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Abstraet--A new modified low-Reynolds-number k-e turbulence [Chang, Hsieh and Chen (CHC)] model, 
which possesses the proper near-wall limiting behaviors and is free of the singular defect occurring near 
the reattachment point when applied to separated flows, is examined for use in wall heat transfer problems 
in flow with pipe expansion geometry. Another eight low-Reynolds-number k-e models, found in open 
literature, are also examined in this study. Attention is specifically focused on the flow region surrounding 
the reattachment point. Comparative results show that only the CHC model and the model developed by 
Abe et al. [Abe, Kondoh and Nagano (AKN model)] can yield satisfactory distributions of the Nusselt 
number along the wall. However, the CHC model adopted the same model constants as conventionally 
used for the standard k-e model. Thus, the CHC model is more universal than the AKN model. Copyright 

© 1996 Elsevier Science Ltd. 

INTRODUCTION 

Turbulent flows downstream from backward facing 
steps or axisymmetric pipe expansions are encount- 
ered in many practical engineering applications 
such as combustors, nuclear reactors, heat exchangers 
and electronic circuitry cooling systems. The processes 
of the separation and reattachment of the turbulent 
shear layer not only determine the flow field structure, 
but also influence the mechanism of heat and mass 
transfer. In particular, near the reattachment region, 
heat and mass transfer rates are enhanced up to sev- 
eral times and decrease gradually until they equal to 
the typical values of ordinary boundary layer flows. 
Therefore, the accurate predictions of this aug- 
mentation and its associated thermal loads are impor- 
tant to the development of more efficient and safer 
devices. 

Most of the previous studies concentrated on the 
predictions of the cold flow cases in computing tur- 
bulent separated flows through backward facing steps 
or axisymmetric pipe expansions. Moreover, the 
emphases of these studies were usually placed on the 
main flow regions (not in the near-wall regions), 
although some studies adopted near-wall turbulence 
models in their simulations. In practice, the prediction 
of the flow far from the wall generally remains 
unaffected by the choice of near-wall turbulence 
model. The local heat transfer prediction, however, is 
critically dependent on the employed near-wall tur- 
bulence model. For  some physical problems, such as 
the flows in this kind of geometries, the accurate pre- 
diction of the flow field in the near-wall region is a 
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prerequisite for the attainment of reliable wall heat 
transfer solutions. Accordingly, low-Reynolds-num- 
ber versions of turbulence models seem to be necessary 
for the accurate prediction of these types of flows with 
wall heat transfer, especially in the region neighboring 
the reattachment points (hot spots). Attention is 
placed on axisymmetric pipe expansion flows in this 
study. 

In the past one and a half decades, some researchers 
have attempted to model convective recirculating heat 
transfer flows for pipe expansion. Chieng and Launder 
[1] numerically studied the heat transfer problem in 
the pipe expansion geometry through both the stan- 
dard (original) k-e model incorporated with wall func- 
tions and its low-Reynolds-number version. The pre- 
diction obtained with the standard k-e model was 
generally in fair agreement with the experimental data. 
However, the predicted location of the maximum Nus- 
selt number failed to agree with the measured data. 
Furthermore, use of the low-Reynolds-number k-e 
model resulted in predicted wall heat transfer rates 
which were about five times the actual value in the 
vicinity of the reattachment point. Chieng and Laun- 
der [1] argued that this was because the e equation 
under diffusion-dominated conditions yielded unac- 
ceptably large length scales in the regions close to the 
wall. Amano [2, 3] repeated the test cases of Chieng 
and Launder [1] using multiple-layer wall functions 
and achieved some improvements over the work of 
the previous authors. To obtain accurate results in 
both the recirculating and developing flow regions, 
Gooray et al. [4] devised a two-pass procedure com- 
bining wall functions and the low-Reynolds-number 
version of the k-e model. Although the multi-layer 
models [2, 3] and the two-pass procedure [4] have 
generally resulted in improved predictions, their per- 
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NOMENCLATURE 

C~,, C], C_~ turbulence model constants 
[i,,./i,/~ turbulence model functions 
D diameter of pipe downstream of 

expansion or extra source term in k 
equation 

d diameter of pipe upstream of 
expansion 

E extra source term in r~ equation 
G~ production term of k 
k turbulent kinetic energy 
N u  Nusselt number based on the diameter 

of pipe downstream of expansion 
Nurd Nusselt number determined by the 

Dittus-Boelter equation, 
Nufd = O . 0 2 3 R e ° S P r  °4 

p mean pressure 
R radius of pipe downstream of 

expansion 
R e  Reynolds number 
r radial coordinate 
S,; general source term 
T temperature 
T,, Tw temperatures at inlet and wall, 

respectively 
Tk Kolmogorov time scale 
u, z, mean axial and radial velocity 

components, respectively 
u,. mean axial velocity at centerline 

14~, l~ r 

X 

Kolmogorov velocity scale and 
friction velocity, respectively 
axial coordinate 
normal and dimensionless distances 
from the wall, respectively 
dimensionless distance from the wall, 
see equation (5). 

