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Abstract 

The issue of evaluating equivalent pore diameter distributions in membrane microfilters from gas-liquid (g-l)  
porosimetry data has been critically examined. Experiments performed with one isotropic and one composite anisotropic 
membrane in both possible orientations revealed conspicous dependence of the obtained (g-l)  porosimetry peaks on imposed 
pressure ramp rates, p. Interference of this kinetic effect can be eliminated from the measured data by extrapolation to 
p = 0. The ramp rate effect is most likely caused by tortuous pore length distribution, and relatively long times required for 
liquid expulsion. For two experiments, the observed effects of t9 could be reconciled with predictions of the Schlesinger-Be- 
chhold theory [Bechold et al., Kolloid Z., 55 (1931) 172-198]. The data obtained with the thin top layer of the composite 
membrane facing intruding air directly did deviate somewhat from the theory. Pores characterized by (g-l)  porosimetry are 
likely of the "throat type", and their size distribution is considerably more narrow than that obtained for the "node-type" 
pores by SEM-image analysis [Zeman and Denault, J. Membrane Sci., 71 (1992) 221-231]. A single bivariate distribution 
function was constructed for these two distinct pore populations. Flow-weighted or number fraction distributions can be 
calculated from the extrapolated porosimetry data. For narrow ranges of "throat" diameters, these distributions are fairly 
similar. 

Kevwords: Membrane preparation and structure; Microfiltration; Microporous and porous membranes; Two-phase porosimetry; Ultrafiltra- 
tion 

1. Introduction 

Over the last thirty years, synthetic polymeric 
and, to a lesser extent, sintered inorganic membranes 
capable of  stream component separations in the mi- 
crofiltration (MF) and ultrafiltration (UF) size range 
have gained considerable technological and eco- 
nomic importance. Since the pioneering work of 
Bechhold in Germany in 1906 [1], the challenge of a 

Consulting Scientist. 

reliable determination of  pore size distributions in 
these membrane filters has been a subject of  fruitful 
research for most of the century. Even Einstein 
published a short paper on the subject of  experimen- 
tal determination of microfilter pore size in 1923 [2]. 
The vast subject of  M F / U F  membrane characteriza- 
tion was recently critically reviewed by the author 
[3]. Over the years, much ingenuity has been em- 
ployed by numerous scientists and engineers to de- 
velop reliable techniques for determining the often 
elusive pore size distributions in fine filtration mem- 
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branes. Most of the techniques are based on one of 
the three following principles: (a) pore meniscus 
phenomena describable by the de Laplace-Young 
equation for the mechanical equilibrium [4] and the 
related Kelvin equation for the thermodynamic equi- 
librium; (b) fractionation of polydisperse solutes or 
particles describable (under proper conditions) by 
laws of steric retention such as the Ferry equation 
[5]; (c) electron microscopic visualization of 
surface-contained pores coupled to quantitative im- 
age analysis [6,7]. The published attempts to use gas 
permeability measurements (the Poiseuille-Knudsen 
method) [8-10] yielded only mean hydraulic radii. 
Measurements of gas diffusion rates through liquid- 
filled membranes [11,12] have been useful for detect- 
ing defects in membranes or assembled membrane 
devices. The underlying physical principles of most 
characterization techniques are relatively simple, and 
well understood. The main difficulties stem from the 
fact that most technologically important MF/UF 
membranes possess complex pore structures of a 
disordered and stochastic character. Frequently, the 
membranes are endowed with some degree of struc- 
tural anisotropy or discontinuity. In many cases, it is 
next to impossible to define adequately the location, 
boundaries, shape, and surface character of the func- 
tion-controlling "pores". Different techniques are 
sensitive to different subclasses of the membrane 
pore space, and yield, therefore, substantively differ- 
ent results. Description of an irregular and poorly 
defined pore by a single number (radius, diameter, 

hydraulic radius, mean flow radius, mean intercept 
length, equivalent radius, etc.) is deceivingly simplis- 
tic. Yet, the concept of a pore size distribution is 
firmly rooted in the membrane literature and prac- 
tice. It will not be quite possible to avoid it in the 
analysis and discussion presented below. In many 
"real-life" MF/UF membranes, the pore space can 
be roughly subdivided into nodes (voids, cages, cells) 
that account for most of the pore volume, and throats 
(apertures, necks) that control permeability and siev- 
ing [3]. Dimensions of throats are typically smaller 
than those of nodes. The use of a bivariate pore size 
distribution function has been suggested for such 
structures [13]. It requires combined application of 
two different characterization techniques (e.g. some 
kind of intrusion porosimetry combined with thermo- 
porometry (for ultrafilters) or microscopic image 
analysis). The use of a bivariate distribution function 
is illustrated in this report. 

The methods of two-phase (flow) porosimetry are 
of great practical importance. They are relatively 
rapid and inexpensive (especially in their automated 
and computer-controlled versions), reasonably pre- 
cise, reproducible, and non-destructive. Conse- 
quently, they represent methods of choice for quality 
control of MF and UF membrane products in indus- 
trial practice. Gas-liquid (g-l) porosimetry has been 
accepted in several versions as the ASTM standard 
methodology (ASTM F-316-86, ASTM E-1294-89) 
for pore size characterization of MF membranes. 

