Advances in Water Resourc¥sl. 22, No. 1, pp. 33-57, 1998
© 1998 Elsevier Science Ltd

Printed in Great Britain. All rights reserved

0309-1708/98/% - see front matter

S SEVIER PI:S0309-1708(97)0®27-4

Transport in chemically and mechanically
heterogeneous porous media IV: large-scale mass
equilibrium for solute transport with adsorption

Michel Quintard ® & Stephen Whitaker®

%L.E.P.T.—ENSAM (UA CNRS), Esplanade des Arts diekte 33405 Talence Cedex, France
bDepartment of Chemical Engineering and Material Science, University of California at Davis, Davis, CA 95616, USA

(Received 4 August 1995; accepted 25 July 1997)

In this article we consider the transport of an adsorbing solute in a two-region model
of a chemically and mechanically heterogeneous porous medium when the condition
of large-scale mechanical equilibriurs valid. Under these circumstancespae-
equationmodel can be used to predict the large-scale averaged velocity, tud-a
equationmodel may be required to predict the regional velocities that are needed to
accurately describe the solute transport process. If the condition of large-scale mass
equilibrium is valid, the solute transport process can be represented in terms of a one-
equation model and the analysis is greatly simplified. The constraints associated with
the condition of large-scale mass equilibrium are developed, and when these
constraints are satisfied the mass transport process can be described in terms of the
large-scale average velocity, an average adsorption isotherm, and a single large-scale
dispersion tensor. When the condition of large-scale mass equilibrium is not valid, two
equations are required to describe the mass transfer process, and these two equations
contain two adsorption isotherms, two dispersion tensors, and an exchange coefficient.
The extension of the analysis to multi-region models is straight forward but tedious.
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Roman letters bs. vector field that map¥(c,)* onto Cg, in

. the w-region, m

. interfacial area per unit volume, th b, vector field that map¥{(c)} onto ¢,

A, area of they—« interface contained in the b, vector field that mape{{c)} onto ¢,
averaging volume}/,, m? c, point concentration in thg-phase, moles/

Ag, = A, area of theg8—o interface contained m®
in the averaging volumel/,, m? Cys adsorbed surface concentration at the

A = A,,, area of the boundary between the interface, moles/rh
and w-regions contained with the large- {c) intrinsic average concentration in the
scale averaging volume/,, m? phase, moles/m

D gy vector field that map¥(c,)” ontog,, in the Co = (c,)", pointconcentration in the-region,
n-region, m moles/n?

bg, vector field that map¥(c,)” ontocg, inthe  {(C,)° intrinsic average concentration in the
n-region, m region, moles/

b vector field that map¥(c.)* onto ¢, in Cs = ¢, — (c,)’, spatial deviation concentra-

the w-region, m
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tion in the o-region, moles/m
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po3int concentration in thg-phase, moles/
m

intrinsic average concentration in tife
phase, moles/t

=Cp — (cﬁ)‘*, spatial deviation concen-
tration in theB-phase, moles/m

= eﬁn(cﬂ)g + €,,{(C,)y, Darcy-scale spatial
average concentration for thfe-o system
in the n-region, moles/m

= eﬁw(cﬁ)g + €,,{C,)5, Darcy-scale spatial
average concentration for thfe-o system
in the w-region, moles/m

n-region superficial average concentration,
moles/n?

= ¢,{{c,)"}, n-region intrinsic average
concentration, moles/fn

= ¢, {{c,)"}" + ¢,{{c,)}*, large-scale
intrinsic average concentration, moles/m
={c,) —{{c,)"}", spatial deviation con-
centration for they-region, moles/m

= {{c,)}" — {{c)}, large-scale spatial
deviation for thep-region, moles/m
w-region superficial average concentration,
moles/n?

= ¢,{(c.)*}, w-region intrinsic average
concentration, moles/f

={c,)” —{{c,)’}“, spatial deviation con-
centration for theo-region, moles/m

= {{c)*}* — {(c)}, large-scale spatial
deviation for thew-region, moles/m
molecular diffusivity in they-phase, mis
molecular diffusivity in theg-phase, Vs
effective diffusivity for they-phase, /s
= ¢,DY, an alternate effective diffusivity
for the y-phase, M/s

= (e,Dg),. diffusion tensor for thes-
region in then-region, nf/s

= (e,DY¢).,, diffusion tensor for ther-
region in thew-region, nf/s

dispersion tensor for th@—o system in the
n-region, nt/s

dispersion tensor for thé—o system in the
w-region, nt/s

dominant dispersion tensor for theregion
transport equation, f's

dominant dispersion tensor for the
region transport equation, s
large-scale, one-equation model dispersion
tensor, n/s

gravitational acceleration, nfls

unit tensor

= a7lac, = a71&(c,)", adsorption equili-
brium coefficient, m

= a,,K¢fe,, dimensionless adsorption
equilibrium coefficient for ther-region

= [(e,a,,)./e,]0F18(c,)", dimensionless
equilibrium coefficient for the;-region

Ko

I
Le

{{vg,}"
{{veh}

Vg

{{ve)}®

{(Vo}
\7614’

{{v 5)}

= [(e,a,) Jeu]0F1(c,)”, dimensionless
equilibrium coefficient for thes-region

i =1, 2, 3, lattice vectors, m
characteristic length for region averaged
concentrations, m

aquifer or reservoir length scale, m
length scale for thg—w systemZy <2, m
unit normal vector directed from thg-
phase toward the-phase

= —N,g unit normal vector directed from
the 8-phase toward the-region

= —n,,, unit normal vector directed from
the »p-region toward theys-region

position vector, m

radius of the small-scale averaging
volume,7,, m

radius of the Darcy-scale averaging
volume, 7, m

radius of the large-scale averaging volume,
Ve, M

time, s

characteristic process time, s

velocity in theB-phase, m/s

intrinsic average velocity in thg-phase,
m/s

= e4(vp)” superficial average velocity in
the 3-phase, m/s

= vy — (vy)°, spatial deviation velocity,
m/s

intrinsic average velocity in the-region,
m/s

= ¢,{{vg),} ", superficial average velocity
in the n-region, m/s

= (vg), — {{vg),}", n-region spatial
deviation velocity, m/s

intrinsic average velocity in the-region,
m/s

= ¢, {{vg).} “, superficial average velocity
in the w-region, m/s

= (Vg — {{Vp)a}“, w-region spatial
deviation velocity, m/s

= ¢, {{Vgh} "+ 0. {{Vs).}*, large-scale,
superficial average velocity, m/s

volume of they-phase contained in the
averaging volumey/,, m*

averaging volume for thg—« system, ni
volume of theB-phase contained in the
averaging volumey, m*

averaging volume for th—o system, m
volume of then-region contained in the
averaging volumey/.., m*

volume of thew-region contained in the
averaging volumey.,, m*

large-scale averaging volume for thew
system, ni
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Greek letters

*

o mass exchange coefficient for thew
system, s*

€ =1 — ¢, volume fraction of thes-phase

€, porosity of theo-region

€q = 1 — €4, volume fraction of ther-region

€ = €py + (€,€,),, total porosity for the3—o

system in theg-region

1

€6 = €eg, + (€,€,)., total porosity for the8—o
system in thew-region === 1 region
{e} = ¢,e,+ 0,€,, large-scale average por- =5 (e ge=co
osity
{e1+{K}) =¢0+ K)e,+e(l+ Ko, large-
scale average capacitance factor
©s shear coefficient of viscosity for thé SRy—ame—=
phase, Ns/rh ==
g mass density of thg-phase, kg/m =
@, =1 — ¢, volume fraction of the;-region

2 =1 — ¢,, volume fraction of thes-region Fig. 1. Two-region model of a heterogeneous porous medium.

at the aquifer level. This means that spatial smoothing takes
place at thesmall scaleassociated with the averaging
volume?/,, at theDarcy scaleassociated with the averaging
volume 7, and at thdarge scaleassociated with the aver-
aging volume?/... The point at which one stops the aver-
1 INTRODUCTION aging process and begins the direct numerical solution of the
spatially smoothed equations depends on the quality of the
A two-region model of a heterogeneous porous medium is information required and on the computational resources
shown in Fig. 1, and we would like to be able to accurately that are available. Averaging at the small scale would
predict the solute transport process in such a system whemappear to be universally accepted; however a decision
the condition of large-scalmechanicakquilibrium is valid. must be made concerning the use of either a one-equation
From a practical point of view, large-scale mechanical equi- model or a two-equation mod&i> Averaging at the Darcy
librium occurs frequently and it permits the use of a one- scale would also appear to be universally accepted, and at
equation model to predict the large-scale average velocity this level one is again confronted with the choice between
field. If a one-equation model suffices for the description of one- and two-equation models.
the mass transfer process, the large-scale form of Darcy’s The original studies of two-equation models at the Darcy
law can be used directly to determine the velocity field. If a scale dealt with the problem of passive dispersion in single-
two-equation model is required to accurately describe the phase systems. In order to explain a ‘tailing effect’ in pulse-
mass transport process, we will need to make use of theinjection dispersion experiments, early worker$ sepa-
regional form of Darcy’s law that was presented in PartIll. rated the flow field into mobile and immobile regions and
The general process of diffusion, nonlinear adsorption, postulated separate equations for each region. These models
and convective transport is assumed to take place in theprovided improved agreement between theory and experi-
hierarchical systefnillustrated in Fig. 2. Diffusion and  ment at the expense of an additional adjustable parameter.
adsorption occur in the micropores and macropores con- This approach has been extended to mass transfer in hetero-
tained within theo-region, while diffusion, convection, geneous systems by Passiolitaan Genuchten and Wier-
and dispersion occur in thg-phase. We think of this  enga'?Raoet al.,**Gvirtzmanet al.,'* Corraaet al.*>and a
latter process as occurring at the Darcy scale withindhe comprehensive review has been prepared by Brusseau and
andy-regions. Thes andy-regions belong to other stratified Rao®. Recently this model has been used to study the effect
regions, as illustrated in Fig. 2, and we would like to spa- of solute size on transport in heterogeneous porous rhedia
tially smooth the transport processes that take place in those In many of these prior studies, the length scales are not
stratified regions. The length scalg, indicated in Fig. 2, clearly identified. For example, the work of Coats and
should be thought of as the scale of an aquifer or the scale ofSmith'® appears to be associated with the Darcy scale in
a petroleum reservoir. The heterogeneities in that regionan attempt to explain dispersion phenomena in packed
have a length scale which is bounded by, < £, and beds, while the recent study of Coaret al'® clearly
we have in mind that the transport equations that have beendeals with mass transfer in a dual porosity model of a
smoothed within the volume’., will be solved numerically porous medium. This means that the governing equations
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Fig. 2. Averaging volumes in a hierarchical porous medium.

