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The nonuniqueness of memory Nash equilibria in deterministic dynamic games is 
not a restraint for the theory but a valuable property permitting the definition of a 
variety of 'cheating-proof' cooperative solutions. 
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Abstract--The paper proposes an equilibrium solution 
concept for dynamic games where players can communicate 
with one another, but cannot make contractual agreements. 
In such games, unlike the static problems without contrac- 
ting possibilities, the cooperation between players is pos- 
sible due to the fact that the realization of negotiated 
agreements can be enforced by suitably-defined strategies. 
The definition presented combines dynamic programming, 
the theory of bargaining and the notion of enforceable 
agreements to produce a class of cooperative solutions 
defined in the form of memory Nash equilibria satisfying the 
principle of optimality along the equilibrium trajectory. The 
choice of a particular solution in this class depends on 
players' expected actions in case of disagreement, and on an 
adopted negotiation scheme formalized in the form of a 
bargaining model. Possible formulations of disagreement 
policies and bargaining models are discussed in some detail. 

1. INTRODUCTION 
In dynamic games the players' strategy spaces 
may include the so-called memory strategies, 
relating the actions of a player at a given stage 
of the game to the decisions made by himself 
and the other player at the previous stages. By 
declaring his memory strategy a player can 
determine how his future actions will depend on 
his opponent's prior behaviour, that is he can 
formulate threats or incentives aimed to induce 
the other player to act in some desired way. The 
memory strategies were first introduced in the 
context of 'supergames', i.e. the dynamic games 
consisting in repeated playing of a given static 
game (Aumann, 1959; Friedman, 1971, 1977). 
Recently, several types of memory strategies 
have been defined for differential games 
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(dynamic games in the state-variable form), in 
the particular context of Stakelberg problems, 
where it is assumed that only one player, the a 
priori specified leader, is in a position to declare 
incentives, and that the realization of all his 
threats and promises is assured by a contract 
which is binding in the sense that once made, it 
literally cannot be broken (Ba~ar and Selbuz, 
1979; ToJ'wifiski, 1979, 1980, 1981). In this paper 
memory strategies will be considered for dis- 
crete-time differential games without a priori 
given leaders, and with the possibility of making 
binding agreements ruled out. So far the most 
popular solution concept for the games of this 
type has been the pure feedback (no-memory) 
Nash equilibrium (Starr and Ho, 1969). Ba~ar 
(1974) has observed that when in a dynamic 
game the players' strategy spaces include 
memory strategies, then as a rule the game has 
infinitely many Nash equilibria, from which he 
has concluded that a deterministic (non-hierar- 
chical) dynamic game is not a well-posed 
mathematical problem (Ba~ar, 1976). In the 
sequel it is shown that the deterministic for- 
mulation of dynamic game does make sense and 
a reasonable solution of such a game can be 
defined, provided that some additional charac- 
teristics of the problem are known. It is argued 
that the feedback Nash equilibrium is an ap- 
propriate solution concept for a strictly non- 
cooperative game where the players are in- 
capable not only of making binding agreements 
but also of communicating with one another, 
while memory Nash equilibria correspond to the 
situations where without having contracting 
possibilities the players can freely communicate 
with one another. The definition introduced in 
Section 3 combines the dynamic programming 
technique with the theory of bargaining to 
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produce an equilibrium solution which depends 
on threats declared by the players and on an 
adopted negotiation scheme. The choice of 
credible threats, a particular bargaining model 
and the resulting equilibrium solution are dis- 
cussed in Section 4. Finally, the theory is illus- 
trated by an example in Section 5. 

2. FORMULATION OF THE DYNAMIC GAME 
PROBLEM 

Consider a deterministic dynamic system 

xt+l = L(xt,  u , ,  u2t), 0 ~< t < T (1) 

where t is the integer time variable, T the time 
horizon (finite or infinite), xt E R" is the state 
variable, u ,  ~ U1, C R ' '  and u2t E U2t C R "2 
are the control (decision) variables under the 
control of player 1 and player 2, respectively. 
The objective of player i, i = 1, 2, is the maxi- 
mization tff his payoff (utility) function J~(O, Xo; 
u~, u2) for a given xo ~ Xo, where 

T 

Ji(t, x t ; u [ , u ~ ) = ~ . ~ g u ( x , ) ,  O < ~ t < T  (2) 
* = t  

where 

x,+j =/ , (x , ;  y,(x0, xl . . . . .  x,)), t < ~ s <  T 
(6) 

y~ E F~ is said to be a pure feedback or no- 
memory strategy if, for all t, y# does not depend 
on xo, x~ . . . . .  xt-j but is a function of xt only. 
Otherwise yi is called a memory strategy. 

In the formulation of the payoff functions (2) 
the stage payoffs g# have been assumed to be 
functions of the state variable only. The case of 
the stage payoffs having the form h#(xt, ut) can 
be dealt with similarly, under the additional 
condition that at stage t + 1 player i knows the 
value of h#(xt, ut), i = 1, 2. This follows from the 
definition of equilibrium strategies given in the 
next section requires player i to be able to 
detect any action of the other player influencing 
player is payoff function. 

