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Abstract. A parametric model of systems is regarded as a geometric manifold 
imbedded in the enveloping manifold consisting of all the linear systems. 
The present paper aims at establishing a new geometrical method and 
framework for analyzing properties of manifolds of systems. A Riemannian 
metric and a pair of dual afline connections are introduced to a system 
manifold. They are called a-connections. The duality of connections is a 
new concept in differential geometry. The manifold of all the linear systems 
is a-flat so that it admits natural and invariant a-divergence measures. Such 
geometric structures are useful for treating the problems of approximation, 
identification, and stochastic realization of systems. By using the a-diver- 
gences, we solve the problem of approximating a given system by one included 
in a model. For a sequence of a-flat ne~ting models such as AR models and 
MA models, it is shown that the approximation errors are decomposed 
additively corresponding to'each dimension of the model. 

1. Introduction 

A parametric family of systems is widely used in systems theory to specify systems 
and to study their characteristics. Such a family usually forms a finite-dimensional 
manifold imbedded in the set of all the linear systems. It is not only interesting 
in its own right but also useful for investigating geometric properties of such a 
parametric family. For example, consider the problem of approximating a given 
linear system by one belonging to a family. If the problem is to approximate a 
point in a Euclidean space by one belonging to its smooth submanifold, the 
orthogonal projection gives the best solution. Here, the Euclidean distance 
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measure, together with the notion of orthogonality and straightness, plays an 
important role. It is therefore interesting and useful to study whether or not there 
exist in a manifold of systems a natural and invariant distance or divergence 
measure, a notion of orthogonality, and a notion of straightness or curvature. 
Moreover, provided such geometric structures exist, it is interesting to know if 
they are useful for the approximation problem, identification problem, robust 
problem, and many other problems in systems theory. 

The purpose of the present paper is firstly to study invariant differential 
geometric structures inherent in a manifold of systems. We show that a Rieman- 
nian metric given by the Fisher information, +a-affine connections which are 
dually coupled to each other, and a-divergence measures are introduced naturally 
in such a manifold. We then consider the problems of approximation, iden- 
tification, and stochastic realization of systems in this framework. The approxima- 
tion problem is explicitly solved by using the notion of a-projection. Some 
parametric families are a-flat, e.g., an AR model is 1-fiat and an MA model is 
-1-flat, and the orthogonal decomposition theorem of approximation errors holds 
in such a family of nesting a-flat models. These results show the usefulness of 
the present geometric framework. The notion of dual affine connections or 
+a-connections is a new geometrical concept introduced in a theory of statistical 
inference [1], [4], [27], and has been proved to be useful for solving statistical 
problems [i3], [24]. 

It is only recently that systems theorists have had interests in the geometric 
properties of a family of linear systems, as Brockett [8] pointed out in his 
interesting paper. See also Kalman [21] and Hazewinkel [17]. 

Algebraic geometry and differential geometry have been used to study proper- 
ties of manifolds of systems by Brockett [8], Brockett and Krishnaprasad [9], 
Segal [29], Byrnes [11], Hazewinkel [18], Hermann and Martin [19], Tannenbaum 
[31], Hannan [15], Hannan and Deistler [16], and others. Recently, a Morse- 
theoretic study was given by Delchamps [13]. All of these studies are mainly 
concerned with the global topological or qualitative properties of a manifold of 
systems. However, local quantitative properties such as metric and curvature are 
no less important, because they are directly connected with the problem of 
identification, approximation, and realization of systems as well as their robust- 
ness. The present paper aims at giving a differential-geometric framework for 
constructing such a theory. 

Since the present paper aims at proposing a new mathematical framework 
for system theory, our discussions are limited to a very simple case of scalar-input 
scalar-output stable and invertible (i.e., of minimal phase) systems. However, it 
is not difficult to apply our method to more general systems. It should again be 
noted that the new geometric structure was first introduced in a manifold of 
statistical models [12], [1], [4], [27], and has already been proved to play an 
essential role in the theory of statistical inference [4], [5]. 

2. Manifold L of Linear Systems and a-models  

Let us consider stationary and stable discrete-time linear systems with a scalar 
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input and a scalar output. We denote by 

H(z) = ~ h,z-' 
t=0 

the transfer function of a system, where z is the time shift operator and h = 
(ho, h,, h=, . . . )  is the impulse response. The present paper treats only minimal 
phase or invertible rational systems, although our method is applicable to a more 
general case. Therefore, it is assumed that H(z) -~ is also a transfer function of 
a stable system. In other words, we assume that both H(z) and H(z) -~ are 
analytic in the domain Izl -> 1 of a complex variable z. This implies that H(z) is 
an outer function in the inner-outer factorization of functions in the Hardy class 
(see Duren [14]). 

When a unit white Gaussian noise {e,}, t = 0, 1, 2 , . . . ,  is applied to a system, 
its outputs {x,}, 

X t = ~, hiE, t - i ,  
i=O 

form a regular stationary zero-mean Gaussian process. Its spectral density S(co) 
is given by the square of the gain of the system as 

S(oJ) ---I n(e"°)l 2, (2.1) 
which satisfies the condition 

I '~ log S(co) doJ > -oo. (2.2) 

Conversely, for a given spectral density S(oJ) satisfying this condition, there exists 
a unique system which satisfies (2.1). In particular, we have interests in systems 
whose spectral densities are continuous and 0 <  S (w)<  m. 

Remark. Let us consider two systems which have the same amplitude function 
but differ only in the phase factor (or the inner function). Then, they produce 
stochastic processes of the same spectral density S(oJ). It should be noted that 
a zero-mean Gaussian process is determined only by their second moments or 
the spectral density. Since any systems having the same amplitude function 
produce the same stochastic process for a white Gaussian input, we treat here 
only minimal phase systems, which are in one-to-one correspondence with spectral 
densities. However, if we use a non-Gaussian white noise {ei} as an input stochastic 
process, the stochastic properties of the output process {x,} are responsible not 
only for the amplitude function but also for the phase factor of the system. Hence, 
we can analyze the geometric properties of a manifold of general systems by the 
same method as proposed in the present paper. In this general case, we need to 
use not only the second-order moments S(oJ) but also higher-order moments of 
{x,}. 

Let L be the Banach space consisting of those systems whose spectral densities 
are continuous with 0 <  S (w)<  oo, where the norm of a point S(oa) is given by 

]tS(oJ)]l = max ]log S(~o)]. (2.3) 
0<o~<2rr 
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It includes all the minimal phase invertible rational systems. We next consider 
an extended manifold Lo, 

Lo={S(,o)lf[logS(,o)]2d,o<oo}, 
which includes L (but has a different topology). This Lo is a Hilbert manifold 
(see Lang [25] and Klingenberg [22]), which implies, roughly speaking, that 
every point L has a neighborhood homeomorphic to a Hilbert space ~. Indeed, 
we can define a homeomorphism ~: Ns ~ ~( by 

~S'= log(S'/S), ~p-~A = S exp{A(to)}, 

where S'~ Ns, A(to)~ ~, Ns is a neighborhood of $, and the inner product in 
of A and B is given by 

(A, B) = ~ A(to)B(to) dto. 

It is convenient to introduce an infinite-dimensional coordinate system 
c (°)= (C(o °), c~ °), c(2°),...) in Lo by 

log S(co) = ~ c~°)e, (~o), (2.4) 
t=O  

(2rr) -l f [log S(o~)]e,(o~) d~o, (2.5) c ( o )  
t - -  - -  

where 

eo(tO) = 1, e,(to)=v/-2costot, t = l , 2 , . . .  