are assumed to be valid at the large scale, i.e., they represengoverning equation and interfacial boundary condition.
equations associated with the averaging volumg,In this c

work the length scales are clearly identified in Fig. 2; how- —1=V(»,Vc,), in they—phase 1)
ever, one must be careful to remember that real systems

are more complex than the model that we have chosen to

Jc. .
analyze. B.C1 -n,D,Vc, = FVS, at they—« interface  (2)
1.1 Small-scale averaging Here we have used], to represent thbulk concentratiorof

the diffusing, adsorbing species, ang, to represent the
Theo-region illustrated in Fig. 3 consists of macropores that adsorbedsurface concentratian Since the «-region is
are identified as the-phase, and a microporous region taken to be impermeable, we are not confronted with the
identified as thec-region. In many systems, ranging from problem of choosing between a one-equation model and a
packed bed catalytic reactdi® soil aggregatésthe trans-  two-equation model. When transport takes place insthe
port process in the microporous region plays a crucial role; region, one can follow the analysis of Whitaker order to
however, in this study we will assume that theegion is derive the appropriate spatially smoothed transport equa-
impermeableso that transport in the-region takes place  tion and the associated closure problem.
only in they-phase. It is assumed that the macropores inthe Our treatment of the adsorption process is based on a
o-region illustrated in Fig. 3 are so small that convective functional relation of the general form given by
transport is negligible, thus the problem of diffusion and
nonlinear adsorptioncan be described by the following Cs=7(Cy) (3)
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Fig. 3. Averaging volume for they-«x system.

and this allows us to express the boundary condition repre-
sented by eqn (2) as
ac
B.C1 —n, D Ve = Keqa—t”, at they—« interface
4

egn (3) and eqn (4) represent a condition that we identify as
local adsorption equilibriumSince mass is being transferred

37

mass transport in porous media. These two concentrations
are related by

(c,)=e/c) (8)

in which the volume fraction of the/-phase is defined
explicitly by

e, =V, /V,. 9)

Plumb and Whitakéf*° derived a small-scale, volume
averaged transport equation ftinear adsorptionthat is
given by

&c,) N N
6,(1+a,Kede,) S V-(e,Das-V{C,)).
Here we have used,, to represent the interfacial area per
unit volume of the porous medium aridf; to represent
the effective diffusivity tensor for the-phase diffusion
process. This definition of the effective diffusivity tensor
is consistent with the work of Kiret al.;>° however, it is not
a universal definition and one often finds egn (10) written in
the form

(10)

e, )
&, (1+a,Kede,) (81()
It is not clear that one form has any special advantage over
the other; however, it is absolutely clear that one must be
very careful when defining dependent variables and coeffi-
cients in multiphase transport equations since one can
easily make errors on the order of

In order that the transport equation describing tios-

linear adsorption proceskave the same form as the trans-

= V-(Desr-V(C,)). (11)

between the bulk and the surface, the system cannot be in &1t equation for the linear process, we require that eqn (3)
state of equilibrium; however, the departure from equili- 5 eqgn (5) can be expressed as

brium may besmall enouglso that egn (3) and eqn (4) repre-
sent a satisfactory approximation. What is meantsiall
enoughis explained in Appendix A. In thinking about egn
(4), one must remember that the equilibrium coefficient need
not be a constant, and thi&t, is given explicitly by

9

Keq= .
Y

)
The linear adsorption problem has been studied by Plumb
and Whitaker®!® and we can follow their analysis to
obtain the appropriate transport equation for diffusion
with adsorption. That development begins with the defini-
tion of a superficial average concentration that takes the
form

1
(C‘Y> = ’V_U va C,YdV

in which/, is the averaging volume shown in Fig. 3 avig

is the volume of the/-phase contained within the averaging
volume. One usually assumes that timrinsic average
concentration defined by

1
(c)”:—J c.dv
Y V'y V’Y’Y

is the preferred concentration for describing the process of

(6)

(@)

oF
&c, )

and the length-scale constraint associated with this simpli-
fication is developed in Appendix B. In addition, we require
that variations oK, can be neglected within the averaging
volume, and the length-scale constraint associated with this
simplification is given in Appendix C.

The closure problem that is used to predi}; in egn
(10) has been compared with experiments by Rstaal.,**
Kim et al.,?°, Quintard®® and Ochoa-Tapi@t al?®. Good
agreement between theory and experiment has been
obtained for isotropic systems; however, anisotropic sys-
tems require further study and some interesting results are
given by Quintaré® and Ochoa-Tapiat al.>®> When the
appropriate length and time-scale constraints are satisfied,
egn (10) is a valid representation of the process of diffusion
and adsorption in thg—«x system. Given eqgn (10), we are
ready to move on to the Darcy-scale averaging process
associated with th8—o¢ system and the averaging volume
7 shown in Fig. 2.

Cys =7((c7)7), Keq= (12)

1.2 Small-scale concentrations

At this point we wish to develop the spatially smoothed
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Fig. 4. Averaging volume for thg-o system.

equations associated with the averaging voldrstown in
Fig. 4. The system under consideration consists of@he
phase and the-region. In many cases we will be working
with processes in which theregion containdoth macro-
poresand micropores, and we would like to make use of a
nomenclature that can include both the case in whictxthe
region isimpermeabland the case in which it represents an
active microporous regianTo explore this problem, we
note that thespatial average concentratioin the o-region
represents the total moles per unit volume in that region.
The spatial average concentration is given by
L[ o ;
<C>:‘V_,, ).© \Y (13)
in which c represents the point concentration in both ke
phase and the-region. This definition of the spatial aver-
age concentration is comparable to the definition of the
spatial average temperat@feused in the study of heat
transfer in multiphase systefisWe can evaluate the sepa-
rate parts of the integral in egn (13) to arrive at

(©=¢e/c,) +edc)* (14)

and this form is analogous to the representation of the
spatial averaggemperaturein a y—« system. We could
be more precise and express the above result as

(C)s = €,6{C, ) + €xo{Ce- (15)

While this type of nomenclature appears to be overly com-
plex, there is a logic associated with the choice and the

M. Quintard, S. Whitaker

For example, if the concentration in thephase is the con-
stant given byc,, we see immediately that is an intrinsic
average since eqn (7) gives

1 1
ey =o |, cav=> | cav=c,
Y

v Y Y

(16)

It is not always possible to identify intrinsic average con-
centrations in a unique manner when dealing with multi-
phase transport problems. For example, we can use eqn
(15), along with the condition

C,=C,=Cq a7)
to show that
(C)a = 670(07)3 + 6K0<CK>§ = e'yaCO + 6KUCO = CO' (18)

Thus we find tha{c), is an intrinsic average concentration
associated withthe o-region. On the other hand, when the
k-region is impermeable, the definition given by egn (15)
immediately reduces to

Q) =€,6{C, )3 (19)

and in this caséc), plays the role of a superficial average
concentratiorassociated withthe y-phase. The fact that a
well-defined quantity, such as the spatial average concen-
tration, is an intrinsic averageith respect to a regioand a
superficial average withespect to a phasmakes it rather
difficult to identify a unique nomenclature that would carry
one through the averaging process without the possibility of
error. It would appear that one must either carry all of the
nomenclature through every level of averaging or carefully
redefine the variables at each level of averaging. In this
work we follow the latter approach.

Returning again to Fig. 4, we note that the boundary value
problem under consideration is given by

&L+ 2, Kede,) % = V-(e, Dl Ve, 1),

in the o — region (20a)
B.C.1{c,)" =c¢;, at thef—o interface (20b)
B.C.2 —n,g-(e,Ds-V(C,)") = — g (DsVCs),
at the3—o interface (20c)
%6 | V.(vses) = V-(D5Vcy), in the § — phase  (20d)

ot

The boundary conditions used here are based on the type of
analysis given by Ochoa-Tapia and Whitak&F*®and they
require the separation of length scales that normally occur

placement of the indices since subscripts are always usedbetween ther-region and the3-phase.

to identify location while superscripts are used only to
identify intrinsic averages

In order to determine when an average quantity is an
intrinsic average one considers the special case in which
the point quantity is a constant. If the average quantity is

equal to that constant, we say that it is an intrinsic average.

