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Biological temperature-dependent rate models based on Arrhenius’ and 
Eyring’s equations have been formulated by Johnson & Lewin (1946), 
Hultin (1955), and Sharpe & DeMichele (1977). The original formulation 
of Sharpe and DeMichele is poorly suited for non-linear regression. Very 
high correlations of parameter estimators occassionally make regression 
with their equation impossible using Marquardt’s algorithm (1963). 

This analysis describes a new formulation of Sharpe and DeMichele’s 
model that greatly alleviates the non-linear regression problem. It is partly 
based on Hultin’s formulation (1955). Biological and graphical inter- 
pretation of the model parameters is discussed. Regression suitability is 
illustrated with a typical data set. Similar modifications to the equations of 
Hultin (1955) and Johnson & Lewin (1946) are described. 

1. Introduction 

With the advent of computer simulation to the applied biological sciences, 
there has been an increased interest in the use of mathematical models to 
describe temperature-dependent rates of organism metabolism, growth and 
development. A review of the more popular models is given by Laudien 
(1973, pp. 359-361) and Watt (1968, pp. 276-281). 

It is evident from these reviews that models based on Arrhenius’empirical 
equation (1) and Eyring’s theoretical equation (2) have an advantage 
because of a foundation in absolute reaction-rate theory, as developed by 
Eyring (1935; Glasstone, Laidler & Eyring, 1941). 

r(T) = A. exp (-EJRT), (1) 
KKT 

r(T) = - 
h 

. exp [(AS’ - AH#/T)/R] = B . T. exp (-AH#/RT). (2) 

r(T) is the rate constant of a (unimolecular) chemical reaction at tempera- 
ture T (s-l), A and B are pre-exponential factors (SC*) or (s-l deg-‘), E, is 
the activation free energy (cal mol-‘), R is the universal gas constant 
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(1.987 cal mall’ deg-‘), T is the temperature in K, AS’ is the entropy of 
activation (cal mol-’ deg-‘), AH’ is the enthalpy of activation (cal mol ’ ), k’ 
is Boltzman’s constant (cal molecule ’ deg-‘1, tz is Planck’s constant (cal s). 
K is a transmission coefficient (unitless). 

Johnson & Lewin (1946) and Hultin (1955) applied Eyring’s theory to 
biological rate processes over high and low temperature regions, respec- 
tively. Sharpe & DeMichele (1977) combined these biological models into a 
unified rate model that described the rate of biological processes for all 
temperatures that support life. 

Although these biological rate models have a theoretical advantage over 
their competitors, there has been one practical disadvantage to the use of 
these models. Fitting the models to observed development (or growth) rate 
data requires non-linear regression techniques. The original mathematical 
formulation of Sharpe and DeMichele’s model is poorly suited for non- 
linear regression. 

In this paper we describe a new formulation which greatly facilitates the 
model’s use with non-linear regression techniques. We discuss the biological 
and graphical interpretations of the parameters in the new formulation and 
illustrate the regression suitability with a typical data set. We then describe 
similar modifications to the four parameter models of Hultin (1955), and 
Johnson & Lewin (1946). Although not discussed, similar modifications can 
be made to analogous models based on Arrhenius’ equation ( 1) simply by 
eliminating the leading temperature factor. 

2. Original Formulation 

The model of Sharpe & DeMichele (1977) describes how the rate of a 
biological process is affected by temperature. In this discussion, we will 
consider the biological process to be the development of a poikilotherm (e.g. 
insect, plant, micro-organism, etc.), but metabolic processes such as growth, 
respiration or photosynthesis can also be described. The model is derived 
from the following assumptions: (1) at all temperatures, the development 
rate of a poikilotherm population is determined by a single rate-controlling 
enzyme reaction and (2) this rate-controlling enzyme is reversibly denatured 
(inactivated) at high and low temperatures, but maintains a constant total 
concentration (active + inactive) independent of temperature. The deriva- 
tion of the original mathematical formulation from these assumptions is 
covered in detail by Sharpe & DeMichele (1977). 

The original formulation is: 

r(T) = 1 + exp [(A& - AH=/ T)/R] + exp [(A& - A&/ T)/R]' (3) 
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r(T) is the mean development rate at temperature T (time-‘), T is the 
temperature in K, R is the universal gas constant (l-987 cal deg-’ mall’). 
The other parameters in the equation are associated with the rate-control- 
ling enzyme reaction. 