We call it the 0-coordinate system. 
There exist more popular parameters specifying an S(to) s L. For example, 

the Fourier coefficients of  a spectral density 

c, = (2rr) -1 f S(co)e,(~o) &o, 

S(to) = E c,e,(oJ) 

are the autocovariances of the related time series {x,}, 

c, = E[xsxs+t], t = O, 1, 2 , . . . ,  

where E denotes the expectation. The set (Co, c~, c2, . . . )  can be used to specify 
an S(to). Another one is the Fourier coefficients of the inverse of a spectral density, 

~, = (2~r)-' I [1/S(ta)]e,(to) alto, 

S(to) = [Y. ?, e, (to)I- ' .  

The sequence ~ = (Co, cl, .  • .) is known as the inverse autocovariances [6]. These 
two parameter sets have nice properties dually coupled to each other, as will be 
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shown later. In order to study properties related to such parameters, we introduce 
a nesting family of a-models,  where a is a scalar parameter, by generalizing AR 
models, MA models, etc. To this end, we define a parametric model of  systems. 
We often treat a model of linear systems or associated time series whose members 
are specified by a finite number of parameters. Let v= (Vo, v~ , . . . ,  vp) be a 
(p + 1)-dimensional real vector parameter, and let Mp be a set of  linear systems 
in L whose spectral densities are smoothly specified by v as S(to, v). Such an 
M r ={S(to, v)} is called a model, and, in general, forms a ( p +  1)-dimensional 
submanifold in the system manifold Lo, where v defines a coordinate system of 
Mp. The set of  all the invertible linear systems in L whose McMillan degree is 
n is an example of a model, and its dimension number is 2n + 1. It is also called 
an ARMA model. 

An MA model (MA)p of  degree p consists of systems whose transfer functions 
are written as 

p 

H( z )  = Y h,z- '  
t=O 

or, equivalently, 

where h = ( h o , . . . ,  h~) is a coordinate system of  (MA)p and is called the MA 
parameters. An AR model (AR)p of degree p consists of  systems of  the form 

o r  

I S(to; a) = a, e i'°' 
t = 0  

with a coordinate system a = ( a o ,  a l , . . . ,  ap) called the AR parameters. A 
Bloomfield exponential model Bp is specified in the spectral  form as 

S(to; b) = exp b,e,(to , 

where b = ( b o , . . . ,  bp) is a coordinate system [7]. 
By generalizing the above three models, we define an a-model M~ ~). To this 

end, we define the a-representation RC~)(to) of a spectral density S(to) by 

RC,~)(to)=[-(1/a)S(to)-~' ,  a # O ,  
t log  S(co), a = 0. 

(2.6) 

Obviously the -1-representation is S(w) itself and the 1-representation is 
- [1 /S( to ) ] .  It should be remarked that the limit a ~ 0  o f - ( 1 / a ) [ S ( t o )  - ~ -  1] is 
equal to log S(w), so that the a-representation is continuous in a, if we add a 
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constant. An a-model M~ ~) of degree p consists of those systems whose a- 
representations of the spectral densities are given by the following finite sums, 

P 

R(~)(to) = Y~ c~'~)et(to), (2.7) 
t=O 

so that c (~)= (C~o ~), c ~ ) , . . . ,  c~ ~)) is a coordinate system of M~ "). An AR model 
is a 1-model (a = 1), an MA model is a -1-model (a = - 1 ) ,  and a Bloomfield 
exponential model is a 0-model. 

A sequence of models Mo, M1, M2,. .  • is said to be nesting, when they satisfy 
the inclusion relation 

Mo C M l c  M2 c .  • • 

A sequence of a-models is nesting. For any finite p, M~ ~) is a submanifold of Lo 
and is included in L. However, L~ = M~ ~) which is composed of infinite sums in 
(2.7), is also included in L, but is not necessarily a submanifold of Lo, because 
the natural topology of L~ (a # 0) is not equal to that of Lo. A natural coordinate 
system of L~, which is called the a-coordinate system, is c (~) = (CCo ~), c~) , . . . ) ,  

c~ ~)= (2~-)-' I R('~(°a)e'(°J) dw, 

and 

R(~)(to) =Y. c~'~)e,(to) (2.8) 

holds. Since any S(to)~ L has a-coordinates c (~), we treat c(a)  as if it is a 
coordinate system of L. However, it should be noted that c C~) is valid in ~t ('~) . . . p  a s  

a submanifold of Lo or in L~ having a different topology. The -1-coordinates 
c ~-~) give the autocovariances, and the 1-coordinates c ~) give the negative of the 
inverse autocovariances. The 0-coordinates c (°) are the same as those previously 
defined. The coordinate transformations are given by 

c~ )=  -(2Ir)-1 I exp[-Y~ c~°)e~(o~)]et(oJ)]e,(w) do~, 

c~ °)= -(21r) -1 f log[-Y c~'~)e~(w)]e,(oJ) dw. 
J 

3. Riemannian Metric in L 

We introduce a Riemannian metric in L or more precisely in Lo or its subspace 
M(p ~), which defines a distance between two adjacent systems. It is invariant 
under concatenation with a known system, as is shown in Section 8.1. Let u = (u~), 
i = 0, 1, 2 , . . . ,  be any coordinate system of L so that any spectral density S(to) ~ L 
is uniquely and smoothly specified by u as S(to; u). When we fix a system S(w; no) 
and consider those systems S(to; u) which are very close to Uo, i.e., lu-Uol is very 
small, we may use a "linear approximation" of L at Uo. Mathematically, this is 
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Fig. 1. Tangent space T,. 

to consider the tangent space Tuo of L at no. Let Ei ( i = 0 ,  1, 2 , . . . )  be a vector 
which is tangent to the ith coordinate axis u i. Then, the tangent space T, of  L 
at any u is a vector space spanned by the vectors E~ (i =0,  1, 2 , . . . )  (see Fig. 1). 
The basis Ei is called the natural basis associated with the coordinate system e. 
Mathematicians use the symbol 0~ or O/Ou ~ instead of  Ei for the natural basis in 
order to emphasize its abstract character as a differential operator. Anyway, E~ 
or c~ represents the direction in which the value of  the ith coordinate increases 
while the other coordinates are fixed. Any vectors A ~ T, are written as a linear 
combination of the basis vectors, 

A = A iEi, 

where A ~ are the components of  A. Here, and throughout the paper, the Einstein 
summation convention is assumed: the summation is taken for those indices 
which are repeated twice in a term, once as a superscript and once as a subscript 
(such as i in the above), so that AiE~ automatically implies Y~ A:E~. 

Let us consider two adjacent systems whose spectral densities are S(w, u) 
and S '=  S(w, u+ du), where (du ~) are infinitesimally small. Then, the difference 
between two points S and S' in L is identified with an infinitesimal tangent vector 

du = duiEi, (3.1) 

which belongs tO 7",. If  we use the 0-representation or the logarithmic scale 
log S(w, u) to represent the spectral density, we may write 

du = SS' = log S ( t o ,  u + d u )  - log S(w, u) = duiOi log S(w, u), 

where 0: denotes the partial derivative O/Ou ~. Comparing this with (3.1), we may 
represent the vector E~ ~ Tu by the following function in w, 

E~ = E~(w, u) =0~ log S(w, u). (3.2) 

When we use the 0-coordinate system u = c  (°), then E~(w, u )=  ei(w). 
A vector A = A ~ E : ~ T ,  is then represented by a function A (w )=  

A~ai log S(w, u) in Yr. Let us introduce an inner product (A, B~ of two vectors A 
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and B in the linear space Tu by using their representations A(o)), B(o)) as 

(A, B) = (2~r) -t I A(o))B(o)) do. (3.3) 

i 

Then, the inner product of  two basis vectors E~ and Ej is given by 

g~(u) = (E,, Ej) = (2~r) -1 I E, (o), u)Ej (o), u) do. (3.4) 

