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In this article we consider the transport of an adsorbing solute in a two-region model
of a chemically and mechanically heterogeneous porous medium when the condition
of large-scale mechanical equilibriumis valid. Under these circumstances, aone-
equationmodel can be used to predict the large-scale averaged velocity, but atwo-
equationmodel may be required to predict the regional velocities that are needed to
accurately describe the solute transport process. If the condition of large-scale mass
equilibrium is valid, the solute transport process can be represented in terms of a one-
equation model and the analysis is greatly simplified. The constraints associated with
the condition of large-scale mass equilibrium are developed, and when these
constraints are satisfied the mass transport process can be described in terms of the
large-scale average velocity, an average adsorption isotherm, and a single large-scale
dispersion tensor. When the condition of large-scale mass equilibrium is not valid, two
equations are required to describe the mass transfer process, and these two equations
contain two adsorption isotherms, two dispersion tensors, and an exchange coefficient.
The extension of the analysis to multi-region models is straight forward but tedious.
q 1998 Elsevier Science Limited. All rights reserved
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Nomenclature
Roman letters
.
agk interfacial area per unit volume, m¹1

Agk area of theg–k interface contained in the
averaging volume,Vj, m2

Abj ¼ Ajb, area of theb–j interface contained
in the averaging volume,Vj, m2

Ahq ¼ Aqh, area of the boundary between theh

andq-regions contained with the large-
scale averaging volume,Vj, m2

bjh vector field that maps=〈ch〉h onto c̃jh in the
h-region, m

bbh vector field that maps=〈ch〉h onto c̃bh in the
h-region, m

bjq vector field that maps=〈cq〉q onto c̃jq in
the q-region, m
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bbq vector field that maps=〈cq〉q onto c̃bq in
the q-region, m

bh vector field that maps={ 〈c〉} onto c̃h

bq vector field that maps={ 〈c〉} onto c̃q

cg point concentration in theg-phase, moles/
m3

cgs adsorbed surface concentration at theg–k

interface, moles/m2

〈cg〉g intrinsic average concentration in theg-
phase, moles/m3

cj ¼ 〈cg〉g, point concentration in thej-region,
moles/m3

〈cj〉j intrinsic average concentration in thej-
region, moles/m3

c̃j ¼ cj ¹ 〈cj〉j, spatial deviation concentra-
tion in thej-region, moles/m3



cb point concentration in theb-phase, moles/
m3

〈cb〉b intrinsic average concentration in theb-
phase, moles/m3

c̃b ¼ cb ¹ 〈cb〉b, spatial deviation concen-
tration in theb-phase, moles/m3

〈ch〉h ¼ ebh〈cb〉bh þ ejh〈cj〉jh, Darcy-scale spatial
average concentration for theb–j system
in the h-region, moles/m3

〈cq〉q ¼ ebq〈cb〉bq þ ejq〈cq〉jq, Darcy-scale spatial
average concentration for theb–j system
in the q-region, moles/m3

{ 〈ch〉h} h-region superficial average concentration,
moles/m3

{ 〈ch〉h} h ¼ Jh{ 〈ch〉h}, h-region intrinsic average
concentration, moles/m3

{ 〈c〉} ¼ Jh{ 〈ch〉h} h þ Jq{ 〈cq〉q} q, large-scale
intrinsic average concentration, moles/m3

c̃h ¼ 〈ch〉h ¹ { 〈ch〉h} h, spatial deviation con-
centration for theh-region, moles/m3.

ĉh ¼ { 〈ch〉h} h ¹ { 〈c〉}, large-scale spatial
deviation for theh-region, moles/m3

{ 〈cq〉q} q-region superficial average concentration,
moles/m3

{ 〈cq〉q} q ¼ Jq{ 〈cq〉q}, q-region intrinsic average
concentration, moles/m3

c̃q ¼ 〈cq〉q ¹ { 〈cq〉q} q, spatial deviation con-
centration for theq-region, moles/m3

ĉq ¼ { 〈cq〉q} q ¹ { 〈c〉}, large-scale spatial
deviation for theq-region, moles/m3

Dg molecular diffusivity in theg-phase, m2/s
Db molecular diffusivity in theb-phase, m2/s
Dg

eff effective diffusivity for theg-phase, m2/s
Deff ¼ egDg

eff , an alternate effective diffusivity
for the g-phase, m2/s

Djh ¼ (egDg
eff)h, diffusion tensor for thej-

region in theh-region, m2/s
Djq ¼ (egDg

eff)q, diffusion tensor for thej-
region in theq-region, m2/s

Dp
h dispersion tensor for theb–j system in the

h-region, m2/s
Dp

q dispersion tensor for theb–j system in the
q-region, m2/s

Dpp
hh dominant dispersion tensor for theh-region

transport equation, m2/s
Dpp

qq dominant dispersion tensor for theq-
region transport equation, m2/s

D** large-scale, one-equation model dispersion
tensor, m2/s

g gravitational acceleration, m/s2

I unit tensor
Keq ¼ ]F/]cg ¼ ]F/]〈cg〉g, adsorption equili-

brium coefficient, m
K ¼ agkKeq/eg, dimensionless adsorption

equilibrium coefficient for thej-region
Kh ¼ [(ejagk)h/eh]]F/]〈ch〉h, dimensionless

equilibrium coefficient for theh-region

K q ¼ [(ejagk)q/eq]]F/]〈cq〉q, dimensionless
equilibrium coefficient for theq-region

l i i ¼ 1, 2, 3, lattice vectors, m
Lc characteristic length for region averaged

concentrations, m
L aquifer or reservoir length scale, m
LH length scale for theh–q system,LH # L, m
ngk unit normal vector directed from theg-

phase toward thek-phase
nbj ¼ ¹njb, unit normal vector directed from

the b-phase toward thej-region
nhq ¼ ¹nqh, unit normal vector directed from

the h-region toward theq-region
r position vector, m
r j radius of the small-scale averaging

volume,Vj, m
r o radius of the Darcy-scale averaging

volume,V, m
Ro radius of the large-scale averaging volume,

V` , m
t time, s
t * characteristic process time, s
vb velocity in theb-phase, m/s
〈vb〉b intrinsic average velocity in theb-phase,

m/s
〈vb〉 ¼ eb〈vb〉b superficial average velocity in

the b-phase, m/s
ṽb ¼ vb ¹ 〈vb〉b, spatial deviation velocity,

m/s
{ 〈vb〉h}

h intrinsic average velocity in theh-region,
m/s

{ 〈vb〉h} ¼ Jh{ 〈vb〉h}
h, superficial average velocity

in the h-region, m/s
ṽbh ¼ 〈vb〉h ¹ { 〈vb〉h} h, h-region spatial

deviation velocity, m/s
{ 〈vb〉q}

q intrinsic average velocity in theq-region,
m/s

{ 〈vb〉q} ¼ Jq{ 〈vb〉q}
q, superficial average velocity

in the q-region, m/s
ṽbq ¼ 〈vb〉q ¹ { 〈vb〉q}

q, q-region spatial
deviation velocity, m/s

{ 〈vb〉} ¼ Jh{ 〈vb〉h} h þ Jq{ 〈vb〉q} q, large-scale,
superficial average velocity, m/s

Vg volume of theg-phase contained in the
averaging volume,Vj, m3

Vj averaging volume for theg–k system, m3

Vb volume of theb-phase contained in the
averaging volume,V, m3

V averaging volume for theb–j system, m3

Vh volume of theh-region contained in the
averaging volume,V`, m3

Vq volume of theq-region contained in the
averaging volume,V`, m3

V` large-scale averaging volume for theh–q

system, m3
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1 INTRODUCTION

A two-region model of a heterogeneous porous medium is
shown in Fig. 1, and we would like to be able to accurately
predict the solute transport process in such a system when
the condition of large-scalemechanicalequilibrium is valid.
From a practical point of view, large-scale mechanical equi-
librium occurs frequently and it permits the use of a one-
equation model to predict the large-scale average velocity
field. If a one-equation model suffices for the description of
the mass transfer process, the large-scale form of Darcy’s
law can be used directly to determine the velocity field. If a
two-equation model is required to accurately describe the
mass transport process, we will need to make use of the
regional form of Darcy’s law that was presented in Part III.1

The general process of diffusion, nonlinear adsorption,
and convective transport is assumed to take place in the
hierarchical system2 illustrated in Fig. 2. Diffusion and
adsorption occur in the micropores and macropores con-
tained within thej-region, while diffusion, convection,
and dispersion occur in theb-phase. We think of this
latter process as occurring at the Darcy scale within theq

andh-regions. Theq andh-regions belong to other stratified
regions, as illustrated in Fig. 2, and we would like to spa-
tially smooth the transport processes that take place in those
stratified regions. The length scale,L, indicated in Fig. 2,
should be thought of as the scale of an aquifer or the scale of
a petroleum reservoir. The heterogeneities in that region
have a length scaleLH which is bounded byLH # L, and
we have in mind that the transport equations that have been
smoothed within the volumeV` will be solved numerically

at the aquifer level. This means that spatial smoothing takes
place at thesmall scaleassociated with the averaging
volumeVj, at theDarcy scaleassociated with the averaging
volumeV, and at thelarge scaleassociated with the aver-
aging volumeV`. The point at which one stops the aver-
aging process and begins the direct numerical solution of the
spatially smoothed equations depends on the quality of the
information required and on the computational resources
that are available. Averaging at the small scale would
appear to be universally accepted; however a decision
must be made concerning the use of either a one-equation
model or a two-equation model.3–5 Averaging at the Darcy
scale would also appear to be universally accepted, and at
this level one is again confronted with the choice between
one- and two-equation models.

The original studies of two-equation models at the Darcy
scale dealt with the problem of passive dispersion in single-
phase systems. In order to explain a ‘tailing effect’ in pulse-
injection dispersion experiments, early workers6–10 sepa-
rated the flow field into mobile and immobile regions and
postulated separate equations for each region. These models
provided improved agreement between theory and experi-
ment at the expense of an additional adjustable parameter.
This approach has been extended to mass transfer in hetero-
geneous systems by Passioura,11 van Genuchten and Wier-
enga,12Raoet al.,13 Gvirtzmanet al.,14 Corréaet al.,15 and a
comprehensive review has been prepared by Brusseau and
Rao.16. Recently this model has been used to study the effect
of solute size on transport in heterogeneous porous media17.

In many of these prior studies, the length scales are not
clearly identified. For example, the work of Coats and
Smith10 appears to be associated with the Darcy scale in
an attempt to explain dispersion phenomena in packed
beds, while the recent study of Corre´a et al.15 clearly
deals with mass transfer in a dual porosity model of a
porous medium. This means that the governing equations

Greek letters
.
a * mass exchange coefficient for theh–q

system, s¹1

eb ¼ 1 ¹ ej, volume fraction of theb-phase
eg porosity of thej-region
ej ¼ 1 ¹ eb, volume fraction of thej-region
eh ¼ ebh þ ðejegÞh, total porosity for theb–j

system in theh-region
eq ¼ ebq þ (ejeg)q, total porosity for theb–j

system in theq-region
{ e} ¼ Jheh þ Jqeq, large-scale average por-

osity
{ e} ð1þ { K} Þ ¼ eh(1 þ Kh)Jh þ eq(1 þ KqÞJq, large-

scale average capacitance factor
mb shear coefficient of viscosity for theb-

phase, Ns/m2

rb mass density of theb-phase, kg/m3

Jh ¼ 1 ¹ Jq, volume fraction of theh-region
Jq ¼ 1 ¹ Jh, volume fraction of theq-region Fig. 1. Two-region model of a heterogeneous porous medium.
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are assumed to be valid at the large scale, i.e., they represent
equations associated with the averaging volume,V`. In this
work the length scales are clearly identified in Fig. 2; how-
ever, one must be careful to remember that real systems
are more complex than the model that we have chosen to
analyze.