Greek symbols 
F,~, turbulent diffusion coefficient 
~: dissipation rate of turbulent kinetic 

energy 
t t, Itt, t~ofr molecular, eddy and effective 

viscosities, respectively 
v, v~ molecular and eddy kinematic 

viscosities, respectively 
p density 
a~, a,~ turbulent Prandtl numbers for 

diffusion ofk and e, respectively 
a~, a~ molecular and turbulent Prandtl 

number for diffusion of temperature, 
respectively 

r~, wall shear stress 
0 general dependent variable. 

Superscripts 
fluctuation 

- Reynolds averaging. 

formances are not always satisfactory. Prud'homme 
and Elgobashi [5] studied the heat transfer problem 
with the flow in pipe expansion geometry using a 
full Reynolds stress model (RSM) to close the time- 
averaged Navier-Stokes equations with an algebraic 
model for thermal flows. Their models accounted for 
the low Reynolds number effects in the wall region 
and thus avoided use of conventional wall functions. 
The predicted Nusselt number distribution was in sat- 
isfactory agreement with the measurements. 

Yap [6] also computed the heat transfer problem in 
a pipe expansion geometry with a condition of uni- 
form wall temperature using the algebraic stress model 
(ASM) and the k-e model incorporated wall functions. 
His predictions, however, were found to have serious 
shortcomings. When the low-Reynolds-number k-~: 
was used with a fine grid mesh near the wall, the 
predicted peak values of the wall heat transfer rates 
were about five times higher than the experimental 
values. This situation was the same as that of Chieng 
and Launder [1]. However, after introduction of a 
wall-damping term into the e equation by Yap [6], 
the predicted wall heat transfer rates were in good 
agreement with the experimental values. When the 
ASM was used instead of the k -e  model in the outer 
region, further improvements were made in the pre- 

dictions of the heat transfer rate. Yap [6] concluded 
that computations with the ASM/low-Reynolds-num- 
ber k-~: model could yield predictions which agreed 
with experimental results, but the approach could not 
be applied universally [7, 8]. Furthermore, use of 
either the full RSM or the ASM greatly increases 
the computational complexity and time required for 
computations. As the order of the turbulence model 
increases, the number of empirical constants increases, 
and insufficient model assessments lead to less gen- 
erality of those empirical constants. A general method 
for flow simulation must comprise both a physical 
model that reflects the true nature of the flow and an 
efficient mathematical apparatus that permits accu- 
rate and yet economical calculations. It is, so far, 
not clear whether the higher-order closure models are 
more valuable than the two-equation models. The 
scope of this work is restricted to separate flows in a 
sudden-expansion pipe without the swirl effect. The 
two-equation models are reportedly able to describe, 
to a certain extent, the turbulent motion in this kind 
of flow [9]. Recently, the application of nonlinear (or 
anistropic) eddy-viscosity near-wall turbulence mod- 
els to heat transfer problems has been widely inves- 
tigated [10-12]. In this work, our interest is specifically 
placed on the flow region in the neighborhood of 
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the reattachment point. For  the sake of brevity, the 
conventional two-equation models, instead of the 
ones with anisotropic representation of the eddy vis- 
cosity, are to be discussed here. 

Patel et al. [13] made an extensive review of the 
low-Reynolds-number turbulence models developed 
before 1985 and concluded that none of the low-Rey- 
nolds-number k-e models investigated were capable 
of predicting near-wall limiting behaviors. Significant 
advances have been made in recent years in the devel- 
opment of near-wall turbulence models. For  example, 
Myong and Kasagi (MK model, [14]) as well as 
Nagano and Tagawa (NT model, [15]) took into 
account the near-waU limiting behaviors and yielded 
satisfactory predictions in the entire flow region of 
a straight pipe. However, application of these low- 
Reynolds-number k-e turbulence models to the sep- 
arated flow is subject to a singular difficulty occurring 
near the reattachment points. A detailed discussion of 
this singular difficulty is referred to in our previous 
work (CHC model, [16]). Recently, Yang and Shih 
(YS model, [17]) introduced the Kolmogorov time 
scale into the definition of eddy viscosity to account 
for the near-wall turbulent behavior, and their model 
function f ,  was expressed in terms of a 'frame 
invariant' parameter to avoid the singularity. 
However, their model has not been applied to the 
separated flows yet. Abe et al. (AKN model, [18]) 
adopted a new approach to develop a new low-Rey- 
nolds-number k-e model, which can avoid the singu- 
larity and exhibit near-wall limiting behavior, as 
applied to a two-dimensional, isothermal, backward- 
facing step flow. 