If we average eqns 20 in their current form we will
encounter an extremely cumbersome notation in terms of
the o-region transport equation. To avoid this problem, we
define the following quantities

K=a,Kefe,, C,=(c,)", €,Diz=D, (21)
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so that the problem under consideration takes the moreln deriving eqn (23) we have ignored variations of the
compact form given by equilibrium coefficient within the averaging volume, and
ac the length-scale constraint that must be satisfied in this case
e, (1+ K)a—t‘7=V'(Do'VCo), intheo —region  (22a) s given in Appendix C. In addition, we have assumed that
the coefficientk can be represented as a functior{@y’

B.C.1 ¢, =c;, at thef—o interface (22b) and this simplification is discussed in Appendix B.
The intrinsic average concentration in theregion is
B.C.2 —ny5:(D,Ve,) = —Nnys(DsVeg), defined by
: , 1
at the (—o interface (22c) (c,) = v ng(cv)ydv (25)

a%Jr V-(vgcs) = V(DVcp), in the 8 — phase  (22d) and thevolume fractionof the o-region is given explicitly
as
Here one must remember thej represents an intrinsic _
. . €, =V, /7. (26)

average concentration with respect to thehase, and
that the volume fraction of thg-phase has been incorpor- It is important to keep these definitions in mind since one
ated into the definition of the effective diffusivitf,. This can easily make an error on the orderegfor ¢, * if one
represents a situation that is subject to misinterpretation does not carefully distinguish betweentrinsic averages
that can lead to errors on the ordereofthus the definitions ~ andsuperficialaverages.
given by egn (21) must not be overlooked here or elsewhere  The volume averaged form of tifephase transport equation
in the analysis. One should think of eqns 22 as describing has the same form as eqn (23) except for the presence of the
the transport process in both theandy-regions. convective transport and the dispersive transport.

1 -
+ Vo (eplvp)ep?) = V| D Veep)® + ?InﬁcchA

s

accumulation convection Ags

diffusion in the B-phase

(27)
VG ! /Y
- V<VBCB> + ? DBG' B CBdA
——
dispersion Age
;xchange with the o- phas;
1.3 Darcy-scale averaging Once again we have decomposed the concentration accord-
ing to
The volume average form of eqn (22) is given b
g an (22)is g y Co=(cof +¢5 (28)
9cg)° p 1 -
EGEY(1+K)_§;— = V. DG 86V<C0'> + —J? nGBCG dA
accumulation Asp
diffusion in the o-region
(23)

N % J‘nGB-DGVCGdA

Asp

exchange with the B-phase

in which the spatial deviation concentratiday, is defined and in eqn (23) and eqn (27) we see the need for a closure
by the decompositicit problem in order to develop useful representations for
. the spatial deviation concentratiorig, and¢s. In deriving
¢, =(C,)° + G- (24) eqn (27) from eqgn (22), we have treated the flow as
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incompressible, and we have made use of the continuity according to
equation in the following forms

(C,)" = €5,(Cs) + €,,(C,) in the n — region (33a)
V=0 (29a) g Bn\“B/m n\~oln

(G (¢} g ;
Viesvf) =0 (290) (Co)” = €5,{C), + €50,(C, ), IN the w — region (33b)
The second of these requires that theegion be treated as
impermeable in terms of convective transport, and this is
consistent with the diffusion-adsorption equation given by egn
(22). For completeness, we note that the intrinsic average
concentration associated with tBephase is given by

Our choice of nomenclature here is dictated by the fact that
the o-region is necessarily active in a process that involves
adsorption, thus the spatial average concentration defined by
egn (31) plays the role of an intrinsic average concentration.

1.5 Local mass equilibrium

1
f_ —
(ca = Vg Jvﬁcﬂdv (30) The mathematical consequence of local mass equilibrium in
while the volume fractionof the 3-phase is defined in a thes-region is that
manner analogous to eqn (26) and this requirescthat1-c,. ()= (cﬁ)f, ={c,)" (34)

At this point in the analysis of thg—o¢ system, we
encounter a recurring problem that arises whenever oneand when this condition is valid we can add eqgn (23) and
attacks a problem of multiphase or multi-region transport €dn (27) to obtain the Darcy-scale, one-equation model for
phenomena. The problem is this: are the two concentrations Solute transport with absorption that is given by
(¢’ and(cﬁ)ﬁ, close enouglso that they can be treated as ~ 7-région
equal, or are these two concentratiaudficiently different (c. )"
so that separate transport equations must be retained in order €,(1+%,) a—;’ + V- ({vg),(c,)")
to develop an acceptable model? For many problems of
practical importance, the length scalgsand/,, shown in —V. {Dﬁ<eﬂnv<cn>n + 1 J nBaCB,,dA>
Fig. 4 are very small compared to the characteristic process V) A

length scale. Under these circumstances, the concentration 1

in the o-region is essentially equal to the concentration in + Dm,'<6m,V<Cn>" t JAQ ”uﬂcm,dAﬂ

the B-phase and the principle of local mass equilibrium is ?

valid. Plumb and Whitakéf"*°have explored this problem, + V{Vg,Cg,)- (35

and we will accept their analysis of local mass equilibrium - T
i ) ._._Here we note that the superficial average velocity is given b
and the length and time-scale constraints that are associated P g yisg y

with that condition. (Vg), = €5, (V) (36)

and that the equilibrium coefficient,, and thetotal por-

1.4 Darcy-scale concentrations osity, ¢,, are defined explicitly by

In a manner similar to the definition of the small-scale (653)y OF
: ; . Ky = n € = €gy 1 (€56,);- @37

spatial average concentration given by eqgn (13), one e, c,)

can define a Darcy-scalspatial average concentration

according to

n

One should note that the effective diffusivity for the
region has been explicitly associated with theegion,
_ E while the 3-phase diffusivity has not. This has been done
()= cav. (31) X 1 i L
vV Jv with the idea thatD; will not undergo significant changes
This, in turn, can be expressed in terms of the intrinsic from thex-region to thew-region, whileD, may undergo
averages in th@-phase and the-region according to very significant changes and thus needs to be explicitly
identified in terms of the region. The-region equation is

_ B o
(€)= eglcg)” +eolc,)”. (32) analogous to eqgn (35) and we will list the closed form in
One can see thdt) is anintrinsic average concentration  subsequent paragraphs.
with respect to thg8—s system; however, if the-region is In this development of thg-region Darcy-scale transport

impermeable(c) becomes auperficial average concentra- equation wehave notfollowed the nomenclature used by
tion with respect to thg-phase. There are many practical Plumb and Whitakéf*°* who did notexpress their results
problems in which ther-region is impermeable, and there in terms of the total porositye,, but instead used the
are many problems in which theregion contains both  various volume fractions contained in the definition of the
macropores and micropores, thus it is difficult to generate total porosity. The nomenclature that is used in this devel-
a unique nomenclature for the Darcy-scale concentration.opment has been chosen specifically to be consistent
At this point we will follow our previous change of nomen-  with subsequent experimental studies. We will refer to the
clature associated with the small-scale averaging processquantity e,(1+ %) in eqn (35) as theapacitance factor
and define two new concentrations for thend w-regions since it plays the same role in large-scale mass equilibrium
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Periodicity:
35 RS By, (r + i) = Dby, (r), bg,(r +(;)=bg,(r), i=1, 2,3
SRS 2 0 (39%)
6 \* 1 S fol
ORISR ot Average:
3
3 XIS E {b,,)” =0, (b6n>ﬁ =0. (39f)
Rt Here the two constant vectors are given by
1
Cop = 7 JAUBnaﬁ-DU,, Vb, dA, cg,
1
- a Aﬁa n661)5Vb5ndA (40)
and on the basis of the second boundary condition they are
) related according to
representauve
region Coy = — Cgy- (41)
Fig. 5. Representative region for tho system. When convective transport in thphase is negligible, the

closure problem reduces to that for heat conduction in a
as theheat capacitydoes in local thermal equilibrium. In  two-phase systeffi**or diffusion in a two-phase systetf.
the heat transfer process, significant differences in the heatin those cases, arguments have been developed in favor of
capacity create departures from local thermal equilibrium ¢, = ¢z = 0, and Quintard and Whitakérhave proved
during transient processes. In the same way, significant dif- this result for symmetric unit cells. In the general case, egn
ferences in thecapacitance factowill cause departures  (39) are needed to determine these two constant vectors. A
from large-scale mass equilibrium during transient pro- fittle thought will indicate that egn (39) can be used to
cesses. This is perhaps more clearly seen in terms of thedetermineb,, andby, to within a single arbitrary constant
retardation factoy(1 + %), that modifies the speed of a provided that the constant vectors, andcg,, are known.
pulse of a chemical solute. Different retardation factors in The point to be understood here is that eqn (39) represent a
then andw-regions will lead to a separation of pulses in the standard boundary value problem for transport in two
two regions and this will create departures from large-scale phases with the exception that there is no Dirichlet condi-

mass equilibrium. tion that establishes the level of the functidng andby,.
The closure problem for the spatial deviation concentra- This means that ib,, and bs, are solutions to eqn (39),
tions, ¢, and¢g, is based on the representations then b,, + ¢, and bg, + ¢, in which ¢, is an arbitrary

constant vector, are also solutions. This arbitrary constant
Con = by, VAC,) (38a) ; o .
K noTAn vector can be removed by the imposition of the first of eqn
Csy = bg, VA, )" (38b) (39f), while the constant vectors, andcg, that are related
by egn (41) are determined by the second of egn (39f). The
in whichb,, andby, are referred to as thedosure variables procedure for dealing witrt,, and cg, is discussed by
The nomenclature used in egns 38 follows that of Quintard and Whitakéf-*3and by Quintarcet al.>*
Quintard and Whitakéf rather than that of Plumb and
Whitaker®*° who developed the closure problem for this 1.6 Closed form
particular process of dispersion and adsorption. In some
representative region of thé—o system, such as we have When the representations given by eqns 38 are used in egn
illustrated in Fig. 5, the closure problem fiog, andb, takes (35), we obtain the closed form of our Darcy-scale disper-

the form sion-adsorption equation that takes the form
n-region P .
L _ _ 6,(1+K,) ——~+ V-({vg),{c,)") =V-(D;-¥c,)") (42)
0=D,, : VVb,, — ¢;,"C,,, in the ¢ — region (39a) at
in which the dispersion tensor is defined by
B.C.1b,,=bg,, atAg, (39b) . (D — D,,)
D, = €gyDpl + €5y Doy + 7
B.C.2 —nus-(D,, Vb,,) = —n,s(DsVhg,)
Y A
— 55l —D,,), atAg, (390 ' J%onﬁvbﬂnd’*— €g1{Vsn,, Doy - 43)

One must be extremely careful to note the definition of this
dispersion coefficient since it differs by a factoregf from
(39d) that used by Plumb and WhitakB®and other investigators.

g, + Vg, Vbg, = DsVhg, — €5,'Cs,, in the § — phase
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Fig. 6. Determination of region averaged velocities.