4 is a conversion factor with no thermodynamic meaningt, AH: is the 
enthalpy of activation of the reaction that is catalyzed by the enzyme (cal 
mol-‘), A& is the change in entropy associated with low temperature 
inactivation of the enzyme (cal deg-’ mol-‘), AHL is the change in enthalpy 
associated with low temperature inactivation of the enzyme (cal mall’), ASH 
is the change in entropy associated with high temperature inactivation of the 
enzyme (cal deg-’ mol-i), AHH is the change in enthalpy associated with 
high temperature inactivation of the enzyme (cal mall’). 

The difficulties of using this formulation with non-linear regression tech- 
niques are: (1) that very high correlations exist between model parameter 
estimators (e.g. O-99996), and (2) that reasonable initial parameter esti- 
mates to begin iterations are not readily apparent. 

With several data sets, very high correlations of parameter estimators 
have made regression impossible. These high correlations can be under- 
stood by looking at the partial derivatives of the model with respect to the 
different parameters. The partials with respect to 4 and AH;; A.‘$= and 
AH=; and ASH and AHH each differ by only the factor -(l/T). This factor is 
almost constant since the Kelvin degree temperatures that support most life 
range only from 270-320 K. If this factor were constant, regression of the 
model would be impossible. 

Initial parameter estimation for equation (3) is inconvenient because the 
parameters have no simple graphical interpretation that provides initial 
estimates from visual inspection. In the past, we have used fixed initial 
parameter estimates that are averages of previous least squares estimates. 

3. Modified Formulation 

The modified formulation is obtained by algebraic rearrangements of 
equation (3). There is no change in the theory of the model. In the modified 
form, three new thermodynamic parameters are defined to replace three 
parameters in equation (3). 

The first new parameter, p(~~s~), is defined as follows: 

p(250cj =298 ,'"-6/'98l/R. 

t By placing ~5 in the exponent, its units are physically inconsistent. This problem is corrected 
in the modified equation. 
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Solving for 4, we obtain 

and substituting into equation (3), the numerator becomes 

Thus p(250cj replaces 4 in the modified form. 
The second new parameter, T1,zr., was defined by Hultin (1955). 

AHL 
TIE, = -. 

ASr 

Solving for AS, we obtain, 

AHL AS==--- 
G/2,.' 

and substituting into equation (31, the second term of the denominator 
becomes 

Thus Tl/zL replaces ASL. The third parameter, T1i2H, is defined analogously 
to T1/2r. 

Assembling the new numerator and denominator, the modified form of 
equation (3) becomes: 

r(T) = 

l+exp [%(&-$)I +exp [?(&-$)I’ (4) 

r(T) is the mean development rate at temperature T(time-‘I, T is tem- 
perature in K (298 K = 25”C), R is the universal gas constant 
(1.987 cal deg-’ mol-‘I. 

The other parameters in the equation are associated with the rate- 
controlling enzyme reaction. 

p(zsOc) is the development rate at 25°C assuming no enzyme inactivation 
(time-‘), AH; is the enthalpy of activation of the reaction that is catalyzed 
by the enzyme (cal mol-r), T1pr is the temperature (“K) at which the 
enzyme is i active and i low temperature inactive, AH, is the change in 
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enthalpy associated with low temperature inactivation of the enzyme 
(cal mol-‘), T1,2H is the temperature (K) at which the enzyme is f active and 
$ high temperature inactive, AHH is the change in enthalpy associated with 
high temperature inactivation of the enzyme (cal mol-‘). 

4. Interpretation of New Parameters 

(A) BIOLOGICAI 

One of the advantages of the new parameters is that they have more 
intuitive biological interpretations. To understand these biological inter- 
pretations, the significance of the denominator of equation (4) must be 
understood. 

PAT) = 
1 +exp [$ c,‘;:ii+exP [ $$(k-$)]’ (5i 

P2(T) represents the fraction of rate-controlling enzyme that is in the 
active state. As either the second or third term of the denominator in 
equation (5) increases in magnitude, the fraction of active rate-controlling 
enzyme decreases (due to either low temperature denaturation or high 
temperature denaturation, respectively). Sharpe & DeMichele (1977) have 
a complete discussion of the significance of equation (5), including graphs of 
PD’f. 

The subscript of ~(2~0~) refers to 25°C (298 K) which was chosen as a 
standard reference temperature at which most poikilotherms experience 
little if any low or high temperature enzyme inactivation. Any temperature 
between 20”-30°C would fill this requirement for a reference temperature, 
but 25°C seemed the best choice, since it is used as a standard reference 
temperature in many scientific disciplines. Special cases of extremely 
thermophilic or psychrophilic organisms may indicate a different reference 
temperature. 