The objective of this study is first to examine the 
performance of six conventional low-Reynolds-num- 
ber k-e models developed by Launder and Sharma 
(LS model, [19]), Lam and Bremhorst (LB model, 
[20]), Chien (CH model, [21]), Nagano and Hishida 
(NH model, [22]), Myong and Kasagi (MK model, 
[14]) and Nagano and Tagawa (NT model, [15]), in 
addition to the two currently developed ones by Yang 
and Shih (YS model, [17]) and by Abe et al. (AKN 

model, [18]) in predicting nonisothermal flows in pipe 
expansions. Special emphasis will be placed on the 
capability to predict wall heat transfer near the reat- 
tachment point. Next, the modified low-Reynolds- 
number k-e model developed previously by our group 
(CHC model, [16]) will be applied to the same heat 
transfer problems, and its performance will be com- 
pared to those of other models using the available 
data bases found in open literature. All investigated 
low-Reynolds-number k-e models are summarized in 
Table 1. 

LOW-REYNOLDS-NUMBER k-~ MODELS 

The primary difference between the low-Reynolds- 
number k-e models and the standard k-e model is 
that the former introduce the model functions which 
account for the low-Reynolds-number effects in near- 
wall regions. Patel et al. [13] showed that the near- 
wall limiting conditions of turbulence quantities pos- 
sess the following relationship : 

- u ' v '  o¢ y3 ,k  ~ y2,vt oc y3,e--+ewas y-*O,  (1) 

where y denotes the neighboring distance from the 
wall. With the Prandtl-Kolmogorov relation, 
v, = Cuf, kE/e, and the model coefficient Cu being a 
constant value of 0.09, the model function f ,  has to 
satisfy fu oz y - ' .  A few low-Reynolds-number k-e 
models developed lately have taken this requirement 
into account. For  example, Myong and Kasagi (MK 
model, [14]) proposed the model function off~ in the 
form of 

f~, = [ 1 -  exp(-y+/70)](1 + 3.45/R~/2), (2) 

where Rt = k2/ve. Working with the model developed 
previously by Nagano and Hishida [22] as a base, 
Nagano and Tagawa (NT model, [15]) improved the 
f ,  function 

f ,  = [1 - exp(-y+/26)]2(1 +4.1/R3/4). (3) 

Very recently, Abe et al. [18] developed a new low- 

Table 1. Summary of model functions 

Model f. fl f2 

Standard 1.0 1.0 
Launder-Sharma [19] exp [ -  3.4/(1 - Rt/50) :] 1.0 
Larn-Brernhorst [20] [1.0- exp(--0.0165Rk)]2(l + 20.5/Rt) 1.0-b (0.05/fu) 3 

Chien [21] 1.0 - exp(- 0.011% +) 1.0 
Naganty-Hishida [22] [1.0- exp(-y+/26)] 2 1.0 
Myong-Kasagi [14] [1.0-- exp(--y+/70)](l + 3.45/R~/2) 1.0 
Nagano-Tagawa [15] [1.0-- exp(-y+/26)]2(l +4.1/R 3/4) 1.0 
Yang-Shih [17] [1.0- exp(- 1.5 x 10-4R, 1.0 

-5.0x 10-TRk 3 -- 1.0× 10-1°R~ 1/2 

Abe et al. [18] [1.0- exp(--y*/14)] 2 1.0 
{l + 5.0/g3t/4 exp [--(Rd200)2]} 

Chang et al. [16] [1.0- exp(--0.0215R,)]2(l +31.66/R, 5/4) 1.0 

1.0 
1.0 - 0.3 exp( - Rt 2 ) 
1 - 0.3 exp(- R 2) 
1.0 - 0.22 exp( - R 2/36) 
1.0-0.3 exp(- Rt 2) 
{ 1.0 - 2/9 exp [ - (Rt/6) 2] } [1 - exp( - y÷/5)] 2 
{ 1.0 -0.3 exp [ -  (Rt/6.5):]} [1 - exp(-y+/6)] 2 
1.0 

{ 1.0- 0.3 exp [ -  (RJ6.5)z]} [1 - exp( -y*/3.1)] 2 

t1-0.01 exp (-R2)][I - exp (-0.0631R,)] 
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Reynolds-number k-e, model (AKN model which was 
modified from the NT model [15]) with the t;  function 
in terms of the Kolmogorov velocity scale (u,:) instead 
of the friction velocity (u,). 

