,,+t-th3)]+~a2[~4(t~;n4,,+t--tb3) 

-~4(t~~,2+t-th3)]+Ua,[~4(t~,4,2+t-th3)-~4(t~~,3+t-th3)] 

+ Ua4ti&--h3) (63) 

The continuity constants in the above equations may be estimated 
applying eqns (51) and (52). 

tk:,,: til(th, -to)=11/l(th,)=~2(t~~,~,) 

11/2(d$o +tb2-th,)=IC/,(t~~.o) 

I1/,(t~~,,+tb3_fh2)=~3(t~,4,,) (64a) 

d$,: ~,(th,-t,)=~,(0)=IC12(t~~,,), thus d$,‘O 

~2(t~~,,+tb2-tb,)=~2(tb2-th,)=~,(t~~.,) 

Il/,(tk:, 1 +tb3-th2)=$&$,) (64b) 

tix,,: ~2(tb2+~l)=,mx,,) 

,m% +fb3-tb2)=~4(kL) (64~) 

Comparing the second equation for tk: 1 and the first equation for tf$, 
and the first equation for && one finds c$& =tzz,1. Therefore, comparing 
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eqns (64b) and (64c), one finds ttA,l=t$$l. 

t%,z: ~2(tb2-t2)=IC1*(0)=~l(t~~,2), thus, t?i,z=O 

rC/1(t~~,*+tb3-fb2)=~l(tb3-1b2)=~4(t~~,2) 

&&: $l(tb3-t2)=$4(tt&) 

Comparing eqns (65a) and (65b), one finds ttA,2=t?$2. 

( 65a) 
( 65b) 

4-i,3: ~l(tb3-t3)=~1(0)=IClq(t~~,3) (65c) 

Thus, t2:,3=0 

Equation (63) becomes as follows applying the continuity constant 
equality found above (ti;n”, 1 =t2$ 1 and tfi$2=tb$2)e 

TABLE 1 
Assumed Time Variable Surrounding Medium Temperature and Surface Heat 

Conductance 

Time range” Medium Applicable Normalized 
temp. h function 

bo-bo+l 
bo+l-bo+2 
bo+2-bo+3 

bo+cl-bl=bo+cl 

bl-bl+l 
bl+l-b1+2 

b-l+c2-l-b2=bl+c2 

b2-b2+1 
b2+1-b2+2 

b2+c3-1-b3=b2+c3 

b3-b3+1 

b(n-3)+c(n-2)-1-b(n-2)b 

b(n-2)-b(n-2)+1 

b(n-2)+c(n-l)-l-b(n-1)’ 

b(n-l)-b(n-l)+l 

b(n-l)+p-l-b(n-l)+p 

u a(bo+l) 

u a(bo + 2) 

u a(bo + 3) 

&bo+cl) 

&(bl+ 1) 

U a(bl+Z) 

&(bl +c2) 

$g::: 

&bl+C3) 

U a(b3+1) 

ks(b(n--3)+c(n-2)) 

U a(b(n - 2) + 1) . 

&b(n--Z)+c(n-1) 

$::;:I::::: 

ii,(b(n - 1) +p) 

h, 

h2 

h3 

h, 

h,,‘- 2 

h-1 

hn 

*1 

$2 

*3 

6 

&-z 

*n-1 

*n 

“Multiples of At. Generally, bo=O. 
bb(n-2)=b(n-3)+c(n-2). 
‘b(n-l)=b(n-2)+c(n-1). 
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U=U,, 4wX,O +t-ttb3)+(Ua2-Ual)lC/4(t~~,,+t-tb3) 

+ (U,1- Ua2)$ (t 4 ~,",,+t-t,,)+(Ua4-Ua1)~4(t-tb3) 
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(66) 

5. Time variable T. and n effective hs 

The last case is for a body exposed to time variable surrounding medium 
temperature with any number of changes in the surface heat conductance as 
summarized in Table 1. The medium temperature history between (bo)At 
and (bo +cl)At is approximated by (cl + 1) step changes at uniform time 
intervals, the first one being (bo)At (normally ‘bo’ being zero). This history 
is mathematically equal to the sum of cl impulses of the same widths and of 
different heights. The h value and normalized response function in this time 
range are h, and $,, respectively. The medium temperature histories in 
other time ranges are approximated in a similar way and n different surface 
coefficients and response functions are assigned to these ranges as shown in 
the table (e.g. h changed at bl*At, b2At,. . . b(n-2)=At, and b(n - l)*At). 