By specifying the state equation (1), the 
payoff functions (2) and the strategy spaces F~, 
I~2 w e  have defined the game problem known as 
a two-person nonzero-sum dynamic game with 
the closed-loop information structure. The pur- 
pose of this paper is to discuss a solution 
concept for this problem. 

u[ = {u~,}t,=, with l = T - 1 if T is finite and l = oo 
otherwise, and us = u °, i = 1, 2. In the sequel the 
following notation is used: ut =(utt ,  u2t), u ' =  
(u l ,  u ; ) ,  u = (u , ,  u2), U~ = {U, ,Y,= , ,  U,  = 
Ult X U2,, U'  = U~ x U, t and U = UI x/./2. Fur- 
thermore, let Xt  be the reachable set at stage t, 
that is the set of all xt generated by x0 e X0 and 
all admissible control sequences 
{uio, u ,  . . . . .  uit-l}, i = 1, 2. Consider dynamic 
games given by (1) and (2) assuming that the 
players have access to the closed-loop infor- 
mation with perfect recall, that is at every stage 
t the players gain information about xt and 
recall Xo, X ~ , . . . , x t _ , .  As a consequence, the 
strategy space Fi of player i is defined as the set 
of all mappings of the form 

~, = {v,,Y,=o (3)  

where 

3',,: Xo x X~ x . . .  x X , - ,  U~, (4) 

we shall also denote y[ = {yi,}t,=,, i = 1, 2, yt = 
(y~,, y2t), y ' =  (y[, ¢ ) ,  y = (yl, y2)and 

T 

Ji(t, Xo . . . . .  x,; y')  = ~ gi,(x,), 0 <~ t < T 
S=f 

(5) 

3. EQUILIBRIUM IN DYNAMIC GAMES 

The classical theory of nonzero-sum games 
considers two types of problems, namely the 
cooperative games where the players can com- 
municate with one another and make binding 
agreements as how to correlate their actions, 
and the noncooperative games where such 
communication and contracting possibilities are 
ruled out. In the latter case the equilibrium is 
defined as a pair of strategies TN= (y~, y~) 
Ft X F2 satisfying 

J,(y~)~>Jl(yl, y~) for all Yt E Fl (7) 

J2(y") >~ Je(Y~, Y2) for all Y2 E F2 (8) 

and it is called the noncooperative Nash equili- 
brium. Between the extreme of purely coopera- 
tive and purely noncooperative games lies the 
class of problems where the players can freely 
communicate with one another but cannot make 
binding agreements (agreements between 
players have no legal standing or are not 
enforceable for other reasons). The opportunity 
to communicate in absence of contracting pos- 
sibilities is relevant when the number of Nash 
equilibria is greater than one, and the players 
have to agree on one of them as a solution of 
the game. In a purely noncooperative dynamic 
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game the lack of communication rules out 
memory strategies as formulation of threats is 
useless if they cannot be communicated to the 
opponent. Thus the players’ strategy spaces are 
practically limited to include only no-memory 
strategies, implying that the pure feedback (no- 
memory) Nash equilibrium is the appropriate 
equilibrium concept for a strictly noncoopera- 
tive dynamic game. This type of equilibrium has 
been given much attention in the literature, in 
the context of differential games, see Starr and 
Ho (1969) for example. In this paper, however, 
the main interest is dynamic games where the 
players can freely communicate with one ano- 
ther although they have no contracting pos- 
sibilities. In such a case the use of memory 
strategies becomes essential and the definition 
of reasonable equilibrium less obvious. As a 
rule a dynamic game has infinitely many 
memory Nash equilibria (Bavar, 1974, 1976) and 
the question to be answered is which one of 
them can be considered as a solution of the 
game. 

First of all it is important to realize that not 
all Nash equilibria can be considered as can- 
didates for equilibrium of dynamic game with 
contracting possibilities ruled out. In a dynamic 
game the players act not once but many times, 
facing at consecutive stages t = 0, 1,2,. . . of the 
game payoff functions of the form (2). There- 
fore in the absence of binding agreements 
equilibrium strategies must be defined in the 
way to ensure that neither player can uni- 
laterally improve his payoff on [t, T] by chang- 
ing his strategy at t, for t = 0, 1,2,. . . , a 
requirement considerably stronger than con- 
ditions (7) and (8) implying only that neither 
player can unilaterally improve his overall 
payoff. Mathematically let qi = {~i,ir)~=o, i = 1,2, 
be the equilibrium strategies and ff = {Z,};, the 
resulting equilibrium trajectory, that is 

Equilibrium strategies are required to satisfy the 
conditions of the form 

J*(C 4, * * . ,f,; $, y:)*Jl(t,&, . . . ,z,; u:, 7:) 
forall u: E U{ andOst<T. 

(10) 

*This property is not crucial for the proposed equilibrium 
concept which can also be defined in a more general way, 
allowing for the negotiation threats used to reach an 
agreement to be different from the retaliation threats used to 
prevent the violation of the agreement which has already 
been negotiated. 

J&,&J ,..., $1; jq, ‘y:) 2 &(f, Z-J, . . . ) f,; $, a:> 
forall u: E U: andOst<T. 