.ll, = [1 - exp( y*/14)] 2.[1 + 5 / R  34 

where 

x exp [ - (R , !200) : ] i ,  (4) 

.l'* = u,:yiv (5) 

u, = (vr) ~ 4 (6) 

Yang and Shih [17] argued that the turbulence time 
scale was given by k/t; away from the wall and by 
the Kolmogorov time scale near the wall since k/~; 

vanished near the wall due to the boundary condition 
on k. Thus, they defined the eddy viscosity in their 
low-Reynolds-number model (YS model) as 

I~, = C j , l l , p k ( k i c  + Tk) (7) 

in which Kolmogorov time scale is given by 

T~ - C/, (v!~:) I : ,  (8) 

where ( \  is a constant from 0.5 to 3.0 and was set to 
be unity in their study. The damping function is taken 
in terms of a 'frame invariant '  parameter, Rk, which 
is defined by 

R~ = x / ' k v i ' v  (9 )  

and takes the following form : 

. / i , = [ I - e x p ( - l ' 5 × 1 0  a & - 5 . 0 × 1 0  rR~ 

1 . 0 ×  10 lUR~)]l e. (10) 

Note that f ,  ac 3' as y --+ 0 in the YS model [I 7] and 
this is not consistent with the proper near-wall limiting 
behavior as discussed before. 

Although the model functions o[11, developed lately, 
excluding that of the YS model, possess the near-wall 
limiting behavior of./~, .,~ y ~ as .v --+ 0, these model 
functions, with the exception of the YS and AKN 

models, still have a singular defect when applied to 
separated flows such as that in a sudden-expansion 
pipe [18]. This is because these turbulence models 
formulated their £, model functions in terms of wall 
shear stress (r,~) as a parameter. It is known that 
the wall shear stress becomes close to zero as the 
reattachment point of the separated flow is 
approached. This, in turn, leads to a singular problem, 
that is,.ll, becomes zero regardless ofy ' s  value. This is 
physically impossible as was corroborated by several 
researchers [17, 18, 23, 24]. Another model function 
15 which appears in the source term of the e equation 
(see Table 2) may have a similar difficulty for some 
of the low-Reynolds-number k-,: models which are 
summarized in Table 1. 

In order to eliminate this singular difficulty, the new 
model functions of£ ,  and/'~ in terms of the proper 
parameters were proposed in our previous work [16] 
to avoid the occurrence of singularity at the reat- 
tachment point as follows : 

./i, = [1 - -  exp(-0.0215R~)]:(1 +31.66/R~ 4) 

( l i )  

li  = [1 - exp(--0.0631Rk)] II --0.01 exp{--R[)].  

(12) 

Note that the model functions appearing in equa- 
tions (1 l) and (12) comply with the required near- 
wall limiting behaviors of f ,  oc ./ '- ~ and f20C y2 as y 
approaches zero value. All the model functions inves- 
tigated in this work are summarized in Table 1. 
Among them, the LS and LB models are incapable of 
properly performing the near-wall limiting behavior, 
while the MK and NT models have a singularity in 
the neighborhood of the reattachment points. The CH 
and NH models, both of which inherently have the 
two aforementioned defects, were specially selected 
for this study to underscore the influence which com- 
bined effects have on the prediction accuracy. The 
A K N  model [18] was free of the singularity and was 
able to reproduce the near-wall limiting behavior as 

-Fable 2. Governing equations 

0 1 ",, 3;, 

1 o o 

,, t,,.,, ,~,x + c;: i  *'~'' ~;-) + 7 ~;k '~e'  ~-.~ ) 
?p P ( ~7u'\ 1 P / &:\ 

X / X / 

k t* + l*t/a~ (2" a o*: + D 

~; It + ,uda, ( ('11; G~ - (':l:p~;)<'k + E 

T ixirs[ + ,uja, 0 

t~ u 2 

#, = pC,.LI,-2 /~: 
ff~-'r = ,u + t*, 
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Table 3. Summary of model constants and functions appearing in Table 2 

