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Advantages of using a power law in a low R
h

turbulent boundary layer
L. Djenidi, Y. Dubief, R. A. Antonia

Abstract At low values of the momentum thickness Reynolds
number, Rh, a relatively accurate estimate of the friction
velocity U

r
can be obtained by assuming a power law velocity

distribution.

1
Introduction
In turbulent boundary layer studies, the friction velocity Uq
is an important parameter which needs to be measured accu-
rately. The Clauser chart technique is often used to determine
Uq. However, while this technique is appropriate at Reynolds
numbers high enough for a log law to exist, it becomes tenuous
and perhaps irrelevant at small Reynolds numbers, say RhO
1500. Indeed, at such Reynolds numbers there is no rigorous
basis for the log law. Direct numerical simulations (DNS;
Spalart 1988) and Laser Doppler Anemometry (LDA; Ching
et al. 1995) of a low Reynolds number (500ORhO1400) tur-
bulent boundary layer showed that the log region is either very
narrow or non-existent. This is not too surprising since a log
region is strictly tenable only at infinite Reynolds numbers (e.g.
Sreenivasan 1990), that is to say when the viscosity of the fluid
can be neglected. On the other hand, the arguments for a power
law, which are as convincing as those for a log law (Barenblatt
1993; Barenblatt and Prostokishin 1993; George and Castillo
1993), are valid at finite Reynolds numbers and should be more
relevant for low Reynolds number boundary layers, when the
effects of the viscosity cannot be neglected. Note that, like the
log-law, the power law cannot be valid in the region y`O30.

The purpose of this note is to show that Uq is accurately
estimated when a power law is used to represent the mean
velocity distribution. Values of Uq are calculated by assuming
a power law (see Sect. 2) and compared to the values measured
with a Preston tube in a turbulent boundary layer. Compari-
sons are also made between calculated values of Uq and those

deduced from the pressure gradient measurements in a fully
developed turbulent channel flow and in a fully developed
turbulent pipe flow.

2
Power law and determination of U

qApplying incomplete similarity (or scaling) assumptions,
Barenblatt (1993) obtained the following power law form for
the mean velocity distribution of a turbulent boundary layer:

U`\Cy`a (1)

where U is the mean velocity in the streamwise direction, y
is the distance to the wall and the superscript ] denotes
normalization by the wall variables; C is a constant to be
determined and a, following Barenblatt, is given by

a\
3

2 ln Rd
(2)

where Rd ({U
1
d/l) is the boundary layer thickness Reynolds

number — note that because of the use of ln Rd , the value of a
is not significantly affected by the uncertainty of estimating d.
LDA measurements (Ching et al. 1995) in a low Reynolds
number boundary layer showed that, beyond the buffer layer,
U` is well represented by Eq. (1). The arguments for a power
law are based on the assumption that viscosity exerts a non-
trivial influence on the mean velocity. This influence is
reflected in a finite value of the Reynolds number. Thus,
it would appear that the universal log law, strictly valid as
Rd]R, can be considered as an asymptotic limit for the power
law (see Barenblatt 1993; Barenblatt and Prostokishin 1993 for
a discussion of this issue). Consequently, from a practical point
of view, a power law seems more appropriate than a log law for
describing low Reynolds number turbulent boundary layers.

A friction velocity law corresponding to the power law (1)
can be obtained (Ching et al. 1995) by extrapolating to y\d as

Uq
U1

\
1

exp(3/2a)A
exp(3/2a)

C B
1 / (1`a)

(3)

Values of Uq calculated with Eq. (3) have been compared with
those determined by measuring the mean velocity gradient at
the wall (Djenidi and Antonia 1993). It was found (see Ching
et al. 1995) that the experimental values were within ^3% of
those calculated with Eq. (3). This suggests that it is possible to
use Eq. (3) to estimate Uq when near-wall measurements are
difficult, for example with a hot wire.
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Fig. 1. Mean velocity distributions. Experiment: s, Rh\540; h,
Rh\940. DNS: — - —, Rh\300; - - -, Rh\670; —, Rh\1410. Power
law distribution: — - - —, Rh\940; — —, Rh\540

3
Experimental details
The experiment was carried out in an open wind tunnel with
a rectangular test section (600 mm]120 mm). The test section
was 2.6 m long and the height of the test section was adjusted
to compensate for the boundary layer growth so that the static
pressure was kept constant along the test section where the
data were taken.

The boundary layer was tripped at the exit of the contraction
using a 50 mm wide strip of no. 40 grit sandpaper downstream
a 1 mm height backward step. Measurements were made at
a distance of 1.7 m downstream the roughness strip and for two
values of Rh (540 and 940) corresponding to freestream
velocities of about 2 and 3.7 m/s.

A single hot wire was used to measure the streamwise
component of the mean velocity. The wire (Pt-10% Rh
Wollaston) has a diameter of 2.5 lm and a length of about
0.5 mm. The hot wire signal was digitized using a 12-bit
analog-to-digital converter (Boston technology) at a sampling
frequency of 5 kHz into a standard 486 PC and the digitized
records transfered by Ethernet to a VAX 780 computer for
subsequent analysis.