Selection of the two immiscible fluids (Phases A 
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Fig. 1. Schematic drawing showing intrusion of two membrane pores by air (phase B). Left, a straight cylindrical pore; right, a tortuous 
maze pore. All symbols are defined in the Discussion. 
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and B in Fig. l) is governed by the value of interra- 
cial tension, y, that is required for performing 
porosimetry experiments at reasonably low trans- 
membrane pressures, usually below 100 psi (690 
kPa). Liquid-liquid (l-l) porosimetry which em- 
ploys a pair of immiscible liquids with values of Y 
in the range of 0-3 dyn/cm (e.g. n-butanol-water; 

3' = 1.7 dyn/cm) is suited for the mesopore (d = 2 
to 50 nm) range typical for UF membranes. The 
concepts presented here apply also to ultrafilters and 
the important (1-1) porosimetry technique. However, 
the work is primarily focused on MF membranes and 
their characterization by (g-l) porosimetry. In typi- 
cal (g-l) experiments, membrane immersion liquids 
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Fig. 2. (a) Schematic diagram of the (g-l) porosimeter used in this study: UI, user inputs; RR, pressure ramp rate; SR, sampling rate; MP, 
maximum pressure; CU, control unit; EPR, electronic pressure regulator; MFM, mass flow meter; PT, pressure transducer; TC, test cell; M, 
membrane; GS, gas source. The upstream mass dry flow of air was measured first, the membrane was then wetted with IPA, and this was 
followed by measurement of the wet flow. (b) Typical data output of a (g-l) porosimetry experiment. Qd is mass flow rate through a dry 
membrane; Qw is mass flow rate through a wet membrane; R ratio of wet/dry flows, P is transmembrane pressure. These data 
(extrapolated to p = 0) were obtained with membrane B in the upstream orientation. 
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exhibit interfacial (surface) tensions roughly in the 
range of 15-73 dyn/cm. It is advisable to select a 
fully-wetting liquid with a zero contact angle, low 
viscosity, and low volatility that does not alter the 
membrane in any appreciable way (e.g. by swelling 
or a chemical attack). A simplified sketch of a 
two-phase flow through a membrane pore is shown 
in Fig. 1. An idealized straight cylindrical pore 
(shown on the left) is characterized by a diameter, d, 
and length, l. The latter quantity is equal to mem- 
brane thickness. Liquid A is the wetting (expelled) 
phase, while fluid B (air in our case) is the phase 
intruding the pore at an imposed pressure, P. Due to 
meniscus curvature and interfacial tension, a pressure 
differential, PI - P2 = AP, develops at the interface. 
According to de Laplace-Young equation (published 
in 1805), for a hemispherical meniscus, Ap relates 
t o y  and das:  

AP = ( 4 y / d )  cos 0 (1) 

where 0 is the receding contact angle between phase 
A and the pore wall. For a fully wetting liquid, cos 
0 = 1. A more complicated case involving a non- 
spherical meniscus was considered by Adamson [4]. 
Eq. (1) expresses a condition of mechanical (force) 
equilibrium at the curved interface. For intrusion of 
phase B (air) to occur, the pressure differential, ZIP, 
has to be larger than (4y/d)cos O. The right side of 
the sketch in Fig. 1, shows schematically a convo- 
luted path of an air bubble travelling through the 
maze of a disordered membrane structure. Such 
"maze path" has been considered previously by 
Williams and Meltzer [14,15]. It reflects the fact that 
the air flow through a liquid-filled node-and-throat- 
type structure follows a convoluted chain of throats 
(apertures or necks) that open at a given value of 
AP = (4ycos O)/d. The maze path length, L, is 
considerably longer than the membrane thickness, l. 
This is usually expressed by pore tortuosity, T, de- 
fined as 

"r = L / l  (2) 
Such maze paths represent effective pores that are 
explored by porosimetry. Even a simplified model of 
pore size distribution has to consider distributions of 
both L and the minimum aperture diameters along 
the path, d(min). 

A typical (g-l)  porosimetry experiment consists 

of: (a) measuring upstream air mass flow through a 
dry membrane as a function of increasing pressure, 
Qd(P); (b) immersing the membrane in a wetting 
liquid; (c) measuring upstream air mass flow through 
the wet membrane as a function of increasing pres- 
sure, Qw(P) (see insert in Figs. 2a and 2b). The 
experiments are usually performed with automated 
porosimeters of the kind described in the Experimen- 
tal section (Fig. 2a). Computer-controlled instru- 
ments with software-driven experiment execution, 
data acquisition, processing, storage, and plotting are 
now commercially available. These are, for example, 
the Porometer TM series instruments marketed by 
Coulter Electronics, Hialeah, FL, USA, or the com- 
plete filter analyzer available from Porous Materials, 
Inc., Ithaca, NY, USA. The regression-smoothed 
mass flow-pressure data are used for calculations of 
a flow ratio, R ( P ) =  Qw(P)/Qa(P),  its derivative 
with respect to pressure, d R ( P ) / d P ,  and different 
kinds of bubble points (initial, mean, peak bubble 
point, etc.). In several reports [16-20], this analysis 
was extended to computation of pore diameter (or 
radius) distribution functions from R(P), using sim- 
plified theoretical models. An alternative method 
was proposed a long time ago by Grabar and Niki- 
fine [21]. It used the Qw(P) data alone for comput- 
ing a "number fraction distribution function" of 
pore radii, f ( r )  (in units of inverse length): 

f ( r )  = C ( d Q w ( P ) / d P -  Q w ( P ) / P ) P  5 (3) 

where C is a proportionality constant. This method 
was based again on the cylindrical pore model, use 
of Eq. (1), and the well-known Hagen-Poiseuille 
equation for laminar flow, Q, of an incompressible 
fluid of viscosity, r/, through a cylindrical pore of 
radius, r, and length, L, with a zero (gauge) back 
pressure: 

Q = ( ' I T ' F 4 P ) / / ( g T ~ L )  (4) 

For such a model: 

C = rlL/(47ry 5) (3a) 

