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Calibration of Rainfall-Runoff Models:
Application of Global Optimization to the Sacramento
Soil Moisture Accounting Model

SOROOSH SOROOSHIAN, QINGYUN DUAN,! AND VIJAT KUMAR GUPTA

Department of Hydrology and Water Resources, University of Arizona, Tucson

Conceptual rainfall-runoff models are difficult to calibrate by means of automatic methods; one
major reason for this is the inability of conventional procedures to locate the globally optimal set of
parameters. This paper investigates the consistency with which two global optimization methods, the
shuffled complex evolution (SCE-UA) method (developed by the authors) and the multistart simplex
(MSX) method, are able to find the optimal parameter set during calibration of the Sacramento soil
moisture accounting model (SAC-SMA) of the National Weather Service River Forecast System
(NWSRFS). In the first phase of this study, error-free synthetic data are used to conduct a comparative
evaluation of the algorithms under “‘ideal” conditions. In 10 independent trials of each algorithm in
which 13 parameters of the SAC-SMA model were optimized simultaneously, the SCE-UA method
achieved a 100% success rate in locating the precise global optimum (i.e., the ‘‘true”’ parameter
values) while the MSX method failed in all trials even with more than twice the number of function
evaluations. In the second phase, historical data from the Leaf River watershed are used to conduct
a comparative evaluation of the algorithms under ‘‘real’’ conditions, using two different estimation
criteria, DRMS and HMLE; the SCE-UA algorithm obtained consistently lower function values and
more closely grouped parameter estimates, while using one-third fewer function evaluations than the

MSX algorithm.

INTRODUCTION AND SCOPE

The successful application of a conceptual rainfali-runoff
(CRR) model depends in large measure on how well the
model is calibrated. Attempts to calibrate CRR models, such
as the Sacramento soil moisture accounting (SAC-SMA)
model used by the National Weather Service (NWS) for
river and flood forecasting, have been unable to obtain
unique optimal parameter estimates using automatic calibra-
tion procedures [e.g., Dawdy and O’Donnell, 1965; Nash
and Sutcliffe, 1970; Chapman, 1970; Ibbitt, 1970; Monro,
1971; Johnston and Pilgrim, 1976; Pickup, 1977; Sorooshian,
1978; Larimore, 1981; Sorooshian and Gupta, 1983; So-
rooshian et al., 1983; Gupta and Sorooshian, 1985; Brazil
and Krajewski, 1987; Hendrickson et al., 1988]. The inability
to place a reasonable degree of confidence on the estimated
parameter values translates into uncertainty regarding the
accuracy of the model forecasts. Unless the best set of
parameters associated with a given calibration data set can
be found, it is difficult to determine how sensitive the
parameter estimates (and hence the model forecasts) are to
factors such as input and streamflow data error, model error,
quantity and quality of data, estimation criterion used, and
SO on.

One reason that unique optimal parameter estimates are
difficult to obtain is that the optimization procedures typi-
cally used are not powerful enough to do the job. In a
previous paper [Duan et al., 1992], we presented results that
clearly established the nature of the problem of multiple
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optima in CRR models and showed that the optimization
problem is more difficult than had been previously thought.
The results revealed that in addition to the previously known
problems of parameter interaction, nonconvexity of the
response surface, and discontinnous derivatives, the prob-
lem of multiple optima occurs on at least two scales; at the
‘“large” scale, we find that there is more than one broad
“region of attraction’ into which a search strategy may
converge, while at the “‘small’’ scale, each major region of
attraction contains numerous widely distributed local min-
ima. The existence of large numbers of minor local optima
on the response surface virtually guarantees that local-
search optimization procedures will terminate prematurely;
thus such procedures have a very low probability of success-
fully finding the optimal parameter set.

In the same paper, we evaluated the performance of four
global search procedures on the research CRR model SIX-
PAR: the adaptive random search (ARS) method, a com-
bined ARS/simplex method, the multistart simplex (MSX)
method, and a new procedure entitled the shuffled complex
evolution (SCE-UA) method developed at the University of
Arizona by the authors. The results indicated that both the
MSX method and the SCE-UA method are effective in
consistently finding the globally optimal parameters of the
SIXPAR model and that the SCE-UA method is three times
more efficient. The ARS and ARS/simplex methods were
both found to be inadequate.

In this paper, we apply the SCE-UA and MSX global
optimization algorithms to the calibration of the Sacramento
soil moisture accounting (SAC-SMA) model of the National
Weather Service River Forecast System (NWSRFS). First,
error-free synthetic data are used to conduct a comparative

evaluation of the algorithms under ‘‘ideal’’ conditions. The
madal ic than calihrated ta hictarical data fram the T.eaf
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Fig. 1. Schematic representation of the SAC-SMA model.