(11) 

In other words, the set of candidates for equili- 
brium solution is restricted to include only Nash 
strategies satisfying the principle of optimality 
along the equilibrium trajectory. Now the prob- 
lem is to select, from this still an infinite set, an 
element which can be considered as an equili- 
brium solution of the game. The proposed ap- 
proach to this problem combines the dynamic 
programming with the theory of bargaining and 
can be summarized as follows: First the players 
define their disagreement (threat) policies which 
they are supposed to use if they cannot agree on 
another solution, or if after reaching an 
agreement one of them breaks it in the course 
of the game. Note that the disagreement policies 
play a dual role, on the one hand they define 
reference points for the negotiation of 
agreements at consecutive stages, and on the 
other hand they define threats discouraging the 
players from breaking the agreements in the 
course of the game.* Given threat policies, 
equilibrium decisions (agreements) are deter- 
mined stage by stage backward in time, that is 
according to the dynamic programming scheme. 
At the last stage of the game (in the case when 
T is finite and the game has the last stage) 
equilibrium decisions are defined as non- 
cooperative Nash strategies of the correspond- 
ing static game. At all other stages they are 
selected by means of a given bargaining model 
from the set of enforceable agreements, where 
an agreement at stage t is said to be enforceable 
if neither player can gain anything from break- 
ing it, assuming that such an action will be 
followed by the switch to disagreement policies 
from stage t + 1 onwards. The resulting equili- 
brium strategies have the form 

%OCxO) = 40 

Yit(XO9 - - . 9 Xt) = 1 
& if XI = fl, X2 = .f*, . . . , X, = Is, 

di,(X,) otherwise 

(12) 

O<f<T; i=1,2 

where a,,, & denote equilibrium decisions at 
stage f, {x0, Z,, . . . , _fT} is the corresponding 
equilibrium trajectory obtained by substituting 
nil, I&, for ull, u2, in the state equation, and 
&(x,) is the disagreement action of player i at 
stage f for x, E X,, i = 1,2, 0~ f < T. By 
declaring a strategy of the form (12) player i 
commits himself to the possible realization of 
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the treat d~t which need not to be optimal in 
terms of his payoff function, that is after xt # St 
player i may be better off by not using the 
disagreement policy. The rationale for such a 
commitment is to achieve favorable cooperative 
controls (tilt, f2t) which depend on the dis- 
agreement policies through the bargaining model 
and the definition of the set of enforceable 
agreements. Some possible formulations of d~t 
will be discussed in the next section. 

Assuming that disagreement actions d~t(x) for 
xt E Xt, 0 -< t < T, i = 1, 2 are given and a bar- 
gaining model F is specified, where F is defined 
as a mapping assigning to a static cooperative 
game G and a disagreement point d the bar- 
gaining solution F(G,  d), the definition of equil- 
ibrium solution of a dynamic game can be for- 
mally introduced in the following way: Let  
elt(Xt) and e2t(x~) denote equilibrium decisions 
(agreements) of player 1 and player 2, respec- 
tively, for xt ~- Xt and t = 0, 1,2 . . . . .  Denote also 

e~(xD = {e~s(xs)}t,=,, i = 1, 2 (13) 

d~(xt) = {d~sfx,)}ts=t, i = 1, 2 (14) 

with 

x~+j = L(x,, el,(x,,), e2s(Xs)) 

x~+1 = L(x,, di,(x~)d2s(Xs) 

for s = t, t+ I .... (15) 

respectively 

D,t(xt) = s t~  Jl(t, x,; u~, dt~(xt)) 

D2t ( xt ) = su? J2f t, xt ; d ~ ( xt ), tt t~ ) 

for t = 0 , 1  . . . . .  T - 1  (16) 

Hit(xt, u2t) = sup [gtt(xt) + D~t+l(ft(xt, ult, u2t))] 
till 

H2t(xt, 141t ) = sup [g2t(x,) + D2t+l(ft(xt,/dlt,/d2t))] 
ti2t 

for t = 0, 1 . . . . .  T - 2 (17) 

e: = (elt, e2t), e t = (eg, e~), d, = (d~t, d2t), 

d' =(d~, d;) (18) 

• ~t(xt, ut) = git(xt) + ~( t  + 1, xt+l, d+~(xt+l)) 
(19) 

where xt+l = ft(xt, uD. 

We can easily interpret the expression Du(xD 
given in (16) as the maximum payoff that player 

i can secure the stages t to T given that the 
system is in state xt at t, and that player j will 
play according to his threat policy dj, j #  i. The 
expression Hit(x. u#) given in (18) is the maxi- 
mum payoff that player i may expect for the 
stages t to T if the system is in state xt at t, and 
the opponent is bound to play u# at t but will 
use his threat policy from stage t + 1 onward. 
This expression plays a fundamental role in the 
definition of the set of enforceable agreements 
which for a given xt at t and given equilibrium 
decisions from stage t + 1 onward is defined as 