The temperature response of the body at (b(n-l)+p)At may be 
estimated by the repeated use of eqn (50) and a published equation 
(Hayakawa, 1971) as shown below: 

n-2 c(s+l) 

I/= 1 1 Ua(bs+k)[~n(tsb~.‘~~~-,)+PAt)--~(tsb~,1~~~+k)+pAt)] 
s=o k=l 

p--l 

+ c Ua(b(n~,)+k)[~n((P-k+l)At)-~,((p-k)At)] 
k=l 

(67) 

The upper limit of the inner summation of the first term, c(s+ l), is 
related to the number of impulses within the time range for each h. It 
should be noted that the parenthesis in the expression C(S + 1) should be 
removed when s + 1 is a definite integer. For example, when s= 1, it is c2. 
The same should be practiced with the subscripts of U,, i.e. (bs +k), and of 
continuity constants, i.e. b(k - 1) and b(s +k). The upper limit of the outer 
summation of the same group is related to the number of changes in h. The 
continuity constants may be determined by applying eqns (51) and (52). For 
example, tt$&, (the first constant when s=O and k=l) may be estimated as 
follows. 

$1 ((cl)At)=‘j&&,) 

~2(t~~,bo+(c2)At)=IC/~(t~~,bo) 

The second summation series and the last term in eqn (61) are related to 
responses from the surrounding medium temperature history in 
t >(b(n - 1))At and were obtained by applying a method developed 
previously (Hayakawa, 1971). Because of no change in the heat conductance 
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beyond (b(n - l))At, no continuity constant is included in these expressions. 
They become identical to Duhamel’s theorem integration when At 
approaches zero (Carslaw & Jaeger, 1972). However, the first term cannot 
be reduced to a simple integration because of the continuity constants. 

DISCUSSION 

Integral transforms (e.g. Laplace transform) have been used to derive 
temperature response solutions for the time variable heat exchange medium 
temperature (Hayakawa & Ball, 1971). However, this is not applicable to a 
problem of time variable h since the problem becomes mathematically 
nonlinear (all integral transformation methods are applicable only to linear 
equations). Therefore, the equations given above will provide an invaluable 
means for deriving analytical solutions for heat conduction with time 
variable h. 

Two sample applications of the above derived equations are given below. 
One example is for the thermal processing of a spherical food approximated 
by two changes in T, and h (two values each of T, and h). The first is for a 
heating medium and the second for a cooling medium. Another example is 
for the thermal processing of the same food with three changes in T, and h 
(one additional change in the heating medium T, and h before cooling). 

The normalized temperature response function of a sphere, which is 
expressed in terms of Biot number, Bi instead of h (Bi=ha/k) is used for 
both sample applications. 

*X= 1 - (2&/p) j, I,, exp ( - W> (68) 

where Bi=h,all ~Xs=cQ~/a2 

LS = [/3:s + (Six” - 1)2] sin /IXs sin (pP,)l{P$[P; +&(BG - l)]> (69) 

/IXs cot &+Bi,-l=O (70) 

Using eqn (32a) and noting U=T-T,, one obtains eqn (71) for estimating 
the temperature response of a spherical food during heating. 

T=T,I-(T,I-T,)(2BiIlp) Flsexp(--yI,t) for O<tstbl (71) 

Equation (72) is used to estimate the temperature response during the 
cooling obtained using eqn (32b). 

T=Ta2+ (2&/p)(T,r-T& f Izs exp[-Y2s(t-tbl)] 
s=l 

-(2BiJp)(T,,-T,) f L exp[-Y2s(t~,2,0+f-tbl)l 

for tbl 4t (72) 
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The continuity constant in eqn (72) is determined using eqns (32~) and (68). 

(73) 

Since Ils and Izs are dependent on p, tkz,, is location dependent as stated 
previously. 

For a moderately large t bl values, the left side of eqn (73) may be 
approximated by the first term of the summation series. Additionally 
assuming the first term approximation of the right side, one obtains: 

(74) 
The assumption of the first term approximation should be validated 

estimating values of the first and second terms of the series using the 
estimated t,$z,,. If the second terms are not negligible, compared to the 
respective first terms, the constant should be recalculated using eqn (73). 