Experimental values of Uq were inferred from the wall shear
stress qw, measured with a Preston tube (0.72 mm outer
diameter) and a static tube located at approximately the same
x position on one of the vertical wall of the tunnel. Pressure
differences were measured with a MKS Baratron pressure
transducer whose output was averaged after digitising (1 kHz)
for approximately 60 s. The Preston tube was calibrated in
a fully developed channel flow (see Antonia et al., 1995 for
further details) where Uq can be determined with reasonable
confidence and accuracy from the relation q

w
\[h(dp/dx),

where h is the channel half-width and p is the static pressure. It
was ensured that the calibration range of the Preston tube
covered that encountered in the boundary layer study.

4
Results and discussion
In order to calculate Uq with Eq. (3), C needs to be estimated.
Here, we follow Barenblatt and Prostokishin (1993) and use the
form

C\
1

J3
ln Rd]

5
2
\

J3]5a
2a

(4)

Equation (4) was derived by curve fitting to the experimental
data of Nikuradze (Barenblatt and Prostokishin 1993). The
LDA measurements of Ching et al. (1995) confirmed it to
within the experimental accuracy (̂ 2.5%). In the present
study, C\7.39 (a\0.177) and 7.72 (a\0.166) for Rh\540 and
940, respectively. The values of Uq , measured with the Preston
tube, are 0.103 and 0.175 m/s while those calculated with
Eq. (3) are 0.104 and 0.176 m/s for Rh\540 and 940, respec-
tively. There is clearly a very good agreement between
calculation and measurement, thus proving strong support for
Eq. (3).

Figure 1 compares the measured mean velocity data U`

versus y` (a log-linear plot is used, with normalisation by the
calculated Uq) with the DNS data of Spalart (1988). We also
included the power law distributions (Eq. (1)]. The experi-

mental data are in good agreement with the DNS data above
y`\7. Closer to the wall, the experimental data depart from
the simulations due to the uncertainty of spatial locations of
the probe and wall conduction. Note that the present data (in
agreement with DNS) do not collapse onto a single line in the
region 25Oy`O250, suggesting that the relation

U`\i~1 ln y`]B (5)

where i and B are assumed to be Reynolds number indepen-
dent, is only approximately satisfied (see Ching et al. 1995 for
a discussion of the effect of Rh on the log region).

To further verify the validity of Eq. (3) as well as the
universality of the power law, calculations of Uq were made in
a fully developed turbulent channel flow (Zhu 1994) and a fully
developed pipe flow (Pearson and Antonia 1995). In both these
flows, Uq was estimated quite accurately (with an uncertainty
error of ^1.5%) from pressure gradient measurements.
Figure 2a compares the measured values of Uq with the
calculated ones using Eq. (3) where the Reynolds number is
based on the radius (or channel half-width) and the centreline
velocity, U

1
, for the channel (CF) and pipe (PF) flows. The

results for the boundary layer (BL) have also been included
for completeness. As in the boundary layer calculations, the
channel and pipe flow calculations agree well with the mea-
surements.

Relation (3) is based on an empirical observation that
the quasi-universal form of the power law (Barenblatt and
Prostokishin, 1993)

W{
1
a

ln
U`

C
\ln y` (6)

extends from y`\30 up to the edge of the boundary layer
(Fig. 1; see also Ching et al. 1995). However, in the case of
pipe/channel flows, an expression for Uq can be derived more
rigorously (Barenblatt 1993), viz.,

Uqd
l

\C
Rd2aa(1]a)(2]a)

J3]5a D
1 / (1`a)

(7)
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Fig. 2a, b. Calculated and measured friction velocity Uq for channel
flow (CF), pipe flow (PF) and boundary layer (BL). a e, measured;
£, calculated (Eq. (3)); b £, calculated (Eq. (3)); h, calculated
(Eq. (7))

In Eq. (7) d is either the pipe diameter or the channel width;
a is still calculated with Eq. (2) where Rd is replaced by R

d
\

UM d/l. Equation (7) is obtained by first combining Eqs. (1),
(2) and (4) and AUM \Q, where A and Q are the cross-sec-
tional area and volume flow rate respectively. Figure 2b
presents the values of Uq calculated using Eqs. (3) and (7)
for the channel and pipe flows. The results quite unambigu-

ously show that both equations yield the same values of Uq.
From a practical point of view, Eq. (3) presents an advantage
over Eq. (7): only one measurement (at the centreline) is
required for determining Uq. Of course, when only Q is
available and no measurements are possible, Eq. (7) should be
used.

5
Conclusions
Reliable estimates of the friction velocity in low Reynolds
number turbulent boundary layers can be obtained by assum-
ing a power law distribution for the mean velocity distribution
(Eq. (1)). The power law provides a viable alternative to other
means, for example the Preston tube, of determining the
friction velocity.
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