The square of the distance ds between two neighboring systems S(o), u) and 
S(o), u+  du) is given by the quadratic form 

ds 2 = (du, du) = gu(u) du ~ du j. (3.5) 

It is clear from the definition that the above distance does not depend on the 
coordinate system u which is adopted temporarily. The same value ds 2 is assigned 
when another coordinate system u' is adopted. In fact, the square of the Rieman- 
nian distance between S(o)) and S(o))+ 6S(o)) in L is written as 

(21r)-' f {S(o))}-2{~S(o))} 2 do), ds2  = 

which is free of any coordinate systems. When the or-coordinate system e (~) is 
used, we have 

gu = (2rr)-I I {S(o),c)}2~ei(o))eJ(0)) do), (3.6) 

in this coordinate system, because of 

ei(o)) = 0~)R (~)= S-'~O~ log S, (3.7) 

where a~ ~) = a/Oc~ ~). 
A manifold is said to be Riemannian when an inner product is defined in its 

tangent space T, at every u. Since each T, is a Euclidean space, a Riemannian 
manifold can be approximated locally by a tangent Euclidean space. 

Let Mp be a model in L, Nip = {S(o), v)} where v = (v a) (a = 0, 1 , . . . ,  p) is a 
coordinate system of Mp and the suffixes a, b, c, etc., run from 0 to p. The tangent 
space Tv (Mp) of Mp at v is spanned by (p + 1) vectors Ea (a = 0, 1 , . . . ,  p), where 
E~ is the natural basis associated with the coordinate system v, i.e., the tangent 
vector of the ath coordinate axis v ~. It is a linear subspace of the tangent space 
T, of L at u, where 

u = u ( v )  ( 3 . 8 )  

are the coordinates in L of the system S(o), v). Equation (3.8) is the parametric 
representation of Mp in L. Since Ea is also a vector in T~, it can be represented 
by a linear combination of  the basis vectors E~ in T~ as 

Ea i = B~E~, 

where 

B~,(v) = 8u'(v)/Ov a (3.9) 
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are the components of Ea with respect to the basis El. This can easily be obtained 
from the differentials of  (3.8), 

du' = (au+/av a) dv a, 

and the representation of the vector SS', 

SS'= du +El = dvaEa, 

where S = S(co; v) and S'= S(~o; v+ dr). An inner product is defined in Tv(Mp) 
by restricting vectors in To(Me). For example, the inner product of two basis 
vectors Ea and Eb is given by 

g,~b (v) = (Ea, Eb)= (2¢r) -l f Ea (to, v)E b (to, V) dto, (3.10) 

where 

Ea (to, v) = (a/av a) log S(to, v), (3.11) 

or directly in the component form by 

gab (V) = B~ (v)B~, (v)g# (u), (3.12) 

where u = u(v). The (p + 1) x (p + 1) matrix g = (gab) is called the Riemannian 
metric tensor of a model Mp. 

The metric tensor g0(u) of L or the metric tensor gab(V) in Mp is twice the 
Fisher information matrix which plays a fundamental role in statistics [28], [4]. 
The Riemannian distance ds between two adjacent systems S(to;v) and 
S(to; v+dv)  is given by 

ds 2 = (dr, dr) = gab dv ~ dv b, 

and it indeed represents how the two systems are different in their behaviors. 
This can be understood from the following Cramrr-Rao theorem, which is related 
to the system identification problem. 

Theorem 1. Let vr be an unbiased estimator of  the system parameter v in a model 
Mp = {S(to, v)} based on the observation of T outputs 

xT = (x,, x2, • • •, xr),  

where the input of  the system is a white Gaussian noise. Then the covariance matrix 
of  the estimation error ~r -V  is bounded from below by 

E[ (+3~- - v~) (+3~ - - vb)] --> 2T- lg  ab, (3.13) 

where (2g ab) is the inverse of the Fisher information matrix gab~2 and the matrix 
inequality g >- h implies that g - h is a positive semidefinite matrix. Moreover, when 
T is large, there exists an estimator fir (for example, the maximum likelihood 
estimator) such that the equality holds asymptotically in (3.13). 

This shows that (gab) represents the bound of estimation error and (gab) 
represents the amount of information utilizable in estimating the parameter v. 
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The distance introduced in the system manifold L or in a model Mp is based on 
the Fisher information matrix so that ds between two systems S and S' represents 
how well S can be distinguished from S' based on their outputs. 

4. a-connections of the System Manifold 

At each point u of the system manifold L, the tangent space Tu is regarded as 
local linearization of L at around u. The collection of these Tu (n ~ L) forms a 
fiber bundle called the tangent bundle, The two tangent spaces T, and T~, 
approximate L in small neighborhoods of u and u', respectively. In order to study 
more global properties of L where local linear approximation is insufficient, we 
need to connect various T,'s such that they together cover a larger domain of L. 
However, since 7". and T., are two different vector spaces, they cannot be directly 
connected without any criterion for comparing them. In order to connect two T, 
and T., at two adjacent u and u '=  u + du, mathematicians define a linear corre- 
spondence between them, which reduces to the identity map as u' approaches u. 
Such a correspondence is called an affine connection. 

Let Ei(u) and E i ( u + d u )  be two basis vectors of T~ and T~,, where u and 
u' = n + du are infinitesimally close. The vector Ei (u + du) c T~, should be mapped 
to a vector in T, which is close to El(u) by the correspondence between T~ and 
T,,. Hence, we may write that Ei (u+ du) in T~, corresponds to a vector 

E /=  Ei(u) + Aj, du ~ 

in T~ which reduces to E~ as du tends to 0 (Fig. 2). This correspondence is 
determined by (p + 1) 2 vectors Aj~, since the correspondence of the basis vectors 

Fig. 2. Affine connection. 
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uniquely determine an affine correspondence between Tu and Tu,. The vectors 
A~ represent how the corresponding E~ in Tu of  the basis vector E~ (u') changes 
as the point u' moves from u in the direction of  the j th  coordinate axis u j. We 
may denote it by 

V j E i  = lim (~;~-E,) /du j = Aj i  
duJ ~O 

and call it the covariant derivative of the basis vector field Ei (u) in the direction 
of  Ej. The vectors Aj~ are given by their components which are obtained from 
the inner products 

Fj,k (u) = (Vj Ei, Ek). (4.1) 

This is a quantity having three indices and is called the components of the affine 
connection. Hence, an affine connection is introduced in L by defining A/i, or 
equivalently by the covariant derivative V, or the quantity Fjik (u). 

Let C = C(u) be a vector field defined over L, i.e., a vector C(u) is specified 
at each Tu. Once an affine connection is introduced, we can calculate its covariant 
derivative VsC in the direction of  another vector field B = B(u), which designates 
how C(u) changes as the point u moves in the direction of  B. In fact, by the use 
of  linearity and the Leibnitz law for the differentiation operator,, we define 

VB C = BJvj(C'Ei)  

= BJ(aj Ci)Ei + B)CiVj El. (4.2) 

Here, not only the change in the components Ci(u) but also the change in the 
basis vectors E~(u) is taken into account, where B =  BJEj, C = CIE,. 