The small enzyme inactivation at 25°C implies that, for most organisms, 
P2(298 K) = 1. This implies that an approximate value for the rate of 
development at 25°C is the value of the numerator of equation (4) at 298 K. 
But at 298 K, the numerator is exactly equal to p,250c). Thus p(250c) is an 
approximate value for the rate of development at 25°C. Specifically, p(2sOc., 
is an exact value for the rate of development at 25”C, under the assumption 
that there is no enzyme inactivation at 25°C [P2(298 K) = 11. 

The definition and interpretation of the second new parameter, Tlj2=, was 
given by Hultin (1955). As the temperature decreases from 25°C low 
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temperature enzyme inactivation will become significant (while high 
temperature inactivation remains negligible). At some temperature, T*, 
half of the enzyine population becomes low temperature inactive and half 
remains active. Since P2(T*) = $, the second term of the denominator in 
equation (5) will be approximately equal to 1 (since the third term is 
negligible). This implies that T* = T1,2r. Thus, the temperature at which the 
enzyme population is 4 active and 4 low temperature inactive is equal to 
T 1,2L.+ The interpretation of Tliz is analogous to that of T, ?, . 

Temperature PC) Temperature PC) 

Temperature (t/“K) Temperature (t/“K) 

FIG. 1. Arrhenius plot (log rate vs. reciprocal degrees Kelvin) of specific growth rate 
(generations per hour) of E. coli in glucose-minimal medium (O’Donovan ef al., 1965) 
( . ) = observed mean growth rates at 10 different temperatures. (A) = rates predicted by 
equation (4). (B) =plot of equation (4) numerator. (C) and (D) = plots of equation (4) 
numerator divided by second and third term of denominator, respectively. The slopes of lines 
(B), (C) and (D) are related to enthalpy parameters, as described in the text. 

(B) GRAPHICAL 

All six parameters of equation (4) have graphical interpretations when 
viewed on an Arrhenius plot (log of development rate vs. reciprocal Kelvin 
temperature). Figure 1 shows an example of poikilotherm growth rate data, 
describing the specific growth rate (generations per hour) of Escherichia coli 
in glucose-minimal medium (O’Donovan, Kearney & Ingraham, 1965). The 

i An equivalent definition for TIIzL is the temperature at which the standard Gibbs 
free-energy change (AG”) for the low temperature inactivation reaction is equal to zero 
(assuming negligible high temperature inactivation). 
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points are the observed mean growth rates for the bacteria at 10 different 
temperatures. Curve (A) is the plot of equation (4) fitted to these data. 

As seen in Fig. 1, curve (A) is a composite of three approximately straight 
linest. Line (B) is a plot of the numerator of equation (4) only. This 
represents the behaviour of the poikilotherm under the assumption of no 
enzyme inactivation [P2(T)= 1]. The slope of this line is approximately 
equal to -AHA/R+. 

Lines (C) and (D) are plots of the numerator of equation (4) divided by 
each of the exponential terms in the denominator. These lines represent the 
effect of low and high temperature inactivation and curve (A) asymptotically 
approaches them at temperature extremes. The approximate slopes of lines 
(C) and (D) are (AHL-AH~)/R and ( A H n - A H ~ ) / R ,  respectively~. 
Thus, the three parameters AH~, ANt, AHH determine the slopes of lines 
(B), (C), and (D) in Fig. 1. 

Tempera tu re  (°C) 

45 40  35 30 25 7'0 15 I0 
I ' 0  , ~ , , , , , , 

0"8 
0 ' 6  

0"4 .... . ........ p(25oc)) -"" d ( I / 2 9 8 ° K ,  
- . . . .  

-.... 

l.c 0 '2  Temperature = 7: .......... 
2 H " . .  

"~ 0 . l  
.c 0 "08  Temperature = 

0.06 
o 

0-04  - -  A 
. . . . . .  B 
. . . . . . .  C 

0-02 

i I I i i i 1 
0 " 0 1  I I I I I I I 

5 1 5  3 1 0  3 0 5  3 0 0  2 9 5  2 9 0  2 8 5  

Tempera tu re  (1/°K)  

FIG. 2. Identical to Fig. 1, except line (C) shows values one half of line (B). The p~asoc~ 
estimate is the intercept of line (B) at T = 298 K. The T1/2L and T1/2~ estimates are the 
temperatures at which curve (A) and line (C) intersect. 

+ A pure exponential expression of the form A .  exp (B/T) results in a straight line on an 
Arrhenius plot. All the lines in these Arrhenius plots, which appear to be straight, are not 
exactly straight, since the expressions contain Eyring's equation [T .  A .  exp (B/T)]. 