Although the exact closure problem given by egns 39 ac,)” oy * "
has not been solved, and thus predicted valuds3, dfiave €o(1+ %) ot + Vo ({vahalen)) = V(B eo)).
not been compared with experiment, results $omilar (44d)
problemshave been obtained by Eidsathal.® for passive
dispersion, by Nozaét al*° and Quintard and Whitak&t
for transient conduction in two-phase systems, by Odtoa
al.3? for diffusion in two-phase systems, and by Quintard
and Whitake? for active dispersion. For the case in which
D, is isotropic, the closure problem given by eqn (28) is

In addition to the solute transport equations and the
concentration and flux conditions imposed at the
boundary between the-region and thew-region, we
will also list the continuity equations for the two regions
according to

identical to the heat transfer problem that has been explored  V{vg), =0 (45a)
in detail by Quintarcet al.>* for the two-equation model at
the Darcy-scale, and results for the one-equation model will ~ V{vg), =0. (45b)

be presented in Part %°. _
Both of these results are obtained from eqn (29) by repla-

cing eﬁ(vﬂ)ﬁ with the superficial velocity(vg). At the
boundary between the- and w-regions, we take the
normal components dfg), and{vg), to be continuous as
indicated by the condition

2 LARGE-SCALE AVERAGING

We are now ready to turn our attention to the main subject
of this paper which is the problem of solute transport
with adsorption in a mechanically and chemically hetero- B.C.3 nnw'(vﬂ)nznnw'(\/{i)w’ atA,,. (46)
geneous porous medium. We have illustrated an averaging
volume for such a system in Fig. 6, and we describe the trans-This requires that angurface velocityassociated with the
port process in terms of the boundary value problem given by boundary be negligibl&%2’
e,y The averaging volume for large-scale averaging is
pr + V- ({vg),{c,)") = V-(D;-V(c,)") shown in Fig. 6, and we need to define three averages
(44a) associated with the averaging volume identified By.
The first of these is theegional superficial averagdefined

B.C.1{(c,)" =(c.), atA,, (44b) by

€, a1+ 7(,7)

B.C.2 —n,,((vg),(c,)" — D;-¥(c,)") = {{e,)y}" = q/i JV (c,)"av. (47a)

= =Ny ((Vedoleu)” — DL V(C,)*), atA,, (44c) The second is theregional intrinsic averagethat we



Heterogeneous porous media IV 43

express as term in egn (49) as
1 ac,) ac,)’
{e,y)" = v, Jvfcmdv (47b) {e,,(1+7<n) a’; }zen(1+7(,,){ az }
in which V, represents the volume of thgeregion con- a{{c,)"}
tained in the averaging volume. In addition to these = &,(1+%,) ot D

regional averages, we will also need thege-scale spatial
averagedefined by

() = Viw J%@dv _ % Jvﬂ«:n)"dv

The superficial average is related to the intrinsic average by
{(Cn>n} =&y {(Cn)n }n (52)

and this allows us to express the accumulation term as

1 © 1@ Ac,)" a{{c,)"}"
L J v eV =e @l +eufle)) {fn(1+7<n) at }an(lﬂcn)«on e at o e
(470 To analyze the convective and dispersive transport terms in

egn (41), we need the large-scale version of the spatial

in which volume fractions of the)- and w-regions are averaging theorem that takes the form

expressed as
1
0y =V Ve, 0=V V... (48) {Vi,)"} =V{,)"} + T I N N,u{¥,)"av. (54)

The definition given by eqn (47c) has precisely the yse of this theorem allows us to express the convective
characteristics of the earlier definitions given by eqn (13) transport term as

and egn (31), and one needs to keep this definition in mind
during subsequent developments. {V-(vedile))") } = V-{ ((vahlc,)") }

1
o JAW N0 {Vg),(C,) dA (55)

2.1 Large-scale average equations _ _ _ o
while the dispersive transport term is given by

We now express the large-scale superficial average ofthe {V(D;-¥(c,)") } = V-{D:-¥(c,)"}
region transport equation as v v

1 .
ac, ) + —J n,, (D;-V{c,)")dA. (56)
{4 (7o) 7, Ja Moo V)
. Use of eqn (53), eqn (55) and egn (56) in egn (49) leads to
= {V'(Dn 'V<Cn>n) } (49 6{(0 )n}n
In the process of small-scale averagifig® we ignored fn(1+7(n)¢n++V'{«VB)n(Cn)")} =V-{D;V(c,)"}
variations of Ko, over the averaging volumey/,. At 1
the next level of averaging we ignored variations of A JAWnﬂw'«VB)n(Cn)n _ DZ-V(C,,)")dA. (57)

€,(1+K) over the Darcy-scale averaging volunig, and

at this point in the analysis we are going to ignore varia- Even though we have accepted the simplification thaythe
tions ofe, (1 + X,) over the large-scale averaging volume, and w-regions are homogeneous, we cannot ignore varia-
V.. The length-scale constraints associated with these sim-tions in D; since this term will depend on the velocity field,
plifications are presented in Appendix C. In addition to the (vg),- Under some circumstances,), may be a constant;
imposition of the length-scale constraints associated with however, this would be the exception rather than the rule,
the spatial variation of the adsorption isotherm, we have thus we must take into account possib|e Variation@ﬁras
also scaled up the adsorption isotherm so that eqn (37) iswas done in the original study of passive dispersion by

interpreted as Plumb and Whitaket/"*® but which was not done in the
subsequent study of solute transport with adsorptor.
Ky = (e”ay")"[ oF n]! €)= €gy + (€,€,),- (50) The variations inD; can be represented in terms of the
€y 3{(Cn>"} following decomposition

The length-scale constraint associated with this simplifi- D;:{D;}ﬂ+5: (58)
cation is given in Appendix B and there we have indicated ] ) )

the consequences of the failure of the length-scale con-and we can use this result along with the averaging theorem
straints associated with the scale up of the adsorption iso-t0 express the first term on the right hand side of eqn (57)
therm. as

Given the assumption of negligible variationsegf(1 + IR 1w ST " - 0
X,) over the volumel/.,, we can express the accumulation v {D” vie,) }_V [{D"} {WC’V) }+ {D" vie,) H
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B . ) 1 ) any deviation that is the difference between two quantities
=V [{Dn} -(V{(c,,) }+ 7. A, Nyu{Cy) dA) havingdifferent characteristic length# we use eqn (61) and
. eqgn (62) in the diffusive term in egn (60), we can follow the
+ {D: Vic,) H ) (59) development in Carbonell and WhitaR&or in Quintard and
Whitaker* to obtain

This leads to a large-scale transport equation forthe 1
region given by V- {{D;}"(V{(C,,)"} + o JA,, nnw(Cn)"dA)

0+ 70 Y9 o)

H{Brver | =[Oy iery
=V. [{D:}".(V{(cﬂ)”} + q/—lw JAWnW(c,,)"dA)

1 ~
+ 5 JA" nwcndA) +{8, -V(cn)”}} 63)
. 1 N
+ {Dn -V(cﬂ)”}] K7 JAWnW-((vB),,(c,,)” If the decompositions defined by egn (61) and eqn (62) are
. used with the convective transport term in egn (60), we can
— D, ¥(c,)")dA. (60) follow Plumb and Whitakéf°to obtain
Here we note that the accumulation term is expressed i {(vg),(0), } = @, {(Vg), }"{(0), }" + &, {¥s,C, } " (64)

terms of the large-scale intrinsic average concentration
{{c,)™", and this is exactly the quantity that we would
like to be able to determine.