3817 

Model D E ew- B.C. C, CI C2 irk G 

Stanard 0 0 wall function 0.09 1.44 1.92 1.0 1.3 

(Ok'f 1~2u',: 
Launder-Sharma [19] - ~k~yy ] 2/~v,~y2) 0 0.09 1.44 1.92 1.0 1.3 

& 
Lam-Bremhorst [20] 0 0 = 0 0.09 1.44 1.92 1.0 1.3 dy 

Chien [21] -2l tk /y  2 -2pee o5~*/y2 0 0.09 1.44 1.92 1.0 1.3 

Nagano-Hishida [22] 2k\OyJ (1-f,)#vt~y2) 0 0.09 1.44 192 1.0 1.3 

Myong-Kasagi [14] 0 0 e,~ \ g ~ /  0.09 1.4 1.8 1.4 1.3 

= v(O2k~ 
Nagano-Tagawa [15] 0 0 ew \~y2j 0.09 1.45 1.9 1.4 1.3 

Yang-Shih [17] 0 I~Vt~y2) ew \Oy2J 0.09 1.44 1.92 1.0 1.3 

Abe et aL [18] 0 0 ew \ V ]  0.09 1.5 1.9 1.4 1.4 

Chang et al. [16] 0 0 ew = \OyZ 1 0.09 1.44 1.92 1.0 1.3 

did our modified model (CHC model, [16]). It is inter- 
esting to note that both the AKN and the NT models 
adopted different values of the turbulence model con- 
stants such as C~, C2, ak and G, as shown in Table 3, 
from those conventionally used for the standard k- 
e model. Furthermore, even the AKN model used 
different values of some turbulence model constants 
from those of its predecessor (the NT model). The 
NT model adjusted the values of the turbulence model 
constants for best fitting experimental data in straight- 
pipe flow [15], while the AKN model adjusted these 
values to obtain better prediction of the reattachment 
length of a backward-facing step flow [18]. This 
implies that their turbulence model constants are case- 
dependent. In contrast to the AKN model, our modi- 
fied (CHC) model and the YS model use the same 
values of the turbulence model constants as those 
conventionally used for the standard k-e model (see 
Table 3). 

MATHEMATICAL FORMULATION AND 
NUMERICAL ANALYSIS 

Two experimental studies of axisymmetrical, non- 
isothermal sudden-expansion flows are selected as the 
test problems in this work. One is the case with uni- 
form wall temperature condition conducted by 
Baughn et al. [25]. The other is the case with uniform 
wall heat flux condition conducted by Zemanick and 
Dougall [26]. 

Governing equations 
The present work deals with steady-state, axi- 

symmetric, Reynolds-averaged equations for con- 
servation of momentum, energy, turbulent kinetic 
energy and energy dissipation rate. These governing 
equations are cast into the following general form 
which permits a single algorithm to be used : 

0 

The parameters 0, F0 and So appearing in equation 
(13) are summarized in Table 2. The corresponding 
model constants and functions shown in Table 2 for 
each tested turbulence model are listed in Table 3 for 
the reader's convenience. 

Numerical solution procedures 
There are no significant differences between the cur- 

rent numerical solution procedure and the earlier one 
[16]. Therefore, the employed numerical solution pro- 
cedure is briefly described here. 

The finite-volume method incorporated with the 
power-law scheme and the SIMPLER algorithm [27] 
is used to solve numerically the partial differential 
equations summarized in Table 2. One may argue 
that numerical (or false) diffusion can be introduced 
through the discretization of the governing equations, 
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particularly for the problem in complex flows with 
stream-to-grid skewness. The use of  high-order 
numerical schemes can, to a certain degree, reduce the 
numerical diffusion. However, the use of  high-order 
numerical schemes sometimes aggravates the numeri- 
cal instability. 

In order to reduce the numerical diffusion of the 
investigated recirculating flow by use of the power- 
law scheme, care must be taken in establishing the 
grid meshes. Distribution of the grid nodes must be 
done to ensure that the small regions that exert a large 
influence on the flow field are adequately resolved. 
Grid meshes used lbr the computational domains for 
both tested flows consist of  70 x 90 nonuniformly dis- 
tributed nodes. Numerical tests disclosed that these 
nonuniform grid meshes yielded nearly grid-inde- 
pendent solutions for all investigated flow cases, as 
compared to the solution obtained with the denser 
grid meshes of  85 x 110. It is reported [28] that the 
grid nodes below the inertia sublayer (.r ~ < 30) are 
very sensitive to the predictions of  wall heat/mass 
transfer rate. For those models which do not exhibit 
the proper near-wall limiting behavior of/i, z v ~, the 
first grid node could be placed as close as v ~ = 0.1. 
However, the choice of  the position of  the first grid 
node for those models possessing the proper near-wall 
limiting behaviors must be careful, otherwise it may 
result in an unrealistic value of/i, > 1. it is found that 
the solution is not very sensitive to the near-wall grid 
distributions as long as the first grid node is placed at 
),+ -~ 2 for the models possessing the proper near- 
wall limiting behavoirs investigated in this work. The 
convergence criterion adopted in the present work is 
that the summation of  the absolute mass residuals 
normalized by the inlet mass, in the entire com- 
putational domain, is less than l0 ~ 

RESULTS AND DISCUSSION 

Un([brm wall temperature  case 
The diameters of  the upstream (d) and downstream 

(D) tubes were 38.1 and 95.3 ram, respectively, to 
achieve a 2.5 expansion ratio (ERP = D/d)  in the 
experimental work of  Baughn et al. [25]. The test 
chamber had a total length of  16 D. The Reynolds 
number based on the mean flow velocity at the inlet 
was 17 300. Temperature measurements were made 
by three different means : a hot wire probe, a chrome- 
constantan thermocouple probe and a miniature ther- 
mistor. Velocity measurements were made by a single 
hot wire probe along with a TSI-1050 anemometer.  
However, as pointed out by Baughn et al. [25], the 
single hot wire was unable to resolve flow direction 
and was thus unable to provide confident velocity 
information in the recirculating zone. 

