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ABSTRACT 
An analysis of steady laminar forced convection heat transfer from a 
moving or stationary slender cylinder to a quiescent or flowing 
non-Newtonian fluid has been presented. A relative velocity 
parameter, ~, is proposed to serve as a controlling index that 
properly indicates the relative importance of the velocity of the 
slender cylinder and the velocity of the free stream. The value of 
this parameter lies between 0 and I. Furthermore, the coordinates and 
dependent variables are transformed to yield computationally 
efficient numerical solution that are valid over the entire range of 
relative velocity parameter from the limiting case of a non-Newtonian 
fluid free stream flowing over a stationary cylinder (~ = 0) to the 
other limiting case of a moving cylinder in a quiescent non-Newtonian 
fluid (~ = i). The effects of the relative velocity parameter, the 
transverse curvature parameter, the power-law viscosity index and the 
generalized Prandtl number on the velocity profiles, the temperature 
distributions and the heat transfer group are clearly illustrated. 

Introduction 

For the past years, the problems of classical convective heat transfer 

between slender cylinders and ambient fluids have been studied by two 

different types. One type is the problem of a steady flow over a stationary 

slender cylinder [1-7]. Another type is the problem of a slender cylinder 

moving continuously in a quiescent fluid [8-13]. However, in many engineering 

systems both the cylinders and the ambient fluids are moving in parallel. 
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Examples are the cooling of hot fibers issue from a die or slot with a 

constant surface speed u s in a parallel free stream u~. The problem of a 

moving surface in a free stream had been analyzed by Adbelhafez [14]. He 

obtained numerical solutions of the governing boundary layer equations and 

Navier-Stokes equations. Chappdi and Gunnerson [15] solved the same problem by 

using an integral technique along with a perturbation procedure. Afzal et al. 

[16] employed a composite velocity to deal with the problem of a continuous 

flat plate moving in a parallel stream. Very recently, Lin and Huang [17] 

studied the general forced convection problem of a surface moving continuously 

in a flowing stream by using a quite different transformation to obtain 

similarity solutions. With the exceptions of [4] and [13], in all the studies 

mentioned above, the fluid considered was Newtonian. 

It is well known that a number of industrial fluids exhibit non-Newtonian 

fluid behavior which may be approximated with the power-law viscosity model. 

Therefore, in the present paper, the flow and thermal transport from a static 

or moving cylinder in a quiescent or flowing non-Newtonian fluid are 

investigated. By introducing novel transformation variables and a parameter of 

relative velocity, it is able to obtain a set of universal formulation which 

is readily reducible to the equations of the systems of non-Newtonian fluids 

flowing over a static slender cylinder and a moving cylinder in a quiescent 

non-Newtonian fluid. An implicit finite difference scheme is used to solve the 

reduced system of equations. 

Analysis 

Consider a steady, laminar, nonsimilar boundary-layer forced convection 

of non-Newtonian fluids with a free stream velocity u~ over a slender cylinder 

that moves axially with a constant velocity u . The physical model and the 
s 
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System schematics and coordinates 

v I 

coordinate system are depicted in Fig. i. Neglecting viscous dissipation and 

wake effects, the governing equations, with the standard power-law viscosity 

model and constant properties assumption, are 

O (ru) + a (rv) = 0 

@ u + v @ u = pK r a @ uln-I O u 
O r ~ [riB--- f l~)--~l]  U 

O T  O T  a a , a T ,  
u ~--~ + v O r = } ~--f~r~-- ~) 

The associated boundary conditions are 

( i )  

(2) 

(3) 

: u = u , v = 0 and T = T at r = r ° s s 

as r -~ ~ : u = u~ and T = T 

(4a) 

(4b) 

In order to facilitate the numerical solution, the x-dependence of 

certain terms in the governing equations is reduced and the boundary 

conditions are simplified. This is accomplished with coordinate 

transformations based on a proper choice of transformation parameter derived 

from scale analysis (cf. ref[18]) 

x 

2 2 
r - r ° ( R e / C ) l / ( n + l )  

O = 2 r L 
o 

(5) 

(6) 
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* = r a (Re ~)i/(n+l)F(~,O) 
o 
T - T~ 

0 = 
T s - T~ 

where Re is the generalized Reynolds number defined as 

p U 2-n L n 

Re = 
K 

with L being the length of the cylinder and U : u 
s 

velocity. 