1.1 Small-scale averaging

Thej-region illustrated in Fig. 3 consists of macropores that
are identified as theg-phase, and a microporous region
identified as thek-region. In many systems, ranging from
packed bed catalytic reactors3 to soil aggregates5, the trans-
port process in the microporous region plays a crucial role;
however, in this study we will assume that thek-region is
impermeableso that transport in thej-region takes place
only in theg-phase. It is assumed that the macropores in the
j-region illustrated in Fig. 3 are so small that convective
transport is negligible, thus the problem of diffusion and
nonlinear adsorptioncan be described by the following

governing equation and interfacial boundary condition.

]cg

]t
¼ =·(Dg=cg), in the g¹ phase (1)

B:C:1 ¹ ngk·Dg=cg ¼
]cgs

]t
, at theg–k interface: (2)

Here we have usedcg to represent thebulk concentrationof
the diffusing, adsorbing species, andcgs to represent the
adsorbedsurface concentration. Since the k-region is
taken to be impermeable, we are not confronted with the
problem of choosing between a one-equation model and a
two-equation model. When transport takes place in thek-
region, one can follow the analysis of Whitaker4 in order to
derive the appropriate spatially smoothed transport equa-
tion and the associated closure problem.

Our treatment of the adsorption process is based on a
functional relation of the general form given by

cgs ¼ F (cg) (3)

Fig. 2. Averaging volumes in a hierarchical porous medium.
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and this allows us to express the boundary condition repre-
sented by eqn (2) as

B:C:1 ¹ ngk·Dg=cg ¼ Keq
]cg

]t
, at theg–k interface:

(4)

eqn (3) and eqn (4) represent a condition that we identify as
local adsorption equilibrium. Since mass is being transferred
between the bulk and the surface, the system cannot be in a
state of equilibrium; however, the departure from equili-
brium may besmall enoughso that eqn (3) and eqn (4) repre-
sent a satisfactory approximation. What is meant bysmall
enoughis explained in Appendix A. In thinking about eqn
(4), one must remember that the equilibrium coefficient need
not be a constant, and thatKeq is given explicitly by

Keq¼
]F
]cg

: (5)

The linear adsorption problem has been studied by Plumb
and Whitaker,18,19 and we can follow their analysis to
obtain the appropriate transport equation for diffusion
with adsorption. That development begins with the defini-
tion of a superficial average concentration that takes the
form

〈cg〉 ¼ 1
Vj

∫
Vg

cgdV (6)

in which Vj is the averaging volume shown in Fig. 3 andVg

is the volume of theg-phase contained within the averaging
volume. One usually assumes that theintrinsic average
concentration defined by

〈cg〉g ¼
1
Vg

∫
Vg

cgdV (7)

is the preferred concentration for describing the process of

mass transport in porous media. These two concentrations
are related by

〈cg〉 ¼ eg〈cg〉g (8)

in which the volume fraction of theg-phase is defined
explicitly by

eg ¼ Vg=Vj: (9)

Plumb and Whitaker18,19 derived a small-scale, volume
averaged transport equation forlinear adsorptionthat is
given by

eg(1þ agkKeq=egÞ
]〈cg〉g

]t
¼ =·(egDg

eff·=〈cg〉g): (10)

Here we have usedagk to represent the interfacial area per
unit volume of the porous medium andDg

eff to represent
the effective diffusivity tensor for theg-phase diffusion
process. This definition of the effective diffusivity tensor
is consistent with the work of Kimet al.;20 however, it is not
a universal definition and one often finds eqn (10) written in
the form

eg(1þ agkKeq=egÞ
]〈cg〉g

]t
¼ =·(Deff·=〈cg〉g): (11)

It is not clear that one form has any special advantage over
the other; however, it is absolutely clear that one must be
very careful when defining dependent variables and coeffi-
cients in multiphase transport equations since one can
easily make errors on the order ofeg.

In order that the transport equation describing thenon-
linear adsorption processhave the same form as the trans-
port equation for the linear process, we require that eqn (3)
and eqn (5) can be expressed as

cgs ¼ F (〈cg〉g), Keq¼
]F

]〈cg〉g (12)

and the length-scale constraint associated with this simpli-
fication is developed in Appendix B. In addition, we require
that variations ofKeq can be neglected within the averaging
volume, and the length-scale constraint associated with this
simplification is given in Appendix C.

The closure problem that is used to predictDg
eff in eqn

(10) has been compared with experiments by Ryanet al.,21

Kim et al.,20, Quintard,22 and Ochoa-Tapiaet al.23. Good
agreement between theory and experiment has been
obtained for isotropic systems; however, anisotropic sys-
tems require further study and some interesting results are
given by Quintard22 and Ochoa-Tapiaet al.23 When the
appropriate length and time-scale constraints are satisfied,
eqn (10) is a valid representation of the process of diffusion
and adsorption in theg–k system. Given eqn (10), we are
ready to move on to the Darcy-scale averaging process
associated with theb–j system and the averaging volume
V shown in Fig. 2.

1.2 Small-scale concentrations

At this point we wish to develop the spatially smoothed

Fig. 3. Averaging volume for theg-k system.

Heterogeneous porous media IV 37



equations associated with the averaging volumeV shown in
Fig. 4. The system under consideration consists of theb-
phase and thej-region. In many cases we will be working
with processes in which thej-region containsboth macro-
poresand micropores, and we would like to make use of a
nomenclature that can include both the case in which thek-
region isimpermeableand the case in which it represents an
active microporous region. To explore this problem, we
note that thespatial average concentrationin the j-region
represents the total moles per unit volume in that region.
The spatial average concentration is given by

〈c〉 ¼ 1
Vj

∫
Vj

cdV (13)

in which c represents the point concentration in both theg-
phase and thek-region. This definition of the spatial aver-
age concentration is comparable to the definition of the
spatial average temperature24 used in the study of heat
transfer in multiphase systems25. We can evaluate the sepa-
rate parts of the integral in eqn (13) to arrive at

〈c〉 ¼ eg〈cg〉g þ ek〈ck〉k (14)

and this form is analogous to the representation of the
spatial averagetemperaturein a g–k system. We could
be more precise and express the above result as

〈c〉j ¼ egj〈cg〉gj þ ekj〈ck〉kj: (15)

While this type of nomenclature appears to be overly com-
plex, there is a logic associated with the choice and the
placement of the indices since subscripts are always used
to identify location, while superscripts are used only to
identify intrinsic averages.

In order to determine when an average quantity is an
intrinsic average, one considers the special case in which
the point quantity is a constant. If the average quantity is
equal to that constant, we say that it is an intrinsic average.

For example, if the concentration in theg-phase is the con-
stant given byco, we see immediately that is an intrinsic
average since eqn (7) gives

〈cg〉g ¼
1
Vg

∫
Vg

cgdV ¼
1
Vg

∫
Vg

codV ¼ co: (16)

It is not always possible to identify intrinsic average con-
centrations in a unique manner when dealing with multi-
phase transport problems. For example, we can use eqn
(15), along with the condition

cg ¼ ck ¼ co (17)

to show that

〈c〉j ¼ egj〈cg〉gj þ ekj〈ck〉kj ¼ egjco þ ekjco ¼ co: (18)

Thus we find that〈c〉j is an intrinsic average concentration
associated withthe j-region. On the other hand, when the
k-region is impermeable, the definition given by eqn (15)
immediately reduces to

〈c〉j ¼ egj〈cg〉gj (19)

and in this case〈c〉j plays the role of a superficial average
concentrationassociated withthe g-phase. The fact that a
well-defined quantity, such as the spatial average concen-
tration, is an intrinsic averagewith respect to a regionand a
superficial average withrespect to a phasemakes it rather
difficult to identify a unique nomenclature that would carry
one through the averaging process without the possibility of
error. It would appear that one must either carry all of the
nomenclature through every level of averaging or carefully
redefine the variables at each level of averaging. In this
work we follow the latter approach.

Returning again to Fig. 4, we note that the boundary value
problem under consideration is given by

eg(1þ agkKeq=eg)
]〈cg〉g

]t
¼ =·(egDg

eff·=〈cg〉g),

in the j ¹ region (20a)

B:C:1 〈cg〉g ¼ cb, at theb–j interface (20b)

B:C:2 ¹ njb·(egDg
eff·=〈cg〉g) ¼ ¹ njb·(Db=cb),

at theb–j interface (20c)

]cb

]t
þ =·(vbcb) ¼ =·(Db=cb), in the b ¹ phase: (20d)

The boundary conditions used here are based on the type of
analysis given by Ochoa-Tapia and Whitaker,26–28and they
require the separation of length scales that normally occur
between thej-region and theb-phase.

If we average eqns 20 in their current form we will
encounter an extremely cumbersome notation in terms of
the j-region transport equation. To avoid this problem, we
define the following quantities

K ¼ agkKeq=eg, cj ¼ 〈cg〉g, egDg
eff ¼ Dj (21)

Fig. 4. Averaging volume for theb-j system.
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so that the problem under consideration takes the more
compact form given by

eg(1þ K)
]cj

]t
¼ =·(Dj·=cj), in the j ¹ region (22a)

B:C:1 cj ¼ cb, at theb–j interface (22b)

B:C:2 ¹ njb·(Dj·=cj) ¼ ¹ njb·(Db=cb),

at the b–j interface (22c)

]cb

]t
þ =·(vbcb) ¼ =·(Db=cb), in the b ¹ phase: (22d)

Here one must remember thatcj represents an intrinsic
average concentration with respect to theg-phase, and
that the volume fraction of theg-phase has been incorpor-
ated into the definition of the effective diffusivity,Dj. This
represents a situation that is subject to misinterpretation
that can lead to errors on the order ofeg, thus the definitions
given by eqn (21) must not be overlooked here or elsewhere
in the analysis. One should think of eqns 22 as describing
the transport process in both theq andh-regions.

1.3 Darcy-scale averaging

The volume average form of eqn (22) is given by

in which the spatial deviation concentration,c̃j, is defined
by the decomposition29

cj ¼ 〈cj〉j þ c̃j: (24)

In deriving eqn (23) we have ignored variations of the
equilibrium coefficient within the averaging volume, and
the length-scale constraint that must be satisfied in this case
is given in Appendix C. In addition, we have assumed that
the coefficientK can be represented as a function of〈cj〉j

and this simplification is discussed in Appendix B.
The intrinsic average concentration in thej-region is

defined by

〈cj〉j ¼
1
Vj

∫
Vj

〈cg〉gdV (25)

and thevolume fractionof the j-region is given explicitly
as

ej ¼ Vj=V : (26)

It is important to keep these definitions in mind since one
can easily make an error on the order ofej or e¹ 1

j if one
does not carefully distinguish betweenintrinsic averages
andsuperficialaverages.