TuE SAC-SMA MoDEL

The Sacramento soil moisture accounting (SAC-SMA)
model (see Figure 1) is one of the components of the
NWSREFS used to convert precipitation inputs into stream-
flow outputs [Burnash et al., 1973; Peck, 1976; Kitanidis and
Bras, 1980a, b; Brazil and Hudlow, 1981]. The inputs to the
SAC-SMA model are precipitation and potential evapotrans-
piration. Precipitation is provided in the form of mean areal
precipitation (average precipitation over the entire soil mois-
ture accounting area). The outputs from the model are
estimated evapotranspiration and channel inflow; the latter
is converted into streamflow by means of a unit hydrograph.
In this study, the research version of the SAC-SMA model
maintained by the Department of Hydrology and Water
Resources, the University of Arizona, was used.

THE STUDY BASIN AND HYDROLOGIC DATA

The Leaf River basin was chosen for this study. The basin
is located north of Collins, Mississippi, with an area of
approximately 1950 km?. A reliable data set is available that
represents a variety of hydrological conditions and phenom-
ena. The watershed has been previously investigated by
other researchers [e.g., Brazil and Hudlow, 1981; So-
rooshian et al., 1983; Brazil, 1988].

Fifteen water years of data spanning the time period
October 1, 1954, to September 30, 1969, were obtained from
the Hydrologic Research Laboratory of the National
Weather Service (HRL-NWS). The data consist of mean
daily streamflow (cubic meters per second), daily potential

Subsurface
Discharge

evapotranspiration estimates (millimeters per day), and
6-hourly mean areal precipitation totals (millimeters per 6
hours). The mean annual precipitation for this period is 1340
mm, and the mean annual runoff is 430 mm.

PARAMETERS OPTIMIZED

The SAC-SMA model has 16 parameters to be determined
by the user (see Table 1). Following the recommendation of
Peck [1976], the three parameters SIDE, RIVA, and RSERV
were fixed at prespecified values (see Table 2). The remain-
ing 13 parameters were selected for optimization, and the
feasible parameter space was specified by fixing the upper
and lower parameter bounds at the values recommended by
Brazil [1988] (see Table 2). The unit hydrograph used for
final routing was predetermined based on the observed
hydrograph and was not included in optimization.

THE OPTIMIZATION METHODS

The Multistart Simplex (MSX) Method

The multi-start approach to dealing with multiple optima is
to run several trials of any suitable local-search optimization
method from different starting points in the feasible space.
Duan et al. [1992] discussed this approach and showed that
if the single-start failure probability P4(1) is less than ap-
proximately 0.8 (i.e., out of 100 trials of the method, started
from randomly independent points in the parameter space,
fewer than 80 will fail to find the global optimum), such a
procedure is theoretically feasible.



SOROOSHIAN ET AL.: RAINFALL-RUNOFF MODEL CALIBRATION

The MSX method is based on the well-known simplex
local-search procedure [Nelder and Mead, 1965]; for details
see Duan et al. [1992]. The initial simplex for each run is
created by randomly selecting n + 1 points in the feasible
parameter space, where n is the number of parameters to be
optimized. Duan et al. [1992] found that the single-start
failure probability of the simplex method on the SIXPAR
model was 0.65, and 12 restarts of a MSX procedure yielded
a multistart failure probability of less than 1% (i.e., no more
than one out of 100 random trials of the method failed to
locate the global optimum).

The Shuffled Complex Evolution (SCE-UA) Method

The SCE-UA method is a general purpose global optimi-
zation strategy designed to handle the various response
surface problems encountered in the calibration of nonlinear
simulation models, particularly the muitilevel or ‘‘nested”’
optima problem encountered with CRR models. Detailed
descriptions and explanations of the method are given by
Duan et al. [1992, 1993] and so will not be repeated here. In
brief, the SCE-UA method involves the initial selection of a
“population”’ of points distributed randomly throughout the
feasible parameter space. In the absence of prior information
on the approximate location of the giobal optimum, use a
uniform sampling distribution. The population is partitioned
into several ‘‘complexes,’” with each complex consisting of
2n + 1 points. Each complex is then allowed to “‘evolve’” so
as to independently search the parameter space in a manner
that is based on an extension of the simplex local-search
algorithm. After a prescribed number of steps, the com-
plexes are ‘‘shuffled”’ together and new complexes formed
such that the information gained separately by each complex
is shared. The evolution and shuffling procedures are re-
peated until prescribed stopping criteria are satisfied.