Note that the quantity L is assumed to be constant in 
Eqs. (3) and (3a). The published methods for compu- 
tation of pore size distribution functions are contro- 
versial for the following reasons: (a) lack of quantita- 
tive applicability of Eq. (1) and the flow equations to 
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disordered stochastic media; (b) lack of reliable cali- 
bration methods [3]; (c) difficulties with description 
of pore dimensions by a single variable (as discussed 
above); and some uncertainties about the nature of 
the gas flow. However, the single most important 
issue is the non-equilibrium character of the (g-l)  
porosimetry experiment that has been completely 
ignored in the previously cited reports [16-21]. Ki- 
netic effects (often called "transport properties") 
frequently complicate measurements that are based 
on static equlibrium principles (e.g. scanning 
calorimetry, phase transition measurements, partition 
chromatography, etc.). In (g-l)  porosimetry, the 
time-dependent factors are usually associated with 
finite times required to vent tortuous pores (hydrody- 
namic conduits). The non-equilibrium effects were 
probably first observed, described and analyzed (in 
German) by Bechhold et al. [22]. To uphold validity 
of Mark Twain's aphorism that "oblivion is the only 
earthly certainty" (next to death and taxes, of course), 
this seminal work seems now to be safely buried on 
the yellowing pages of Kolloid Zeitschrift (1931). In 
our Discussion, we will attempt a partial resuscita- 
tion of the section of "Porenweite von Ultrafiltern" 
[22] (written by one of the co-authors, Schlesinger) 
that relates to time-dependent effects in two-phase 
porosimetry. It is demonstrated below, by experi- 
ments and theoretical analysis, that the kinetic effects 
are far from negligible, and that they have to be 
properly accounted for in the analysis of (g-l)  
porosimetry data. 

It should be mentioned that this study is con- 
cerned primarily with the automated (g-l)  porosime- 
try measurements, as practiced today in industrial 
testing of MF membranes. The automated instrument 
is not suited for more thorough and lengthy equilib- 

rium-type experiments which would be more appro- 
priate for fundamental investigation. 

2. Experimental 

Characteristics of the two membranes used in this 
study, A and B, are summarized in Table 1. As seen, 
both were ~ 0.2 /zm-rated MF membranes of the 
same overall thickness. Membrane A was an isotropic 
cellulose diacetate (CA) membrane, while membrane 
B was a composite (anisotropic) polyvinylidene fluo- 
ride (PVDF) membrane with a thin ( ~  7/zm) reten- 
tive top layer. 

The (g-l)  porosimeter used in this study was 
designed and constructed by Tuccelli of Millipore 
Corp. It is shown schematically in Fig. 2a. The 
instrument is controlled by a PC-type control unit 
(PU) that allows the operator to choose pressure 
ramp rate, p (RR in Fig. 2a), within a 0.05-2.0 
psi /s  range, sampling rate (SR) in number of 
recorded points per second (0.4-1.6 points/s in this 
work), and maximum pressure (MP) that typically 
does not exceed 150 psi. Higher sampling rates are 
used with faster pressure ramping to generate enough 
points for reliable curve fitting. The electronic pres- 
sure regulator (EPR) consists of a current/pressure 
(I/P) transducer, and a volume booster. A continu- 
ous, linear, smooth, and reproducible pressure ramp- 
ing is controlled by the PU. The upstream test loop 
contains a fine air filter (not shown in Fig. 2a), a 
mass-flow meter (MFM) of a hot-wire anemometer 
type, and a pressure transducer (PT). The MFM 
sensor records air flow in SCFM (standard cubic feet 
per minute), and the PT sensor monitors transmem- 

Table 1 
Characteristics of membranes used in this study 

Membrane Type Rating ( /zm) Material Thickness ( /zm) IPA visual BP (psi) Water flux (l m h/ps i )  

A a Isotropic 0.2 CA 124 19.2 903 
B b Composite, anisotropic 0.22 PVDF 124 19 980 
B bottom layer Isotropic 0.65 PVDF 117 5000 
B top layer Anisotropic 0.22 PVDF 7 

a Sartorius SMI 1127, lot no. 20838. Virtually identical pore size distributions of the two surfaces and cross-section were determined by 
SEM-image analysis [6]. Bulk porosity = 68.9%. 
b Machine cast by Tkacik [25] on Millipore Durapore DVXA. Retention of 0.15 /zm polystyrene (PS) beads, 41 + 8%; of 0.25 /~m PS 
beads, 98.6 + 0.8%. 
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brane pressure in psi (downstream space is at the 
gauge pressure P = 0). The MFM is positioned up- 
stream of the tested membrane to avoid fire hazards 
and sensing interference by wetting liquid vapors. 
The test cell design allows use of  25 mm or 47 mm 
diameter membrane disks. Only 25 mm disks were 
used in this study. Liquid A was a reagent grade 
isopropanol (IPA) purchased from Aldrich Chemical 
Co., with y =  21.7 d y n / c m .  The experiment itself 
was described in Introduction. A typical data output 
is shown in the inset of  Fig. 2a, and in more detail in 
Fig. 2b, where actual data (extrapolated to p = 0 
ps i / s )  for membrane B in the upstream orientation 
are shown. The PU stores the smoothed dry and wet 
flow curves, Qd(P) and Qw(P). Subsequently, it 
computes the ratio R(P)= Qw(P)/Qd(P), its first 
derivative, dR/dP ,  and the initial and peak bubble 
point values, Pi and Pp. All experimental results are 
plotted and printed in a format selected by the 
operator. 