The volume averaged form of theb-phase transport equation
has the same form as eqn (23) except for the presence of the
convective transport and the dispersive transport.

Once again we have decomposed the concentration accord-
ing to

cb ¼ 〈cb〉b þ c̃b (28)

and in eqn (23) and eqn (27) we see the need for a closure
problem in order to develop useful representations for
the spatial deviation concentrations,c̃j and c̃b. In deriving
eqn (27) from eqn (22), we have treated the flow as

(23)

(27)
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incompressible, and we have made use of the continuity
equation in the following forms

=·v ¼ 0 (29a)

=·(eb〈vb〉b) ¼ 0: (29b)

The second of these requires that thej-region be treated as
impermeable in terms of convective transport, and this is
consistent with the diffusion-adsorption equation given by eqn
(22). For completeness, we note that the intrinsic average
concentration associated with theb-phase is given by

〈cb〉b ¼
1
Vb

∫
Vb

cbdV (30)

while the volume fractionof the b-phase is defined in a
manner analogous to eqn (26) and this requires thateb ¼ 1-ej.

At this point in the analysis of theb–j system, we
encounter a recurring problem that arises whenever one
attacks a problem of multiphase or multi-region transport
phenomena. The problem is this: are the two concentrations,
〈cj〉j and 〈cb〉b, close enoughso that they can be treated as
equal, or are these two concentrationssufficiently different
so that separate transport equations must be retained in order
to develop an acceptable model? For many problems of
practical importance, the length scales,lb and lj, shown in
Fig. 4 are very small compared to the characteristic process
length scale. Under these circumstances, the concentration
in the j-region is essentially equal to the concentration in
the b-phase and the principle of local mass equilibrium is
valid. Plumb and Whitaker18,19have explored this problem,
and we will accept their analysis of local mass equilibrium
and the length and time-scale constraints that are associated
with that condition.

1.4 Darcy-scale concentrations

In a manner similar to the definition of the small-scale
spatial average concentration given by eqn (13), one
can define a Darcy-scalespatial average concentration
according to

〈c〉 ¼ 1
V

∫
V
cdV: (31)

This, in turn, can be expressed in terms of the intrinsic
averages in theb-phase and thej-region according to

〈c〉 ¼ eb〈cb〉b þ ej〈cj〉j: (32)

One can see that〈c〉 is an intrinsic average concentration
with respect to theb–j system; however, if thej-region is
impermeable,〈c〉 becomes asuperficial average concentra-
tion with respect to theb-phase. There are many practical
problems in which thej-region is impermeable, and there
are many problems in which thej-region contains both
macropores and micropores, thus it is difficult to generate
a unique nomenclature for the Darcy-scale concentration.
At this point we will follow our previous change of nomen-
clature associated with the small-scale averaging process
and define two new concentrations for theh andq-regions

according to

〈ch〉h ¼ ebh〈cb〉bh þ ejh〈cj〉jh in the h¹ region (33a)

〈cq〉q ¼ ebq〈cb〉bq þ ejq〈cj〉jq in the q ¹ region: (33b)

Our choice of nomenclature here is dictated by the fact that
thej-region is necessarily active in a process that involves
adsorption, thus the spatial average concentration defined by
eqn (31) plays the role of an intrinsic average concentration.

1.5 Local mass equilibrium

The mathematical consequence of local mass equilibrium in
theh-region is that

〈cj〉jh ¼ 〈cb〉bh ¼ 〈ch〉h (34)

and when this condition is valid we can add eqn (23) and
eqn (27) to obtain the Darcy-scale, one-equation model for
solute transport with absorption that is given by

h-region

eh(1þ Kh)
]〈ch〉h

]t
þ =· 〈vb〉h〈ch〉h

ÿ �
¼ =· Db ebh=〈ch〉h þ

1
V

∫
Aba

nbjc̃bhdA

� ��
þ Djh· ejh=〈ch〉h þ

1
V

∫
Aab

njbc̃jhdA

� ��
þ =·〈ṽbhc̃bh〉: ð35Þ

Here we note that the superficial average velocity is given by

〈vb〉h ¼ ebh〈vb〉bh (36)

and that the equilibrium coefficient,Kh, and thetotal por-
osity, eh, are defined explicitly by

Kh ¼
(ejagk)h

eh

]F
]〈ch〉h

, eh ¼ ebh þ (ejeg)h: (37)

One should note that the effective diffusivity for thej-
region has been explicitly associated with theh-region,
while the b-phase diffusivity has not. This has been done
with the idea thatDb will not undergo significant changes
from the h-region to theq-region, whileDj may undergo
very significant changes and thus needs to be explicitly
identified in terms of the region. Theq-region equation is
analogous to eqn (35) and we will list the closed form in
subsequent paragraphs.

In this development of theh-region Darcy-scale transport
equation wehave notfollowed the nomenclature used by
Plumb and Whitaker18,19 who did not express their results
in terms of the total porosity,eh, but instead used the
various volume fractions contained in the definition of the
total porosity. The nomenclature that is used in this devel-
opment has been chosen specifically to be consistent
with subsequent experimental studies. We will refer to the
quantity eh(1þ K h) in eqn (35) as thecapacitance factor
since it plays the same role in large-scale mass equilibrium
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as theheat capacitydoes in local thermal equilibrium. In
the heat transfer process, significant differences in the heat
capacity create departures from local thermal equilibrium
during transient processes. In the same way, significant dif-
ferences in thecapacitance factorwill cause departures
from large-scale mass equilibrium during transient pro-
cesses. This is perhaps more clearly seen in terms of the
retardation factor,(1 þ Kh), that modifies the speed of a
pulse of a chemical solute. Different retardation factors in
theh andq-regions will lead to a separation of pulses in the
two regions and this will create departures from large-scale
mass equilibrium.

The closure problem for the spatial deviation concentra-
tions, c̃j and c̃b, is based on the representations

c̃jh ¼ bjh·=〈ch〉h (38a)

c̃bh ¼ bbh·=〈ch〉h (38b)

in which bjh andbbh are referred to as theclosure variables.
The nomenclature used in eqns 38 follows that of
Quintard and Whitaker24 rather than that of Plumb and
Whitaker18,19 who developed the closure problem for this
particular process of dispersion and adsorption. In some
representative region of theb–j system, such as we have
illustrated in Fig. 5, the closure problem forbjh andbbh takes
the form

h-region

0¼ Djh : ==bjh ¹ e¹ 1
jh cjh, in the j ¹ region (39a)

B:C:1 bjh ¼ bbh, at Abj (39b)

B:C:2 ¹ njb·(Djh·=bjh) ¼ ¹ njb·(Db=bbh)

¹ njb·(DbI ¹ Djh), at Abj ð39cÞ

ṽbh þ vbh·=bbh ¼ Db=2bbh ¹ e¹ 1
bh cbh, in the b ¹ phase

(39d)

Periodicity:

bjh(r þ l i) ¼ bjh(r ), bbh(r þ l i) ¼ bbh(r ), i ¼ 1, 2, 3

(39e)

Average:

〈bjh〉j ¼ 0, 〈bbh〉b ¼ 0: (39f)

Here the two constant vectors are given by

cjh ¼
1
V

∫
Ajb

njb·Djh·=bjhdA, cbh

¼
1
V

∫
Abj

nbj·Db=bbhdA ð40Þ

and on the basis of the second boundary condition they are
related according to

cjh ¼ ¹ cbh: (41)

When convective transport in theb-phase is negligible, the
closure problem reduces to that for heat conduction in a
two-phase system30,31or diffusion in a two-phase system.32

In those cases, arguments have been developed in favor of
cjh ¼ cbh ¼ 0, and Quintard and Whitaker24 have proved
this result for symmetric unit cells. In the general case, eqn
(39) are needed to determine these two constant vectors. A
little thought will indicate that eqn (39) can be used to
determinebjh andbbh to within a single arbitrary constant
provided that the constant vectors,cjh andcbh, are known.
The point to be understood here is that eqn (39) represent a
standard boundary value problem for transport in two
phases with the exception that there is no Dirichlet condi-
tion that establishes the level of the functionsbjh andbbh.
This means that ifbjh and bbh are solutions to eqn (39),
then bjh þ co and bbh þ co, in which co is an arbitrary
constant vector, are also solutions. This arbitrary constant
vector can be removed by the imposition of the first of eqn
(39f ), while the constant vectorscjh andcbh that are related
by eqn (41) are determined by the second of eqn (39f ). The
procedure for dealing withcjh and cbh is discussed by
Quintard and Whitaker24,33 and by Quintardet al.34

1.6 Closed form

When the representations given by eqns 38 are used in eqn
(35), we obtain the closed form of our Darcy-scale disper-
sion-adsorption equation that takes the form

eh(1þ Kh)
]〈ch〉h

]t
þ =· 〈vb〉h〈ch〉h

ÿ �
¼ =·(Dp

h·=〈ch〉h) (42)

in which the dispersion tensor is defined by

Dp
h ¼ ebhDbI þ ejhDjh þ

(DbI ¹ Djh)
V

·
∫

Abj

nbjbbhdA¹ ebh〈ṽbhjh
bjh〉b: ð43Þ

One must be extremely careful to note the definition of this
dispersion coefficient since it differs by a factor ofebh from
that used by Plumb and Whitaker18,19and other investigators.

Fig. 5. Representative region for theb-j system.
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Although theexact closure problem given by eqns 39
has not been solved, and thus predicted values ofDp

h have
not been compared with experiment, results forsimilar
problemshave been obtained by Eidsathet al.35 for passive
dispersion, by Nozadet al.30 and Quintard and Whitaker24

for transient conduction in two-phase systems, by Ochoaet
al.32 for diffusion in two-phase systems, and by Quintard
and Whitaker33 for active dispersion. For the case in which
Dj is isotropic, the closure problem given by eqn (28) is
identical to the heat transfer problem that has been explored
in detail by Quintardet al.34 for the two-equation model at
the Darcy-scale, and results for the one-equation model will
be presented in Part V.36

2 LARGE-SCALE AVERAGING

We are now ready to turn our attention to the main subject
of this paper which is the problem of solute transport
with adsorption in a mechanically and chemically hetero-
geneous porous medium. We have illustrated an averaging
volume for such a system in Fig. 6, and we describe the trans-
port process in terms of the boundary value problem given by

eh(1þ K h)
]〈ch〉h

]t
þ =· 〈vb〉h〈ch〉h

ÿ �
¼ =· Dp

h·=〈ch〉h
ÿ �

(44a)

B:C:1 〈ch〉h ¼ 〈cq〉q, at Ahq (44b)

B:C:2 ¹ nhq· 〈vb〉h〈ch〉h ¹ Dp
h·=〈ch〉h

ÿ �
¼

¼ ¹ nhq· 〈vb〉q〈cq〉q ¹ Dp
q·=〈cq〉qÿ �

, at Ahq (44c)

eq(1þ Kq)
]〈cq〉q

]t
þ =· 〈vb〉q〈cq〉qÿ �

¼ =· Dp
q·=〈cq〉qÿ �

:

(44d)

