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Abstract-A general ray-tracing method is proposed to determine the radiative properties of porous media. 
The particular case of random packing of equal sized spheres is studied. The method is used to calculate 
the forward and backward fluxes inside the medium. The two-flux model is then used to derive the 
absorption and scattering coefficients of the medium, from which the radiant conductivity can be calculated. 
Quantitative agreement is obtained in comparison with previous experimental and numerical works. 
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INTRODUCTION 

This paper describes a general method to determine 
the radiative properties of porous media, with special 
attention to the random packing of spheres through 
densification. The packings of spheres are of great 
importance in modern technology in such diverse 
domains as high-performance cryogenic insulation, 
coal combustors, chemical reactors, nuclear fuel rods 
and powder metallurgy. 

Considering that the medium is evacuated, two 
transport mechanisms are relevant : conduction 
through the solid phase and radiative transfer through 
the voids. However, as long as the medium can be 
considered as optically thick, these mechanisms can 
be decoupled and considered separately [l, 21. The 
authors proposed a model for the solid phase con- 
tribution [3], which is often preponderant. However, 
radiative transfer is strongly dependent on tempera- 
ture, and some processes involve temperatures high 
enough for this mechanism to be significant. The for- 
mal problem is to determine the radiative conductivity 
of the medium. This conductivity, which shall be used 
in the thermal diffusion equation, should take into 
account the complex interactions of the radiation with 
the particulate material. 

Several previous studies, most of them exper- 
imental, were devoted to determining radiative 
properties of sphere packings. For a complete review 
one may refer to Tien [4] or Tien and Vafai [5]. The 
experimental determination of the radiative flux inten- 
sity involves lots of difficulties due to the inaccurate 
measurement of the transmitted intensity, which is 
very weak. Thin layer samples allow direct trans- 

t Current address: E. I. DuPont de Nemours and Co. Inc., 
P.O. Box 0356, Wilmington, DE 19880-0356, U.S.A. 

$ Current address: GPM2/ENSPG, BP 46.38402 Ste Mar- 
tin d’Htres Ctdex, France. 

mission, which invalidates the use of the diffusion 
approximation. Therefore, computer simulations 
using the ray-tracing method, as described in a coming 
section, can be very useful since the here mentioned 
problems are eliminated. Such simulations were per- 
formed by Yang et al. [6] for random packings of 
uniform spheres. Yang et al. calculated the trans- 
mitted intensity for various packings and obtained a 
relation of this intensity with the packing height. The 
method proposed in this paper, which is close to the 
one presented by Yang et al., is more consistent in the 
sense that the fluxes inside the packing are directly 
accessed and used to determine the radiative 
properties. 

As the ray tracing method is used, the applicability 
of this work is restricted to media where the typical 
microscopic dimension is large compared to the wave- 
length of the incident radiation. The method can 
effectively take into account the dependent scattering, 
since it considers the multiple reflections occurring 
between the particles. The particles are supposed to 
be opaque and there are no near-field effects, which 
are valid assumptions for large metallic particles. 

In this work, the medium under consideration is 
composed of equal sized spheres in a random packed 
bed. However, the method proposed can be used with 
more general porous media. The packing density is 
varied and the relation between the radiative con- 
ductivity and the relative density is obtained. The 
relative density is defined as the volumetric fraction 
occupied by the particles. 

THEORETICAL BASIS-THE TWO-FLUX MODEL 

The equations leading to the two-flux model were 
first proposed by Schuster [7] to describe the trans- 
mission of light through fog. These equations were 
later adapted by Hamaker [8] who extended the theory 
to include thermal radiation and the combined effect 
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NOMENCLATURE 

a 
c,, c, 
E 

I 

kr 
R 

s 

T 

absorption coefficient 
arbitrary constants 

dimensionless radiative exchange 
factor 
radiative flux 
ray energy bundle 
radiative conductivity 
porous medium characteristic 
dimension, particle 
radius 
scattering coefficient 
absolute temperature 

coordinate in flow direction. 