3. Results 

The important variable to consider in evaluation 
of  (g- l )  porosimetry data is the applied pressure 

ramp rate, p = dP/dt .  The extremes of p (0.05 and 
2.0 ps i / s )  correspond to a forty-fold difference in 
scan time, t (e.g., 25 or 1000 s to reach 50 psi). Not 
surprisingly, operators prefer to use shorter scan 
times (higher ramp rates), especially when a heavy 
load of  samples is to be analyzed. The Coulter 
Porometer II manual [16] specifies scan times below 
600 s. To reach the specified maximum operating 
pressure of  195 psi, selected value of  p has to be 
higher than 0.325 psi /s .  Before we present the 
experimental data on the effect of  p on dR(P) /dP ,  
i.e. the usual "end result" of  the (g- l )  porosimetry 
analysis, we want to consider two other points. The 
first deals with response times of  the two upstream 
detectors: the pressure transducer and the mass flow 
meter. The response times are both in the range 
below 1 ms, and we may regard them as instanta- 
neous for our purposes. The second point to consider 
is the effect of  p on the upstream-measured mass 
flows. It can be readily shown that for air at T = 
298.3 K (25°C) and below P = 100 psi (690 kPa), 
the ideal gas equation of  state does not deviate 
significantly from the more accurate van der Waals 
or virial expansion equations. Differentiation of  the 
ideal gas equation of state with respect to time, and 
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Fig. 3. Pressure ramp rate, dP/dt, dependence of mass air flows, Q, measured with membrane A at P = 20 psi. The symbol definition is 
the same as in Fig. 2b. A "compressive" flow, Qc, was determined with an air-impermeable Mylar film in the test cell. Straight-line 
regression equations are given for each set of points. 
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for a constant volume of the upstream air space, V, 
yields: 

( d n / d t )  v = ( V / R T )  (d P / d t )  v = ( V p ) / ( R T )  

(5) 

where R is the universal gas constant (8.314 J K i 
tool-  t ), T is the absolute temperature in K, and n is 
the number of moles of air. The molar flow, d n / d t ,  

is measured by the mass flow meter (1 (standard 
cubic foo t ) /min  = 1 SCFM = 1.264 m o l / m i n  for an 
ideal gas at T =  273.2 K and P(absolute)--= 14.7 
psi). Using the engineering units employed by our 
instrument, we can rewrite Eq. (5) in the form: 

Qin (SCFM) = 5.975V(f l  3) p (ps i / s )  (6) 

where Qi, is the air flow (at T = 298.2 K) through 
the upstream positioned flow meter. The unknown 
upstream air space volume, V, was obtained by 
measurements of  a "compressive"  mass flow, Qc, 
using an air-impermeable Mylar film in the test cell 
instead of  a membrane. When we plotted Qc values 
at P = 20 psi against p (large filled squares in Fig. 
3), we obtained a straight line with a slope of 
= 0.052 SCFM s psi i. The small intercept ( =  0.02 
SCFM) is likely due to minor air leaks from the 
upstream space. A virtually identical set of results 

(filled diamonds) was obtained by evaluating the 
effect of p on the wet flow, Qw, measured with 
membrane A at P = 20 psi, i.e. at the initial bubble 
point. This measurement was carried out by a differ- 
ent operator on a different day. The slope value 
yielded V =  8.7 × 10 -3 ft 3 =  246 cm 3. A dry mass 

flow, Qd, dependence on p is slightly more compli- 
cated. Ideally, we should obtain: 

Qd (SCFM)in = Qd (SCFM)out + 0 .052p (7) 

where the subscript " o u t "  refers to the downstream 
mass flow. Measurements of dry flow-pressure 
curves, Q0(P), at different values of p, revealed that 
they were significantly more non-linear (concave 
upward) at low values of p. The same trends were 
observed with membrane B in both orientations. One 
possible explanation is that membrane hydraulic re- 
sistances were more variable during longer scans at 
low values of p. The uncorrected data for Q0(p)  
with membrane A (small filled squares in Fig. 3) 
yielded an unexpectedly high slope value of ~ 0.085 
SCFM s psi - t  . After correction for nonlinearity of 
the Qd(P) data (open squares in Fig, 3), the slope 
value became --- 0.049 (within 6% of the expected 
value). The corrections were made by drawing 
straight lines between Qd values at P = 0 psi and 
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Fig. 4. Pressure ramp rate effects on the dR/dP vs. P curves measured with an isotropic membrane A. Ramp rate values are given for 
each curve. A curve extrapolated to p = 0 psi/s (dashed line), and the error range for visual bubble points, BP, determined by a manual 
method (thick solid line) are also shown. 
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the end points (usually at MP = 50 psi). The purpose 
was to establish that the Q(p )  dependence for both 
wet and dry flows can be explained by the ideal gas 
behavior, Eqs. (5) and (6). A moderate dependence 
of R on p (filled triangles in Fig. 3) is mainly due to 
the large intercept of the Qd(P) function. This ap- 
plies only to regions below initial bubble points, Pi. 
Once the membrane becomes fully vented at pres- 
sure Pv, Qw = Qd, and R remains independent of p. 
Examination of experimental data showed that the 
more important first derivative values, d R ( P ) / d  P, 
were consistently zero (independent of p) below Pi 
and above Pv. This suggests that the effects of the 
upstream "compressive" mass flow on d R ( P ) / d P  
are negligible. 