In addition to the solute transport equations and the
concentration and flux conditions imposed at the
boundary between theh-region and theq-region, we
will also list the continuity equations for the two regions
according to

=·〈vb〉h ¼ 0 (45a)

=·〈vb〉q ¼ 0: (45b)

Both of these results are obtained from eqn (29) by repla-
cing eb〈vb〉b with the superficial velocity,〈vb〉. At the
boundary between theh- and q-regions, we take the
normal components of〈vb〉h and 〈vb〉q to be continuous as
indicated by the condition

B:C:3 nhq·〈vb〉h ¼ nhq·〈vb〉q, at Ahq: (46)

This requires that anysurface velocityassociated with the
boundary be negligible.26,27

The averaging volume for large-scale averaging is
shown in Fig. 6, and we need to define three averages
associated with the averaging volume identified byV`.
The first of these is theregional superficial averagedefined
by

〈ch〉h
� 	h

¼
1

V `

∫
Vh

〈ch〉hdV: (47a)

The second is theregional intrinsic averagethat we

Fig. 6. Determination of region averaged velocities.
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express as

〈ch〉h
� 	h

¼
1
Vh

∫
Vh

〈ch〉hdV (47b)

in which Vh represents the volume of theh-region con-
tained in the averaging volume. In addition to these
regional averages, we will also need thelarge-scale spatial
averagedefined by

〈c〉� 	
¼

1
V`

∫
V `

〈c〉dV ¼
1

V `

∫
Vh

〈ch〉hdV

þ
1

V`

∫
Vq

〈cq〉qdV ¼ Jh 〈ch〉h
� 	h

þ Jq 〈cq〉q� 	q

ð47cÞ

in which volume fractions of theh- and q-regions are
expressed as

Jh ¼ Vh=V `, Jq ¼ Vq=V`: (48)

The definition given by eqn (47c) has precisely the
characteristics of the earlier definitions given by eqn (13)
and eqn (31), and one needs to keep this definition in mind
during subsequent developments.

2.1 Large-scale average equations

We now express the large-scale superficial average of theh-
region transport equation as

eh(1þ Kh)
]〈ch〉h

]t

� �
þ =· 〈vb〉h〈ch〉h

ÿ �� 	
¼ =· Dp

h·=〈ch〉h
ÿ �� 	

: ð49Þ

In the process of small-scale averaging,18,19 we ignored
variations of Keq over the averaging volume,Vj. At
the next level of averaging we ignored variations of
egð1þ KÞ over the Darcy-scale averaging volume,V, and
at this point in the analysis we are going to ignore varia-
tions of eh(1 þ Kh) over the large-scale averaging volume,
V`. The length-scale constraints associated with these sim-
plifications are presented in Appendix C. In addition to the
imposition of the length-scale constraints associated with
the spatial variation of the adsorption isotherm, we have
also scaled up the adsorption isotherm so that eqn (37) is
interpreted as

K h ¼
(ejagk)h

eh

]F

] 〈ch〉h
� 	h

" #
, eh ¼ ebh þ (ejeg)h: (50)

The length-scale constraint associated with this simplifi-
cation is given in Appendix B and there we have indicated
the consequences of the failure of the length-scale con-
straints associated with the scale up of the adsorption iso-
therm.

Given the assumption of negligible variations ofeh (1 þ

Kh) over the volumeV`, we can express the accumulation

term in eqn (49) as

eh(1þ Kh)
]〈ch〉h

]t

� �
¼ eh(1þ Kh)

]〈ch〉h
]t

� �
¼ eh(1þ Kh)

]f〈ch〉hg
]t

: ð51Þ

The superficial average is related to the intrinsic average by

〈ch〉h
� 	

¼ Jh 〈ch〉h
� 	h (52)

and this allows us to express the accumulation term as

eh(1þ Kh)
]〈ch〉h

]t

� �
¼ eh(1þ Kh)Jh

] 〈ch〉h
� 	h

]t
: (53)

To analyze the convective and dispersive transport terms in
eqn (41), we need the large-scale version of the spatial
averaging theorem that takes the form

=〈wh〉h
� 	

¼ = 〈wh〉h
� 	

þ
1

V `

∫
Ahq

nhq〈wh〉hdV: (54)

Use of this theorem allows us to express the convective
transport term as

=· 〈vb〉h〈ch〉h
ÿ �� 	

¼ =· 〈vb〉h〈ch〉h
ÿ �� 	

þ
1

V`

∫
Ahq

nhq·〈vb〉h〈ch〉hdA ð55Þ

while the dispersive transport term is given by

=· Dp
h·=〈ch〉h

ÿ �� 	
¼ =· Dp

h·=〈ch〉h
� 	

þ
1

V`

∫
Ahq

nhq· Dp
h·=〈ch〉h

ÿ �
dA: ð56Þ

Use of eqn (53), eqn (55) and eqn (56) in eqn (49) leads to

eh(1þ K h)Jh

] 〈ch〉h
� 	h

]t
þ =· 〈vb〉h〈ch〉h

ÿ �� 	
¼ =· Dp

h·=〈ch〉h
� 	

¹
1

V`

∫
Ahq

nhq· 〈vb〉h〈ch〉h ¹ Dp
h·=〈ch〉h

ÿ �
dA: ð57Þ

Even though we have accepted the simplification that theh

and q-regions are homogeneous, we cannot ignore varia-
tions inDp

h since this term will depend on the velocity field,
〈vb〉h. Under some circumstances,〈vb〉h may be a constant;
however, this would be the exception rather than the rule,
thus we must take into account possible variations inDp

h as
was done in the original study of passive dispersion by
Plumb and Whitaker,37,38 but which was not done in the
subsequent study of solute transport with adsorption.18,19

The variations inDp
h can be represented in terms of the

following decomposition

Dp
h ¼ { Dp

h}
h þ D̃

p
h (58)

and we can use this result along with the averaging theorem
to express the first term on the right hand side of eqn (57)
as

=· Dp
h·=〈ch〉h

� 	
¼ =· Dp

h

� 	h· =〈ch〉h
� 	

þ D̃
p
h·=〈ch〉h

n oh i
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¼ =· Dp
h

� 	h· = 〈ch〉h
� 	

þ
1

V`

∫
Ahq

nhq〈ch〉hdA

� ��
þ D̃

p
h·=〈ch〉h

n oi
: ð59Þ

This leads to a large-scale transport equation for theh-
region given by

eh(1þ K h)Jh

] 〈ch〉h
� 	h

]t
þ =· 〈vb〉h〈ch〉h

ÿ �� 	
¼ =· Dp

h

� 	h· = 〈ch〉h
� 	

þ
1

V`

∫
Ahq

nhq〈ch〉hdA

� ��
þ D̃

p
h·=〈ch〉h

n o�
¹

1
V`

∫
Ahq

nhq· 〈vb〉h〈ch〉h
ÿ

¹ Dp
h·=〈ch〉h

�
dA: ð60Þ

Here we note that the accumulation term is expressed in
terms of the large-scale intrinsic average concentration,
{ 〈ch〉h} h, and this is exactly the quantity that we would
like to be able to determine.

The convective transport term in eqn (60) is given in
terms of the average of a product rather that the product
of averages, and the diffusive term is represented both in
terms of the large-scalesuperficialaverage, {〈ch〉h}, and the
Darcy-scale average,〈ch〉h. The large-scale superficial aver-
age can be eliminated by the use of eqns 44 in order to
obtain a representation in terms of the large-scaleintrinsic
average, {〈ch〉} h, and we can eliminate〈ch〉h by means of a
decomposition of the Darcy-scale quantities. For theh-
region these are given by

〈ch〉h ¼ 〈ch〉h
� 	h

þ c̃h (61)

〈vb〉h ¼ 〈vb〉h
� 	h

þ ṽbh: (62)

Decompositions of this type must be introduced at every
level of averaging, although they were not shown explicitly
for the small-scale averaging process that lead to the diffu-
sion-adsorption equation given by eqn (10). The decompo-
sitions for the Darcy-scale averaging process are given
by eqn (24) and eqn (28), and we have used the same type
of nomenclature for the deviation quantities,c̃h and ṽbh, con-
tained in eqn (61) and eqn (62). This means that one must be
very careful not to confusẽch as defined by eqn (61) with̃cb as
defined by eqn (28). The logic behind the nomenclature
employed to identify deviations is that atilde is used for

any deviation that is the difference between two quantities
havingdifferent characteristic lengths. If we use eqn (61) and
eqn (62) in the diffusive term in eqn (60), we can follow the
development in Carbonell and Whitaker39or in Quintard and
Whitaker24 to obtain

=·

�
Dp

h

� 	h· = 〈ch〉h
� 	

þ
1

V`

∫
Ahq

nhq〈ch〉hdA

� �
þ D̃

p
h·=〈ch〉h

n o�
¼ =·

�
Dp

h

� 	h· Jh= 〈ch〉h
� 	hÿ

þ
1

V `

∫
Ahq

nhqc̃hdA

�
þ D̃

p
h·=〈ch〉h

n o�
: ð63Þ

If the decompositions defined by eqn (61) and eqn (62) are
used with the convective transport term in eqn (60), we can
follow Plumb and Whitaker18,19 to obtain

〈vb〉h〈c〉h
� 	

¼ Jh 〈vb〉h
� 	h 〈c〉h

� 	h
þ Jh ṽbhc̃h

� 	h
: (64)

Use of eqn (63) and eqn (64) in eqn (60) leads us closer to a
transport equation that contains only {〈c〉h}

h andc̃h. This is
given by

eh(1þ Kh)Jh

] 〈ch〉h
� 	h

]t
þ =· Jh 〈vb〉h

� 	h 〈ch〉h
� 	h� �

¼ =· Dp
h

� 	h· Jh= 〈ch〉h
� 	h

þ
1

V`

∫
Ahq

nhqc̃hdA

� ��
þ D̃

p
h·=〈ch〉h

n o�
¹ =· Jh ṽbhc̃h

� 	hÿ �
¹

1
V`

∫
Ahq

nhq· 〈vb〉h〈ch〉h ¹ Dp
h·=〈ch〉h

ÿ �
dA: ð65Þ

We now turn our attention to the term involving̃D
p
h·=〈ch〉h

and use the decomposition given by eqn (53) to obtain

D̃
p
h·=〈ch〉h

n o
¼ D̃

p
h·= 〈ch〉h
� 	h

n o
þ D̃

p
h·=c̃h

n o
: (66)

If we continue to ignore variations of average quantities
within the averaging volume, the first term on the right
hand side of this result is zero on the basis of

D̃
p
h·= 〈ch〉h
� 	h

n o
¼ D̃

p
h

n o
·= 〈ch〉h
� 	h

: (67)

Under these circumstances eqn (65) can be represented
entirely in terms of {〈ch〉h} h and c̃h except for the last
term that represents the inter-region flux. This form is
given explicitly as
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Theq-region transport equation has exactly the same form
as this result, and for completeness we list it as

To develop a two-equation model for solute transport with
adsorption, we need to analyze the inter-region flux terms
in order to obtain transport equations that are represented
entirely in terms of intrinsic large-scale average concentra-
tions and spatial deviation concentrations. However, if the
two concentrations, {〈ch〉h} h and {〈cq〉q} q are essentially
equal, eqn (68) and eqn (69) can be added together to
obtain a one-equation model, and we refer to this condition
as large-scale mass equilibrium. The simplification inher-
ent in a one-equation model is significant, and such a model
should always be used if it is a valid representation of the
transport process. The mathematical consequence of large-
scale mass equilibrium is given by