At(x .  d t÷j) = {ut ~- Ut/.~t(xt, ut) >I I-I~t(xt, u#), 

i = 1, 2, j #  i} (20) 

for t = 0 , 1  . . . . .  T - 2  if T is finite and t =  
0, 1, 2 . . . .  otherwise. In other words, if at = 
(f~t, u2t) is an agreement reached at stage t, and 
fit E A t ( x ,  dr+t), then neither player can benefit 
from cheating provided the compliance with the 
agreement is followed by the realization of 
et+~(xt+O, and noncompliance by the execution 
of the opponent 's threat d~ +1. Given 0 ~< t ~< T - 2 
and xt E Xt, and assuming that the equilibrium 
strategies will be applied in the future the 
players face a static cooperative game 
Gt(x,  d t+l) defined by At(xt, d t+l) as the set of 
admissible solutions and Jtt(xtut), J2t(xt; ut) as 
payoff functions, with ut ~ At(xt, dr+t). The last 
stage of the game is different because decisions 
made at this stage cannot be influenced by any 
threats to be realized in the future, so if T is 
finite then at t = T -  1 the players face a non- 
cooperative static game Gr-~ (xr-O defined by 
decision sets U~r-I, U2r-I and payoff functions 

flr-l(Xr-i; Ulr-~, U2T-1) 

f2r-i(Xr-t; Ulr-l, u2r-0 with uir-t E Uir-i, 

i =  1,2. 

Now, the assumption that the bargaining model 
F is well defined on pairs (Gt, d t) leads to the 
following definition: 

Definition 
(1) Let  

exception 
finite, and 

1 
for any 0 ~< t < 7", with the possible 
of t = T - I  in the case when T is 
any xt E Xt 

e,(x , )  = F ( G , ( x .  d'+'), d') (21) 

(2) If T is finite, then let for any Xr-m E Xr-~, 
er-l(Xr-0 be the noncooperative Nash equili- 
brium of Gr-i(Xr-D. 
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Furthermore let 

Xt+~ = ft(~t, e,(~t)) 0 <~ t < T, ~o = Xo (22) 

and 

tit = (ti,t, ti2,) = (e.(Xt). e~t(Xt)), 0 <~ t < T. 
(23) 

Then the strategy pair (y~, Y2) with Y~t defined by 
(12) is said to be the equilibrium solution of the 
closed-loop dynamic game formulated in the 
previous section, under the condition that the 
players have no contracting possibilities but can 
freely communicate with one another. [] 

The definition of tit as enforceable agreements 
at t = 0, 1 . . . .  T - 2 and as the Hash equilibrium 
at t = T -  1 implies that the equilibrium strate- 
gies (12) satisfy the conditions (10), (11), i.e. the 
principle of optimality along the equilibrium 
trajectory. Assuming F to produce bargaining 
solutions which are Pareto optimal implies tit to 
be Pareto optimal for the local games 
Gt(xt, dt+~), but, of course, does not imply ti to 
be globally Pareto optimal for the dynamic 
game as a whole. Finally it should be noted that 
the equilibrium solution produced by Definition 
1 depends in a crucial way on the choice of 
disagreement policies and bargaining model. In 
the next section possible formulations of d~t 
and F will be discussed. 

4. DISAGREEMENT POLICIES AND BARGAINING 
MODELS 

The equilibrium solution introduced in the 
previous section assumes the existence of threat 
policies which are credible in the sense that 
each player believes that if he fails to cooperate 
then the other player will actually realize his 
threat. The choice of threats has a crucial im- 
pact on the players' payoffs under the equili- 
brium solution, because the equilibrium 
agreements tit resulting from Definition 1 
depend on d t through both the bargaining model 
F and the set At. The definition of optimal or 
credible bargaining threats is a well-known 
problem of the game theory, and has been dis- 
cussed in the context of static problems by 
Nash (1953), Luce and Raiffa (1957) and Rosen- 
thai (1976) among others. In the sequel two 
formulations of threats for the dynamic game of 
Section 2 will be considered, namely as pure 
feedback Nash strategies, and as minimax stra- 

tegies of a zero-sum game. The first approach is 
based on the hypothesis that if the players fail 
to cooperate then they will switch to the purely 
noncooperative equilibrium, implying d[, d,' to 
be defined as no-memory Hash strategies. In 
such a case an equilibrium solution resulting 
from Definition 1 has an attractive property of 
fulfilling an even stronger version of conditions 
(10), (11), namely 

Y1(t, :co ..... x,; ,/~(xt), ./;(x,)) >- y~(t, Xo ..... x,; 
u[, y,t (xt)) (24) 

for all uf E U[,any xt ~ Xt, andO<~t<T 

.r~(t, Xo . . . . .  x,; ,/[(x,), ~,;(x,))~>Y2(t, Xo . . . . .  x,; 
~,[(x,), u;) (25) 

for all u; E U[, any xt E Xt, and 0 ~< t < T. 
In other words, the strategy Y[ is optimal for 

the player, provided the other one applies y~, 
j #  i, independently of whether the cooperation 
succeeded or not in the past. Clearly the threat 
policies defined as pure feedback Nash strate- 
gies are quite credible. On the other hand 
Definition 1 with such threat policies can 
produce a non-trival equilibrium solution only 
for games with the infinite time horizon 
(Friedman, 1977), because if T is finite then the 
sets of enforceable agreements reduce to in- 
clude only noncooperative Nash solutions and 
the resulting equilibrium solution of the game is 
simply the feedback Nash equilibrium. Another 
problem is that Nash strategies may not be 
satisfactory as the reference points in the bar- 
gaining, especially when the comparisons be- 
tween the players' utility functions are accept- 
able (Luce and Raiffa, 1957). In such a case it 
makes sense to consider the zero-sum game 
defined by the payoff function of the form 

J(O, x0; u) = ./2(0, Xo; u) - J1(O, x0; u). (26) 

dl, d2 can be and the disagreement policies t t 
formulated as the minimax strategies, provided 
of course that such strategies exist.* In other 
words one has 

--m- ~ 1 , / 4 2 )  sup. J(t, xt; I t J(t, x,; d~ (xt), d~ (xt)) ,finff~t: 
u~ E U~ 

A 
= sup inf J(t ,  x,; u~, u~) =Mt(xt) (27) 

~ E ul ,I e ul 

where 

*For the justification of this definition see the comment 
made in this section after the discussion of the Raiffa's 
bargaining model. 