Greek symbols 

;1 

radiation parameter, x = (a(a+Z.r))” 
2nR//1. size parameter 

i: emissivity 
2 incident radiation wavelength 
(r Stefan-Boltzmann constant. 

Superscripts 
+ forward 

backward 

Fig. 1. Energy balance for a slab of semi-transparent medium 
under one-dimensional radiative flow. 

of radiation and heat conduction. Consider a slab of 
a semi-transparent medium at absolute temperature 
T and a one-dimensional flux as in Fig. 1. The fol- 
lowing two differential equations express the steady- 
state energy balance of the slab : 

di+ 
- = -(a+s)i+ +siC +acrT’ 
d; 

dim 
d= = - (a+s)i fsi’ +aaP, (1) 

where i+ and im are the forward and backward fluxes, 
o is the StefanBoltzmann constant and Tis the absol- 
ute temperature of the medium. The absorption and 
scattering coefficients, a and s, are defined as the frac- 
tions of energy of the propagating wave lost. respec- 
tively, by absorption and scattering per unit length in 
the z-direction. The terms on the right-hand side of 
the first equation of the system (1) are, respectively. 
the decrease of the forward flux by absorption and 
scattering, the increase due to scattering of the back- 
ward flux into the forward direction and the emission 
from the slab into the forward direction. The radiative 
conductivity is defined as 

Assuming that spatial temperature variations are 
small, Hamaker [8] developed a solution to equation 
(1) by approximating T’ by the first two terms of a 
Taylor’s series expansion with respect to I coordinate. 
Let us assume that the medium is optically thick, 
which means that all incident radiation travels only a 
short distance before interacting with the medium. 
Hamaker [8] and Chen and Churchill [l] have shown 
that the radiative heat transfer can be treated as a 
diffusion process, so that the radiative conductivity 
can be calculated as 

k, =!!!?!ii 
a+2s’ 

where T,,, is the mean temperature of the medium used 
for the Taylor’s expansion. Therefore, the thermal 
conductivity of the medium can be obtained from the 
absorption and scattering coefficients. As it will be 
shown in a coming section. these coefficients depend 
on the geometry of the packing and particles and on 
the emissivity of the particles surface. Consequently, 
they do not depend on the temperature, assuming that 
the emissivity is independent of the temperature. Since 
a and s are expected to be proportional to the pro- 
jected area of the particles per unit volume of the 
medium, it is useful to define a dimensionless radiative 
exchange factor as 

1 
E=-------- 

R(a+2s) 
(4) 

where R is the average particle radius, or more gen- 
erally the characteristic length of the porous medium. 
The radiative conductivity becomes 

k, = 8ERoT;. (5) 

Consider now equations (1) applied to a low tem- 
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perature light scattering problem, where the term 
aaT is negligible compared to the others. The solu- 
tion of this system is 

i+(z) = C, ec + Cl e-“’ 

where c( = Ja(at2.r). The constants C, and C2 are 
obtained from the following boundary conditions : 

it (0) = 1, normalized input flow 

i’(co) = i_(co) = 0. (7) 

Finally 

With this set 

i- (z) = 
a+s--a 
-e-*’ 

S (8) 

of equations, the coefficients a and s 
can be easily deduced from data on i+ and i-. Notice 
from equation (8) that the term (a+~-cc)/s charac- 
terizes the back scattering of the packing. In light 
scattering experiments, the values of i+ and i- inside 
the medium are not accessible. Only the boundary 
values i+(L) (transmitted intensity) and i-(O) (back 
scattered intensity), where L is the thickness of the 
sample, can be obtained. Usually, values for the trans- 
mitted intensity are very low and difficult to measure 
due to the thickness of the sample [4]. Reducing the 
thickness allows direct transmission, which invalidates 
the diffusion approximation adopted. Therefore, com- 
puter simulations can be very useful when the basic 
mechanism of the radiative heat transfer is well 
defined, which is the case in geometric optics. Yang et 
al. [6] presented a Monte Carlo method to compute 
the transmitted intensity of the packings of spheres 
with different heights. An intrinsic problem of this 
method is the determination of the packing height, 
which has a deviation of plus or minus one sphere 
diameter. In the present study, a ray-tracing method 
is proposed to produce data on it and i- inside the 
medium, assuming that the medium is large enough, 
so that i-(L) r 0. Directly accessing these values elim- 
inates the difficulties relating to the packing height, as 
was the case in previous works. 