What connection is naturally and invariantly introduced in L? It has been 
shown that a one-parameter family of connections, called the a-connections, is 
naturally and uniquely introduced in statistical manifolds [12], [1], [4]. By using 
this fact, we also introduce a-connections in our system manifold L, where a is 
a scalar parameter. We define the a-covariant derivative V (~) of  E~ in the direction 
of  Ej by 

VJ")Ei = OjEi(w, u) - aE, (w, u) Ej (w, u), (4.3) 

where we use the function representation (3.2) of  vectors. 
The components of  the a-connection are then given by 

Fl~)(u) = (2~r)-' f {O,Ej (to, u ) - a E ,  Ej}Ek(tO, u) dw. (4.4) 

By using the a-representation, they are rewritten as 

r ~ ) ( u )  = (27r)-' f {S(w, u)}2'~O,0jR('~)OkR('~) dto. (4.5) 

We can prove that the a-connections introduced here are the same as those 
introduced in statistical manifolds (see Amari [2], [3]), if we regard the outputs 
{x,} as a random process specified by u. The a-connections have become indis- 
pensable tools in the asymptotic theory of  statistical inference [1], [4], [5]. They 
also seem to play a fundamental role in the theory of  systems. 
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The a-connections can also be introduced to any finite-dimensional model 
Mp with a coordinate system v = (va). The tangent space To(Mp) at v is spanned 
by p + 1 basis bectors 

Ea = B~ E,. (4.6) 

By the use of  the a-connection, we can define how curved a submanifold Mp in 
L is by calculating the changes in the tangent directions To(Mp) of Mp as the 
point v moves in Mp. The changes are given by the a-covariant derivatives V~)Eb 
of the basis vectors Eb in the tangent directions Ea, 

K ~  ) = , ,  (~)~- v a Jt:J h 

i i R j  XT( ,~ ) IE  =(0~Bb)Ei+Bb--~-- j  --i. 

The quantity K ~  ) represents how the basis vectors of To(Mp) change in the sense 
u(~) belongs to the of the a-connection as the point v moves in Mp. The vector ~ b  

entire tangent space Tu of L at u = u(v). It can be decomposed into two com- 
ponents. One is the tangential component, i.e., the component belonging to 
To(Mp), and is given from 

(K~) E~)= ' j ' j u k r ( ~ )  (a~Bb)B, g~ + Bb Ba , U c  J t / j k  • 

By defining 

F('~) = (K~) ,  Eo), (4.7) a b e  

the tangential component is written as 

- -  ~ , . a b c Z . : . , d l 5  ,j 

where g~d is the inverse of the matrix gca. This is the projection of V~)Eb to 
To(Mp). This defines the a-covariant derivative V~) of Eb in the direction of E ,  
in the manifold Mp induced from the enveloping L, because it defines an affine 
correspondence of T~ (Mp) and To+do (Mp). The other component,  the orthogonal 
component (i.e., the component orthogonal to T,,(Mp)), " "('~) ot  ~,b is given by 

H(~) - ~"('~) ~('~)~ (4.8) a b  - -  l ' L a b  - -  V a ]V.~b" 

It represents the changes in the tangential directions of the manifold Mp in L as 
v moves. We call it the a-curvature of M r It is called by various names such as 
relative curvature, imbedding curvature, Euler-Schouten curvature, etc. When it 
vanishes identically, the submanifold Mp is said to be completely a-flat, i.e., flat 
in L in the sense of the a-connection, because the directions of To(Mp) remain 
fixed as v moves, although E,  may change within T~(Mp). If Mp is completely 
a-flat, V('~) coincides with V ('~) when it is operated on vector fields of Mp. 

Let 

c = {s( , , , ,  t ) }  

be a one-parameter family, parametrized by a scalar t, of  spectral densities. It 
forms a curve in L, where t is a scalar parameter or a coordinate specifying 
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points in the curve. When a coordinate system u is used in L the parametric 
form of a curve is written as 

u=u(t) .  

The tangent vector Et of the curve is given by 

Et = uiEi ,  ~ i =  dui/dt 

or directly by 

E, = (d/at)  log S(to, t) (4.9) 

in the function representation. A curve is said to be a-geodesic when its tangent 
direction does not change on the curve in the sense of the a-connection, i.e. 
when it satisfies the geodesic equation 

V~")Et =0  (4.10) 

for an adequate parametrization t. The above geodesic equation is written in the 
coordinate form as 

gj~//J(t) + F~,  ~ ~j~k = 0 

or  

(d2/dt 2) log S(to, t ) -  a{(d/  dt) log S(to, t)} 2= O. (4.11) 

An a-geodesic is a "straight line" in L in the sense of the a-connection. Since 
(4.11) is rewritten as 

d2/ dt2R<~)(to, t)=0, 

an a-geodesic is given in the a-representation by a linear form in t, 

R~)(to, t) = Rl(to) + tR2(to). (4.12) 

5. Theory of Dual Connections. 

Before studying the geometric properties of L, we recapitulate the theory of dual 
connections studied by Nagaoka and Amari [27]; see also Amari [4]. Let us 
consider a Riemannian manifold M in which two (torsion-free) affine connections 
F and F* or the corresponding covariant derivatives V and V* are defined. The 
connections defined by V and V* are said to be mutually dual when 

A(B, C) = (VAB, C)+ (n, V ' C )  (5.1) 

holds for any three vector fields A, B, and C, where A on the left-hand side 
denotes the directional derivative AiO~ of a scalar function (B, C). When ff = V*, 
condition (5.1) implies that V is a metric connection. Since V is torsion-free, it 
is given by the Levi-Civita parallelism from the metric. Hence, a torsion-free 
metric connection is self-dual in our sense. 
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A manifold M with an affine connection V is said to be flat when the 
Riemann-Christoffel curvature tensor and the torsion tensor vanish. When M is 
flat, there exists a (local) coordinate system u such that 

V~Ej = 0  

o r  

r,ik (u) = 0, 

and vice versa. This implies that in a flat M a basis vector E~ (u) e T,, at u in this 
coordinate system corresponds to the same basis vector Ej (u')~ Tu, at u' for any 
two points u and u'. Moreover, the coordinate curves u ~ are geodesics. Any 
geodesic curve u(t) is represented by a linear equation u~(t)= ta~+b ~ in this 
coordinate system. Hence, a flat space may be regarded as a linear space with a 
linear coordinate system u, which is called an affine coordinate system. But this 
does not mean that the manifold is Euclidean, because the connection is not 
necessarily metric, i.e., it is not necessarily the Levi-Civita connection, so that 
the metric tensor go(u) depends on u. 

Let V and V* be two dual connections of a Riemannian manifold M. It is 
proved that when M is V-flat, i.e., flat with respect to V, then it is also flat with 
respect to V*. Hence, this manifold has two affine coordinate systems 0 and ~/ 
such that 0 = (O ~) is V-affine and ~7 = (rh) is V*-afline. Such a dually flat manifold 
has been studied in Nagaoka and Amari [27] and recapitulated in Amari [4]. 

Theorem 2. There exist two potential functions ~ and ~ in a dually fiat manifold 
M such that the metric tensor 

g,j = (E,,  E,> 

in a V-affine coordinate system 0 is given by 

g,j(o)=o, ajO(O), o, = o/a0', (5.2) 

and the metric tensor 

gO = (E', EJ), E' = O/Orh, 

in a V*-affine coordinate system '1 is the inverse of (gu) and is given by 

g'J = O'0"/~o (r/), 0' = O/07h. (5.3) 

The two natural bases {E~} and {E j} associated with the coordinate systems 0 and 
71 are mutually dual or reciprocal bases of T,, 

(E,, E j) = ~{, (5.4) 

where 8~ is the Kronecker delta. The two coordinate systems are connected by the 
Legendre transformation 

O' = O'~(n), n,=O,4,(O) (5.5) 

and we can choose the potential functions such that 

q~( O) + ~( Tq) - O'rl, = 0 (5.6) 

holds. 
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By using the potential functions and the affine coordinate systems 0 and ~7, 
a divergence function D(P, P') between two points P and P' in M is introduced 
by 

D(P, P') = ~b(0) + ¢(~7') - 0.7/ ' ,  (5.7) 

where 0 is the 0-coordinates of P and 7?' is the q-coordinates of P', and 0. r/' 
is the abbreviation for 0ir/[. The divergence function satisfies 

D(P, P') >- 0, 

where the equality holds when and only when P = P'. When P' is close to P, we 
have 

O(P, P') =½go(O)(O'- 0")(0 j -  0d)+ O(10- 0'13), (5.8) 

where 0' is the 0-coordinates of P', so that D can be regarded as an extension 
of the square of the Riemannian distance ds. However, it is not symmetric therefore 
D(P, P') = D(P', P) does not necessarily hold. On the other hand, the following 
generalized Pythagorean theorem holds. Let us consider a triangle consisting of 
three points P, P', and P". A triangle APP'P" is said to be a right triangle in M, 
when the V-geodesic connecting P and P'  is orthogonal at P'  to the V*-geodesic 
connecting P'  and P" (Fig. 3). (Two intersecting curves are said to be orthogonal 
when their tangent vectors are orthogonal at the intersection.) 