J(t, x,; u~, u,~)= s2(t, x,; u~, u,~)-J,(t, x .  u~, u,'). 
(28 )  
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Note that for  t = T -  1, T -  2 . . . . .  1, d~t and d2t 
can be obtained by means of the dynamic pro- 
gramming rule 

Mr(x,) = get (x t ) -  g,t(xt) 

+ Mt+l[ft(xt, d , (x t ) ,  d2t(xt))] 

= g e t ( X t )  - -  g l t ( X t )  + in f  sup  Mt+l(ft(xt, ul,, uet)). 
ult E Ult uet E U2t 

(29) 

An equilibrium solution with the minimax stra- 
tegies of (26) as the threat policies assumes that 
the failure of cooperat ion makes the players 
adopt the strictly antagonistic attitude, which is 
a change from their original objectives.  It seems 
evidence of such behaviour can be found if one 
takes a close look at some real-life games, as for  
example relations between the great powers. 

The next  problem to be considered in con- 
nexion with Definition 1 is the choice of a 
bargaining model F. Traditionally (Roth, 1979) a 
bargaining game is defined as a pair (S, m) 
where S is a subset of R e representing the 
feasible payoff pairs to the players, and m is an 
element of  S corresponding to the dis- 
agreement outcome. Le t  B be a class of bar- 
gaining games (S, m). A bargaining model for  
the class B is defined as a function F ' :  B ~ R e 
such that F'(S,  m)  is an element of S for any 
($, m) in B (Roth, 1979). The relations between 
bargaining games (G, d) and ($, m), and bar- 
gaining models F and F '  are straightforward. If 
G is described by payoff functions J~, Je and 
decision sets Ui, ?-/2, while d = (dl, de) E 
U1 x/32 represents the disagreement actions 

then 

S = {y = (yt, Ye) E Rel=Ju ~ U~ x Us, y~ = J~(u) 
and Ys = Je(u)} (30) 

m = (J~(d), Je(d)). (31) 

Furthermore,  if for  some u E UI x/32 we have 
(Jr(u), Je(u)) = F'(S ,  m)  then u = F(G,  d). 

Note that a well-defined bargaining model 
should produce for any game in B a solution 
which is unique in terms of F'  but not neces- 
sarily unique in terms of F. 

The problem of bargaining has been exten- 
sively discussed in the game theory literature 
(Nash, 1950; Raiffa, 1953; L u t e  and Raiffa, 
1957; Roth, 1979). The best known is the Nash 
bargaining model F '  = N '  defined by N'(S ,  m)  = 
y such that y ~> m and 

(Yt - ml)(ys - ms) > (zl - mj)(z2 - ms) 

possesses four important properties,  namely 
independence of equivalent utility represen- 
tations, symmetry,  independence of irrelevant 
alternatives and Pareto optimality, and is well 
defined on the class of games with S being 
compact,  convex and including at least one 
point s E S such that m < s. Another  bargain- 
ing model has been proposed by Raiffa (1953) 
for cases where interpersonal utility com- 
parisons make sense. Let  P ( S )  denote the 
Pareto set, that is 

P ( S ) = { y  ~ Slz1> y and z E S implies z = y}. 
(32) 

The bargaining model F ' =  R'  is defined by 
R'(S,  m) = y such that 

min { Y l  - -  mr, Ys - ms} > rain {zl - ml, zs - ms} 
(33) 

for all z ~ P ( S )  such that z #  y (Roth, 1979). 
R'  always chooses the Pareto optimal point 

which comes closest to giving the players equal 
gains, and is well defined if P ( S )  is compact  and 
contractible (i.e. it contains no 'holes'). If there 
is a point y in P ( S )  such that Y t -  ml = Y2- ms, 
then R'(S,  m ) =  y, that is the selected solution 
gives both players equal gains, whenever  there 
is Pareto optimal outcome with this property.  If 
the straight line y~ - Ys = ml - ms does not have 
a common point with P(S) ,  then P ( S )  is con- 
tained either in the set {YlYl - m~ > Ys - m2} or in 
the set { y [ y ~ - m l <  Y2-me}. In the first case 
R(S,  m ) = y  is the point at which Ys is maxi- 
mized, in the second case it is the point which 
maximizes y~. 