MONTE CARLO METHOD AND RAY TRACING 

PROGRAM 

The computer simulation presented here is based on 
a Monte Carlo method associated with a ray tracing 
program. As a ray tracing method is used, the limits 
of geometrical optics must be respected. Consider that 
the medium is composed by a packing of spherical 
particles with radius R. In this case, a size parameter 
can be defined as 

Fig. 2. Schematics of ray-tracing simulation for a packing of 
monosized spheres. 

(9) 

where 3, is the wavelength of the incident radiation. 
The lower limit for geometric optics, where there is 
no diffraction, is Zl x 115 [4]. This limit, applied to 
thermal (infrared) radiation, gives a minimum particle 
radius of approximately 75 pm. The particles are also 
assumed to be opaque, although refraction and 
internal reflections could easily be taken into account 
in the analysis. 

The geometry of the system is described in Fig. 
2. The flow is being analyzed in the z-direction, the 
forward direction being positive z. An emitting par- 
allelogram, orthogonal to the z-axis, is placed below 
the packing. From this plane, a point and a vector 
with a positive z component are randomly chosen. 
They represent the origin and initial direction of a ray. 
A certain energy bundle is associated with this ray. 
The ray is traced into the packing and the closest ray- 
particle collision is determined. The normal to the 
surface of the particle at the collision point is calcu- 
lated. The ray is then specularly reflected around the 
collision point, with the reflected angle being equal to 
the incident angle, and the reflected ray remaining in 
the plane defined by the surface normal and the inci- 
dent ray. The energy bundle I associated with the ray 
before the collision is reduced to (1 -&)I, where e is 
the particle surface emissivity. Counting planes 
orthogonal to the flow direction are placed at regular 
intervals through the packing. Each time a ray crosses 
one of these planes, the ray energy is added to the 
accumulated forward or backward energy of the 
plane, depending on whether the z component of the 
ray direction vector is positive or negative. Therefore, 
the first counting plane is used to determine the total 
incident intensity and the packing back scattered 
intensity. The packing is bounded by mirror like 
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Fig. 3. Normalized forward and backward fluxes inside the medium. 

planes parallel to the direction of the flow. These 
planes represent the reflecting symmetry condition. 
assuming that the packing can be repeated in the other 
directions. They specularly reflect the rays without 
changing their energy bundle. The planes actually cut 
the outer spheres of the packing to avoid ray defec- 
tions over the boundaries. After a collision, the tracing 
continues until there is no significant ray energy left 
or the ray reaches the bottom or the top of the packing 
and escapes. The process is then repeated for a large 
number of rays (around 10 000 for the present study). 
Finally, the values of the forward and backward fluxes 
(i’ and i-) are collected from the counting planes. 
leading to a relation between the flux and the position 
in the flow direction. 

APPLICATION TO A COMPUTER GENERATED 
RANDOM PACKING OF SPHERES 

The procedure described above has been applied to 
a numerically generated random packing of spheres. 
This packing was obtained by Bouvard and Auvinet 
[9], with an algorithm proposed by Auvinet [lo] that 
simulates the vertical deposition of the spheres inside 
a quasi-cubic box. This packing contains 420 rigid 
spheres in equilibrium under gravity. The average 
coordination number is six and the relative density is 
0.57. To find out how the radiative exchange factor 
varies with the density of packing, the packing was 
densified using the homogeneous isotropic analogy 
proposed by Arzt [ 111. Instead of decreasing the vol- 
ume of the packing it was assumed that every particle 
expanded from its initial radius R to a radius R' with 
its center remaining fixed. Therefore, the new particles 
are truncated spheres. The new density is calculated 
using a random allocation method. A high number of 
coordinates are randomly chosen and their location. 

inside a particle or void, is ascertained. The final ratio 
of solid phase points to total points gives the relative 
density of the packing. 