〈ch〉h
� 	h

¼ 〈cq〉q� 	q
¼ 〈c〉� 	

,

large¹ scale mass equilibrium (70)

and when this approximation is valid we can add eqn (68)
and eqn (69) to obtain

ef g 1þ Kf gð Þ
] 〈c〉� 	

]t
þ =· 〈vb〉� 	 〈c〉� 	ÿ �

¼ =· Jh Dp
h

� 	h
þ Jq Dp

q

� 	qÿ �
·= 〈c〉� 	� �

þ =·

�
Dp

h

� 	h

V`

·
∫

Ahq

nhqc̃hdAþ D̃
p
h·=c̃h

n o

þ
Dp

q

� 	q

V`

·
∫

Aqh

nqhc̃qdAþ D̃
p
q·=c̃q

n o�
¹ =· Jh ṽbhc̃h

� 	h
þ Jq ṽbqc̃q

� 	q� �
: ð71Þ

Here we have simplified the representation of the one-equa-
tion model by using the following definitions

{ e} ¼Jheh þJqeq (72a)

〈vb〉� 	
¼ Jh 〈vb〉h

� 	h
þ Jq 〈vb〉q

� 	q (72b)

{ e} (1þ { K } ) ¼ eh(1þ K h)Jh þ eq(1þ Kq)Jq: (72c)

When the condition of large-scale mass equilibrium is
valid, we will demonstrate in Part V that the spatial devia-
tion concentrations can be expressed as

c̃h ¼ bh·= 〈c〉� 	
, c̃q ¼ bq·= 〈c〉� 	

(73)

and thatc̃h and c̃q satisfy the boundary condition given by

B:C:1 c̃h ¼ c̃q, at Ahq: (74)

This allows us to express eqn (71) in the relatively simple
form

ef g 1þ Kf gð Þ
] 〈c〉� 	

]t
þ =· 〈vb〉� 	 〈c〉� 	ÿ �

¼ =· Dpp·= 〈c〉� 	ÿ �
ð75Þ

(68)

(69)
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in which the one-equation model, large-scale dispersion
tensor is defined by

Dpp ¼ Jh Dp
h

� 	h
þ Jq Dp

q

� 	q

þ
Dp

h

� 	h
¹ Dp

q

� 	q

V `

·
∫

Ahq

nhqbhdAþ D̃
p
h·=bh

n o
þ D̃

p
q·=bq

n o
¹ Jh ṽbhbh

� 	h
þ Jq ṽbqbq

� 	qÿ �
:

ð76Þ

The large-scale averaged velocity that appears in eqn (75)
is given by the large-scale form of Darcy’s law that
was presented in Part III.1 For completeness we list that
result as

〈v〉� 	
¼ ¹

1
mb

K p
b· = 〈Pb〉b

n o
¹ rbg

� �
(77)

and note that it is based on the idea that thej-region is
impermeable to convective transport.

3 LARGE-SCALE MASS EQUILIBRIUM

The restrictions associated with eqn (70) are, at this point,
purely intuitive. If the physical and chemical properties of
theh- andq-regions do not differtoo much, eqn (70) should
be an acceptable approximation; however, we need to know
what is meant bytoo muchbefore we can proceed with
confidence. If one believes that {〈ch〉h} h ¼ { 〈cq〉q} q is area-
sonable approximation, it is prudent to propose decomposi-
tions of the form

〈ch〉h
� 	h

¼ 〈c〉� 	
þ ĉh, 〈cq〉q� 	q

¼ 〈c〉� 	
þ ĉq (78)

and then identify the conditions for whicĥch and ĉq make a
negligible contribution to the transport process. In eqn (78)
we have followed the nomenclature of Part III1 and used a
circumflexto identify a spatial deviation concentration that
is associated with two quantitieshaving the same length
scale. These results should be contrasted with that given by
eqn (61) where we have used a tilde to identify a spatial
deviation concentration associated with two concentrations
having different length scales. If we substitute eqn (78) into
eqn (68) and eqn (69) and add the results, we obtain

ef g 1þ Kf gð Þ
] 〈c〉� 	

]t
þ =· 〈vb〉� 	 〈c〉� 	ÿ �

¼ =· Jh Dp
h

� 	h
þ Jq Dp

q

� 	qÿ �
·= 〈c〉� 	� �

þ =·

�
Dp

h

� 	h

V`

·
∫

Ahq

nhqc̃hdAþ D̃
p
h·=c̃h

n o
þ

Dp
q

� 	q

V`

·
∫

Aqh

nqhc̃qdAþ D̃
p
q·=c̃q

n o�
¹ =· Jh ṽbhc̃h

� 	h
þ Jq ṽbqc̃q

� 	q� �
¹ eh(1þ K h)Jh

]ĉh

]t
¹ eq(1þ Kq)Jq

]ĉq

]t

¹ =· Jh 〈vb〉h
� 	hĉh þ Jq 〈vb〉q

� 	qĉq

� �
þ =· Jh Dph

� 	h·=ĉh þ Jq Dpq

� 	q·=ĉq

� �
: ð79Þ

When the last four terms in this result are negligible, one
only needs to develop the closure problem forc̃h and c̃q in
order to arrive at the one-equation model given by eqn (75).
As an approximation, we can use that closure problem to
simplify eqn (79) to

ef g 1þ Kf gð Þ
] 〈c〉� 	

]t
þ =· 〈vb〉� 	 〈c〉� 	ÿ �

¼ =· Dpp·= 〈c〉� 	ÿ �
¹ eh(1þ Kh)Jh

]ĉh

]t
¹ eq(1þ Kq)Jq

]ĉq

]t

¹ =· Jh 〈vb〉h
� 	hĉh þ Jq 〈vb〉q

� 	qĉq

� �
þ =· Jh Dp

h

� 	h·=ĉh þ Jq Dp
q

� 	q·=ĉq

� �
: ð80Þ

A reasonable set of restrictions associated with the prin-
ciple of large-scale mass equilibrium can be expressed as

eh(1þ Kh)Jh

]ĉh

]t
¹ eq(1þ Kq)Jq

]ĉq

]t
p =· Dpp·= 〈c〉� 	ÿ �

(81a)

=· Jh 〈vb〉h
� 	hĉh þJq 〈vb〉q

� 	qĉq

� �
p =· Dpp·= 〈c〉� 	ÿ �

(81b)

=· Jh Dp
h

� 	h·=ĉh þ Jq Dp
q

� 	q·=ĉq

� �
p =· Dpp·= 〈c〉� 	ÿ �

(81c)

however, these are of little value unless we can say some-
thing specific about̂ch and ĉq. A little thought will indicate
that eqn (78) can be used with eqn (47) in order to express
the large-scale deviations as

ĉh ¼ Jq 〈ch〉h
� 	h

¹ 〈cq〉q� 	q� �
(82a)

ĉq ¼ Jh 〈cq〉q� 	q
¹ 〈ch〉h
� 	h� �

: (82b)

Use of these results in eqns 81 provides a much more useful
set of restrictions given by

JhJq eh(1þ Kh) ¹ eq(1þ Kq)
� � ]

]t
〈ch〉h
� 	h�

¹ 〈cq〉q� 	q�
p =· Dpp·= 〈c〉� 	ÿ �

ð83aÞ

=· JhJq 〈vb〉h
� 	h

¹ 〈vb〉q
� 	qÿ � 〈ch〉h

� 	hÿ�
¹ 〈cq〉q� 	q

Þÿ p =· Dpp·= 〈c〉� 	ÿ �
ð83bÞ

=· JhJq Dp
h

� 	h
¹ Dp

q

� 	qÿ �
·= 〈ch〉h
� 	hÿ�

¹ 〈cq〉q� 	q��
p =· Dpp·= 〈c〉� 	ÿ �

: ð83cÞ

These restrictions have an appealing form in that they
will be automatically satisfiedwhen the chemical and
mechanical properties of the two regions are the same.
For the general case, these restrictions will only be useful
if we can obtain an estimate of the difference between the
two regional concentrations, and in order to develop an
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estimate of this difference, we need to develop the govern-
ing differential equation for {〈ch〉h} h ¹ { 〈cq〉q} q. A govern-
ing equation for this quantity can be obtained by
subtracting eqn (69) from eqn (68), but before carrying
out that operation we wish to express those two regional
transport equations in a simplified and approximate form
that is quite consistent with the exact representation that
will be given in Part V.36 We express eqn (68) as

eh(1þ K h)Jh

] 〈ch〉h
� 	h

]t
þ =· Jh 〈vb〉h

� 	h 〈ch〉h
� 	h� �

¼ =· JhD
pp
hh·= 〈ch〉h

� 	h� �
¹ ap 〈ch〉h

� 	h
¹ 〈cq〉q� 	qÿ �

ð84Þ

while eqn (69) takes the analogous form given by

eq(1þ Kq)Jq

] 〈cq〉q� 	q

]t
þ =· Jq 〈vb〉q

� 	q 〈cq〉q� 	q� �
¼ =· JqDpp

qq·= 〈cq〉q� 	q� �
¹ ap 〈cq〉q� 	q

¹ 〈ch〉h
� 	hÿ �

:

ð85Þ

In a more detailed analysis of the two-equation model, we

will find additional convective transport terms and coupled
diffusive fluxes; however, eqn (84) and eqn (85) are reason-
able representations of the physics and they can be used
to develop reasonable estimates of the concentration
difference, {〈ch〉h} h ¹ { 〈cq〉q} q. In order to derive a govern-
ing equation for this concentration difference, we first
divide eqn (76) and eqn (77) byJh and Jq, respectively
to obtain

eh(1þ K h)
] 〈ch〉h
� 	h

]t
þ =· 〈vb〉h

� 	h 〈ch〉h
� 	hÿ �

¼ =· Dpp
hh·= 〈ch〉h

� 	hÿ �
¹ J¹ 1

h ap 〈ch〉h
� 	h

¹ 〈cq〉q� 	qÿ �
ð86Þ

eq(1þ Kq)
] 〈cq〉q� 	q

]t
þ =· 〈vb〉q

� 	q 〈cq〉q� 	qÿ �
¼ =· Dpp

qq·= 〈cq〉q� 	qÿ �
¹ J¹ 1

q ap 〈cq〉q� 	q
¹ 〈ch〉h
� 	hÿ �

:

ð87Þ

In order to illustrate the algebraic path that one follows
after subtracting eqn (87) from eqn (86), we will begin
with the first term in each equation and after completing
that analysis we will simply list the final result for the entire
process. Use of eqn (78) allows us to write

eh(1þ Kh)
] 〈ch〉h
� 	h

]t
¹ eq(1þ Kq)

] 〈cq〉q� 	q

]t

¼ eh(1þ K h) ¹ eq(1þ Kq)
� � ] 〈c〉� 	

]t

þ eh(1þ Kh)
]ĉh

]t
¹ eq(1þ Kq)

]ĉq

]t
: ð88Þ

We now make use of eqns 82 to eliminate the spatial devia-
tion concentrations in terms of the difference between the
two regional average concentrations. This leads to

The first term on the right hand side of this result represents
the accumulation term in a transport equation for the con-
centration difference, while the second term represents a
sourcein that transport equation. If thecapacitance factors
associated with adsorption and accumulation in the two
regions are identical, the source term will be zero.