The convective transport term in eqn (60) is given in {( )n}ﬂ
terms of the average of a product rather that the product 1 ¢, v 7 77
of averages, and the diffusive term is represented both in &1+ K)oy ot +Velea {val ' {te))" 1]

"Use of eqn (63) and egn (64) in egn (60) leads us closer to a
transport equation that contains onkgX} " andc,. This is
given by

terms of the large-scakuperficialaverage, {c,)"}, and the . .1

Darcy-scale averagé;,)". The large-scale superficial aver- =V[{ Dn} '(‘an{(cn)n} + 7 J'An ”nwcndA>
age can be eliminated by the use of eqns 44 in order to ”

obtain a representation in terms of the large-saatiensic D V(e ) ] _v. LR

average, {c,)} ", and we can eliminaté,)” by means of a +{ vVie) } (00 {7 }")

decomposition of the Darcy-scale quantities. For the

region these are given by - q/i JAW nm-((vﬁ)n(cﬂ)’7 - D“;-V(cn)")dA. (65)
- ; o J A y
) = {<C">n} & (61) We now turn our attention to the term involvirg, -V{c,)"
~ and use the decomposition given by eqn (53) to obtain
<VB)1’ = {(Vﬂ)n}n + Vg (62) P 9 Y& ( )

Decompositions of this type must be introduced at every {D,,-V(cn)"} = {Dﬂ -V{(cn)"}"} + {D"'VC"}' (66)
level of averaging, aIthoug'h they were not shown explicitly If we continue to ignore variations of average quantities
fqr the smaIITscaIe averaging process that lead to the Ollffu'within the averaging volume, the first term on the right
sion-adsorption equation given by egn (10). The decompo- hand side of this result is zero on the basis of

sitions for the Darcy-scale averaging process are given

by eqn (24) and eqn (28), and we have used the same type {f):-V{(cn)”}"} — {f):}.v{(cn)n}". (67)

of nomenclature for the deviation quantitiés and Vg, , con-

tained in eqn (61) and eqgn (62). This means that one must beUnder these circumstances eqn (65) can be represented
very careful notto confusg, as defined by eqn (61) with as entirely in terms of {c,)"}" and ¢, except for the last
defined by egn (28). The logic behind the nomenclature term that represents the inter-region flux. This form is
employed to identify deviations is thattdde is used for given explicitly as

n
(e} n n
—_— . n
el + Ko —— —— + V [wn{(vﬁ)n} {ep"} ]
accumulation and adsorption large-scalevconvection l

=V {D;}n' ‘an{<cn>n}n * % Jn“wgn dA | + {5:1'V5n}
An

large-scale diffusion
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- V.(%{vﬁnzn}") - 7/% j Nno ((Vpdnlen)™ = D}, V(cn)")dA

-

large-scal; dispersion . Ane
inter-re:grion Sflux (68)
The w-region transport equation has exactly the same form
as this result, and for completeness we list it as
(0]
(o)} o ®
eo(l + @%m)(pm"T + V'[‘Pw{("ﬁ)m} {(Qu)m} ]
) accumulation and adsorption large-scale convection ’
® ® 1 - = ~
= V-|DL} | 0oV{(cu)} + > Jnmcm da | + {Dj, V&, }
Agn
large-scale diffusion
~ ~ @ 1
- V(cpm{vﬁmcm} ) - 5 J“«m (pdolea)® = Df-Vicy)®)dA
large-scale dispersion ’ . Agn )
inter-region Sflux (69)
To develop a two-equation model for solute transport with {DZ}Q_J' n. ¢ dAL {f)* Ve }
adsorption, we need to analyze the inter-region flux terms Ve ©

in order to obtain transport equations that are represented ~ . ~ ©

entirely in terms of intrinsic large-scale average concentra- B V'[‘”’?{Vﬁ’lc"} * %{Vﬁwc‘“} ] (71

tions and spatial deviation concentrations. However, if the Here we have simplified the representation of the one-equa-

two concentrations, (€,)"}" and {c,)*}“ are essentially  tion model by using the following definitions

equal egn (68) and egn (69) can be added together to _

obtain a one-equation model, and we refer to this condition leh =eqey+ ooy (722)

aslarge-scale mass equilibriunThe simplification inher- 7 ©
: ) N = Vv Vv

ent in a one-equation model is significant, and such a model {( ﬂ>} ¢”{( ) } + ‘p‘”{( 6 }

should always be used if it is a valid representation of the

transport process. The mathematical consequence of large-

(72b)

{dQ+{x}) =61+ K,)ey +e(1+ K)o (720)

scale mass equilibrium is given by When the condition of large-scale mass equilibrium is
- . valid, we will demonstrate in Part V that the spatial devia-
{e)"}" = {(c.)r*}* = {(a}, tion concentrations can be expressed as
large— scale mass equilibrium (70) ¢,=b,V{{©}, ¢,=b,V{{c)} (73)

and when this approximation is valid we can add eqn (68) and thate, andc, satisfy the boundary condition given by
and eqgn (69) to obtain

B.Clc,=c,, atA,,. (74)
{edA+{KH—— {< o} +V-({tvp)} {©@}) This allows us to express eqn (71) in the relatively simple
form
=V-[(¢n{D;,}" +e.{Ds}") V{(©)}] {< 9,

" {e}A+{KH——=+V-({tvp)}{(@})
4V MJ n ch+{|5*-Vc} -
V. A, T 7Yy =V-(D V{(C)}) (75
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in which the one-equation model, large-scale dispersion = V[, {{vs), }7€, + 0. {{Vs) } €..]
tensor is defined by " o
+V:[¢,{D*,}"-V¢, + ¢,{D%,}"-Ve,]. (79

D” =¢,{D;}"+¢,{D;}"
"{ "} { } When the last four terms in this result are negligible, one

D* n _ D* w - .
I { n} { w} _ J n,.b,dA+ {D,,-Vbn} only needs_to develop the closgre problem.dplandcw in
Vo A order to arrive at the one-equation model given by egn (75).
~ . . . " As anapproximation we can use that closure problem to
+ {Dw'Vb“’} — (20 {8,0, }" + 00 { b0 } ). simplify eqn (79) to
(76) a{(0)}

{eJ1+ {K})T+V-({<vﬁ>}{<0)})
The large-scale averaged velocity that appears in egn (75)

is given by the large-scale form of Darcy’s law that =V-(D"-V{{0)})
was presented in Part tHFor completeness we list that a6 "
result as - en(l + Kn)ﬁon a—tn - ew(l + ?(w)‘pw (9—{0
1.
(W)= = K (V{®') i) ) = V[ {00, 16 + e ftvi} )
#\1M * | W
and note that it is based on the idea that sheegion is + V-0, {D;}"-V€, + 0o {D } VE,]. (80)

impermeable to convective transport. A reasonable set of restrictions associated with the prin-
ciple of large-scale mass equilibrium can be expressed as

ac,
3 LARGE-SCALE MASS EQUILIBRIUM &L+ K)oy ! - ew(1+xw)¢w% < V(D" V{(Q)})

The restrictions associated with eqn (70) are, at this point, (81a)
purely intuitive. If the physical and chemical properties of V. VARSI vy 196 1< V.(D™.Vi{c
then- andw-regions do not diffetoo much eqgn (70) should (210 16, + 00 {0Vl } 6] ( @) b
be an acceptable approximation; however, we need to know (81b)
whaF is meant bytoo _muchbefore we can progeed with V-[¢,{D;}" V¢, + ¢, {D;}*Ve,] < V(D" V{(©)})
confidence. If one believes thacf)"}" ={{c,)*}* is area- (81c)
sonable approximatiqrit is prudent to propose decomposi-
tions of the form however, these are of little value unless we can say some-
thing specific about, and¢,. A little thought will indicate
n__ w\ W gl (O]
{te,)}"={ap +¢, {e)}" ={@} +¢. (78) that eqn (78) can be used with eqn (47) in order to express
and then identify the conditions for whigl) and¢, make a  the large-scale deviations as
negligible contribution to the transport process. In eqn (78) B . w1l
we have followed the nomenclature of Part idnd used a € =¢q [{<C’7>n} - {<Cw) } ] (82a)
circumflexto identify a spatial deviation concentration that 6, =o [{(c )w}w _ {(c )n}n]. (82b)
is associated with two quantitigsaving the same length ¢TI _ ! _
scale These results should be contrasted with that given by Use of these results in eqns 81 provides a much more useful
eqn (61) where we have used a tilde to identify a spatial S€t of restrictions given by
deviation concentration associated with two concentrations

0
having different length scalelf we substitute eqn (78) into 2o 61+ K,) — €,(1+K.)] g[{@ny’}"
egn (68) and eqgn (69) and add the results, we obtain © e
an (68) and eqn (59) )] < V(D V() (833
@+ oo v (o)) : ey
at 8 V-[enes ({vad }" = {tvado } ) ({4}
=V-[(¢s{D}}" +¢u{Ds}") V{(O)}] — {(e)* O < V-(D7V{(@)}) (83b)
+V[ﬁ . J 6,0+ {56, V-[epea({D5} = {D5}) ¥ ({ic,)"}"
Voo I — {(e)}*)] < V-(DV{(@}). (830
+ &J nwncwdA+{[5:'VCw}:| These restrictions have an appealing form in that they
Vee Aun will be automatically satisfiedwhen the chemical and
— V[0, {Us,C, }" + 00 {V5,C, +¢] mechanical properties of the two regions are the same.
For the general case, these restrictions will only be useful
— en(1+g(n)%&_ e,(L+%K,)e 9, if we can obtain an estimate of the difference between the
o @7 ot

two regional concentrations, and in order to develop an
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estimate of this difference, we need to develop the govern- a{(c)}” o e

ing differential equation for &,)"}" — {{c,)*}. A govern- fw(1+7(w)T+V'({<VB>w} {(c.r"}*)

ing equation for this quantity can be obtained by » 1o 1 s 1o
subtracting egn (69) from egn (68), but before carrying =V:(Dgo V{0 }*) — e "o ({(c)* }* = {c,)"}").
out that operation we wish to express those two regional (87

transport equations in a simplified and approximate form
that is quite consistent with the exact representation that
will be given in Part \® We express eqn (68) as

In order to illustrate the algebraic path that one follows
after subtracting eqn (87) from eqn (86), we will begin
with the first term in each equation and after completing

a{{c y"\" that analysis we will simply list the final result for the entire

fn(l"‘?(n)‘Pn{+I}+V'[‘Pn{(vﬂ>n}ﬂ{(cn>n}n] process. Use of eqn (78) allows us to write
= V[, Dy V{(e,)'}"] — o ({4} — {(e)*}7) yolery’ 6{<C >°°}‘°
@ &L+ 7,) " — (1K)
while egn (69) takes the analogous form given by _ [6 14%) —e,(1+% )] 6{(0)}
n ] ® ® ot

a{(c.)’}” o “
2} 1 ® wi V- w ) ) ¢ o€ acw
it e AR o) e @ xS @9

= V[0 V() 1] — o ({c)}° — {{c,)"17).