Theorem 3. For a right triangle A PP' P", the following Pythagorean theorem holds, 

D(P, P')+ D(P', P") = D(P, P"). (5.9) 

Let M'  be a submanifold of M. Given a point P in M, we sometimes search 
for the point /3  in M '  which is closest to P in the sense of the divergence, i.e., 
the point P satisfying 

D(P,/3) = min D(P, P'). 
P ' ~ M '  

Fig. 3. Pythagorean relation. 
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M 

Fig. 4. The V-projection. 

The point /5 is regarded as the best approximation of P in M'. This problem of 
approximation is solved by the V-projection (Fig. 4). A point P ' s  M'  is called 
the V-projection of a point P s M on M',  if the V-geodesic connecting P and 
P'  is orthogonal to M'  at P', i.e., orthogonal to the tangent space Te,(M'). The 
following projection theorem is a direct consequence of the Pythagorean relation. 

Theorem 4. For a point P ~ M, the point fi which is closest to P in a submanifold 
M'  is given by the V-projection of P on M'. Moreover, V-projection is unique when 
M'  is completely V*-flat in M. 

6. Geometric Structures of the System Manifold L 

We now study geometric properties of the system manifold L and the nesting 
families of a-models along the lines in Section 5. We first prove that the a- 
connections introduced in L have a dual structure. 

Theorem 5. The a- and -a-connections are mutually dual. Especially, the O- 
connection is self-dual so that it is a Riemannian or Levi-Civita connection. 

Proof. It suffices to prove relation (5.1) for three basis vector fields, A =  El, 
B = Ei, and C = Eg. This is proved as follows: 

E,(Ej, Ek) = 0,(Ej, Ek) 

= (2~r)-'o, ~ Ej(¢o, u)E~(o~, u) d~o 

= (2¢r)-' I {(O,E~)Ek+Ej(O,Ek)} dw 

= (2w)-'  J {(0,E~ - aE, Ej)Ek + (O,Ek + aE~Ek)Ej} dw 

=/V!')i~. Ek)+(Ej,~7~-~)~ \ 
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Since the a-connections are torsion free, the 0-connection is self-dual so that it 
is the Levi-Civita connection derived from the metric g#. [] 

We next prove that the system manifold L is a-flat for all a. This is a 
fundamental characteristic of L. 

Theorem 6. The system manifold L is a-flat for all a, and the a-coordinate system 
c C~) is its affine coordinate system. 

Proof. 
R(~)(co, u) of the spectral density satisfies 

O~OjR('~) =O, 

because of (2.8). Hence, from (4.5), we have 
(,~) 

F~k (u) = 0, 

proving the theorem. 

Let u = c  (~) be the a-coordinate system. Then the a-representation 

[] 

Since the system manifold L is a-flat, i.e., flat with respect to the dual 
connections V <') and V (-~), there exist an a-potential function ~,~ and its dual 
function ,p,, for any a. The a-divergence D,~(S, S') between two systems S(to) 
and S'(oJ) is calculated by using the potential functions. In order to obtain an 
explicit form of ¢~, let us define a function 

n ( u )  = (4w) -1 f log S(to, u) doJ +½ log(2~re). 

This is the entropy of the associated stochastic process {x,} whose spectral density 
is S(to, u). The a-potential functions ¢~ and ¢~ are given in terms of the entropy 
function. 

Theorem 7. The a-potential function is given by 

"(2/a)H+ (2a2) -~, a # 0, 
~,~ = (6.2) i- 

(4"rr) -1" J (log S) 2 doJ, a = 0, 

~p,~ = ~b_,~. (6.3) 

Proof. Let 0 = c <~) be the a-coordinate system, and let 0~ = a/a0; be the partial 
derivative with respect to the ith component of 0. We then have, for a # 0, 

e~(to) = 0,R(~)(to, 0) = S-I-~o,S(to, 0), 

from which follows 

0i log S = SCtei(to), 

a, oj log S = aS2~e,(to)ej(to). 
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By integrating this and comparing it with (3.6), we have (6.2), except for an 
arbitrary constant term. The case when a = 0 is proved in a similar manner by 
taking into account that 0i0~ log S = 0  holds in the 0-affine coordinate system. 
Since ¢ ,  is the potential for the dual coordinate system r/= c (-~), ¢~ = tp_~ holds. 
The constant term in (6.2) can be determined as follows. We have from (5.6) 

o = q , _ o ( , 7 ) - o .  

On the other hand, the following identity 

0" 7 /=~  (2rr) -2 f R~)(w)R~-~)(to')e~(to') dwdto' 
t , 1  

= (2zr)-I I R(~)(°J)R(-~)(to) dto 

= (-1)/(2¢ra2) I 1 dw = - 1 / a  2 (6.4) 

holds for the a-affine coordinates 0 and the -a-a t t ine  coordinates r / o f  one and 
the same system, where we used the Parceval relation 

Z e, (to)e, (to') = 27rS(to - to'). 
t 

This shows that (5.6) is satisfied by (6.2). [] 

The entropy function H plays an important role in the system manifold. Its 
second derivative with respect to the a-coordinate system c (~) gives the metric 
tensor, 

gl~ )= (2/a)c),c)sH, 

expressed in this coordinate system. Identity (6.4) or 

X - 1 / a  2 

is also important. When a = 1, they reduce to a relation between the autocovari- 
ances and the inverse autocovariances. The a-divergence D~(S~, $2) between 
two systems Sl(to) and S2(to) is obtained as follows. 

Theorem 8. 
are Sl(to) and S2(to) is given by 

(277"a2)-1 f {S2/S1) ~ -  1 - a  log(S2/S1)} dw, 

D~ (Si, $2) = 
J 

C 

(41r) -1 | (log S2-1og $1) 2 dto, 
3 

The a-divergence between two systems whose output spectral densities 

#0 ,  
(6.5) 

a = 0 .  
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Proof. 
respectively. Then the a-divergence is given by 

D~,(S1, S2) = ¢~ (Sl) + ~0,,($2)- 01" r/2, 

where 01 is the 0-coordinate of $1 and ~72 is the rkcoordinate of S2. From 

01"Th=Y.(2~r)-2IR~C')e,(t°)dtaIR(2-~')et(t°')dw', 

=(2~)-' f ':'(~')°(-'~) d','=-(2~ra2)-' "'2 (,-q2/Sl) dto, 
and (6.2), we have (6.5). 