It is convenient to define a mixed mode capacitance factor
according to,

e(1þ K )
� �

hq ¼ eh(1þ Kh)Jq þ eq(1þ Kq)Jh (90)

and we remark that the constraints for any type of local or
large-scale equilibrium always involve mixed mode para-
meters of this type. Use of this result in eqns 81 provides

(89)
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If we repeat the procedure leading to eqn (91) for all the
terms in eqn (86) and eqn (87), we obtain the following
transport equation for the difference between the two regio-
nal concentrations.

Here we have defined the mixed mode velocity and disper-
sion tensor according to

〈v〉hq

� 	hq
¼ Jq 〈vb〉h

� 	h
þ Jh 〈vb〉q

� 	q (93)

Df gpp
hq ¼ JqDpp

hh þJhD
pp
qq: (94)

The result given by eqn (92) is rather complex; however,
we can extract an order of magnitude estimate for the con-
centration difference if we are willing to make use of esti-
mates of the type

]

]t
〈ch〉h
� 	h

¹ 〈cq〉q� 	qÿ �
¼ O

D 〈ch〉h
� 	h

¹ 〈cq〉q� 	qÿ �
tp

� �
¼ O

〈ch〉h
� 	h

¹ 〈cq〉q� 	qÿ �
tp

� �
: ð95aÞ

Here we have assumed that thechangeof the concentration
difference is on the order of the difference itself since this
quantity is directly related to the spatial deviation concen-
tration, ĉh, and we think of the average of the deviation as
being small compared to the deviation itself. The spatial
derivatives can be expressed in a manner analogous to eqn
(95) and we list the results as

= 〈ch〉h
� 	h

¹ 〈cq〉q� 	qÿ �
¼ O

〈ch〉h
� 	h

¹ 〈cq〉q� 	qÿ �
Lc

� �
(95b)

=· = 〈ch〉h
� 	h

¹ 〈cq〉q� 	qÿ �� �
¼ O

〈ch〉h
� 	h

¹ 〈cq〉q� 	qÿ �
L2

c

� �
:

(95c)

Here one should think ofLc as the characteristic length
associated with the region averaged concentrations. It is
necessarily constrained by the classic length scale con-
straints associated with the method of volume averaging,

lq, lh p Ro p Lc, and the upper bound forLc will be the
aquifer or reservoir length scale illustrated in Fig. 1 asL.
For the large-scale intrinsic average concentration we use
the analogous estimates given by

] 〈c〉� 	
]t

¼ O
D 〈c〉� 	

tp

� �
(96a)

= 〈c〉� 	
¼ O

D 〈c〉� 	
Lc

� �
(96b)

=· = 〈c〉� 	� �
¼ O

D 〈c〉� 	
L2

c

� �
(96c)

and when these estimates, along with those given by eqns
95, are substituted into eqn (92) we can extract an estimate
of the difference between the regional concentrations. The
algebraic effort is rather lengthy and details for this type
of analysis are given by Whitaker40 and by Quintard and
Whitaker.41 Here we list only the result that takes the form

〈ch〉h
� 	h

¹ 〈cq〉q� 	q

D 〈c〉� 	 ¼
O[A þ B þ C]

O[1þ D þ Eþ F]
: (97)

in which the six terms on the right hand side are given by

A ¼ O
eh(1þ K h) ¹ eq(1þ Kq)

e(1þ K )
� �

hq

" #
(98a)

B ¼ O
〈vb〉h
� 	h

¹ 〈vb〉q
� 	qÿ �

tp

e(1þ K )
� �

hqLc

" #
(98b)

(91)

(92)
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C¼ O
Dpp

hh ¹ Dpp
qq

ÿ �
tp

e(1þ K )
� �

hqL2
c

" #
ð98cÞ

D ¼ O
〈vb〉hq

� 	hqtp

e(1þ K )
� �

hqLc

" #
(98d)

E¼ O
Df gpp

hqtp

e(1þ K )
� �

hqL2
c

" #
(98e)

F¼ O
aptp

JhJq e(1þ K )
� �

hq

" #
: (98f)

These quantities can be used with eqn (97) in order to
estimate the difference between the two regional concen-
trations; however, difficulties can arise because the sign of
the terms given by eqns 98 are not necessarily obvious.
Because of this, it is possible that terms may either add
or cancel to produce dramatically different results. When
a single term dominates the denominator on the right
hand side of eqn (97), and a single term dominates the

numerator, one can obtain a reliable estimate of the concen-
tration difference in terms ofD{ 〈c〉}. When this is not the case,
one must be able to determine the sign of the estimates given
by eqns 98 and for some simple processes this is feasible.41

The result obtained from eqn (97) can be used with the
restrictions given by eqns 83 which can be arranged in the
form

JhJq eh(1þ Kh) ¹ eq(1þ Kq)
� �

L2
c

Dpptp

3
〈ch〉h
� 	h

¹ 〈cq〉q� 	q� �
D 〈c〉� 	 p 1 ð99aÞ

JhJq 〈vb〉h
� 	h

¹ 〈vb〉q
� 	qÿ �

Lc

Dpp

3
〈ch〉h
� 	h

¹ 〈cq〉q� 	q� �
D 〈c〉� 	 p 1 ð99bÞ

JhJq Dp
h

� 	h
¹ Dp

q

� 	qÿ �
Lc

Dpp

〈ch〉h
� 	h

¹ 〈cq〉q� 	q� �
D 〈c〉� 	 p 1:

(99c)

Fig. 7. Flow normal to a stratified system.
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It is important to note that all three restrictions will be
automatically satisfiedwhen the volume fraction of either
region tends to zero, i.e.,Jh → 0 orJq → 0. In addition, the
individual restrictionswill be automatically satisfied under
the following circumstances:

I. The capacitance factors are equal:
eh(1þ Kh) ¼ eq(1þ Kq):
II. The regional velocities are equal:
{ 〈vb〉h} h ¼ { 〈vb〉q} q

III. The regional dispersion tensors are equal:
{ Dp

h}
h ¼ { Dp

q} q

Since regions that have different mechanical properties
are likely to have different chemical properties, porous
media that are mechanically heterogeneous are likely to
be chemically heterogeneous. This suggests that the
constraint constructed on the basis of eqn (99) and eqn
(97) may be the most important of the three restrictions
since eh(1þ K h) and eq(1þ Kq) are always likely to be
different. On the other hand, if we are dealing with a
steady transport process, the constraint given by eqn (99)
is automatically satisfied. Given the enormous range of per-
meabilities that exist in most aquifers or reservoirs, one
might also expect to find widely varying regional velocities
and this could lead to the failure of the constraint indicated
by eqn (99) and eqn (97). This would certainly seem to be
the case for the system illustrated in Fig. 6 whenK bh q K bq

since this would lead to {〈vb〉h} h
q { 〈vb〉q} q and the failure

of the constraint given by eqn (99) and eqn (97). On the
other hand, if the flow were orthogonal to a stratified system,
such as we have indicated in Fig. 7, the two regional velo-
cities would be essentially equal and the constraint asso-
ciated by the velocity would be satisfied.

4 MECHANICAL AND CHEMICAL
HETEROGENEITIES

For many flow processes in heterogeneous porous media,
the condition oflarge-scale mechanical equilibriumis valid
and the constraints associated with this condition were
developed in Part III.1 Since the two-region model for com-
pressible, single-phase flow is identical in form to the pro-
cess of transient heat conduction in a two-phase system, we
can use a detailed study of local thermal equilibrium41 as a
verification of the theory developed in Part III. When the
condition of large-scale mechanical equilibrium is valid,
the fluid mechanical problem can be described in terms of
a single continuity equation and the large-scale form of
Darcy’s law which can be expressed as

=· 〈vb〉� 	
¼ 0 (100)

〈vb〉� 	
¼ ¹

1
mb

K p
b· = 〈 pb〉b

n o
¹ rbg

� �
: (101)

If the condition of large-scale mass equilibrium is valid,
the process of solute transport with adsorption is described

by

{ e} (1þ { K } )
] 〈c〉� 	

]t
þ =· 〈vb〉� 	 〈c〉� 	ÿ �

¼ =· Dpp·= 〈c〉� 	ÿ �
: ð102Þ

The constraints associated with eqn (100) and eqn (101) are
relatively easy to satisfy; however, those associated with
eqn (102) may be much more difficult to satisfy and this
will lead to the need for multi-region models. The key
constraint associated with large-scale mass equilibrium
would appear to begiven by eqn (99). In thinking about
that constraint, one must remember that the capacitance
factor is influenced by the adsorption equilibrium relation
and the various volume fractions that appear in eqn (37).
Thus it is possible that the adsorption equilibrium relation
given by eqn (3)could be identicalfor both theh-region
and theq-region, while the capacitance factors for these
two regionscould be different. While the importance of the
difference in the capacitance factors is most evident in eqn
(99), this difference also appears in eqn (98) and thus influ-
ences the estimate indicated by eqn (97). Our studies of
large-scale mechanical equilibrium42,43 and local thermal
equilibrium41 clearly indicate that this condition is always
satisfied for steady, uniform flow. Under certain circum-
stances, this means that the regional velocities can differ
greatly, {〈vb〉h} h

q { 〈vb〉q} q , while eqn (100) and 101 still
provide valid representations of the large-scale averaged
velocity and pressure. On the other hand, when the regional
velocities differ greatly, the restriction given by eqn (99)
may fail and the condition of large-scale mass equilibrium
will not be valid. The regional velocities are available to us
in terms of the regional form of Darcy’s law; however,
more convenient representations were given in Part III1

and we list them as

〈vb〉h
� 	h

¼ J¹ 1
h M p

bh· 〈vb〉� 	
, in the h ¹ region (103)

〈vb〉q
� 	q

¼ J¹ 1
q M p

bq· 〈vb〉� 	
, in the q ¹ region: (104)

In this representation, the mapping tensorsM p
bh andM p

bq

are given by the solution of a closure problem that is
equivalent to the closure problem that one needs to solve
in order to predict the large-scale permeability tensor,K p

h.
It is important to remember that large-scale mechanical

equilibrium and large-scale mass equilibrium are both con-
trolled by local heterogeneities, but beyond that they may
not be closely coupled. In Part V36 we will develop the
closure problem for the two-equation model and present
results that illustrate this fact.