We now make use of eqns 82 to eliminate the spatial devia-

85 tion concentrations in terms of the difference between the
In a more detailed analysis of the two-equation model, we two regional average concentrations. This leads to
n (O]
oten)"} oftca)}
n [
Sn(l + %)T Sw(l + C%‘Q)T——

= [an(l + Ky )op + el + @%m)cpn]%({@n)n}“ _ {(Cw)m}u))

o}

+ [en(l + ) - gyl + @9%)] =

(89)

—v
source

will find additional convective transport terms and coupled The first term on the right hand side of this result represents
diffusive fluxes; however, eqn (84) and eqn (85) are reason-the accumulation term in a transport equation for the con-
able representations of the physics and they can be usedentration difference, while the second term represents a
to develop reasonable estimates of the concentrationsourcein that transport equation. If threapacitance factors
difference, {c,)"}" —{{c,)“}“. In order to derive a govern-  associated with adsorption and accumulation in the two
ing equation for this concentration difference, we first regions are identical, the source term will be zero.

divide egn (76) and eqn (77) by, and ¢, respectively Itis convenient to define a mixed mode capacitance factor
to obtain according to,
n
e (1+,) {< > Y S (e, P i) (1 +5)] o = &(1H K )0 T €1+ K)o, (90)
and we remark that the constraints for any type of local or
=V-(D§:-V{(C,,)"} ) — ey o ({(e,)" " = {{e)}) large-scale equilibrium always involve mixed mode para-
(86) meters of this type. Use of this result in eqns 81 provides

o(ca)®}”

(e ym"
S L S A

ot

= [e(1+3X)] nmg({@nw} {(Cm>m}m)
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o)}
Jar
SOJYCL’ (9 1)

+ [an(l + @7(,]) - gu(l + @7(0,)]

-

If we repeat the procedure leading to eqn (91) for all the Here one should think of . as the characteristic length

terms in egn (86) and eqgn (87), we obtain the following associated with the region averaged concentrations. It is
transport equation for the difference between the two regio- necessarily constrained by the classic length scale con-
nal concentrations. straints associated with the method of volume averaging,

[e( + X)) 03y ({<Cn>n} - {(cw)m}w) + V-{{(v@nm}ﬂm({(cn)n}" _ {(cm)m}“’ﬂ

- v {1, ({e” - @) - ({ - e}

(D

= —[en(l + oK) - gu(l + @KD)] a{g?} - z[({(vﬁ)n}n - {(VB)m}m){(C)}:l

SOJrC@ source
+ V'[(Dﬂﬂ - DW)V{@)}] (92)
sot‘trrce
Here we have defined the mixed mode velocity and disper-£,, ,, < R, < L, and the upper bound far. will be the
sion tensor according to aquifer or reservoir length scale illustrated in Fig. 1/as
V), Le VARY VARC 93 For the large-scale intrinsic average concentration we use
(W} 2oitVah}" + en {0l } (93) the analogous estimates given by
{D}yo=¢uDyy + ¢, D0 (94) o{©} _  [a{@) o6
The result given by egn (92) is rather complex; however, at { * } (962)
we can extract an order of magnitude estimate for the con-
centration difference if we are willing to make use of esti- A{(0)}
mates of the type V{< )} O{ (96b)
0 (He)" (e}
—({{c, "V — {{c )’ 1) = A{(c
at({< D' = {0 ) { V-[V{©)}] :o{ {L(Z)}} (96¢)
[
c 1" _ c (@)
0] ({< ) } = {< ) } )} (959 and when these estimates, along with those given by eqgns
95, are substituted into egn (92) we can extract an estimate

Here we have assumed that ttfeangeof the concentration  of the difference between the regional concentrations. The
difference is on the order of the difference itself since this algebraic effort is rather lengthy and details for this type
quantity is directly related to the spatial deviation concen- of analysis are given by Whitak&rand by Quintard and
tration, ¢,, and we think of the average of the deviation as Whitaker** Here we list only the result that takes the form

being small compared to the deviation itself. The spatial 217 0@
derivatives can be expressed in a manner analogous to egn {< ) } _ {<C°’> } = O[A+B+C] ) 97)
(95) and we list the results as A{(@} O[1+D+E+F
V({(cn)"}" ~ {(cw)‘”}‘“) 5 [ ({(Cn)n}n _ {(cw)“’}w)} in which t_he six terms on the rig_ht hand side are given by
LC _ E‘fr(l—i_?(ﬂ) - ew(l—"_‘](w)
(95b) A=0 1+ 9] (98a)
N ey ({e)'y = {e)})”) i _
VT - o)) —o| WL, T ()
= (98b)
(95¢) [+ )] 0L
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Fig. 7. Flow normal to a stratified system.
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These quantities can be used with egn (97) in order to
estimate the difference between the two regional concen-
trations; however, difficulties can arise because the sign of
the terms given by egns 98 are not necessarily obvious.
Because of this, it is possible that terms may either add
or cancel to produce dramatically different results. When
a single term dominates the denominator on the right
hand side of eqn (97), and a single term dominates the

numerator, one can obtain a reliable estimate of the concen-
tration difference interms af{{c)}. When thisis not the case,
one must be able to determine the sign of the estimates given
by eqns 98 and for some simple processes this is featible.
The result obtained from eqgn (97) can be used with the

restrictions given by eqgns 83 which can be arranged in the
form

@0, 6,1+ K,) —
D**t*

o He)! " — {7

eo(1+%,)]L2

() <1 (993
enPu (1) }" = {Vpdo } ) Le
-
X [{<C")W}An{_< iﬁc‘“)w}“] <1 (99b)
eneo({D5)" = DL} )ee [{le)'}" = f(e}*) _ |
D**

A{}
(99¢)
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It is important to note that all three restrictions will be by
automatically satisfiedvhen the volume fraction of either

region tends to zero, i.ep, — 0 or ¢, — 0. In addition, the {e}(1+{7(})@ + V-({{vp)} {{0)})

individual restrictionswill be automatically satisfied under at

the following circumstances: =V (D" -V{{0)}). (102
I.  The capacitance factors are equal: The constraints associated with eqn (100) and egn (101) are
6, (1+%,) =€,(1+X,). relatively easy to satisfy; however, those associated with
Il. The regional  velocites are equal: eqn (102) may be much more difficult to satisfy and this
{vah} " ={{vg),} will lead to the need for multi-region models. The key
Ill. The regional dispersion tensors are equal: constraint associated with large-scale mass equilibrium
{D;}"={D_}* would appear to begiven by eqn (99). In thinking about

that constraint, one must remember that the capacitance
factor is influenced by the adsorption equilibrium relation
and the various volume fractions that appear in eqn (37).
Thus it is possible that the adsorption equilibrium relation
given by egn (3)could be identicalfor both they-region

and thew-region, while the capacitance factors for these
two regionscould be differentWhile the importance of the
difference in the capacitance factors is most evident in egn
(99), this difference also appears in egn (98) and thus influ-
ences the estimate indicated by eqn (97). Our studies of
large-scale mechanical equilibridff™® and local thermal
equilibriunf* clearly indicate that this condition is always
satisfied for steady, uniform flow. Under certain circum-
stances, this means that the regional velocities can differ
greatly, {vg),}" > {{vs),}“ , while eqn (100) and 101 still
provide valid representations of the large-scale averaged
velocity and pressure. On the other hand, when the regional
velocities differ greatly, the restriction given by eqn (99)
may fail and the condition of large-scale mass equilibrium
will not be valid. The regional velocities are available to us
in terms of the regional form of Darcy’s law; however,
more convenient representations were given in Patt Il
and we list them as

4 MECHANICAL AND CHEMICAL {(ve), } = ¢y ™M}, -{(vs)}, in they —region  (103)
HETEROGENEITIES

Since regions that have different mechanical properties
are likely to have different chemical properties, porous
media that are mechanically heterogeneous are likely to
be chemically heterogeneous. This suggests that the
constraint constructed on the basis of egn (99) and eqgn
(97) may be the most important of the three restrictions
since ¢,(1+ %) ande,(1+%,,) are always likely to be
different. On the other hand, if we are dealing with a
steady transport process, the constraint given by eqn (99)
is automatically satisfied. Given the enormous range of per-
meabilities that exist in most aquifers or reservoirs, one
might also expect to find widely varying regional velocities
and this could lead to the failure of the constraint indicated
by eqgn (99) and eqn (97). This would certainly seem to be
the case for the system illustrated in Fig. 6 witef > K,
since this would lead to({;),}" > {{v),}“ and the failure
of the constraint given by egn (99) and egn (97). On the
other hand, if the flow were orthogonal to a stratified system,
such as we have indicated in Fig. 7, the two regional velo-
cities would be essentially equal and the constraint asso-
ciated by the velocity would be satisfied.