In the experiment ofBaughn et  al. [25], no measure- 
ments were provided for the inlet region. However, 
they reported that a fully-developed profile of  mean 
velocity and low level turbulence intensity were 
observed in the inlet region because the upstream tube 

was sufficiently long (48 d). Thus, the mean axial 
velocity profile was assumed using the one-seventh law 
at the inlet [6]. The mean radial velocity component  at 
the inlet was set to be zero. The inlet profiles for k and 
c were given in the following empirical manner [9] : 

k = 0.003u: (14) 

c = (,(i ' /0.03R. (15) 

It was reported [29] that the employment of  the 
assumed inlet profiles of  k and ~: did not significantly 
influence flowfield calculations for geometries like that 
presently investigated, except in the very near-inlet 
region and in the presence of  high turbulence intensity. 
A uniform mean temperature of  300 K was specified 
at the inlet in the absence of better information. Note 
that the physical domain had a length of  16 D. 
Numerical tests revealed that no significant axial vari- 
ations from velocity components were found at the 
axial positions after the station of  x / D  = 9.0. Thus, 
the outlet boundary of  computational domain was 
chosen at the axial distance of  x / D  = 9.0, and the 
outlet boundary was reasonably assumed to be fully 
developed in the calculation. At the bounded wall, all 
quantities vanished, except for T~ which had been 
prescribed in the experiment of  Baughn et al. [25] and 
for ~:,, which is given in Table 3. At the symmetric axis, 
the condition of  zero gradient, ?O/gr = O, was met 
except for the radial velocity component  which is nat- 
urally zero. 

Figure 1 shows a comparison of  the predicted and 
the measured distributions of  the Nusselt number 
along the wall using all investigated models except the 
A K N  and YS models. Clearly, only one model, the 
CHC model, is capable of  giving correct trends. The 
models which do not exhibit the near-wall limiting 
behaviors, such as the LS and LB models, tend to 
significantly overpredict the values of  the Nusselt 
number in the regions around the reattachment 
points. A tendency similar to that presented in Fig. 1 
has recently been found in wall mass transfer problems 
with the same group of  the low-Reynolds-number k-c 

2O ~ • Megt suremen t so fBaughne ta l . l ]989 )  

- -  CHC ~ d e l  ( I995)  
LS " ~  i - - -  L S m o d e l  1974) 

i . . . .  L B m a d e l  (1981) 

~- 10 CHC ,~' '1 ', 

0 
o ~ 2 3 4x/DS 6 7 8 9 

Fig. 1. Comparison of the predicted Nusselt number dis- 
tributions obtained through various low-Reynolds-number 
models with the measurements (Re = 17300 and 

EPR = 2.5). 
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0.50 ~ j ~ ct.#c =,x~l  (s995) 
[~,~'~ LS model (1974) 
I " 'N ,  / c n c  . . . .  ~,, , , ,~i (lOSt) 
I~ ~ . . . . . . .  NHmod~l (1987) 
I ~ \ ~ - .  ........... cn,,,o~t ¢19a2) 

°"  i - ,  \\ ",J= 
0.47 \ \  
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Fig. 2. Compar ison of  the near-wall profiles of  eddy viscosity 
obtained through various low-Reynolds-number k-e models 
in the sections of reattachment points ( R e  = 17 300 and 

EPR = 2.5). 

models [28, 30]. That is, as shown in Fig. 2, over- 
predicting Pt value results in an excessively high wall 
heat transfer rate in the vicinity of the reattachment 
point. Models which have the singular problems, such 
as the MK and NT models, tend to underpredict the 
values of the Nusselt number, particularly in the 
regions around the reattachment point. Nevertheless, 
it is generally known that the maximum wall heat 
transfer rate occurs in the vicinity of the reattachment 
points. Thus, the application of models with the singu- 
larity defect in the flows in pipe-expansion geometries 

would yield unrealistic predictions of the wall heat 
transfer rate. Accordingly, of all the models inves- 
tigated, the CH and NH models, which possess both 
of the aforementioned defects, are least likely to yield 
correct predictions. Their predicted distributions of 
the Nusselt number (see Fig. 1) show combined effects 
which stem from the two defects mentioned here. 