The transition from the formulation of the 
models in terms of F '  to the formulation in 
terms of F required by Definition 1 is straight- 
forward in case of N ' ,  but needs some com- 
ments in case of R'. Let  

J(u)  = Je(u) - Jl(u), M = ms - ml (34) 

and define 

Wt = {u E Ui x U2lJ(u) >1 M} (35) 

We = {u E U, x Ue[J(u) <~ M} (36) 

Y/= {v E Wi[Js(v)/> Ji(u) for all u E W/}, 

i = 1, 2 (37) 

v 1 = arg max Je(u) (38) 
uE YI 

for  all z in S such that z ~  > m and z #  y. N '  v 2 = a r g m a x  J~(u). (39) 
u ~  Y 2 
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The interpretation of the set W~ is that it is the 
set of agreements which, if proposed by player 
i, should be accepted by the other player, 
because in the case of non-acceptance followed 
by the realization of disagreement payoffs the 
relative loss of the latter would be greater or 
equal to the relative loss of player i. So, v; is by 
definition an optimal choice of player i in the set 
of agreements that the other player is expected 
to accept, having the additional property that 
when such a choice is not unique v" is selected 
to maximize the payoff of player ], j #  i. Now it 
can be easily seen that the bargaining model R 
can be defined by R(G,  d) = v i where i = 1 if 

Jk(v 1) >I Jk(v2), k = 1, 2 (40) 

and i = 2 if 

Jk(v 2) ~< Jk(vl), k = 1, 2. (41) 

Note that if the line of equal gains Y2- Yl = M 
intersects P ( S )  then Jk(v I) = Jk(v 2) for k = 1, 2, 
if P ( S )  lies above this line then condition (40) is 
satisfied, and if P ( S )  lies below it then one has 
(41). The model R has a particularly interesting 
interpretation when the disagreement point d is 
defined as a minimax solution of J, that is 

M = J (d )  = min max J(ul ,  u2). (42) 
u l ~  UI u2~ U2 

In such a case the set 

W~i = W.J{u E U~ x U2lJ(u) = M} (43) 

can be considered as the set of agreements with 
respect to which player i can formulate the 
threat d~, which is credible in the sense that for 
any possible counteraction of the other player 
the relative loss in the payoff of the latter will 
be greater than the relative loss in payoff of 
player i. Neither player can formulate credible 
threats with respect to points in the set {u E 
U~ x U21Y(u) = M}, so the bargaining solution is 

selected as an agreement maximizing the 
players'  payoffs on this set, unless both players 
can benefit from an agreement on a point u E 
W~,., for i = 1 or i = 2, and then the solution is 
chosen as a point that maximizes J~ on V¢~. 

A given combination of threat policies and of 
a bargaining model can produce the equilibrium 
solution of a dynamic game, provided the 
required policies exist and the bargaining model 
is well defined on the family of games Gt(xt; 
dt+~), where t = 0, 1 . . . . .  T -  2 and xt E X t .  As 
for the threat policies considered in this section, 
there are very few results of practical value 

concerning the existence or computation of no- 
memory Nash equilibria, but on the other hand, 
the minimax problem is more tractable, for in- 
stance the existence of minimax strategies is 
ensured if the sets U~t, i =  1, 2, 0 < ~ t <  T 
are compact and convex, and the function J is 
continuous, convex with respect to u~ and con- 
cave with respect to u2 (Owen, 1968). Some 
insight into the problem of existence and com- 
putation of equilibrium agreements in the sense 
of model R can be gained by formulating opti- 
mization problems with the property that for an 
important class of games their solutions coin- 
cide with the equilibrium agreements generated 
by Definition 1 with R as a bargaining model. 
Assume that the threat actions d~t(xt) for xt 
Xt, i =  1,2; t =  1,2 . . . .  are given, and let 

J(t ,  xt; u') ,  Mt(xD, Hit(xt, u2t) and H2t(xt, ult) be 
defined by (28), (27) and (17), respectively. The 
following optimization problems are defined: 

(a) To maximize Jl(s, xs; u s) subject to the 
state equation 

xt+l = ft(xt, ut), t = s, s + 1 . . . . .  (44) 

with xs given and subject to the following con- 
straints 

J(t ,  xt; u')  ~ Mt(xt) ,  t = s, s + 1 . . . . .  T - 2 
(45) 

J~(t, x,; u') t> H , ( x , ,  u2,), 

J2(t, x,; u ')  >- H2,(x,, u , ) ,  

t = s , s + l  . . . . .  T - 2  

(46) 

t = s , s + l  . . . . .  T - 2  

(47) 

IAT-I = er-i(Xr-O (only if T is finite) (48) 

[Recall that er-~(Xr-0 is the noncooperative 
Nash equilibrium of Gr-I(Xr-O]; 

(b) to maximize J2(s, xs; u s) subject to (44), 
(46)-(48), and 

J(t ,  x t ;u t )<-Mt (x t ) ,  t = s , s + l  . . . . .  T - 2 .  
(49) 

Note that in the case of finite T, the set of 
sufficient conditions for the existence of solu- 
tions to (a) and (b) is compactness of /.Tit, and 
continuity o f / t ,  git, dt and er-~. Let, for given s 
and xs, a ' (xs)  and bS(xs) be optimal solutions to 
the optimization problems (a) and (b), respec- 
tively. Denote u ° = a°(x0), u b = b°(x0), and let x Q 
and x b be the corresponding trajectories. The 
following proposition is a direct consequence of 
the definition of the bargaining model R. 
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( ol ou ,M~(  t, x, ; u') = 0 