After collection of the flux from the counting 
planes, equations (8) are fitted using the least squares 
method. Figure 3 shows the flux obtained from the 
numerical simulation and the fitted relation for the 
initial packing with emissivity 0.4. Notice the good 
agreement between the simulation and the analytical 
relation. The discrete approach adopted reproduces 
well the continuous relation originally derived by 
Schuster. It is clear that a packing height of five diam- 
eters is sufficient to reduce the transmitted intensity 
by almost four decades, which eliminates the need to 
consider larger packings and validates the boundary 
conditions [equation (7)]. Figure 4 shows the radiative 
exchange factor obtained for different densities and 
emissivities. The exchange factor decays linearly with 
the density with an approximate slope of - 1.1. The 
variation with the emissivity is also linear, the ex- 
change factor increases with the emissivity with an 
approximate slope of 0.75. For the density and emiss- 
ivity range studied, these variables seem to have inde- 
pendent action on the coefficient. These results are 
compared with the values obtained numerically by 
Yang et al. [6]. The experimental values obtained by 
Kasparek (Vortemeyer [12]) are also shown in this 
figure. Kasparek’s experiment consisted in measuring 
the radiative exchange in a packing of metal spheres 
welded in layers. The layers were oriented per- 
pendicularly to the direction of the flow. The exper- 
iment was performed in vacuum and the adjacent 
layers had no direct contact, therefore convection and 
conduction through the solid phase were eliminated. 
Notice the good agreement between the above men- 
tioned experimental work and the present simulations. 
The agreement with Yang’s study is not so good. 
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Fig. 4. Dimensionless radiative exchange factor as a function of relative density for different emissivities. 

Figure 5 shows the absorption and scattering 
coefficients as a function of relative density for a par- 
ticle emissivity E = 0.4. The agreement with Yang’s 
result for the absorption coefficient is very good, 
whereas a significant discrepancy is observed for the 
scattering coefficient. It is important to notice that 
these values reflect the geometric properties of the 
particulate medium under consideration. Since the 
media are not identical, some variations are normal 
and expected. Further investigations on the sensitivity 
of the coefficients to variations in the packing struc- 
ture are necessary. 

CONCLUSION 

A new method to determine the radiative properties 
of porous media has been proposed. It is based on the 

Monte Carlo algorithm and a ray-tracing program. 
The radiative properties are determined from the for- 
ward and backward fluxes measured directly inside 
the medium. The ray tracing method described can be 
applied to a broad range of problems involving porous 
and particulate media. The only requirement is the 
applicability of geometrical optics, as defined by the 
size parameter [equation (9)]. It has been shown that, 
in the domain where geometric optics apply and where 
the surface properties of the particles and the structure 
of the packing are known, the numerical method pro- 
posed has clear advantages over traditional exper- 
imental and numerical methods. The radiative proper- 
ties of other types of porous media could be easily 
studied using the present method. One example of 
such a medium is the packing of cylindrical rods ana- 
lyzed by Vafai and Ettefagh [ 141. 
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Fig. 5. Dimensionless absorption and scattering coefficients as a function of relative density for emissivity, 
E = 0.4. 
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The dependence of E exchange factor for a random 
packing of spheres on its relative density and on the 
emissivity of particle surface has been found. As 
expected, E decreases with increasing density and 
increases with increasing emissivity. 

The initial application of the present work was to 
exactly determine the radiative contribution to the 
effective conductivity of metal powders used in pow- 
der metallurgy. Although these powders are subjected 
to very high temperatures in vacuum, it has been 
shown that the radiative contribution was negligible 
compared to the solid phase conduction [3. 131. How- 
ever. the usefulness of the present work extends far 
beyond this particular application. 
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