.+ The slopes of these lines are not exactly proportional to the enthalpy parameters for the 
same reason that the lines are not exactly straight (i.e. Eyring 's  equation).  This discrepancy is 
less than 6% for most poikilotherms. 
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The three new parameters determine the intercepts of lines (B), (C), and 
(D) in Fig. 1. This is shown in Fig. 2. Since line (B) in Fig. 2 [same as line (B) 
in Fig. l] represents the rate if no enzyme inactivation occurred, this line 
must pass through the x, y co-ordinates [l/298, p,-sac-,]. Thus, ~,zs;~., 
determines the intercept of line (B) at T = 298 K. 

Line (C) in Fig. 2 shows rates equal to half of line (B). These lines are 
parallel since the rates are on a log scale. Line (C) represents the rate if only 
half the enzyme population were active at all temperatures [Pz( T) = $1. The 
temperatures (high and low) where curve (A) passes through line (C) are 
T 112” and T112~, respectively. Thus, T1,ZH and Tllz, determine, albeit 
indirectly, the intercepts of lines (C) and (D) in fig. 1. 

5. Regression Suitability 

The same very high correlation between parameter estimators is not 
expected when the partials of the model with respect to the new parameters 
are considered. In the three cases, AH: and pt250C,r AHL and Tliz,, and 
A& and TIIZ~, the ratio of the model partial derivatives are 

@(25”C) 

'R' 

1 1 7-f/2= -_- ~ 

T  TI/zL > . AH,’ 

and 

( 1 1 7-1,2H -_- - 

T  T1/2H > ’ A& 

respectively. Each of these ratios has a wide magnitude range, because the 
first factor of each ratio changes sign as T varies from 260 to 340 K. Thus we 
would not expect very high correlations in general. 

The alleviation of the correlation problem as well as the initial parameter 
estimate selection problem can be illustrated with the example of the E. coli 
data in Fig. 2. Using Marquardt’s search algorithm, (Marquardt, 1963; 
Bevington, 1969), we performed a least squares non-linear regression on 
these data (weighted according to the reciprocal of the rate values, since low 
rates tend to be measured with greater accuracy than high rates). 

The simple graphical interpretations of p(250C,r T1lzL, and Tl,2, in 
equation (4) allowed us to obtain starting estimates for these parameters 
within one order of magnitude of the least squares estimates. From Fig. 2, we 
can estimate p1c250cJ = O-3 h-‘, fljzr = 290 K, and !?ilzH = 315 K. Because 
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starting estimates for AH:, AHL and AHH are not as readily apparent by 
graphical inspection, fixed starting estimates (averages of previous esti- 
mates) of AHH = 10 000 cal mall’, AHL = -60 000 cal mol-‘, and AH, = 
100 000 cal mol-’ were used. In equation (3), however, all starting 
parameter estimates must be fixed, sin_ce q$ AS,, and AS, have no simple 
graphical interpretation. These were C$ = 20, A& = -200 cal deg-’ mall’, 
and AS, = 300 cal deg-’ mol-‘. 

TABLE 1 

Least squares parameter estimates for specific growth rate of E. coli in 
glucose-minimal medium (O’Donovan et al., 1965) (Fig. 1) 

Using 4 AH:, AS, AH, A& AH” sf Number of 
equation t cal/mol cal/mol cal/mol cal/mol cal/mol iterations 
(3) -“K -“K for 

convergence 

Estimate 19.51 9963 -176.9 -51510 676.2 214000 9.09~10-~ 14 

Using 2 
P~z~;c) AH:, T;;L AH, TizH AHH se Number of 

equation cal/mol cal/mol cal/mol iterations 
(4) for 

convergence 

Estimate 0.273 9963 291.2 -51510 316.4 214000 9.09~10~’ 7 

t By placing &I in the exponent, its units are physically inconsistent. This problem is corrected 
in the modified equation. 

Table 1 shows the least squares estimates of the parameters and the 
residual mean square (sa) for equations (3) and (4). Both equations predict 
the same estimated rates with the same residual mean square. 

Equation (4), however, required half as many iterations for convergence 
as equation (3). With a convergence criterion of 

RSS, - RSS, + , 

RSS,. , 
<lo-*, 

where RSS, = the weighted residual sum of squares after the nth iteration, 
equation (4) required seven iterations for convergence while equation (3) 
required 14 (Table 1). 