( ol ou,,)J2( t, x, ; u') = 0 
(59) 

and 

( al Ou.)J ( t, x, ; u') = 0 

( OI Ou2t)J ( t, x~ ; u t) = 0 
( 6 0 )  

respec t ive ly ,  result ing in 

d]"t)(xt) = d~ ") = (t~ - I)12 

d~"t)(xt) = d~ ") = c(~ - I)12 
(61) 

and 

dl~')(x,) = d] '') = (2/~ - 1)/2 

d~'~)(xt) = d~ '') = c(2/~ - 1)/2 
( 6 2 )  

fo r  any  xt E Xt and t = 0, 1, 2 . . . . .  F u r t h e r m o r e  
one  has 

M~ " )=  J(t ,  xt; d (")t) = -(114A(1 + A)t-~)(# - 1) 

(3/~ - 1)(1 - c)  + 2~(1 + A)-t+~(x2, - x . )  

(63) 

and 

that  is 

J ( t ,  x t ; ~(n)t) =_ M~n),  t = O, 1 , 2 .  (68) 

M o r e o v e r ,  it can  be verif ied that  the solut ion (67) 
is en forceab le ,  that  is it satisfies the const ra in ts  
(46) and (47). Thus ,  by  Propos i t ion  1 t7 (") defines 
the sequence  of  equil ibrium agreements  in the 
sense of  bargaining model  R. Obse rve  that  in this 
case the sequence  of  equi l ibr ium agreements  is 
in the class of  globally Pa re to  optimal  solutions.  
The  equil ibr ium strategies in the sense of  
Definit ion 1 was given by  

[ fi~") if xl = X~ ") . . . . .  xt = X~ ") 
y~)(Xo . . . . .  xt) = [di(. ) o therwise  

(69) 

t =  1 ,2 ,3  . . . . .  i =  1,2. 

The  case of  d~ m) as the threa t  policies can  be 
deal t  with analogously .  F rom the maximiza t ion  
of  J~(0, x0; u) subjec t  to 

Y(t, Xt,  Ut) ~ M~ m) (70) 

this leads to 

t ~  ') = a~ '') = d~ ") = (p  - 1)/2, t~(ff ) = t~(2 '') = 0 
(71) 

M~ m) = J(t ,  x,; d (re)t) = - (114A(1 + A)H)(2/~ - 1) 2 

(1 - c)  + 2/.L(1 + A)-t+l(x n -- x,t). 

(64) 

Cons ide r  the maximiza t ion  of  J~(0, x0;u) subjec t  
to the cons t ra in t  

Y(t, x,; u') I> M~ "), t = O, I, 2 .... (65) 

and the maximization of ./2(0, Xo; u) subject to 

J(t ,  x,; u ' )  ~ M~ "), t = O, 1, 2 . . . . .  (66) 

It is easy to see that  opt imal  solut ions of  bo th  
problems are identical and given by 

~1] ) = ~]")= (112)[2~ - 1 

- ~/((~ - I)(I - 3t~)(l - c) + (2/~ - 1)2)] 

a~7 ~ = a~ "~ = O, t = O, 1, 2 . . . .  (67) 

where the con t ro l  s equence  consis t ing of  con-  
trois ~ ( ' )=  0il "), a~'~ is on the equal  gains line, 

if 

0 < C < g212/.~ --  1) 2 = 1/(1 + a - A) 2 (72 )  

and 

if 

t~]7 ) = a ]  '') = (2/.~ - 1)(1  - ~ ( c ) ) / 2  

a~,7 = a~ "~= 0 (73) 

1/(1 + aA) 2 <~ c ~< 1. (74) 

In the first case  

J(t, xt; u(")')> M~ "), t =0, 1,2 .... (75) 

while in the second  case  the cont ro l  s equence  
def ined by  (73) is on  the equal  gains lines. Both  
(71) and (73) define Pa re to  opt imal  solutions.  It  
can  be shown that  the solut ion (71) is en fo rce -  
able under  (72) for  a rb i t rary  a and A, while (73) 
is en fo rceab le  fo r  all c sat isfying (74) p rov ided  
that  

a < (1 + A2)/(1 + A). (76) 
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Using Proposition 1 it is easy to verify that (71) 
and (73) define the sequence of equilibrium 
agreements in the sense of model R, for the 
parameters a, c, A satisfying (72), and (74) and 
(76), respectively. The resulting equilibrium 
strategies, namely 

~ti~ -) if x, = g~') . . . . .  xt = g~") 
(x0  . . . . .  x') = td . ) o t h e r w i s e .  

(77) 

improve the payoff of player 1 at the expense of 
player 2, when compared with the solution (69). 
In particular, when c is sufficiently small a bet- 
ter bargaining position enablees player 1 to 
achieve the team optimal solution (71). 