However, the wet flow curve is dramatically in- 
fluenced by the pressure ramp rate for a different 
reason, namely finite flow rates of the expelled 
liquid. The effect is demonstrated by the experimen- 
tal curves of dR/dP vs. P (Figs. 4-6)  that were 
measured at different values of p. In Fig. 4, data 
obtained with membrane A, an isotropic 0.2 /zm- 
rated cellulose acetate membrane (Sartorius SM 
11127) are presented. Measurements were carried 
out with pressure ramp rates, p = 0.1, 0.2, 0.5, and 
1.0 psi/s.  The experimental points were fitted by 

normal (Gaussian) distribution functions, character- 
ized by values of mean (or median), Pm, and stan- 
dard deviation, (r. The heights of the peaks, K = 
(dR/dP) m, in arbitrary units reported by the instru- 
ment were proportional to the actual values in psi-].  
Each curve was thus defined by a three-parameter 
equation: 

(dR/dP) = K e x p ( -  ( P  - pm)2/ (2o '2 ) )  (8) 

Values of K, Pm, and tr were extrapolated to p = 0 
psi/s,  using regression analysis. For values of P~az a 
better linear fit was obtained with Pm= Pm(~/P)" 
The other two parameters were extrapolated by a 
straight-line regression of (K or o') vs. p points. 
Obviously, with only four points used in each regres- 
sion, the extrapolation has to be viewed as only 
approximate. In spite of that, a clear trend was 
observed for dependence of both Pm and tr on p. 
Therefore, we used the extrapolated values for calcu- 
lation of a dR/dP vs. P curve expected at p = 0 
(drawn in dashed line). Fig. 4 shows also the range 
(19.2 + 0.5 psi) of visual bubble points (thick line) 
measured independently by a manual method. 

Fig. 5 shows analogous smoothed data obtained 
with membrane B (an anisotropic composite PVDF 
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Fig. 5. Data analogous to those shown in Fig. 4, measured with an anisotropic (composite) membrane B in downstream orientation 
(explained in the text). 
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Fig. 6. Data analogous to those shown in Fig. 4, measured with an anisotropic membrane B in upstream orientation. 

membrane). With this membrane, the results de- 
pended markedly on the sample orientation in the 
test cell. Data shown in Fig. 5 were obtained with 
the open (belt) side of the membrane facing intrud- 
ing air. For brevity, we refer to this orientation as 
"downstream", indicating that the tight (more reten- 
tive) side faced the downstream part of air flow. 

Extrapolation of the peaks to p = 0 ps i / s  was done 
in the analogous way as with the peaks in Fig. 4. 

Fig. 6 shows the ramp rate effects observed with 
membrane B in the "upstream" orientation. Note 
that the effect of membrane orientation was consid- 
erably more pronounced at low values of p. The 
missing variable in Figs. 4 - 6  is scan time, t. In Fig. 
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Fig. 7. Two dR/dP curves from Fig. 6 [at p = 0.I (rear) and l.D (front) psi/s) redrawn in 3D coordinates to show their pressure and time 
dependence. 
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Table 2 
Parameters of d R / d P  vs. P curves shown in Figs. 4-6  

Membrane A Membrane B 

Upstream Downstream 

Ramp rate (psi/s)  Pm (psi) o- (psi) Pm (psi) cr (psi) Pm (psi) O" (psi) 

extrapolation 
0 18.7 0.17 33.6 1.31 24.9 1.36 
0.1 21.4 0.45 34.3 1.79 26.1 1.28 
0.2 22.6 0.9 33.9 1.91 27.5 2.04 
0.5 25.9 2.16 35.6 3.31 33.9 3.06 
1 27.5 3.78 37.4 5.09 39.6 3.83 

Estimated pore diameter range (/zm) 

0.65-0.69 0.34-0.42 0.43-0.61 

Parameters reported by the porosimeter 

Ramp rate (psi/s)  Pi (psi) Pp (psi) Pi (psi) Pp (psi) Pi (psi) Pp (psi) 

0.1 20.3 21.2 29.9 34.3 23.2 26.1 
0.2 20.7 22.5 29.5 33.9 24.2 27.5 
0.5 21.9 25.9 27.9 35.4 26.8 33.9 
1 20.5 27.4 28.5 37.4 31.9 39.6 

Indicators of peak width 

Ramp rate (psi /s)  Ap (psi) o- (psi) Ap (psi) o- (psi) zlP (psi) o- (psi) 

0.1 0.9 0.45 4.4 1.79 2.9 1.28 
0.2 1.8 0.9 4.4 1.91 3.3 2.04 
0.5 4 2.16 7.5 3.31 7.1 3.06 
1 6.9 3.78 8.9 5.09 7.7 3.83 
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Fig. 8. Standard deviations, tr, of fitted Gaussian peaks plotted against difference of instrument-reported initial and peak bubble points, Pi 
and Pp. Data were pooled from all three experiments. The straight-line regression equation is shown. 



L. Zeman / Journal of Membrane Science 120 (1996) 169-185 179 

7, two curves from Fig. 6 (for p = 0.1 and 1.0 psi/s)  
were plotted in a 3D graph that shows also the time 
axis. This illustrates the point that dR/dP  is a 
function of at least two independent variables ( P and 
p, or P and t). 

All values of Pm and o- used in Figs. 4-7  
(including those extrapolated to p = 0) are summa- 
rized in Table 2. Since not all experimental curves 
were perfectly Gaussian, the fitted parameters Pm 
and 0- were compared with the initial and peak 
bubble point values, Pi and Pp, determined by the 
porosimeter. These values are listed in the middle 
panel of Table 2. The Pm and Pp data are in 
agreement within experimental error. The difference, 
Ap = P p -  Pi is indicative of peak width and is 
proportional to 0-. This is clearly illustrated in Fig. 
8. It was somewhat surprising to find that Ap is 
approximately equal to 2o-, and not the expected 
3o'. This was due to a less than perfect fit of 
experimental points in the vicinity of Pi by more 
"forward tailing" Gaussian curves. Thus, the curves 
shown in Figs. 4-7  under represent Pi values roughly 
by 10-, i.e. 1-5 psi. This does not change in any 
important way the main pattern of presented results, 
or their interpretation. The agreement was consider- 

ably better for the trailing edges of the peaks (not 
shown). For the sake of completeness, the ramp rate 
dependence of Pp and P~ in all three experiments is 
plotted in Fig. 9. The trends are basically the same as 
those illustrated by Figs. 4-6.  