7) 

8) 

9) 

+ um being a composite 

Using the stream function approach 

1 ~ • i a 
u - r ~ r and v - r ~ x (10a,b) 

the continuity equation is automatically satisfied and the momentum and energy 

equations are transformed to 

I F": ,aF' ,,~ F. pr2-n[(l+e~l/(n+l))(n+l)/21F"In-IF"]' + ~ F ~ [F ~- - F ~-~] (Ii 

and 

1 8' : a8 @F ~(n-l)/(n+l)[(l + e~ I/(n+l)) 8']' + n+--%-f F ~ [F' ~ 8' ~ ] (12 

where e is the transverse curvature parameter 

2 L 
e = (13 

r Re I/(n+l) 
o 

Pr is the generalized Prandtl number 

Pr - U L Re-2/(n+l) (14 
cx 

The corresponding boundary conditions are 

F(~,0) = 0, F'(~,0) = • Pr and 8(~,0) = 1 (15a) 

F'(~, ~) = (l-v) Pr and 8(~, ~) = 0 (iSb) 

The primes denote partial differentiation with respect to ~ and ~ is the 

relative velocity parameter defined as 

u 
s 

- (16 
Uco + U s 

Noted that for the case of a steady flow over a stationary cylinder, u = 0 
s 

therefore • = 0. On the other hand, for the case of a moving cylinder in a 
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quiescent ambient fluid, um = 0, and thus • = i. 

With the definition of local Nusselt number 

hx 
Nu - 3~ 

a dimensionless local heat transfer group can be formed as 

HTG = Nu/Re I/(n+l)= -8'(9,0) 
x 

where 

# U 2 - n  x n 
Re = 

x K 

i s  t h e  g e n e r a l i z e d  R e y n o l d s  n u m b e r  b a s e d  on  x .  

(17) 

(18) 

(19) 

Numerical Solution 

The system of transformed equations with the associated boundary 

conditions were solved by an implicit finite difference technique. This 

technique is a modified version of that described in [19]. The convergence 

k+l k,, k+l, k k+l 
criterion used was l(~ij - ~ijJ/~ij Ima x < 10 -4 where ~ and ~ are the 

values of the kth and (k+l)th iteration of F, F', F'', 8 or 8'. 

The two-dimensional mesh is nonuniform in order to accommodate both the 

steep velocity and temperature gradients at the wall, particularly in the 

vicinity of the leading edge of the cylinder. The largest nonuniform mesh 

consisted of 83 nodal points in the q-direction and 289 nodal points in the 

~-direction. The ratio of lengths of any two adjacent intervals is a constant; 

this is, Oj = ~j-i + hj, where hj = K hj_ I. There are two parameters: hl, the 

length of the first &O step, and K, the ratio of two successive steps. In 

present study, it takes h I = 0.001 and K = 1.02. The location of the boundary 

edge, Oe' is strongly dependent on the Prandtl number and the power-law 

viscosity index. For example, Oe (Pr = i0, n = 1.5) = 6 but ~e (Pr = i00, n = 

0.5) = 15 .  



106 T.-Y. Wang Vol. 23, No. 1 

Numerical error testing has been accomplished by straight-forward repeat 

calculations with finer meshes to check grid-independence of the results and 

by local mesh refinement with smooth transitions to coarser regions. 

Results and Discussion 

In order to verify the accuracy of the present computer simulation model, 

the results for special case studies are compared with data sets published in 

the open literature. Table 1 lists the data comparison for the case of 

Newtonian fluids flow over stationary cylinders. Table 2 contains local heat 

transfer group comparison for the case of a cylinder that is moving with a 

uniform velocity in a quiescent Newtonian fluid. In table 3, the values of 

Nu/Re i/(n+l) are compared with the data given by Huang and Chen [20] for 
x 

forced convection of different Newtonian fluids over a flat plate. 

The dimensionless function, F'(~,~), is related to the streamwise 

velocity u(x,y) via the transformation given in the previous section as 

follows. 

u = (s/L) Re 2/(n+1) F'(~,~) (20) 

The step-by-step variations of the profiles of the dimensionless velocity 

F'(~,O) from the limiting case of convective heat transfer from a static 

cylinder in a non-Newtonian fluid free stream (~ = 0) to the other limiting 

case of a moving cylinder in a quiescent non-Newtonian fluid (~ = i) is shown 

in Figure 2(a) and 2(b) for pseudoplastics and dilatant fluids, respectively. 

For the special case of u s = u (~ = 0.5), the velocity profiles are uniform 

as can be seen from Figs. 2(a) and 2(b). In addition, it is noted that the 

momentum boundary-layer thickness decreases measurably with increasing 

power-law viscosity index n. Representative dimensionless temperature profiles 

within the thermal boundary layer at ~ = 1 are demonstrated in Figs. 3(a) and 
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Table i. 