Figure 2 shows the near-wall profiles of the eddy 
viscosity (/it) obtained in the sections of the reat- 
tachment points for the investigated low-Reynolds- 
number k-e models. Note that in flow calculations, 
the reattachment lengths vary with each model. The 
following results with regard to the reattachment 
points were interpolated in the results obtained in the 
front and back consecutive grid lines. It is clearly 
revealed in Fig. 2 that the LS and LB models do not 
possess the near-wall limiting behavior of / i  t as does 
our modified (CHC) model, and that the predicted ].i t 
profile obtained with the LS model is very singular to 
that obtained with the CHC model, except in the near- 
wall region. Nevertheless, this small difference leads 
to a tremendous change of Nusselt number predic- 
tions, as shown in Fig. 1. Those models which have 
similar problems incorrectly underpredicted #, values 
in comparison to the CHC model. 

The predicted profiles of the mean temperatures, 
obtained through four respective low-Reynolds-num- 
ber k-e models, including the LS (without near-wall 
limiting behavior), NT (with singularity difficulty), 
NH (with both the defects), and CHC models, at 

• Measurement  o fBaughn  et aL (1989) 

C H C  model  (1995) 

. . . . . .  LS  model  (1974) 

. . . . . . . . . . . . . .  N H  model  (1987) 

. . . . . . . . . . . . . .  N T  model  (1990) 

ii ' ! I] ; i i ' l  ' " 

t I tl, °iL / ° '  
I .  , ! i [ i  I !i* I l ie  I j i  
Ii , i! , l, ' ii , ii 

ii ~ li , ji 
/' ' "' o. T ~ 0.3 i i ' ,  iI 

/ i!.1 ~ i , i i .  ' 

" ' liI" ji I ti I I  ~' " ' i i . ,  // ii i ti 
o.21- II, li" i t  

ii , ii , 
ii , l i  [i t 

0.1 0. 0. 1.8 0. 0.1 ii 
i i i! x/D=6.6 

I O ~  'i , 
" I! O 0  " u  ' ' O C  ~ u  L ' O C  l i "  i i 0 0 . 0  i i 0 i , , 

0.0 0.5 1 .O 0.0 0.5 1.0 0.0 0.5 1,0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 

:r-r, /L-r, 
Fig. 3. Compar ison  of the predicted mean  temperature profiles obtained through some investigated low- 

Reynolds-number  models with the measurements  at various stations ( R e  = 17 300 and EPR = 2.5). 
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various axial stations are presented in Fig. 3, respec- 
tively, along with the measured data Baughn et a/. 

[25]. Figure 3 shows that the CHC model yields the 
best performance of the four models investigated. A 
similar study for mean axial velocity has also been 
done. Since the maximum difference between the wall 
(heated) temperature and the air (room) temperature 
is about 10 K in the experiment of Baughn et al. [25], 
the mean velocity field, therefore, differs slightly from 
that of the isothermal case which has been extensively 
investigated in our previous work [16]. For the sake of 
brevity, the comparative results will not be presented 
here. However, the same conclusions as that expressed 
in Fig. 3 can be drawn : that is, of the four models 
investigated, the CHC model has the best performance 
for velocity simulation. 

As mentioned previously, both the C H C ,  AKN and 
YS models are free of the singularity difficulty near 
the reattachment point. Among them, the CHC and 

AK N models can exhibit the proper near-wall limiting 
behaviors. Although the YS model does not give the 
proper near-wall limiting behavior, it introduces the 
Kolmogorov time scale into the kt, calculation to 
account for this defect. These three models were then 
selected for comparison with experimental data in 
order to better understand their performances. The 
predicted profiles of mean velocity and mean tem- 
perature at various axial stations, as obtained through 
the CHC, AKN and YS models, are presented in Fig. 
4 and compared with the measured data of Baughn et 

a/. [25]. Note that, as Baughn et al. [25] admitted, we 
cannot be confident of the measured velocity data 
within the recirculation zone due to the limitation of 
the measurement instruments used in their exper- 
iment. Figure 5 shows three predicted distributions of 
the Nusselt number along the wall, as obtained 
through these three models, in comparison with the 
experimental data. Clearly, the YS model performed 
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Fig, 4. Comparison of the predicted (a) mean velocity profiles and (b) mean temperature profiles obtained 
through the CHC, AKN and YS models with the measurements at various stations (Re = 17300 and 

E P R  = 2.5). 
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Fig. 5. Comparison of the predicted Nusselt number dis- 
tributions obtained through the CHC, AKN and YS models 

with the measurements (Re = 17 300 and EPR = 2.5). 
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Fig. 6. Comparison of the predicted Nusselt number dis- 
tributions obtained through various low-Reynolds-number 
models with the measurements (Re = 48 090 and 