4 .  D i s c u s s i o n  

The data presented above raise several interesting 
questions. Why are the (g-l)  porosimetry curves so 
strongly affected by imposed pressure ramp rates? 
Why does the extrapolated d R /dP  vs. P peak for 
an irregular stochastic structure like membrane A 
exhibit width (60-= 1.0 psi) that is within the experi- 
mental error of bubble point measurements? Why is 
the expected effect of membrane orientation with an 
anisotropic membrane B virtually obliterated at 
higher ramp rates? What is the nature of the air flow, 
and are we justified in using the Hagen-Poiseuille 
equation [Eq. (4)] to describe it? Finally, our head- 
line question: are the pore size distributions measur- 
able by (g-l)  porosimetry? Below, an attempt is 
presented to formulate at least partial answers to 
these questions. 
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Fig. 9. Initial (filled points) and peak (open points) bubble points, Pi and Pp, plotted as a function of pressure ramp rate. Letters A and B 
refer to the membrane used, (up) and (down) to membrane orientation in the holder. 
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4.1. Effect of pressure ramp rate 

As mentioned in the Introduction, even a simpli- 
fied model for pore intrusion in random media has to 
reflect both a size distribution of restricting orifices 
(throats), f(d),  and a length distribution of tortuous 
maze paths, f (L).  To keep things simple (hopefully 
not oversimplified), we will model the maze path as 
a tortuous cylindrical conduit, characterized by an 
effective diameter, d = 2 r, and an effective tortuous 
length, L. According to Eq. (4), hydraulic resistance 
for laminar viscous flow through a cylindrical capil- 
lary is proportional to L i d  4. We can then incorpo- 
rate other resistance contributing factors such as the 
effects of convolution, convergent-divergent charac- 
ter of the conduit pore, surface roughness, etc., into 
L. This will make the "effective" L larger than its 
actual geometric length. This simplification is justi- 
fied only if the above mentioned effects do not 
change the nature of the flow. 

Let us now recapitulate the theoretical approach 
of Bechhold et al. [22] that is based on a simple 
straight pore model, as depicted in Fig. 1. We will 
use here the effective tortuous pore length, L, rather 
than the membrane thickness, l. Both fluids A and B 
are treated as incompressible in [22]. However, Eq, 
(4) (written for a zero back pressure, Pl = 0), applies 
also to a compressible fluid B (such as air) for a case 
where its volume (or flow) is measured at an average 
pressure in the air-filled part of the capillary, (P  + 
P~)/2. This is true even if P1 ~ 0, but than (P  - P1) 
appears in Eq. (4) instead of P. The viscosities of A 
and B are r/A and 7/B. The expelled phase A wets the 
membrane completely, i.e. cos 0 = 1. In a time 
interval dt, displaced volumes, dV, of both fluids are 
equal and evaluated from Eq.(4): 

dV= "n'r2dx = ( T r r 4 ( p -  P,)dt ) / (8r lBX ) 

= (~r4pzdt)/(STIA( L - x))  (9) 

Therefore: 

( P - P , ) / ( ' O B x )  =P2 / ( r lA (L - - x ) )  (10) 

Incorporation of Eq. (1), and rearranging yields: 

P2 = ( P - 2 Y l r ) / ( 1  + (rib x)l(rlA( L - x))  
(11) 

We combine now Eqs. (9) and (11): 

7rr2dx = ( T r r 4 ( p -  2 y / r ) d t ) / ( 1  + ('qB x) 

//(TIA( L - X))(1//(8TIA( L - x ) ) )  (12) 

and introduce the pressure ramp rate: 

p = P / t  (13) 

After rearranging, we obtain: 

8~TALdx + x(rlB -- r/A)dX= r2ptdt - 2 y r d t  (14) 

Eq. (14) is subsequently integrated within limits: 

0 < x < L; and 2 7 / ( r p )  < t < T (15) 

assuming that pore intrusion starts at time, 2y/(rp) ,  
at which P = 27/r ,  and ends at time, T. The inte- 
gration yields a quadratic equation for T: 

r2pT2/2 - 2 r y T +  (272 - 4(r/A + r/B)L 2) = 0 

(16) 

Only the root with a positive sign between the two 
numerator terms has a physical meaning: 

T=(2y+(8p(~TA +~lB)LZ)°s ) / (pr )  (17) 

Employing Eq. (13) and substituting d =  2r, we 
obtain the desired expression for the intrusion pres- 
sure, P: 

P = 4 y / d  + 8(('OA + rlB)/2)° 'SLp°S/d (18) 

This is the Schlesinger-Bechhold equation [22] 
which introduces dependence of the intrusion (bub- 
ble point) pressure, P, on the commonly ignored 
variables L and p. At p = 0, it reduces to Eq. (1). 
For IPA-air (3/= 21.7 dyn/cm; ~/A = 2.43 × 10 -2 
P; r/B = 1.8 × 10 -4 P), it becomes: 

P (psi) = 12.59/d ( /zm)  + 3.372 

× 10-3L( /zm)  [ p (ps i / s ) ] °S /d ( /~m)  

(19) 