Data comparison for convective heat transfer along a stationary cylinder in 
flowing Newtonian fluids; Pr = 0.7, n = i, • = 0 

C* 

d2f 

d~,-~Z-n,=0 

Chen& Mucoglu Present Chen& Mucoglu Present 
(1975) method (1975) method 

1.3281 
1.9178 
2.3999 
2.8352 
3.2458 

1.3282 
1.9172 
2.3981 
2.8270 
3.2235 

0.5854 
0.8669 
1.0968 
1.3021 
1.4921 

0.5853 
0.8674 
1.1003 
1.3147 
1.5211 

4 1/2 ~* = -7-(ux/u~) ; f = 

o 

2 2 
r - r ° um 1/2 

V " O* : 4 r O ~ ( ~ )  
ro(PU x) I/2' 

Table 2. 

Data comparison of Nu/Re I/(n+l) for a 
x 

Newtonian fluid; Pr = 10 n = i, • = 1 

moving cylinder in a quiescent 

C** 

0.0001 
0.0005 
O. 001 
0.005 
0.01 
0.04 
0.05 
0.06 
0.07 
0.1 
0.5 
1.0 
1.4 

Karnis & Pechoc 
(1978) 

1.68432 
1.68929 
1.69301 
1.70870 
1.72042 
1.76025 
1.76960 
1.77805 
1.78581 
1.80617 
1.95768 
2.06826 
2.13.615 

Pop et al. 
(1990) 

1.68022 
1.68026 
1.68031 
1.68071 
1.68121 
1.68419 
1.68518 
1.68617 
1.68716 
1.69013 
1.72926 
1.77712 
1.81462 

Present 
method 

1.68394 
1.68882 
1.69250 
1.70783 
1.71932 
1.75783 
1.75783 
1.77490 
1.78231 
1.80167 
1.94300 
2.04348 
2.10436 

x 
C** = 2 

u r 
s o 
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Table 3. 

Data comparison of Nu/Re ll(l~,,n+., for non-Newtonian fluids flow over a flat x 

p l a t e  Pr  = 10,  e = O, ~ = 0 

0.5 

1.5 

Huang &Chen Present 
(1984) method 

0.01 0.4170 0.41463 
0.i 0.5426 0.53839 
1.0 0.7034 0.69899 

0.01 1.0544 1.04576 
0.I 0.8967 0.89657 
1.0 0.7683 0.76849 

F., 

1 2 0 . 0  

8 0 . 0  

40.0 

O.O 
O.O 

n = 0 . 5  
P r  = 1 O0 

= I T = O. 0 

T 0 , 3  

T 0.5 

T 0 . 8  

1.0 

I I I I I I J I I I I "1 I I 7 ¥ I 

6 .0  12 .0  1 8 . 0  

7~ FIG. 2 

1 2 0 . 0  

80.0 

F' 

4 0 . 0  

0 .0  
0 ,0  

n = 1 .5  
Pr  = 1 0 0  

= 1 
= 0.5 T = 0.0 

7 = 0" 5 

i i ~ ' ' I  l i l I l , l I l l l 

2 .0  4 . 0  6 .0  8 .0  

77 

2 ( a )  

Variations of F'(~,O) with respect 
to relative velocity parameter ~ at 

= i for pseudoplastics 

2(b) 

Variations of F'(~,~) with respect 
to relative velocity parameter 7 at 

= i for dilatant fluids 
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3(b) for two different types of fluids. It is evident that the dimensionless 

temperature gradient at the surface decreases monotonously with decreasing 

values of ~. Another general observation is that the profiles of 8((,~) for 

pseudoplastics and dilatant fluids are very similar. 

The variations of local heat transfer group (HTG) with the representative 

velocity parameter for specified transverse curvature (e = l) are depicted in 

Figs. 4(a) and 4(b) for power-law indices n = 0.5 and n = 1.5, respectively. 

It is seen that HTG increases as • increases for both cases of pseudoplastics 

and dilatant fluids. The significantly behavior of local heat transfer group 

near ~ = 0 for the two non-Newtonian fluids can be explained as given in Wang 

and Kleinstreuer [4]. Therefore, for ~ ~ 0, the coefficient of the highest 

derivative in the energy equation (12) is dominant for pseudoplastics and very 

small for dilatant fluids. Specially, 

~'n-l~/'n + I ~ ~  i ~ ! J [ ~ ~ for n < 1 
(21) 

1~0forn>l 

which implies that different values for the local heat transfer group are 

generated. 