EPR = 1.86). 

worst among these three models in the predictions 
presented in Figs. 4 and 5. Nevertheless, it does not 
yield a peculiar overshoot in Nu predictions as did the 
LS and LB models, which do not exhibit the near-wall 
limiting behaviors, Fig. 1. Both of the CHC and AKN 
models seem to give reasonable predictions, as a com- 
parison of Figs. 4 and 5 shows. Thus, it is difficult to 
tell which one of the CHC and AKN models performs 
better in this problem with uniform wall temperature. 
It should be pointed out that, as mentioned 
previously, the turbulence model constants of the 
AKN model differ from those conventionally used for 
the standard k-e model (see Table 3). 

Uniform wall heat f l u x  case 
The diameters of the upstream (d) and downstream 

(D) tubes were 12.7 and 23.6 mm, respectively, to 
achieve a 1.86 expansion ratio in the experimental 
work of Zemanick and Dougall [26]. Two cases with 
Reynolds numbers of 48 090 and 9620 were tested in 
this study. Wall and bulk temperatures were measured 
using thermocouples. Measurements of velocity dis- 
tribution was not implemented in this experimental 
work. 

Again, no measured data were provided for the inlet 
region in the experiment. The same inlet and boundary 
conditions as described fro the previous test problem, 
with the exception that uniform wall temperature is 
replaced by uniform wall heat flux, are used for the 
following calculations. 

Figure 6 compares the predicted and the measured 
distributions of the Nusselt number using all inves- 
tigated models except the AKN and YS models along 
the wall for Re = 48 090. Once again, the results were 
similar to those discussed previously in the first (uni- 
form wall temperature) test problem. In other words, 
of the seven models investigated, CHC is the only 
model which can give correct trend. 

Comparisons of the predicted distributions of the 
Nusselt number obtained through the CHC, AKN 
and YS models for two test cases with different Rey- 
nolds numbers are plotted in Fig. 7. Once more, the 
YS model performs worst among these three models. 

8 ~ • M e c J u r e m a n t s o f Z e m a n i c k a n d D o u g a l l ( 1 9 7 0 )  
] ( a ) - -  -cRcm,~ (1~5~ 

6 .~ . . . .  ~ . . . . . .  Y S m o d e l  1993)  

0 I , I I , I , ~ , I , t , ~ , h , I 
0 1 2 3 4 5 6 7 8 9 

x/D 

0 ~ 2  t " . . . . . . . . . . . .  

0 I 2 3 4 5 6 7 8 9 

x/D 

Fig. 7. Comparison of the predicted Nusselt number dis- 
tributions obtained through the CHC, AKN and YS models 
with the measurements for the cases of (a) Re = 48 090 and 

(b) Re = 9620 (EPR = 1.86). 

The predicted trends obtained by the CHC and AKN 
models are in fair agreement with the measurements 
for both the test cases. It is still hard to tell which one 
of the CHC and AKN models perform better in the 
problem with uniform wall heat flux, because the 
AKN model yields better predictions of Nu dis- 
tribution in the case of Re = 48 090 [see Fig. 7(a)], 
while the CHC model does so in the case of Re = 9620 
[see Fig. 7(b)]. 

CONCLUSIONS 

The predictions of nine low-Reynolds-number k-e 
turbulence models have been examined in regard to 
heat transfer problems occurring in pipe flows with 
sudden-expansion geometry. Two different problems 
with the boundary conditions of (1) uniform wall tem- 
perature and (2) uniform wall heat flux were tested. 
The corresponding experimental data, collected from 
the open literature, were used as a base for model 
comparisons. 

It was found that all the investigated conventional 
low-Reynolds-number k-e models, which are subject 
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to the defect  o f  e i ther  lack o f  near-wal l  l imit ing 
behav io r  or  the exis tence o f  s ingular i ty  difficulty, fail 
to yield cor rec t  p red ic t ions  o f  the  wall heat  t ransfer  
rate. Two  current ly  deve loped  l o w - R e y n o l d s - n u m b e r  
k-~: models ,  i.e. the C H C  and  A K N  models ,  which  are  
free o f  bo th  defects  m e n t i o n e d  above  are s h o w n  to 
be capable  o f  yielding the r easonab le  t rend  o f  the 
d i s t r ibu t ion  o f  the  Nussel t  n u m b e r  a m o n g  the tested 

models .  However ,  the tu rbu lence  mode l  cons t an t s  
a d o p t e d  by the C H C  mode l  are  the same as those  
conven t iona l ly  used for the  s t anda rd  k <  model ,  and  
C H C  mode l  is thus  m o r e  universal  than  the A K N  
model .  
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