Let 0 = c (~) and ~ = c (-~) be the a and - a  affine coordinate systems, 

[] 

The a-divergence is not symmetric in general. Instead, it satisfies the relation 

D~ ($2, $1) = D_~ ($1, $2). (6.6) 

Hence, 0-divergence is symmetric. The -1-divergence is known as the Kullback- 
Leibler divergence. Hence, D~ is considered as its generalization. It is related to 
Renyi's a-entropy [27], [4]. For two close systems S(oJ) and S(oJ)+ 8S(~o), their 
a-divergences are expanded as 

so that all the a-divergences are the same in the first approximation, giving half 
of the square of the Riemannian distance. Roughly speaking, (6.5) shows that 
the a-divergence D~ (S1, $2) for a > 0 becomes small when $2 approximates the 
valleys (zeros) of S1 well, and D~,(S~, S2) for a < 0 becomes small when $2 
approximates the peaks (poles) of $1(~o) well. 

7. Approximation, Identification, and Stochastic Realization 

We have shown that L admits invariant a-divergence measuresl The geometric 
structures of  L are helpful and useful in solving such problems as approximations, 
identification, and stochastic realizations of systems, as will be shown in the 
present section. Given a model M, and a system S e L which does not necessarily 

A 

belong to M,,  the problem of approximation is to obtain S, ~ M, which belongs 
to M, and is closest to S under some criterion. When M, 's  are a nesting family, 

A 

S, gives a series of the best approximations. Such a problem is related to the 
reduction of  dimensionality of a system. We use the a-divergence measure to 
solve the approximation problem, which is called the a-approximation. When 
-a -mode l s  are used, we can obtain the explicit form of the a-approximation. 
Moreover, the approximation errors are decomposed into a sum of those corre- 
sponding to each dimension. 

The identification problem is to estimate the true unknown system S which 
is supposed to belong to a model M, based on a set of observed outp.uts 
XT = {Xl, X2,. • . ,  XT} from the system, where T is supposed to be large. Let S be 
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a nonparametric density estimator based on Xr, for example, a smoothed version 
of the correlogram. Then the identification problem reduces to the problem of 
approximating S by one included in M,. The efficiency of an estimator, in 
particular the higher-order efficiency, is fully studied in the problem of statistical 
inference [4], [5] in the framework of a-geometry. The metric and curvature play 
a fundamental role in the problem of estimation and testing. The results obtained 
in [4] and [5] are applicable to the present case of system identification, although 
we do not treat it in the present paper. 

Let c (-1) be the autocovariances of a system S. A system S, is said to be a 
stochastic partial realization of e (-1) of degree n, when the autocovariances of S, 
coincide with those of a given e (-1) up to t = 0, 1 . . . .  , n. It is known [10] that, 
when S, belongs-to the AR model " (1) M ,  , its entropy is maximal among all the 
stochastic partial realizations. In order to study the geometric properties of the 
stochastic realization, we firstly generalize the problem to the a-stochastic partial 
realization; a problem of realizing the first n + 1 components of c (~)= w by a 
system. Let Q(.")(w) be the set of all the a-realizations of a given e (~)= w. We 
obtain Q(~) and show its geometric properties in the present section. The a-version 
of the maximum entropy principle is proved in this generalized problem. 

The problem of a-approximation is easily solved within the geometrical 
framework: the best a-approximation to S in a model M. is given by the 
a-projection of S to M.,  where the a-projection S. implies the point in M. such 
that the a-geodesic connecting S and S. is orthogonal to M..  Let c (~) be the 
a-coordinates of S, and let M, be parametrized by v. Let c(~)(v) and c(-~)(v) be, 
respectively, the a- and -a-coordinates  of a system S(v) specified by v in Mp 
whose spectral density is S(to, v). Then the a-geodesic connecting S and S(v) is 
given by 

e ( ~ ) ( t )  = (1  - t ) e ( ~ ) ( v ) +  tc  (~) 

in the a-coordinates. Hence, its tangent direction at S(v) is given by 

c(~) = (c~)(v) - ci)E~')(oa), 
where El~)(to) is the natural basis corresponding to the a-coordinate system, i.e., 

El~)(,o) = [a/acl~q log S = S-~'e,(to). (7.1) 

On the other hand, the tangent space of M, is spanned by n + 1 vectors a/av~, 
(a/av,) log S(to, v) = [ocJ-~')lov,][alcJ-"q log S 

= i = o ,  1 , . . . ,  ,1. 

Therefore, the orthogonality condition of ~(~) and d/dvi is written as 

[c~'~)(v)-c,][dc~-")/avj] =0, j=O, . . . ,  n, (7.2) 
i = O  

where we used the orthogonality relation 

_, ,Ej  ) = 6  0. 

This is the equation to determine the parameter v of the c~-approximation to S 
in M,. 
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When a-models are used we can get the explicit solution to the -a-approxi-  
mation problem. We discuss the ARMA models in Section 8.4. An a-model M~ a) 
is characterized by 

C(a) _,.(a) _ . ' = 0  n + l  1 i . n +  2 - -  • 

in terms of the a-coordinate system c <~). They are linear restrictions so that M~, ~) 
is completely a-flat. An a-affine coordinate system 0 = (0 i) of M(, ~) is given by 
the first n + 1 components of e ~) as 

0 i=  cl ~'), i = 0 ,  1 , . . . ,  n. 

The dual affine coordinate system (-a-coordinate  system) of M~, a) is given by 

~l~=c~ -~), i=O, 1 , . . . , n .  

For 0i = 0/00 ~ and 0 ~= 0/0~7~, the orthogonality condition 

(0,, ~)  = 8~ (7.3) 

holds. When S(to) is a member of M~ ~), its +a-coordinates e <~) and c <-~) in the 
enveloping L are determined from 0 and ~/ as 

e ~)=(0,0,0 . . . .  ) ,  

C (-~) = (77, ~(-'~) "(-~) L ' n + l  ~ t - n + 2  , • • . ) ~  

where c~ -a) ( i =  n + l ,  n + 2 , . . . )  are functions of^7/. 
Since M~ ~) is a-flat, the -a-approximat ion S, to S by M~ a), 

A 

min D_a(S,S ' )=D_~(S,S,) ,  

has a good geometric property. It is given by the za-projec t ion  of S to M~, =). 
Since M~, ~') is completely a-flat, the -a-project ion S, always exists and is unique. 

Theorem 9. The -a-approximation S, by Mc, ~) to a system S whose -a-coordinates 
are c <-~'), is given in the 71.coordinates ~ by 

~i = cl -'~, i = O, 1 . . . .  , n. 

The approximation error evaluated by the -a-divergence D_= ( S, S,) is given by 
the difference of entropies, 

A A 

D_~ (S, S.) = (2/a){H(S.)  - H(S)}. (7.4) 

Proof The -a-divergence from S to an S, ~ M~. ~) is written as 

D_,,(S, S,)= ( 2 / a ) H ( S . ) -  ( 2 / a ) H ( S ) -  O. c <-~'), 

where 

0. c~-~= ~ o'c~-~ ~. 
i = O  
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By differentiating it with respect to the a-affine coordinates 0 of S, and putting 
the derivatives equal to 0, we have 

fi, = c l  - ° ~ ,  i = 0 . . . .  , n ,  

in terms of the r/-coordinates. This can be shown by a more intuitive geometrical 
way as follows. The -a-geodesic  connecting S and S. in L is given by 

e<-~)(t) = (1 - t)~+ tc <-~) 

in terms of the -a-coordinates  in L, where ~ is the ( -a)-coordinates  of S. in 
L. Hence, its tangent vector at S. is given by 

e<-~) = (ci  - c ~ - ~ ) ) E  '. 

The tangent space T(M'~) of M~. ~) is spanned by (n + 1) vectors 

E~=O/O0~=O/Ocl ~, i=0 ,  1 , . . . ,  n. 

Hence, from the condition that c is orthogonal to T(M~), we have 

(E~, ~(-~)) = g'~ - el-") = 0, i = 0 , 1  . . . .  ,n. 