In the context of the arms race problem the 
solutions (69) and (77) can be interpreted in the 
following way. When the competing countries 
do not communicate with one another, then they 
can be expected to act according to the no- 
memory Nash equilibrium ~,,~atn), "2"~t*)xJ defined by 
(61). This situation changes when the corn- 

munication is established, and the countries can 
enter upon negotiations to limit the arms race 
and achieve equilibrium at lower level of mili- 
tary spending. The arms limitation treaty a ~n) 
takes (d~ "), d~ ")) as the reference point for bar- 
gaining, and reduces the military spending of 
both countries, granting them equal gains 
measured in terms of their utility functions. 
However,  country 1 having an edge on country 
2 by producing its armaments more efficiently, 
can achieve an even better treaty ti tin) by 
declaring the threat d~ '~) which is tougher, that is 
implies a quicker pace of arms race in the case 
of unsuccessful negotiations, than the pure 
feedback Nash strategy d~ ~). If country 2 has 
reasons to believe that country 1 is really 
committed to realize d~ -), it has little choice but 
accept arm). Table 1 shows the numerical values 
of d ~"), d ~m), ti ¢~), ti t") and the corresponding 
payoffs for a = 0.9, A = 0.1, and c ranging from 
0.1 to 1. Note, that for c =0.1 and 0.3 the 
payoffs of player 2 corresponding to u ¢~) are 
smaller than his payoffs corresponding to d ~), 
that means for a 'weak'  player the possibility of 
communication can be harmful. 

TABLE 1. EQUILIBRIUM SOLUTIONS OF THE ARMS RACE MODEL FOR a = 0.9, A = 0.1, 
Xlo = X2o, AND VARIOUS VALUES OF c 

ul U2 Jl(ul, U2) J2(u,, u2) 

c = 0 . 1  
d °°  2 0.2 
d °") 4.5 0.45 
a t") 1.734137 0 
/i ~ )  2 0 

33 - 105.6 
-49.5 - 249.975 
43.222485 -95.377518 
44 - 110 

c = 0.3 
d ~) 2 0.6 
d ~") 4.5 1.35 
~") 1.267354 0 
~t") 2 0 

11 - 9 6 . 8  
- 9 9  - 254.925 

38.09553 - 6 9 . 7 0 4 4 7  
44 - 110 

c = 0.5 
d ~) 2 I 
d °") 4.5 2.25 
~') 0.859945 0 
~'~) 1.318019 0 

- 11 - 88 
- 148.5 - 259.875 

29.70302 - 4 7 . 2 9 6 9 8  
38.883933 - 7 2 . 4 9 1 0 6 1  

c = 0.7 
dt') 2 1.4 

d ~") 4.5 3.15 
~') 0.493755 0 
at,.) 0.735023 0 

- 33 - 79.2 
- 198 - 264.825 

19.043481 - 27.156519 
26.398355 - 4 0 . 4 2 6 6 4 5  

c = 0 . 9  
d ~") 2 1.8 
d ~') 4.5 4.05 
~tm) 0.158341 0 
~tm) 0.230925 0 

- 55 - 70.4 
- 247.5 - 269.775 

6.691226 - 8.708774 
9.574115 - 12.700885 

c = 1.0 
d t") 2 2 
dtm) 4.5 4.5 
~t.) 0 0 

~<m) 0 0 

- 6 6  - 66 
- 2 7 2 . 2 5  - 272.25 

0 0 

0 0 
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As required by Definition 1, the solutions 
defined by (69) and (77) constitute memory 
Nash equilibria of the game given by (54) and 
(55). By specifying particular threats and a par- 
ticular bargaining model we have selected two 
from the infinitely many Nash equilibria of the 
game. Note, that any strategy of the form (69) 
with ~i tn) replaced by an arbitrary u satisfying 
the enforceability conditions (46), (47) (there are 
continuum of such u) is also the Nash strategy. 
The same is true for the strategy (77) and a great 
number of other strategies having the similar 
form but differently formulated threats. 

6. CONCLUSIONS 
An equilibrium solution concept for dynamic 

games has been proposed where players can 
communicate with one another but cannot make 
binding contracts. In such games, unlike the 
static problems without contract possibilities, 
cooperation between players becomes possible 
due to the realization that agreements nego- 
tiated by the players can be enforced by suit- 
ably-defined strategies. The definition presented 
in Section 3 combines the dynamic program- 
ming, the theory of bargaining and the notion of 
enforceable agreements to produce a class of 
cooperative solutions defined in the form of 
memory Nash equilibria. A particular member 
of this class can be obtained by specifying 
players'  disagreement policies, and a bargaining 
model providing the pattern for negotiation. In 
Section 4 we have discussed the most obvious 
choices of disagreement policies and bargaining 
models, and provided a sufficient condition for 
equilibrium in the case when the negotiation 
scheme proposed originally by Raiffa is selected 
as the bargaining model. The theoretical con- 
siderations have been illustrated by the example 
given in Section 5. 

The proposed definition of dynamic equili- 
brium has several interesting generalizations. 
The formulation of threats used as the reference 
point in bargaining can be different from the 
formulation of threats used to prevent the 
violation of a negotiated agreement in the 
course of the game, that is d in the definition of 
the set At(xt, d TM) can be replaced by d' 

different from the second argument of the bar- 
gaining model F(Gt,  dr). T h e  bargaining need 
not to take place at every stage of the game as 
required by Definition 1, instead the players can 
negotiate agreements for longer periods of time, 
and reopen negotiations every k > 1 stages, or if 
some more general conditions are satisfied. The 
retaliation for violating an agreement in the 
course of the game need not last until the end of 
the game, ruling out any possibility of recon- 
ciliation and return to the cooperative mood of 
play, but can be limited to fewer stages. Finally, 
the multiperson and stochastic games seem to 
be the promising field of further research. 
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