5 CONCLUSIONS

In this work we have developed the regional forms of the
solute transport equation, along with the one-equation
model for solute transport with adsorption. The regional
forms have been used to develop the constraints associated
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with the condition of large-scale mass equilibrium, and we
have derived a governing differential equation for the dif-
ference between the regional concentrations. This provides
an estimate of the concentration difference, which in turn
allows us to make some definite statements about the valid-
ity of a one-equation, solute transport model. These state-
ments take the form of constraints that are given by eqns (99)
in conjunction with the normalized concentration difference
that is estimated according to eqn (97).
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APPENDIX A LOCAL ADSORPTION
EQUILIBRIUM

In the absence of surface transport44 and heterogeneous
reaction45, the jump condition46 at theg–k interface for a
dilute solution of the diffusing species can be expressed as

Jump condition

By itself, the jump condition is not sufficient to solve the
mass transport problem under consideration, and in order to
connect the surface concentration,cgs, to the bulk concen-
tration, cg, we make use of a relatively general interfacial
flux constitutive equation given by

Interfacial flux constitutive equation

Both eqns (A1) and (A2) are dynamic relations in which the
surface concentration need not be in equilibrium with the
bulk concentration. To be explicit about this point, we
express the equilibrium relation in the form

ceq
gs ¼ F (cg): (A3)

In order to determine under what circumstances we can
replace cgs with the equilibrium surface concentration
given by eqn (A3), we first decompose the surface concen-
tration according to

cgs ¼ ceq
gs þ cp

gs: (A4)

Under equilibrium conditionscp
gs is zero, and for some

dynamic conditionscp
gs is small enough so thatcgs in

eqn (A1) can be replaced withceq
gs. Our objective in

this appendix is to determine what is meant by small
enough.

Substitution of eqn (A4) in the jump condition given by
eqn (A1) leads to

]ceq
gs

]t
¼ ¹ ngk·Dg=cg ¹

]cp
gs

]t
: (A5)

Use of eqn (A3) along with the definition ofKeq given by
eqn (5) in the text allows us to write eqn (A5) as

Keq
]cg

]t
¼ ¹ ngk·Dg=cg ¹

]cp
gs

]t
: (A6)

In order for this result to simplify to the jump condition
given by eqn (4) in the text, the following restriction must
be valid

]cp
gs

]t
p ngk ·Dg=cg: (A7)

In order to be useful, this restriction must be replaced with
a constraint,47,48and this can be accomplished with the aid
of the interfacial flux constitutive equation. Returning to
eqn (A2), we expand the rate of adsorption in a Taylor
series about the equilibrium surface concentration to pro-
vide the following representation:

R (cg, cgs) ¼ R (cg, ceq
gs) þ (cgs ¹ ceq

gs)
]R
]cgs

� �
cgs ¼ ceq

gs

þ 1
2(cgs ¹ ceq

gs)2 ]2R
]c2

gs

" #
cgs ¼ ceq

gs

þ …: ðA8Þ

Use of this result, along with the decomposition given by
eqn (A4), allows us to write eqn (A2) as

¹ ngk·Dg=cg ¼ R (cg, ceq
gs) þ (cp

gs)
]R
]cgs

� �
cgs ¼ ceq

gs

þ 1
2(c

p
gs)2 ]2R

]c2
gs

" #
cgs ¼ ceq

gs

þ … ¹ k¹ 1ceq
gs ¹ k¹ 1cp

gs:

ðA9Þ

A little thought based on eqn (A2) will indicate that

R (cg, ceq
gs) ¹ k¹ 1ceq

gs ¼ 0 (A10)

and when this condition is employed with eqn (A9) we

(A1)

(A2)
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obtain

¹ ngk·Dg=cg ¼ (cp
gs)

]R
]cgs

� �
cgs ¼ ceq

gs

þ 1
2(c

p
gs)2 ]2R

]c2
gs

" #
cgs ¼ ceq

gs

þ … ¹ k¹ 1cp
gs: ðA11Þ

Use of this representation for the interfacial flux in the
restriction given by eqn (A7) leads to

]cp
gs

]t
p (cp

gs)
]R
]cgs

� �
cgs ¼ ceq

gs

þ 1
2(c

p
gs)

2 ]2R
]c2

gs

" #
cgs ¼ ceq

gs

þ … ¹ k¹ 1cp
gs: ðA12Þ

We now estimate the time rate of change ofcp
gs according

to

]cp
gs

]t
¼ O

Dcp
gs

tp

� �
(A13)

and use this result with eqn (A14) to obtain the following
constraint:

]R
]cgs

� �
cgs ¼ ceq

gs

þ 1
2(c

p
gs)

]2R
]c2

gs

" #
cgs ¼ ceq

gs

þ … ¹ k¹ 1

8<:
9=;tp

q
Dcp

gs

cp
gs

ðA14Þ

sinceDcp
gs will always be less thancp

gs we can replace this
result with the more conservative constraint given by

Constraint

]R
]cgs

� �
cgs ¼ ceq

gs

þ 1
2(c

p
gs)

]2R
]c2

gs

" #
cgs ¼ ceq

gs

þ … ¹ k¹ 1

8<:
9=;tp

q 1:

ðA15Þ

When this constraint is satisfied, the surface concentration
can be represented by

cgs ¼ F (cg) (A16)

even though the system is not at equilibrium in the strict
sense of the word. This means that eqn (4) and eqn (5) in
the text accurately describe the adsorption process at theg–
k interface.

Appendix A.1 Example

We can illustrate the constraint given by eqn (A15) in terms
of the Langmuir isotherm for which the rate of adsorption
takes the form

R ¼ k1(1¹ v)cg: (A17)

Here v represents the fraction of adsorption sites that are
occupied by the adsorbed species. This fraction can be
represented as

v ¼ cgs=c
`
gs (A18)

in which c`
gs represents the surface concentration when all

adsorption sites are occupied. Eqn (A19) and eqn (A20) can
be used to express the equilibrium surface concentration in
the classic form

ceq
gs ¼

Kcg

1þ KAcg

(A19)

in which K andKA are given by

K ¼ k1=k¹ 1, KA ¼ k1=(k¹ 1c`
gs): (A20)

From eqns (A19) and (A20) we obtain

]R
]cgs

¼
k1cg

c`
gs

,
]2R
]c2

gs
¼ 0 (A21)

and this allows us to express the constraint given by eqn
(A15) as

{ k¹ 1 þ k1cg=c
`
gs} tp

q 1: (A22)

APPENDIX B SCALE-UP OF THE ADSORPTION
ISOTHERM

In the process of spatial smoothing at several scales, we
have scaled up the equilibrium relation. In this appendix,
we present the length-scale constraints associated with this
process.

Appendix B.1 Small scale

When the condition oflocal adsorption equilibriumis valid,
the relation between the surface concentration and the bulk
concentration can be expressed as

cgs ¼ F (cg): (B1)

This allows us to represent the surface accumulation as

]cgs

]t
¼

]F
]cg

� �
]cg

]t
: (B2)

The equilibrium function in eqn (B1) can be expanded in a
Taylor series about the average concentration to obtain

F (cg) ¼ F 〈cg〉g
ÿ �

þ cg ¹ 〈cg〉gÿ � ]F
]cg

� ������
cg ¼ 〈cg〉g

þ 1
2 cg ¹ 〈cg〉gÿ �2 ]2F

]c2
g

 !�����
cg ¼ 〈cg〉g

þ … ðB3Þ

On the basis of the spatial decomposition given by

cg ¼ 〈cg〉g þ c̃g (B4)

our representation takes the form

F (cg) ¼ F 〈cg〉g
ÿ �

þ c̃g

ÿ � ]F
]cg

� ������
cg ¼ 〈cg〉g

þ 1
2 c̃g

ÿ �2 ]2F
]c2

g

 !�����
cg ¼ 〈cg〉g

þ … ðB5Þ
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From the closure problem18,19, we know that the spatial
deviation concentration can be estimated by

c̃g ¼ O l g=〈cg〉gÿ �
(B6)

wherelg is the small length scale illustrated in Fig. 3. Use
of eqn (B6) in eqn (B5), and neglecting the higher order
terms, leads to

F (cg) ¼ F 〈cg〉gÿ �
þ O l g=〈cg〉gÿ � ]F

]cg

� ������
cg ¼ 〈cg〉g

: (B7)

We now impose therestriction47,48

l g=〈cg〉g
ÿ � ]F

]cg

� ������
cg ¼ 〈cg〉g

p F 〈cg〉gÿ �
(B8)

so that eqn (B7) can be used to express eqn (B1) in the form

cgs ¼ F 〈cg〉gÿ �
(B9)

which is the first of eqn (12) in the text. In order to obtain a
constrainton the basis of eqn (B8), we estimate the con-
centration gradient as

=〈cg〉g ¼ O
D〈cg〉g
DL

� �
¼ O

〈cg〉g
Lc

� �
: (B10)

HereD〈cg〉g represents the change in the concentration that
occurs over the distanceDL, andLc represents a character-
istic distance associated with the concentration〈cg〉g. The
estimate given by eqn (B10) represents a definition ofLc

that is based on the idea that one can indeed estimate the
gradient of〈cg〉g. From Fig. 2, we see that the distanceDL is
constrained by

DL # l j: (B11)

Use eqn (B10) in eqn (B8) leads to

l g

〈cg〉g
Lc

]F
]cg

� ������
cg ¼ 〈cg〉g

p F 〈cg〉gÿ �
(B12)

and when this constraint is satisfied we know that eqn (B9)
is a valid approximation.

Appendix B.2 Example

In order to extract a specific result from eqn (B12), we
consider the Langmuir isotherm represented by

cgs ¼ F (cg) ¼
Kcg

1þ KAcg

: (B13)

With a bit of algebra one finds that this allows us to express
eqn (B12) as

l g
Lc

p 1þ KA〈cg〉g: (B14)

SinceKA〈cg〉g $ 0, this constraint can be replaced with

l g
Lc

p 1: (B15)

When this constraint is satisfied, eqn (B9) is a valid approxi-
mation for eqn (B1). Under these circumstances, eqn (12) in
the main body of the paper are acceptable approximations for
the scaled up equilibrium relation. We can summarize the
scale-up approximation for the adsorption isotherm as

Keq¼
]F
]cg

scales up toKeq¼
]F

]〈cg〉g (B16)

and a similar procedure is followed at the next level of
averaging.

Appendix B.3 Darcy scale

At this level, the scale-up of the adsorption isotherm takes
place between eqn (22) and eqn (23) where we assume that

cgs ¼ F 〈cg〉g
ÿ �

(B17)

can be replaced with

cgs ¼ F 〈cj〉j
ÿ �

: (B18)

In this case eqn (B17) replaces eqn (B1) and eqn (B18)
replaces eqn (B9). In terms of the scale up suggested by
eqn (B16), we now write

Keq¼
]F

]〈cg〉g scales up toKeq¼
]F

]〈cj〉j
(B19)

and the constraint analogous to eqn (B15) is given by

l j
Lc

p 1 (B20)

in which lj is the characteristic length for thej-region that
is illustrated in Fig. 2. The characteristic length,Lc, in eqn
(B18) is defined in terms of the estimate given by

=〈cj〉j ¼ O
D〈cj〉j
DL

� �
¼ O

〈cj〉j
Lc

� �
: (B21)

In this case we need to understand that the distanceDL is
constrained by

DL # l h, l q (B22)

wherelh and lq are the characteristic lengths for theh- and
q-regions that are illustrated in Fig. 2. When the constraint
indicated by eqn (B20) is satisfied, we consider eqn (23) in
the main body of the text to be a valid representation of the
Darcy-scale adsorption and diffusion process in thej-
region.