Eq. (19) suggests that the L / d  ratio has to be about 
1 x 10 3 to produce an increase of P by 1 psi at 
p = 0.1 psi/s.  However, L and d have to be consid- 
ered as two independently distributed structural vari- 
ables. Their distribution could be expressed by a 
bivariate distribution function f(d,L).  The most hy- 
draulically resistant pores are those with the maxi- 
mum tortuous length, Lmax, and the minimum effec- 
tive diameter, dmi n. Conversely, the values, Lmi n and 
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dmax, apply to the most permeable pores. An esti- 
mate of dmi n to dma x range can be obtained from the 
(g-l)  porosimetry data, extrapolated to p = 0. Eq. 
(1), with cos 0 = 1, is used for P to d conversion. 
Thus, for membrane A, the extrapolated Pm 4-30" 
range (18.2 to 19.2 psi) yielded dmi n to dma x = 0.65 
to 0.69/xm. This coincides with the range of experi- 
mental error in pore diameters evaluated from man- 
ual bubble point measurements. Similarly for mem- 
brane B in the downstream orientation, the extrapo- 
lated P,, 4- 3o- range (20.8 to 29 psi) yielded dmi n to 

dma ~ =0.43 to 0.61 #m. This range is 4.5 times 
larger than that determined for membrane A, but still 
very narrow. Examination of the porosimetry data 
from these two experiments (Fig. 4, Fig. 5 and, Fig. 
9) suggested a reasonable agreement with the 
Schlesinger-Bechhold equation, Eq. (19). This is 
shown in Fig. 10, where the P m -  3o- points, ob- 
tained at four different ramp rates, are compared to 
curves calculated from Eq. (19). The fitted ranges of 
d and L are shown in Fig. 11. As seen in Fig. 10, the 
agreement between theory [22] and experiment was 
not perfect. It appeared somewhat better for mem- 

brane A (filled symbols) than membrane B (open 
symbols). However, the main two features of the 
experimental results could be well reproduced by Eq. 
(19): (a) relative insensitivity of Pi (squares) to an 
increase of p; (b) pronounced increase of peak width, 
6o., with increasing p. 

The results obtained with membrane B in the 
upstream orientation (Fig. 6, Fig. 9, and Table 1) are 
more puzzling. The P~ values were found to be 
decreasing with increasing p, the Pm (or Pp)  v a l u e s  

were almost independent of p, and the o. (or Ap) 
values increased with increasing p. At low p, the 
bubble point range was clearly higher than that 
measured with the same membrane in the down- 
stream orientation. However, at p =  0.5 and 1.0 
psi/s,  the sensitivity to orientation was virtually 
obliterated. Clearly, the results obtained with mem- 
brane B in the upstream orientation cannot be fitted 
to Eq. (19). In the absence of a better explanation, 
we can reason that Eqs. (1) and (4), from which Eqs. 
(18) and (19) are derived, do not apply to venting of 
pore space in a very thin ( ~  7 /~m) top layer of a 
composite membrane, when this layer faces intruding 
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Fig. 12. Bivariate pore diameter distribution function, bd, for membrane A. The 3D surface shows distribution of uncorrelated node-type 
pore diameters, d(n), from SEM-image analysis [6], and throat-type pore diameters, d(t), from (g-l)  porosimetry (this work). 
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air directly. The length of vented conduits is likely 
comparable to their width, and entrance flow effects 
may be significant. 

4.2. Narrow width of pore diameter distributions 
evaluated from (g-l) porosimetry 

As demonstrated above, the (g- l)  porosimetry 
peaks have to be extrapolated to zero pressure ramp 
rate in order to eliminate interference from kinetic 
effects. The extrapolated Pm+ 3 O" data, in conjunc- 
tion with Eq. (1), allow us to estimate diameter 
ranges of intruded (characterized) pores. These ranges 
are also listed in Table 2 (second panel). They are 
surprisingly narrow, particularly for membrane A. 
Since the porosimetry data were well fitted by sym- 
metric normal (Gaussian) distribution curves, we can 
assume that the flow-weighted diameter distributions 
are also close to Gaussian. This result is in striking 
contrast to the wide and asymmetric pore size distri- 
bution determined previously for membrane A by the 
SEM (scanning electron microscopy)-image analysis 
method [6]. Our interpretation is that the larger pores, 
with highly variable diameters, d(n), observable by 
SEM on the surface of a membrane, are mainly the 
"node-type" pores. On the other hand, pores charac- 
terized by (g- l )  porosimetry (a pore-intrusion 
method) are mainly "throat-type" pores with much 
less variable diameters, d(t). If we assume that the 
diameter distribution functions, f(d(n)) and f(d(t)), 
for these two classes of pores are uncorrelated, we 
can follow the suggestion of Dullien [13], and calcu- 
late a bivariate distribution function, bd(d(n),d(t)). 
Such a function is defined as: 

bd(d(n)), d(t)) =f(d(n)) f (d( t))  (20) 

The bd function is shown graphically in Fig. 12. The 
maximum height of the log-normal function, f(d(n)), 
was adjusted to match that of the normal distribution 
function, f(d(t)). Fig. 12 illustrates clearly a remark- 
able size disparity between the two pore populations. 

4.3. Nature of flow in (g-l) porosimetry 

The kinetic effect, as expressed by the second 
term in Eq. (18), is caused mainly by a relatively 
slow flow of the expelled liquid. This is due to a 
great difference between viscosities of the two flu- 

ids: ~(IPA) = 2.43 x 10 -2 Poise and r/(air) = 1.80 
x 10 -4 Poise. The latter value is virtually negligible 
in Eq. (18). The upper bound for liquid flow veloc- 
ity, v, at P = 50 psi through the most permeable 
pore (d = 0.7/zm, L = 370 /zm) is about 0.6 cm/s ,  
corresponding to a Reynolds number, Re, on the 
order of 7 X 10 -4. Although the transition region of 
Re for flow turbulence is lowered in convergent-di- 
vergent conduits [23], it appears safe to conclude that 
the liquid flow through MF membrane "pores"  is 
laminar. During liquid expulsion, flow of air, with a 
higher kinematic viscosity of = 1.5 X 10-~ cm2/s  
(compared to = 3.1 X 10 2 cm2/s  for IPA), and 
Re = 1.4 X 10 4, is also laminar. Even for the fastest, 
slip-corrected (see below), dry membrane air flow, 
the maximum value of "pore"  Re is comfortably 
low, on the order of 5 X 10 -5. Therefore, assump- 
tion of laminar flows, permitting use of Eqs. (4) or 
(22) for the modeled cylindrical conduits is justified. 