This shows that S, is obtained by keeping the first n + 1 components of c ~-~) of 
S invariant and by changing only the other components such that S, is included 
in M(, ~). The entropy relation is obtained as 

D_= (S, S",) = (21a)H(S , ) -  (21a)H(S) -c  (-~ . O- 11 a 2, 

because of (6.4), or 

,:~-,.~. ~= ~. ~=-1/a ~. [ ]  

Let M e =  {M(,~)}, n =0,  1, 2 . . . .  , be a nested family of a-models. When a 
A A A 

system S is given, we have a sequence So, S~, $2, . . .  of the -a-approximat ion 
to S by M(, ~). Obviously, S,+1 approximates S better than S, does. It is interesting 
to see how the approximation errors decrease as the dimension number n of 
M(. ~) increases. We can show that the approximation errors D_~ (S, S,) by M(, ~) 
are decomposed into the sum of the ~ipproximation error D_~ (S, S,+~) by ~ , v a  n + l  

and the approximation error of the S,+t by M~, ~), 

D_~(S, S,)= D_~(S, g,+, )+ D_~ (g,+,, S,) 

(Fig. 5). This relation can be used in the problem of model selection or the 
problem of determining the degree n, as the AIC (Akaike's information criterion) 
is used. The following important theorem shows this in the form of the decomposi- 
tion of the approximation error. 

Theorem 10. Let {S.} (n =0, 1 , . . . )  be the sequence of the -a-approximations of 
S by M~. ~. Then, the S. is also the -a-approximation Of Sk by M~. ~ when k> n. 
The approximation errors D_~ satisfy the additive relation 

D_~ (S, S,) = D_~ (S, S~) + D_~ (Sk, S.) (7.5) 

for k > n. In particular, D_~ (8, So) is decomposed as 

D_~(S, So) = Y. D_~(S~, S~_~). (7.6) 
i = l  
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, I_ 

Fig. 5. Decomposition of approximation error. 

Proof. Sk is an element of M~ ~ whose first (k+  1) -a-coordinates  coincide 
with those of S. When n - k, the -a-project ions of S and Sk to M~ ~ coincide, 
because they have the same ~7-coordinates in M~ ~. The decompositions (7.5) 
and (7.6) are proved from the relation 

o_, ,  (~k, ~n) -- ( 2 / a ) { n ( ~ k )  - n(gn)}.  [] 

We next consider the manifold Q(~(w) of the a-stochastic partial realizations 
of degree n, i.e., the manifold consisting of all the systems whose a-coordinates 
e (~ are equal to a given w up to the nth component. It is obvious that Q(,~(w) 
is given by the following set of linear equations in the a-coordinates e (~, 

c~ 'O= wi, i=0 ,  1 , . . . ,  n. 

Therefore, it is an infinite-dimensional a-flat manifold. The stochastic partial 
realization in a model M~ is obtained by solving the equation 

c~)(v) = wi, (7.7) 

where v is a vector parameter of Mn. The manifold Q(,")(w) is explicitly given by 
using its realization in the - a -mode l  M~ -~). Let S~ be the a-realization of w in 
M~ -~). Then its a-coordinates are of the form 

(Wo, w,, . ,  wn; "(~) .), • .  i - n + l  ~ . .  

where "(~) ~.+~, etc., are determined such that S~ belongs to M~ -~ ,  i.e., its - a -  
coordinates are 

(C~o-% ~ - % . . .  c~-°~; o, o,...), 
where c~ -~, O<t<n, are determined from Wo . . . .  , w~. The tangent space of 
M~ - ~  is spanned by n + 1 vectors E~o -'~ . . . .  , E~ -'~, while the tangent space of 

(a) (,~) (,~) 
Q.  (w) is spanned by E,+~, E . + 2 , . . . .  They are mutually ortho$onal. This shows 
that Q~*~(w) is the a-flat manifold orthogonal to M~ - ~  at S'~ e M~ -'~. These 
Q~(w)  give an a-geodesic foliation of L (see Lauritzen [26] and Amari [4]). 
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The a-geodesic connectin~ S, and any point S' in Q~,"~(w) is orthogonal to 
the -a -geodes ic  connecting Sn and So, which is the realization in M~0 -=~ and 
hence has a constant spectral density. Therefore, by the extended Pythagorean 
theorem, we have 

D~(S', So)= D , ( L ,  So)+ D,(S', L) .  

This characterizes the realization in M~-"): it minimizes D~(S,,  S0) among all 
the a-realizations ofw. This is the a-version of Burg's maximal entropy principle 
[10] because of 

O~ (S,,  So) = (2/a){H(So)  - H(S,)}. 

It is known that the stochastic realization of S in an AR model (a = 1) is 
characterized by the fact that the entropy H(S)  is maximal among all the a = -1  
stochastic realizations of given autocovariances c ~-~). This is called the maximum 
entropy principle [10]. The -1-projection is also used in Shore [30] and Johnson 
and Shore [20]. It can be generalized as follows. 

Theorem 11. When a > O, among all the -a-realizations, the realization S, in the 
a-model M~ ~ has the maximum entropy. When a < O, it has the minimum entropy. 

8. Topics on Geometry of System Manifold L 

8.1. Lie Group Structure of System Manifold L 

The manifold L of systems permits an algebraic structure: the product for two 
elements S~(to) and S2(to) is defined by S(to) = Sl(to)S2(to) and also belongs to 
L. By this multiplication, L forms a group, where the identity element is So(tO) = 1, 
and the inverse element of S(tO) is S(tO) -~. The product of two systems S~ and 
$2 corresponds to their concatenation or the connection in series from the 
system-theoretic point of view. In the present scalar-input and scalar-output case, 
the multiplication is commutative. Since the multiplication is analytic in L, the 
system manifold L forms a Lie group by this multiplication. 

Let us fix an element R(to). Then R defines a bijective mapping /~ from L 
to itself, 

R: S~-> RS. 

This mapping induces a transformation/~,  from the tangent space Ts of L at S 
to the tangent space TRs of L at RS. Let S(to; u) be the parametrized form of S. 
Then 

E,(to; u) =0, log S(tO; n) 

are the logarithmic (i.e., a = 0) expressions of the basis vectors of Ts associated 
with the coordinate system u. Since S(to) is transformed to R(to)S(to, u) by /~, 
the basis vector Ei(to;u) of Ts are mapped by /~. to the same Ei(tO;u)~ TRs, 
because of the logarithmic expression, 

0~{log R(tO)S(tO; u)} = El(tO; u). 
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Since the geometric structures (the metric and the a-connections) are defined by 
using the functions Ei (to; u), they are kept invariant by Lie group multiplication. 
More formally, for two vector fields A and B, their inner product and a-covariant 
derivatives are kept invariant as 

( A, B)s = ( R . A ,  R.  B) ~s, (8.1) 

/~, V ~a~)B = V ~,)a ( /~,B).  (8.2) 

One may say that the a-geometric structures are introduced in L such that they 
are compatible with the Lie group structure of L. There remain many problems 
to be studied further from this point of view. 

8.2. Transformations of  a Parametric Model 

Let Mn = {S(to, 0)} be a parametric model. Then a transformation /~ maps Mn 
to another parametric model 

/~M, = {g(to)S(to, 0)}. 