The primary reason for the slow convergence of equation (3) is the very 
high correlations of certain parameter estimators (Table 2). Note that the 
correlations between 4 and AH;, AS, and AH=, and AS, and AHH are all 
greater than O-9998. 
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TABLE 2 

Asymptotic correlation matrix of equation (3) parameter estimators for specific 
growth rate of E. coli in glucose-minimal medium ( O’Donovan et al., 1965 i 

(Fig. 1) 

4 1 0.99993 -0.74 -0.73 -0.50 -~ll~jll 
AH; 0.99993 1 -0.74 -0.73 -0.49 ---Cl.49 
A& -0.74 -0.74 I 0.9998 0.24 (1.24 
AH, -0.73 --cl.73 0.9998 1 0.24 (1.24 
ASH -0.50 -0.49 0.24 0.24 I 0.999996 
AH, -0.50 -0.49 0.24 0.24 0.999996 I 

Table 3 shows that this difficulty has been alleviated with equation (4). 
Note that the highest correlation for equation (4) is 0.96 (in absolute value). 
We feel that this example is representative of the type of regression benefits 
that equation (4) generally provides when compared to equation (3). 

TABLE 3 

Asymptotic correlation matrix of equation (4) parameter estimators for specific 
growth rate of E. coli in glucose-minimalmedium (O’Donovan et al., 1965) 

(Fig. 1) 

P(25”C, 1 -0.96 0.‘) 5 0.79 0.58 0.3h 
AH: -0.96 1 --I%93 - 0.73 -0.74 0.49 
T I/ZL 0.95 -0.93 1 0.79 0.59 0.37 
AH,. 0.79 PO.73 0.79 1 0.40 0.24 
T I/ZL 0.58 -0.74 0.59 0.40 1 0.73 
AH, 0.36 -0.49 cr.37 0.24 0.73 1 

6. Four Parameter Models 

In order to estimate the enzyme inactivation parameters (T,,,,~, AH=, 
T ijzm AHH), development rate data must be obtained in both regions of 
Arrhenius non-linearity. This may be a formidable experimental task. 
Often, however, there are situations where the temperature response of a 
poikilotherm has been studied for only part of the temperature spectrum. 
For example, in insect emergence from diapause, a researcher may have 
much more data and interest in the insect development rate at cold 
temperatures than at very warm temperatures. 
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In such a situation, equation (4) can be modified to eliminate the high 
temperature enzyme inactivation effect. This is done by removing the last 
exponential term in the denominator to give a four parameter model: 

r(T)= 
P(Z5T) 298 rexp[T(&-$)] 

. 1 +exp [%($--‘)I 

(6) 

Equation (6) is analogous to Hultin’s equation (1955) and can be used in 
situations where high temperature inactivation has not been studied (i.e. the 
temperature optimum for development or growth has not been found). 
Figure 3 shows this four parameter model fitted to prepupal development 
rate data (h-l) for Drosophila melanogaster below 28°C (Bliss, 1926). 

Temperature (“C) 
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Temperature it IoK) 

FIG. 3. Arrhenius plot of prepupal development rate (hr-‘) for Drosophila mdanogasfer 
below 28°C (Bliss, 1926) ( ) = observed mean development rates at 20 different temperatures. 
(A) = rates predicted by equation (6). (B) = plot of equation (6) numerator. (C) = plot of 
equation (6) numerator divided by exponential term of denominator. 

Low temperature inactivation can also be removed giving a four 
parameter model with only high temperature inactivation: 

r(T) = 
P(25”C) 298 -Texp [T(&-+) 

l+exp[%(&-$)3 ’ 
(7) 
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This equation is analogous to the equation developed by Johnson Kr Leui~l 
(1946). Figure 4 shows this four-parameter model fitted to lmmaturc 
development rate data (days-‘) for the boll weevil (Anthonomus gradis I 
(Sharpe ef al., 1977). 

Temperature i”C) 

, 
0.01 i -I-.. -.-~-L--i 

3k5 & & Tim &6 

Temperoture (t/OK) 

FIG. 4. Arrhenius plot of immature development rate (days-.‘) for the boll weevil 
(Anrhonomus grandis) (Sharpe et al., 1977) ( ) = observed mean development rates at seven 
different temperatures. (A)=rates predicted by equation (7). (B) = plot of equation (7) 
numerator. (C) = plot of equation (7) numerator divided by exponential term of denominator. 

7. Conclusion 

The modification of these biological temperature-dependent rate models 
to employ P (25”Cb T  112~ and T  li2H provides three advantages: (1) better 
biological and graphical parameter interpretations, (2) more convenient 
initial parameter estimates, and (3) reduced correlation between parameter 
estimators. Use of equations (4), (6) and (7) should alleviate the non-linear 
regression problem associated with the application of biological tempera- 
ture-dependent rate models based on either absolute reaction-rate theory or 
Arrhenius’ empirical equation. 
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