Appendix B.4 Large scale

The next scale up of the adsorption isotherm takes place
between eqn (44) and (57), and this scale up for theh-
region can be expressed as

Keq¼
]F

]〈ch〉h
scales up toKeq¼

]F
]f〈ch〉hgh (B23)
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In the main body of the text, this scale up is also illus-
trated by eqn (37) and eqn (50) which we repeat here
as

K h ¼
(ejagk)h

eh

]F
]〈ch〉h

scales up to

K h ¼
(ejagk)h

eh

]F

] 〈ch〉h
� 	h: ðB24Þ

Without going through the details, we note that the length-
scale constraint associated with this simplification is given
by

l h

LH
p 1: (B25)

Naturally, a comparable constraint exists for theq-region.
It seems probable that there are many systems for which

this series of simplifications will not be valid and the adsorp-
tion isotherm can not be scaled up as indicated by eqn
(B23). If the scale up represented by eqn (B16) were not
valid, one would be forced to return to eqn (B5) and express
that representation as

First correction

F (cg) ¼ F 〈cg〉gÿ �
þ c̃g

ÿ � ]F
]cg

� ������
cg ¼ 〈cg〉g

: (B26)

From Plumb and Whitaker18,19we know that the dominant
part of the spatial deviation concentration can be expressed
as

c̃g ¼ bg·=〈cg〉g (B27)

thus thecorrectedform of the adsorption isotherm is given
by

F (cg) ¼ F 〈cg〉gÿ �
þ G 〈cg〉g,bg·=〈cg〉gÿ �

: (B28)

The volume averaged form of eqn (1) in the main body of
the paper is given by

eg

]〈cg〉g
]t

¼ =·(Dg=cg) ¹
1
V

∫
Agk

]cgs

]t
dA (B29)

and use of eqn (B1) and eqn (B29) leads to the form

eg

]〈cg〉g
]t

¼ =·〈Dg=cg〉 ¹ agk

]

]t
1

Agk

∫
Agk

cgsdA

� �
: (B30)

When thecorrectedadsorption isotherm is used with this
general form, we obtain

eg(1þ agkKeq=eg)
]〈cg〉g

]t
¼ =·(Dg=cg)

¹ agk

]

]t
1

Agk

∫
Agk

G 〈cg〉g,bg·=〈cg〉gÿ �
dA

� �
: ðB31Þ

Here we see that a nonlinear adsorption process will
give rise to mixed space–time derivatives and it will
require information from the closure problem to accurately
determine the form of the accumulation term in the
volume averaged transport equation. It would appear that

this represents a new aspect of the problem of mass trans-
port with adsorption that has yet to be explored.

APPENDIX C LENGTH-SCALE CONSTRAINTS
ASSOCIATED WITH VARIATIONS OF THE
ADSORPTION ISOTHERM

In the process of spatial smoothing at several scales, we
have ignored variations of the equilibrium relation within
the averaging volume. In this appendix, we present the
length-scale constraints associated with this process.

Appendix C.1 Small scale

The starting point for the analysis of diffusion and adsorp-
tion in thej-region is given by

]cg

]t
¼ =·(Dg=cg), in the g ¹ phase (C1)

B:C:1¹ ngk·Dg=cg ¼
]cgs

]t
, at theg–k interface (C2)

and the volume averaged form can be expressed as

eg

]〈cg〉g
]t

¼ =·〈Dg=cg〉 ¹ 1
V

∫
Agk

ngk·Dg=cgdA: (C3)

Application of the adsorption boundary condition provides

eg

]〈cg〉g
]t

¼ =·〈Dg=cg〉 ¹ 1
V

∫
Agk

]cgs

]t
dA (C4)

and we can use eqn (A16) and (B9) to express the surface
accumulation term according to

cgs ¼ F 〈cg〉g
ÿ �

,
]cgs

]t
¼ Keq

]〈cg〉g
]t

: (C5)

Here the equilibrium coefficient is defined explicitly by

Keq¼
]F

]〈cg〉g (C6)

and use of eqn (C5) in eqn (C4) leads to

eg

]〈cg〉g
]t

¼ =·〈Dg=cg〉 ¹ av
1

Agk

∫
Agk

Keq
]〈cg〉g

]t
dA: (C7)

If we can remove the integrand from the area integral, eqn
(C7) simplifies to

eg

]〈cg〉g
]t

¼ =·〈Dg=cg〉 ¹ avKeq
]〈cg〉g

]t
(C8)

and from this we can obtain eqn (10) in the main body of
the paper. In order to explore the process of removing an
averaged quantity from an area integral, we make use of the
nomenclature

〈Qg〉g ¼ Keq
]〈cg〉g

]t
(C9)
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and note that〈Qg〉g can be expanded in a Taylor series about
the centroid of the averaging volume to obtain

〈Qg〉g
�����
x þ yg

¼ 〈Qg〉g
�����
x

þ yg·=〈Qg〉g
�����
x

þ 1
2ygyg : ==〈Qg〉g

�����
x

þ …: (C10)

We can now express the area integral in eqn (C7) in
terms of the expansion given by eqn (C10) in order to
obtain

1
Agk

∫
Agk

〈Qg〉g
�����
x þ yg

dA¼ 〈Qg〉g
�����
x

þ
1

Agk

∫
Agk

ygdA

� �
·=〈Qg〉g

�����
x

þ 1
2

1
Agk

∫
Agk

ygygdA

� �
: ==〈Qg〉g

�����
x

þ … ðC11Þ

This can be expressed in more compact form according to

1
Agk

∫
Agk

〈Qg〉g
�����
x þ yg

dA¼ 〈Qg〉g
�����
x

þ 〈yg〉gk·=〈Qg〉g
�����
x

þ 1
2〈ygyg〉gk : ==〈Qg〉g

�����
x

þ …

and we see that averaged quantities can be removed from
interfacial area integrals when the following restrictions are
valid:
.

〈yg〉gk·=〈Qg〉g
�����
x

p 〈Qg〉g
�����
x

(C13)

〈ygyg〉gk : ==〈Qg〉g
�����
x

p 〈Qg〉g
�����
x

: (C14)

Restrictions of this type have been under consideration
since the original work of Carbonell and Whitaker39 and
recent numerical experiments.39 To begin with, we need to
construct estimates of the gradients in eqn (C13) and eqn
(C14). The first of these can be expressed as

=〈Qg〉g ¼ O
D〈Qg〉g

DL

� �
(C15)

in which D〈Qg〉g is the change in〈Qg〉g that takes place over
the distanceDL. It is convenient to define a lengthLQ by
expressing eqn (C15) as

=〈Qg〉g ¼ O
D〈Qg〉g

DL

� �
¼ O

〈Qg〉g
LQ

� �
: (C16)

When this is used with eqn (C13) we obtain

〈yg〉gk=LQ p 1: (C17)

The work of Quintard and Whitaker33 suggests that
〈yg〉gk , l g, thus the constraint associated with the restric-
tion given by eqn (C13) takes the form

l g=LQ p 1: (C18)

Here one must remember thatLQ is a characteristic length
defined by eqn (C16) and that this characteristic length is
determined by the variations ofKeq]〈cg〉g=]t. SinceKeq will
depend on〈cg〉g for a nonlinear adsorption isotherm, the
manner in whichKeq]〈cg〉g=]t varies may be difficult to
determinea priori. Our estimate of the second derivative
in eqn (C14) begins with

==〈Qg〉g ¼ O
D =〈Qg〉gÿ �

DL

� �
(C19)

in whichD =〈Qg〉gÿ �
is the change in=〈Qg〉g that takes place

over the distanceDL. Following the previous estimate, we
define a lengthLQ1 by expressing eqn (C19) as

==〈Qg〉g ¼ O
D =〈Qg〉gÿ �

DL

� �
¼ O

=〈Qg〉g
LQ1

� �
: (C20)

Using eqn (C16) in this result provides us with our final
estimate of the second derivative

==〈Qg〉g ¼ O
D =〈Qg〉gÿ �

DL

� �
¼ O

〈Qg〉g
LQ1LQ

� �
: (C21)

Use of this result in the restriction given by eqn (C14) leads
to

〈ygyg〉gk

LQ1LQ

p 1 (C22)

and a little thought will indicate that〈ygyg〉gk < r2
j

where r j is the radius of the averaging volume shown in
Fig. 3. This estimate of〈ygyg〉gk allows us to express eqn
(C22) as

r2
j

LQ1LQ

p 1: (C23)

It seems quite plausible that the constraints given by eqns
(C18) and (C23) will be satisfied for most real systems.
That is to say that significant variations ofKeq]〈cg〉g=]t
will take place over distances that are large compared to
either lg or r j. As we move up the length scales illustrated
in Fig. 2, it may be more difficult to satisfy constraints of
the type represented by eqns (C18) and (C23).

Appendix C.2 Darcy scale

In the Darcy scale averaging for thej-region, the diffusion
and adsorption equation given by

eg(1þ K)
]cj

]t
¼ =·(Dj·=cj) (C24)

in which the coefficientK is defined by

K ¼ agkKeq=eg: (C25)
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In the averaging process,eg(1 þ K) is removed from a
volume integral according to the simplification indicated
by

1
V

∫
Vj

eg(1þ K)
]cj

]t
dV ¼ eg(1þ K)

1
V

∫
Vj

]cj

]t
dV

� �
:

(C26)

If we let Qj ¼ eg(1 þ K), we can repeat the procedure
outlined by eqns C7 through C23 to obtain the following
two constraints

l j=LQ p 1 (C27)

r2
o

LQ1LQ
p 1: (C28)

Here we must remember that the characteristic lengths,LQ

andLQ1, are now defined by the estimates

=[eg(1þ K)] ¼ O
eg(1þ K)

LQ

� �
(C29)

==[eg(1þ K)] ¼ O
eg(1þ K)

LQ1LQ

� �
: (C30)

In order to determine the characteristic length associated
with the Darcy scale, one must have some idea about the
isotherm as represented by eqn (C25). Here one must
remember that

K ¼ agkKeq=eg (C31)

whereKeq is given by eqn (C6). If the isotherm is linear,
Keq is a constant andLQ and LQ1 will differ from infinity
only because of variations ineg and agk. If the isotherm,
represented by eqn (C5), is nonlinear, one needs to examine
the constraints given by eqns (C27) and (C28) with some
care. If the constraints are not satisfied, we are faced with a
situation in which a coefficient cannot be linearized over
the averaging volume and this leads to a very complex
problem that has been explored only briefly by Quintard
and Whitaker.49

Appendix C.3 Large scale

In the process of large-scale averaging for theh-region, we
have made use of the simplification indicated by

eh(1þ Kh)
]〈c〉h
]t

� �
¼ eh(1þ K h)

]〈c〉h
]t

� �
: (C32)

If we let Qh ¼ eh(1 þ Kh), we can repeat the procedure
outlined by eqns C7 through C23 to obtain the following
two constraints

l h=LQ p 1 (C33)

R2
o

LQ1LQ

p 1: (C34)

Now the characteristic lengths,LQ andLQ1, are defined by

the estimates

=[eh(1þ Kh)] ¼ O
eh(1þ Kh)

LQ

� �
(C35)

==[(1þ Kh)] ¼ O
eh(1þ Kh)

LQ1LQ

� �
: (C36)

Once again we note that these constraints will, for all prac-
tical purposes, be satisfied if the isotherm is linear. For the
nonlinear case, knowledge of the isotherm represented by
eqn (C25) is essential.
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