The effects of power-law viscosity index and the generalized Prandtl 

number on the local heat transfer group are shown in Figs. 5(a) and 5(b) for 

= 0 and 7 = I, respectively. As expected, the local heat transfer group 

attains larger values with higher generalized Prandtl numbers. The case of a 

moving cylinder in a quiescent fluid (~ = I) generates larger HTG values than 

the case of a stationary cylinder in a free stream (~ = 0) for all types of 

fluids. Moreover, for the case of • = 0, the magnitude of HTG near the leading 

edge is higher for dilatant fluids and low for pseudoplastics. As ~ increases, 

the difference reduces quickly and at certain ~-values, for a given 

generalized Prandtl number, the HTG numbers for pseudoplastics exceed those of 
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FIG. 4 
4(a)  

The influence of relative velocity 
parameter HTG distribution for 
pseudoplastics 

9 .5  n = 1.5 
Pr  = 100  

= 1 

6.5  

HTG 

3.5  
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4(b) 

The influence of relative velocity 
parameter HTG distribution for 
dilatant fluids 
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dilatant fluids. On the other hand, for the case of • : i, the values of HTG 

for both non-Newtonian fluids seem to approach asymptotically the constant HTG 

values for the equivalent Newtonian fluid. 

To illustrate how the transverse curvature and relative velocity affect 

the heat transfer group, representative HTG distributions are given in Fig. 6. 

It is found that an increases in either transverse parameter or relative 

velocity parameter leads to an increases in HTG. Furthermore, the influence of 

transverse curvature parameter on HTG is more pronounced at high relative 

velocity parameter. 

Conclusions 

A generalized analysis of laminar convective heat transfer between a 

slender cylinder and non-Newtonian fluids has been presented. By introducing a 

4 . 0  

5 . 0  

HTG 2.o 

P r  = 10  
P r  = 1 O0 

= 1 

9 , = 0  

n = 0 . 5 , 1 . 0 , 1 . 5  I "~ 

0 . 0  I , , , I , , i I , , , I , , , I , , , 

0.0 0 .2  0 .4  0.6 0 . 8  1.0 

FIG. 5 

5(a)  

The effects of power-law viscosity 
index and generalized Prandtl number 
on HTG distribution for fluids 
flowing past a static cylinder 

1 0 . 0  

7 . 5  

HTG 5.o 

2.5 

0.0 

P r  = 10  
- -  - -  P r  = 1 0 0  

~k ~ = 1 
\ 7 = 1  

~ n = 0 . 5 , 1 . 0 , 1 . 5  

/ 
/ 

~ n = / 0 . 5 , 1 . 0 , 1 . 5  

J i i I i i i I i i i I i i i I i i i 

) .0 0 . 2  0 . 4  0 . 6  0 . 8  1 .0  

5(b) 

The effects of power-law viscosity 
index and generalized Prandtl number 
on HTG distribution for a cylinder 
moving through a quiescent fluid 
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proper relative velocity parameter together with appropriate coordinate 

transformations, it is able to obtain a set of universal formulation which is 

valid over the entire forced convection heat transfer of various values of 

relative velocity parameters from a non-Newtonian fluid flow over a static 

slender cylinder to a moving cylinder in a quiescent non-Newtonian fluid. Of 

particular interest are the effects of the relative velocity parameter, the 

power-law viscosity index, the transverse curvature parameter and the 

generalized Prandtl number on the local heat transfer rates as well as on the 

velocity and temperature profiles. 

The distribution of local heat transfer group for non-Newtonian fluids 

near the leading edge is distinctly different from those of Newtonian fluids. 

While the momentum boundary-layer thickness increases measurably with 

decreasing power-law viscosity index n, the thermal boundary-layer thickness 

~ ~ -- 0 
6.4 .----~ = 3 

n : 0.5 7 ~ l . U  

HTG 4.8 

3.2 

/ 

7 0.0 
1.6 / T 

0 ,0  I I I I I I ~ I J I [ I I J , I [ ~ 

0.0 0.2 0.4 0.6 0.8 

FIG. 6 

i 

1.0 

The effects of transverse curvature 
parameter and relative velocity 
parameter on HTG distribution for 
pseudoplastics 
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is less affected by the changes in n. An increase in e, • or Pr increases the 

HTG values for all types of fluids. Moreover, the influence of transverse 

curvature parameter on HTG is more profound for high relative velocity 

parameters. 
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