Obviously,/~M~ is a concatenation of a fixed system R and a parametric model 
M,.  From the previous considerations it is easy to show that M, and RMn are 
isomorphic in the sense of  a-geometry. Hence, if M, is completely a-flat (or 
-a-f la t ) ,  so is/~Mn. Let II t$) S be the a-approximation or the a-projection of RMn 
a system S on an induced model/~M~. It is obtained by using the a,projection 
I I~  ) as follows: 

II ~ )  S = RII~)(R- 'S) .  (8.3) 

8.3. Compositions of  Models 

Given two models M, ={S(w;  O)} and M ' ,={S( to ;  st)} parametrized by 0 and 
st, respectively, we can compose a new model parametrized by (0, st) by connecting 
the two in series, in parallel, or via a feedback loop. The composed models 
preserve some of the geometrical properties of the component models. We 
consider the serial connection or concatenation of  two systems, M,+ n, = S(to; 0, st), 

s ( to ;  8, st) = s( to ,  8)s(~o, st). 

When 0 is fixed at  0o in the above model, we have an n'-dimensional submanifold 

M'( Oo) = IS(to, 8o)S(to, st)} 

parametrized by st. This is obtained from the model {S(to, st)} by multiplying the 
fixed S(to, 0o), so that all of M'(Oo) are isomorphic to the component model 
S(to, st). Similarly, all the submanifolds 

M(~o) = {S(to, 8)S(to, sto)} 

are isomorphic to {S(to, 8)}. 
Let us calculate the Fisher information or the metric tensor of  the composite 

model. By putting Oi = 0/00 ~, O~ = 0/0~ ~, we have 

E~ =0~ log S(to; 0, st) =0~ log S(to, 0), 

El =01 log S(to; 0, st)=0', log S(ta, st). 
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Hence, the partitioned form 

go g;J] 
g;j g;;J  

of the Fisher information matrix is given by 

g0 = (E,, Ej), 

t p  
g 0  - ( E ; ,  

t __ go - (E,, E~). 

The 0-part go depends only on 0, and the G-part g~ depends only on G- This 
shows that, if we know the true value Go, the estimation error gO depends only 
on 0o and does not depend on the value of Go. The same situation holds for the 
G-part. However, when both 0o and Go are unknown, the estimation errors of 0o 
and Go are, respectively, different from gO and g,,O, because there is some interfer- 
ence between 0 and G. Geometrically, it is given by the angle between M(Go) and 
M'( Oo), 

if g~ =(E, ,  Ej)=~-~ 0i log S(w, O)o'j log S(co, G) dco, (8.4) 

which does not vanish in general. The estimation error of 0 is given in this case 
by 

t t r s  ? t \ - - 1  
g o - g  gri gsj] 

so that 

, . . . . .  ( 8 .5 )  go = grigsjg 

represents the loss of information in estimating 0 (in the sense of Fisher) due to 
the uncertainty of G. 

The parallel or feedback connection of two models seems geometrically more 
complicated. 

8.4. On A R M A  Models 

An ARMA model Sp, q of degrees (p, q) consists of those systems whose transfer 
functions are written as 

H ( z , a , b )  = ~ b,z-'/~=oaJZ-J , (8.6) 
i = 0  j =  

where bo# 0, ao = 1, and the denominator and the numerator have no common 
roots. We may use a = (al . . . .  , ap) and b = (bo . . . . .  bq) as a coordinate system 
of Sp.q which forms a ( p + q +  1)-dimensional submanifold in L. 
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Sp, q is a concatenation of an MA model {S(to, b)} and an AR model {S(w, a)}. 
Therefore, when a is fixed at a=ao ,  the resultant submanifold {S(to, ao, b)} is 
a = - 1  flat. It has locally the same a-geometric structure as the MA model 
{S(to, b)}. However, they have different global structures, because the submodel 
{S(to, ao, b)} does not include such b for which the denominator and the numerator 
in (8.6) include the same factor and cancellation occurs for a = ao. These b's are 
given as solutions of algebraic equations determined from ao, and hence they 
form algebraic surfaces. Hence, {S(to, ao, b)}, where ao is fixed, is a ( p +  
D-dimensional submanifold which is divided into a number of disconnected 
components by algebraic surfaces. A similar argument holds for a submanifold 
{S(to; a, be)} obtained by fixing b=  be. 

It was Brockett [8] (see also Segal [29]) who first studied the topological 
properties of a family of linear systems of McMillan degree n, which is the (n, n) 
ARMA model S,,,. He pointed out that S,., consists of n + 1 disjoint components. 
It is an interesting problem to study the global topological properties of a model 
M. It is another interesting problem to study the topological properties of M 
imbedded in L. We give a simple example to show this. 

Let us consider a two-dimensional model M whose transfer functions are 
given by 

H ( z ;  a, b) = (z  -l  + b ) / ( z  -1 + a). (8.7) 

From the stability of H and H -~, the coordinates (a, b) should satisfy 

- l < a < l ,  - l < b < l .  

Moreover, the condition a ¢ b is necessary, because otherwise cancellation of a 
zero and a pole occurs. Hence, the model M is homeomorphic to an open square 
from which a diagonal is deleted (Fig. 6(a)). However, if we study the shape of 
M in the enveloping manifold L, this representation will not prove metrically 
good. Let M be the set consisting of M and the unit system Ho = 1 which 
corresponds to the case with a = b, i.e.,/4o is derived from (8.7) by cancellation 
when a = b. All the diagonal elements (a, a) in the square representation corre- 
spond to the same system Ho. Hence, the representation of M should be topologi- 
cally as Fig. 6(b), where two open discs, which together constitute M, are 

b 

it / / 

//// 
(a) 

Fig. 6. Geometric 

(1,1)-ARMA 

L 

H0 

(b) 
shape of (1, 1)-ARMA model. 
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connected in L at one point Ho. In other words, the closure of M is connected 
in L. We should not disregard such properties that are related to the shape of 
M in L. This can also be confirmed from the metric property of M. As Brockett 
and Krishraprasad [9] pointed out, the metric tensor g~j of M degenerates and 
becomes singular at a = b. This is because the length in the diagonal direction 
converges to 0 as a tends to b. It should be emphasized that the singular point 
Ho is by itself a very natural system. What is singular is a model itself. The 
behavior of Sp, q is singular at cancellation points, but the corresponding systems 
are not singular. Further, the coordinate system (a, b) is not so natural in a 
neighborhood of the singular point, because the Fisher information matrix 
becomes singular at that point. The ARMA model Sp.q or the model Sn,n of all 
the linear systems of McMillan degree n should be studied further from this 
geometrical point of view. 

8.5. Generalizations 
It is possible to apply the present method to the analysis of more general manifolds 
of linear and nonlinear systems. Let L(u) be a system parametrized by a vector 
parameter u, and let x =  (x,) be an infinite sequence of  outputs of the system, 
when a white Gaussian noise is applied to the input. The t~-geometrical structure 
is introduced in the manifold {L(u)} essentially based on the probability measure 
p(x, u) parametrized by u, as in the same manner as in a statistical manifold [4]. 
For example, when the output of a system is multiterminal and the spectral 
density S(to, u) is a positive definite matrix, the metric and a-connection are 
given by 

go = (2zr) -1 f tr(S-Io,SS-10J S) dto, 

(2¢r) -1 f tr[S-~(O~OjS)S-~OkS - aS-~o~SS-~ojSS-~okS] d~, F<,,) i j k  - -  
m 

where tr is the trace of a matrix. When a system is not of minimal phase, we can 
use a non-Gaussian white noise to take effects of phase into account. An important 
point of the present method is that it is applicable to a manifold of nonlinear 
systems. 

9. Conclusions 

We have proposed a new differential geometrical method for analyzing properties 
of a model of  systems. To this end, a Riemannian metric and dually coupled 
+a-connect ions are introduced in a system manifold. We have analyzed the 
geometrical properties of manifolds of linear systems. A divergence measure is 
naturally introduced into the system manifold, and we solved the problem of 
approximating a system by one belonging to a model. 
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