{(ve) } =05 "M, {(vg)}, in the w — region  (104)

In this representation, the mapping tensbts, and Mg,
are given by the solution of a closure problem that is
equivalent to the closure problem that one needs to solve

For many flow processes in heterogeneous porous media
the condition ofarge-scale mechanical equilibriura valid

and the constraints associated with this condition were
developed in Part IIt.Since the two-region model for com- ) .
pressible, single-phase flow is identical in form to the pro- in order to predict the large-scale permeability ten&Gy,

cess of transient heat conduction in a two-phase system, we It.|_s |mportant to remember that Iar_ge—;cale mechanical
can use a detailed study of local thermal equilibrttims a equilibrium and large-scale mass equilibrium are both con-

verification of the theory developed in Part Ill. When the trolled by local heterogeneities, but beyond that they may

condition of large-scale mechanical equilibrium is valid, not be closely coupled. In Parta?/\_/ve will develop the
the fluid mechanical problem can be described in terms of closure prok_)lem for th_e two-equation model and present
a single continuity equation and the large-scale form of results that illustrate this fact.

Darcy’s law which can be expressed as

V-{{vg)} =0 (100) 5 CONCLUSIONS

{tvg)} = — ing-(V{(pﬁ)ﬁ} —pﬁg). (101) In this work we have developed the regional forms of the

ks solute transport equation, along with the one-equation

If the condition of large-scale mass equilibrium is valid, model for solute transport with adsorption. The regional
the process of solute transport with adsorption is describedforms have been used to develop the constraints associated
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with the condition of large-scale mass equilibrium, and we
have derived a governing differential equation for the dif-

orous media IV 51

dynamic conditionscis is small enough so that,s in
egqn (A1) can be replaced witkd. Our objective in

ference between the regional concentrations. This providesthis appendix is to determine what is meant by small

an estimate of the concentration difference, which in turn
allows us to make some definite statements about the valid-
ity of a one-equation, solute transport model. These state-
ments take the form of constraints that are given by eqns (99)
in conjunction with the normalized concentration difference
that is estimated according to eqn (97).
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APPENDIX A LOCAL ADSORPTION
EQUILIBRIUM

In the absence of surface transférand heterogeneous
reactiorf®, the jump conditiofi® at they—« interface for a

dilute solution of the diffusing species can be expressed as”.

Jump condition

enough.
Substitution of egn (A4) in the jump condition given by
egn (Al) leads to

¢, — L
at

€

—L=—n,DV

(A5)
Use of eqn (A3) along with the definition ¢, given by
egn (5) in the text allows us to write egn (A5) as

ac,

Cs
gt = Tt

at
In order for this result to simplify to the jump condition

given by eqn (4) in the text, the following restriction must
be valid

-n,D,Vc, — (A6)

Cls

—<n
ot v
In order to be useful, this restriction must be replaced with
a constrainf.”*®and this can be accomplished with the aid
of the interfacial flux constitutive equation. Returning to
egn (A2), we expand the rate of adsorption in a Taylor

series about the equilibrium surface concentration to pro-

« D, Ve, (A7)

vide the following representation:

0Cys , )
? = —ny '@.YVC,Y , atthey-Xinterface
— interfacial
acc?r;fgf:tion flux (A1)
By itself, the jump condition is not sufficient to solve the aR.
mass transport problem under consideration, and in orderto  R(C,. C;s) =R(C,, Cjd) + (C\s — {ac } .
connect the surface concentratiar,, to the bulk concen- =
tration, c,, we make use of a relatively general interfacial )
flux constitutive equation given by -5 acz + (A8)
Interfacial flux constitutive equation V8] e,s=cf
—ny D Ve, = R(cy, cy) k_icys
NERR SR N
rate of rate of
adsorption desorption (A2)

Both egns (A1) and (A2) are dynamic relations in which the
surface concentration need not be in equilibrium with the
bulk concentration. To be explicit about this point, we
express the equilibrium relation in the form

cle=7(c,). (A3)

In order to determine under what circumstances we can
replace c,s with the equilibrium surface concentration
given by egn (A3), we first decompose the surface concen-
tration according to

C,s=Coa+ Cls. (A4)

Under equilibrium conditionss is zero, and for some

Use of this result, along with the decomposition given by
egn (A4), allows us to write egn (A2) as

OR. }
aC,ys Ce=C0

+%( s) [ ] +"'_kflc$g_kflcis'
75 Cys=C5d

—n,,D, Ve, =R(C,, ¢5) + (C}9) {

(A9)
A little thought based on eqn (A2) will indicate that
'y! ’yg) k ]_ng: (Alo)

and when this condition is employed with egn (A9) we
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obtain
n,D.Vc, =(c, )[ ]
v Y v YS (9C 075—075
. PR
+ %(Cys) Yo T k—lcys (A11)
ac2s cs—ceq

Use of this representation for the interfacial flux in the
restriction given by egn (A7) leads to

EIo aR . 2| PR
— < ( 75) |: } + %(CVS) [—
at 0C,s) o, = ] P
+ = k_ lC:S' (A12)

We now estimate the time rate of changechf according

to
acs AC!
—r_Q == (A13)
ot t

and use this result with eqn (A14) to obtain the following
constraint:

kY, . |9 .
{ K} + 3(cs) Zi 4=kt
9Cys Cs =054 9Cys Cys=Coa
AC
> Cf (Al4)

YS
sinceAc s will always be less thag;s we can replace this
result with the more conservative constraint given by
Constraint
+3(c s)[

|

When this constraint is satisfied, the surface concentration
can be represented by

C'yS ::}—(C'y)

even though the system is not at equilibrium in the strict
sense of the word. This means that eqn (4) and egn (5) in
the text accurately describe the adsorption process at-the

k interface.

PR
acz

oR.

kg St
aC’YS:|C —C ‘| Ceq

(A15)

(A16)

Appendix A.1 Example

We can illustrate the constraint given by eqgn (A15) in terms
of the Langmuir isotherm for which the rate of adsorption
takes the form

R =ki(1-6)c,.
Here 6 represents the fraction of adsorption sites that are

(A17)

occupied by the adsorbed species. This fraction can be

represented as

0 =C,s/Cys (A18)

M. Quintard, S. Whitaker

in which ¢ represents the surface concentration when all
adsorption sites are occupied. Eqgn (A19) and egn (A20) can
be used to express the equilibrium surface concentration in
the classic form

9= %}Z% (A19)
in which K andK, are given by

K=ki/k_1, Ka=k/(k_1Cg). (A20)
From egns (A19) and (A20) we obtain

(%S: kégs : 2C§_ (A21)

and this allows us to express the constraint given by egn
(A15) as

{k, 1 + k]_Cy/C;CS} t* > 1. (A22)

APPENDIX B SCALE-UP OF THE ADSORPTION
ISOTHERM

In the process of spatial smoothing at several scales, we
have scaled up the equilibrium relation. In this appendix,
we present the length-scale constraints associated with this
process.

Appendix B.1 Small scale

When the condition abcal adsorption equilibriunis valid,
the relation between the surface concentration and the bulk
concentration can be expressed as

C,s=F(c,). (B1)
This allows us to represent the surface accumulation as

%_ 7 (B2)
ot ac at

The equilibrium function in egn (B1) can be expanded in a
Taylor series about the average concentration to obtain

7(e,)=7({c,)") + (¢, = (c,)) <§%>
Y c, ={c,
2
+3(c, —(c,))° (%) e
v/ le, =)

On the basis of the spatial decomposition given by

c,={c,)" +¢, (B4)
our representation takes the form
)
Fe)=7F(e)) + (e )( 7)
ac.
¢, =)
1/~ \2 82,7’—
+3(6)° 52 +o (B5)
v/ le,={c, )
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From the closure probleti’® we know that the spatial

deviation concentration can be estimated by
¢, =0((,Vc,)) (B6)
wherel, is the small length scale illustrated in Fig. 3. Use

of eqn (B6) in egn (B5), and neglecting the higher order
terms, leads to

7e)=rl(e)) +0(, 7)) (2 ®7)
C’Y Cy=(Cq,)7
We now impose theestrictiori*’#®
(£, V() ( 7 ) <7 (e (B9)
v/ e, ={c,)"
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When this constraint is satisfied, eqn (B9) is a valid approxi-

mation for egn (B1). Under these circumstances, egn (12) in
the main body of the paper are acceptable approximations for
the scaled up equilibrium relation. We can summarize the

scale-up approximation for the adsorption isotherm as

aF
ac, )"

and a similar procedure is followed at the next level of
averaging.

aF
Keq= S scales up tdKeq= (B16)

Y

Appendix B.3 Darcy scale

At this level, the scale-up of the adsorption isotherm takes

so that eqn (B7) can be used to express eqn (B1) in the formplace between eqn (22) and eqgn (23) where we assume that

cs=7((c,)")

which is the first of eqn (12) in the text. In order to obtain a
constrainton the basis of eqn (B8), we estimate the con-
centration gradient as

Y Y
e =o( ") =o( )

(B9)

(B10)

Here A{c,)"” represents the change in the concentration that

occurs over the distanckl, andL . represents a character-
istic distance associated with the concentratiap)’. The
estimate given by eqn (B10) represents a definitior. of

c,s=7({c,)") (B17)
can be replaced with
s =7 ({c,)). (B18)

In this case eqn (B17) replaces egn (B1) and eqn (B18)
replaces eqn (B9). In terms of the scale up suggested by
egn (B16), we now write

that is based on the idea that one can indeed estimate the

gradient ofc,)”. From Fig. 2, we see that the distantleis
constrained by

AL=/,. (B11)
Use egn (B10) in egn (B8) leads to
(c )7( oF )
[ = < F({c, ) (B12)
Y LC ac’y Cv:(cv)v ( Y )

IF 9F
Keq= Ay v scales up tKeq= Frng (B19)
and the constraint analogous to egn (B15) is given by
Lo <1 (B20)
L

in which [, is the characteristic length for theregion that
is illustrated in Fig. 2. The characteristic length, in egn
(B18) is defined in terms of the estimate given by

o~ AC) (e
wer-o(%7) -o(2)

(B21)

and when this constraint is satisfied we know that eqn (B9) In this case we need to understand that the distarices

is a valid approximation.