The applicable mechanism of air flow is impor- 
tant for proper evaluation of pore diameter distribu- 
tion functions [19]. If a continuum viscous flow, 
described by the Hagen-Poiseuille equation, Eq. (4), 
applies, the wet /dry flow ratio, R(P), can be ex- 
pressed as: 

R(P) - ( f6 t  f( d)d4dd )/(fdminf ( d)d4dd 1 
, a ..... / / \  a ..... ] 

(21) 

where f(d) is the number fraction distribution func- 
tion, d = (4y cos O)/P from Eq. (1), and dmio, dma x 
are the extremes of the pore diameter distribution. 
The R(P) curve (shown, for example, in Fig. 2b) is 
a cumulative flow-weighted distribution function, and 
dR(P)/dP corresponds to its differentiated (prob- 
ability density) form. 

The applicable mechanism of air flow depends on 
the value of Knudsen number, K = 2.~/d, where h 
is the mean free path of gas molecules (about 66 nm 
for air under our experimental conditions). A fully 
developed Knudsen (free-molecular) air flow, con- 
sidered in [19] occurs at values of K > 10 [24], and it 
is unlikely that it plays important role with the 
studied MF membranes. However, it has to be cer- 
tainly considered for gas flow through UF mem- 
branes. The range of 0.2 < 0.4, applicable to our 
experinaents, straddles so called "dilute" ( K = 0 -  
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0.25) and " t ransi t ion" ( K  = 0 .25-10)  regions of  gas 
flow. Under these conditions, the viscous flow is 
likely enhanced by diffusional reflection from con- 
duit walls. This effect is usually [24] accounted for 
by a so-called "sl ip  correction factor" ,  (1 + 3.99K), 
that changes Eq. (4) (with d = 2 r)  into: 

a = (1 + 3.99K)rrd4p/(128~BL) (22) 

However,  both A and d(intruded) are proportional to 
1/P. Over a relatively narrow range of P and d in 
our experiments, K can be regarded as a constant. 
Therefore, the slip correction does not alter signifi- 
cantly Eq. (21). Both wet and dry flows of air are 
proportional to d 4. 

The previously mentioned method of Grabar and 
Nikitine [21] allows evaluation of a number fraction 
distribution function, f(d),  from wet flow data by 
means of Eq. (3). In derivation of Eqs. (3) and (3a), 
a purely viscous flow [Eq. (4)], and L = constant 
were assumed. Therefore, the method applies only to 
Qw(P) data extrapolated to p = 0. In Fig. 13, we 
compare pore diameter distribution curves, (d R / d  P) 
vs. d, and f (d )  vs. d [21] calculated from data 
shown in Fig. 2b. These data correspond to the 
( t9 = 0 p s i / s )  curve shown in Fig. 6 (membrane B; 

upstream orientation), and an extrapolated ( p  = 0 
p s i / s )  relationship, Qd ( S C F M ) =  0 .02P (psi). As 
expected, and also shown in Fig. 13, the flow- 
weighted distribution curve (solid line) is positioned 
to the right of  the number fraction distribution curve 
(dashed line)• The ( d R / d P )  curve was normalized 
to yield R = 1 at Pmax (Fig. 2b). The f (d )  curve was 
normalized to the same height as the other curve. In 
view of the narrow width of these distributions, the 
observed difference between the two curves is very 
small• For wider distributions of d, the difference 
can be substantial [4,19]• In Fig. 13, the f (d)  curve 
is slightly asymmetric (non-Gaussian). 

5. C o n c l u s i o n s  

5.1. Are pore size distributions in MF membranes 
measurable by two-phase flow porosimetry ? 

The answer is a qualified and limited yes. In 
recapitulation of the reported findings, we list below 
the qualifying conditions. 

(a) The (g - l )  porosimetry data have to be extrapo- 
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Fig. 13. Pore diameter, d, distribution curves calculated from the data shown in Fig. 2b (membrane B, upstream orientation, p = 0). The 
flow-weighted distribution, dR/dP (solid line) and the number fraction distribution, f(d), [21] (dashed line) are compared. To convert P 
into d, Eq. (1) (with cos 0 = 1) was used. 
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lated to zero pressure ramp rate to eliminate interfer- 
ing kinetic effects, or (if possible) obtained at p = 0. 

(b) The calculated pore diameter distributions re- 
fer to those of cylindrical pore "equivalents", and 
not any "real geometry" pores. 

(c) The characterized pores are of a "throat type". 
They are (on average) smaller and considerably less 
variable in size than the "node-type" pores visual- 
ized by SEM. 

(d) A distinction has to be made between the 
flow-weighted distribution, dR/dP(d), and the 
number fraction distribution, f (d0)  [21]. For narrow 
distributions, the two functions are very similar. For 
wider ranges of d, they are significantly different. 
Both distributions are directly obtainable from exper- 
imental data (extrapolated to p = 0), if C in Eq. (3a) 
is regarded as an adjustable proportionality constant. 

(e) The observed conspicuous ramp rate depen- 
dence of (g-l)  porosimetry peaks can be ascribed to 
a distribution of tortuous pore lengths, and inter- 
preted in terms of the Schlesinger-Bechhold theory 
[22]. This approach did not work for a composite 
membrane with the retentive layer facing intruding 
air (i.e. in the "upstream" orientation). 
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