A temperature response chart of a spherical body (Schneider, 1963) 
provides values of the normalized temperature response function at the 
spherical center. Therefore, this chart simplifies the application of eqns 
(32a), (32b) and (32~). As an example, one estimates tti,,, using the 
response chart, for water cooking of a 10 mm radius spherical food followed 
by air cooling. The assumed k and a of the food are 5.00 x lop4 W/(mm C) 
and 0.128 mm2/s, respectively. The h values during water cooking (h,) and 
air cooling (h2) are 1.42 x lo-” and 7.38 x lop6 W/(mm2C), respectively. 
The values of Bi for the cooking and cooling processes are then 28.2 (Si,) 
and 0.15 (BQ, respectively (Bi=ha/k). 

For an assumed water cookint time (tbl) of 100 s, the value of the Fourier 
number, Fo, is 0.128 (Fo=at/u ). The value of the temperature response 
function $1 obtained from the chart for the Bil and Fo values is O-43. The Fo 
value corresponding to this response value, 0.43, is 1.65 for a Bi2 value of 
0.150. Therefore, one obtains tf&, as follows using the definition of Fo. 

tk&=Fou2/a=1-65 x 102/0*128=1290 s 

Because h2 is much smaller than h,, the continuity value is much larger than 
tbl. Similarly, t ,$A,, values for assumed fhl values of 200 and 300 s are 3710 
and 6250 s, respectively. 

One obtains eqn (75) when the published superposition theorem is 
applied incorrectly to the present problem (removing T,, environment for 
t 2tbl, in the h2 time range, and adding T,, environment in the same time 
range). 

=Ta2+2Biz (Ta, - Th,) f r2s exp[ -y2c(t-tt,l)] 
P s=l 

(75) 

Temperature discontinuities at t hi are estimated, USing eqn (75), for the 
processing of spherical food considered above using the same temperature 
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response chart. The central temperature at the end of 100 s water cooking 
(tbl) is estimated, using eqn (71), as 44*4”C. The central temperature at the 
beginning of the air cooling (tbl) is lla2”C when eqn (75) is used. The 
discontinuity is -3302°C. No discontinuity is obtained when eqn (72) is 
applied. Similarly, the temperatures at the end of cooking and beginning of 
cooling, when t bl =200 s, are 76.0 and 14WC, respectively (-62*O”C 
discontinuity). The discontinuity is -68.8”C when tb,=300 s. This clearly 
shows considerable errors when the existing superposition theorem is 
applied to a thermal process of variable h. 

For a problem of three changes in each of T, and h, eqn (64) estimates 
the food temperature when 0 ltltbl and eqn (72) when tbl It <tb2. 
Equation (46) is applied when tb2<t. From this equation, one has: 

u=u,, &(&:,o +t-tb2) + (ua2- &d>$3(fi%, 1 +t--b2) 

+(&3-@x2)$3@-tb2) t2tb2 (76) 

Substituting eqn (68) into eqn (76), one obtains: 

T=Ta~+(T,1-Ta2)(2Bislp) f Iz+~ exp[-Y3s(t~,3,1+t-fb2)] 

- (T,I - T,)CWlp) 

f r3s exp[-Y3s(f-tb2)l 
s=l 

f r3s exp[-~3s(t~& +t-tb2)] 

s=l 

t>tb2 (77) 

The continuity constants in eqn (77) are determined using eqns (41)-(43). 

Bi2 f r2s exp[-y 2s bm,o+tb2-tbl)]=Bi3 f r3s eXp[-Y3s(t~~,o)] (78) (t’T2 
s=l s=l 

Bi2 f r2s exp[-Y2s(tb2_tbl)]=Bi3 f r3s exp[-y3&d,l] 

n=l n=l 
(79) 

Constant ttz,, in eqn (78) is determined using eqn (73). The published 
spherical temperature response chart simplifies applications of eqns (77), 
(78) and (79) as shown above. 

Analytical equations for the bodies of other, simple shapes may be 
obtained through similar derivations using published analytical solutions. 
The body shapes of available analytical solutions include an infinite plate, 
infinite cylinder, infinite rectangular column, finite cylinder, circular cone, 
and rectangular parallelepiped (Carslaw & Jaeger, 1972). 

The shapes of many foods are irregular. The theorems derived above are 
not applicable to these foods because there are no analytical solutions 
available. In this case, empirical temperature response functions may be 
used to apply the theorems. This will be presented in a future paper. 
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