Appendix B.2 Example

In order to extract a specific result from egn (B12), we
consider the Langmuir isotherm represented by

Kc,
Cysz.rf( )

=— Bl
14+ Kuc, (B13)

With a bit of algebra one finds that this allows us to express

egn (B12) as

r
Ll < 1+Kalc, ). (B14)
C
SinceKx{c,)” = 0, this constraint can be replaced with
e (B15)

Le

constrained by

AL=/,, [, (B22)

where/, and/, are the characteristic lengths for theand
w-regions that are illustrated in Fig. 2. When the constraint
indicated by egn (B20) is satisfied, we consider egn (23) in
the main body of the text to be a valid representation of the
Darcy-scale adsorption and diffusion process in the
region.

Appendix B.4 Large scale

The next scale up of the adsorption isotherm takes place
between eqn (44) and (57), and this scale up for ihe
region can be expressed as

aF
afle, )

Keq= scales up tKeq= (B23)

8( )"
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In the main body of the text, this scale up is also illus- this represents a new aspect of the problem of mass trans-
trated by egn (37) and egn (50) which we repeat here port with adsorption that has yet to be explored.
as

_ (eay), 9F scales up to APPENDIX C LENGTH-SCALE CONSTRAINTS
T e, ) P ASSOCIATED WITH VARIATIONS OF THE
ADSORPTION ISOTHERM
P o T (B24)
, .
€y a{«;n)n}n In the process of spatial smoothing at several scales, we

h. have ignored variations of the equilibrium relation within
the averaging volume. In this appendix, we present the
length-scale constraints associated with this process.

Without going through the details, we note that the lengt
scale constraint associated with this simplification is given
by

[TI

L—H<< 1 (B25) Appendix C.1 Small scale
Naturally, a comparable constraint exists for theegion.

It seems probable that there are many systems for which
this series of simplifications will not be valid and the adsorp- 5
tion isotherm can not be scaled up as indicated by eqn &=V-(@7ch), in they — phase (C1)
(B23). If the scale up represented by eqgn (B16) were not t

valid, one would be forced to return to eqn (B5) and express s _
that representation as B.C.1-— nw .D'YVC'Y = — at the’Y—K interface (CZ)

The starting point for the analysis of diffusion and adsorp-
tion in thes-region is given by

First correction o

o and the volume averaged form can be expressed as
76)=r (@) + @) () ®20 oy 1

9/ e, e & a; =V{D,Vc,) - 7 Awnw-Z)vavdA. (C3)

From Plumb and Whitake?*°we know that the dominant  Application of the adsorption boundary condition provides
part of the spatial deviation concentration can be expressed

e, ) ac
as eyﬁzV-(DvV 7)_ 1 J ZS4A (C4)
¢, =b,V(c,)" (B27) at VAt
thus thecorrectedform of the adsorption isotherm is given and we can use eqn (A16) and (B9) to express the surface
by accumulation term according to
7F(c,)=7((c,)) +G({c,),b,-Vc,)). (B28) ac e, )
Y ( Y ) ( Y v Y ) - - Cvs:}_((cv)v), £=Keq ( 7) ' (C5)
The volume averaged form of eqn (1) in the main body of ot ot

the paper is given by Here the equilibrium coefficient is defined explicitly by

¥c,)” 1 J 9Cys oF
evT_V-(DVVCV) 7 A, TdA (B29) Keq= m (C6)
and use of eqn (B1) and eqgn (B29) leads to the form and use of egn (C5) in eqn (C4) leads to
ac, ) ] { 1 J }
=V«{D.Vc,)—a ,—| — c,.dA|. (B30 e, ) Ae, )
& ot (D,Ve,)—a, gt A, Ja, (B30) ey%zV-(@chv)— a"A% I Keq<a_7tf)dA, (C7)
When thecorrectedadsorption isotherm is used with this
general form, we obtain If we can remove the integrand from the area integral, egn
Koy (C7) simplifies to
o
e,(1+a,Kede,) a:: =V.(p,Vc,) oe, ) e,y
€ o =V{D,Vc,) - a\,KeqT (C8)

al 1 - Y
a, at{Aw JAwg((cv) b, V() )dA} (B31)
Here we see that a nonlinear adsorption process will
give rise to mixed space—time derivatives and it will

require information from the closure problem to accurately
determine the form of the accumulation term in the

volume averaged transport equation. It would appear that

and from this we can obtain egn (10) in the main body of

the paper. In order to explore the process of removing an
averaged guantity from an area integral, we make use of the
nomenclature

xc, )

(97)7 = KeqT

(C9)
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and note thafQ,)” can be expanded in a Taylor series about
the centroid of the averaging volume to obtain

@y =@)| +y, Ve,

X

X+Y, X

+ 3,y VR (C10)

X

We can now express the area integral in eqn (C7) in

terms of the expansion given by egn (C10) in order to .

obtain

1

A

@y| daa=(y
JA” X+,

1
#{a Lonoafvar|

1
+ ;{ A, JAWyvyvdA} L VV(Q, )

X

+ (ClD

X
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The work of Quintard and Whitak& suggests that
(yv)w </[,, thus the constraint associated with the restric-
tion given by eqgn (C13) takes the form

[lg< 1. (C18)

Here one must remember tha} is a characteristic length
defined by egn (C16) and that this characteristic length is
determined by the variations &f,c,)"/ot. SinceKq will
depend or{c,)” for a nonlinear adsorption isotherm, the
manner in whichKeq(c,)/ot varies may be difficult to
determinea priori. Our estimate of the second derivative
in egn (C14) begins with

A (V(QV)V)]

AL (C19)

vvQ,) =0 {
in which A(V(QV)V) is the change iV(Q,)" that takes place
over the distanceL. Following the previous estimate, we
define a length_q, by expressing eqn (C19) as

AV@)] V@)
e Rl

V(@) =0 [ (C20)

LQl
Using egn (C16) in this result provides us with our final

This can be expressed in more compact form according to estimate of the second derivative

. |, @r

dA=(Q,)"

X+Y,

(Y, VKR, )

X

X

+ “en

X

+ Ay 1 V(R

and we see that averaged quantities can be removed from

interfacial area integrals when the following restrictions are
valid:

Ve VAR | <A@

X

(C13)

X

Vy¥, e TVQ,Y| (2,

X

. (C14)

X

Restrictions of this type have been under consideration

since the original work of Carbonell and WhitaR&&nd
recent numerical experimerit$To begin with, we need to

construct estimates of the gradients in egn (C13) and egn

(C14). The first of these can be expressed as

V(va -0 (M)

AL (C15)

in which A(Q,)" is the change ifQ, )" that takes place over
the distanceAL. It is convenient to define a length, by
expressing egn (C15) as

AQ,) @)
Y _ v — v
vie,) —o( AL ) o( » ) (C16)
When this is used with egn (C13) we obtain
Vo)l < 1. (C17)

(@, }
LQlLQ ’

Use of this result in the restriction given by egn (C14) leads
to

VYo dye
LQlLQ

and a little thought will indicate thaty,y.),, = r2
wherer, is the radius of the averaging volume shown in
Fig. 3. This estimate ofy,y,),, allows us to express eqn
(C22) as
2

PP
It seems quite plausible that the constraints given by eqns
(C18) and (C23) will be satisfied for most real systems.
That is to say that significant variations fqc,)"/ot
will take place over distances that are large compared to
either/, or r,. As we move up the length scales illustrated
in Fig. 2, it may be more difficult to satisfy constraints of
the type represented by eqns (C18) and (C23).

V(@) =0 [A (V(2,) ] o) [ (C21)

AL

<1

(C22)

(C23)

Appendix C.2 Darcy scale

In the Darcy scale averaging for theregion, the diffusion
and adsorption equation given by

e, (1+K) aait —V.(D,Vc,) (C24)
in which the coefficienK is defined by
K =a,,Kede,. (C25)
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In the averaging process,(1 + K) is removed from a  the estimates
volume integral according to the simplification indicated

by Vle,(1+%,)] = O [%} (C35)
1 ac 1 ac
= 14 K) Loy —e (14K = | Zogvl,
1% nge'y( + ) ot E'y( + ){ % JV.; ot }(026) VV[(].—}—?(”)] -0 |:617(Iil- +L7(n):| ) (C36)
Q1-Q

If we let @, = e,(1 + K), we can repeat the procedure Once again we note that these constraints will, for all prac-

outlined by egns C7 through C23 to obtain the following fic@l purposes, be satisfied if the isotherm is linear. For the
two constraints nonlinear case, knowledge of the isotherm represented by

egn (C25) is essential.

[/Lg< 1 (C27)
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