TABLE 1. Parameters of SAC-SMA Model

Parameter Description

UZTWM  maximum capacity of the upper zone tension water
storage, mm

UZFWM  maximum capacity of the upper zone free water
storage, mm

LZTWM maximum capacity of the lower zone tension water
storage, mm

LZFPM maximum capacity of the lower zone free water
primary storage, mm

LZFSM maximum capacity of the lower zone free water
supplemental storage, mm

ADIMP additional impervious area, decimal fraction

UZK upper zone free water lateral depletion rate, day ~!

LZPK lower zone primary free water depletion rate, day !

LZSK lower z?ne supplemental free water depletion rate,
day™

ZPERC maximum percolation rate, dimensionless

REXP exponent of the percolation equation, dimensionless

PCTIM impervious fraction of the watershed area, decimal
fraction

RIVA riparian vegetation area, decimal fraction

PFREE fraction of water percolating from upper zone which
goes directly to lower zone free water storage,
decimal fraction

SIDE ratio of deep recharge to channel base flow,
dimensionless

RSERV fraction of lower zone free water not transferable to

lower zone tension water, decimal fraction
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TABLE 2. True Parameter Values and Lower and Upper
Parameter Bounds Used for Synthetic Study

Parameter True Value Lower Bound Upper Bound
UZTWM 56.000 10.000 150.000
UZFWM 46.000 10.000 75.000
LZTWM 131.000 75.000 400.000
LZFPM 162.000 50.000 1000.000
LZFSM 23.000 10.000 300.000
ADIMP 0.173 0.000 0.200
UZK 0.245 0,200 0.400
LZPK 0.009 0.001 0.020
LZSK 0.043 0.020 0.250
PCTIM 0.043 0.000 0.100
ZPERC 226.000 5.000 250.000
REXP 3.650 1.100 4.000
PFREE 0.063 0.000 0.600

Parameters not optimized: RSERV = 0.3; RIVA = 0.0; SIDE = 0.0.

In this study, a small modification to the SCE-UA method
presented by Duan et al. [1992] was made to further improve
the search efficiency. Preliminary testing indicated that once
the algorithm has converged into a small region of the
parameter space, it is not necessary to retain a large popu-
lation of points to conduct the remaining local search. The
SCE-UA algorithm was therefore modified as follows. Let p
denote the number of complexes used to generate the initial
sample population. After each shuffling operation, the num-
ber of complexes is reduced by one until the number of
complexes reaches a prespecified minimum p .;,. Thereaf-
ter, the number of complexes remains fixed at p;,. In the
experimental study performed in this work, p;, is set to
INT(p/2), where INT is an operator truncating real numbers
into integers. For example, for p = 20, the population after
the first shuffling operation will be reduced to 19 complexes,
and so on until the population after the 10th shuffling
operation is reduced to 10 complexes; thereafter, the popu-
lation size remains fixed at 10. This modification was found
to result in approximately a one-third savings in the total
number of iterations.

CALIBRATION TRIALS USING SYNTHETIC DATA

Calibration Data

One year of precipitation and evapotranspiration data
(October 1, 1955, to September 30, 1956) from the Leaf River
watershed were used for the synthetic data calibration
studies. This subset of data was chosen because it closely
reflects the average conditions of the entire available records
and it activates all of the modes of model operation. The
parameter set obtained by Brazil [1988] for this watershed
was used as the ““true’” parameter set (see Table 2). With this
““true’” parameter set and the hydrologic input data, a
sequence of streamflows was generated. This sequence of
streamflows was treated as the ‘‘observed’’ streamflows for
the calibration time period (see Figure 2).

Estimation Criterion

The daily root-mean-square (DRMS) estimation criterion
used by the Hydrologic Research Lab of the National
Weather Service was used for calibration of the model. The
DRMS value is obtained by dividing the simple least squares
(SLS) value by the number of data points used for calibration
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Fig. 2. The real precipitation and synthetic streamflow data (water
year 1955-1956) used for the synthetic data study.

and taking the square root (i.e., DRMS = (SLS/N)%3,
where N is the number of data points).

Convergence Criteria

Two criteria were used for termination of the optimization
runs. We know, from experience with the model, that a
DRMS value of 0.003 or less guarantees that the parameter
estimates are accurate to at least 3 significant digits of the
“true”” optimum. Therefore, an optimization run was con-
sidered a success as soon as a DRMS value of 0.003 or less
was achieved (objective function convergence). If, however,
prior to that occurring, the population of points converged
into a small space such that the spread of the population in
each parameter direction was smaller than one thousandth of
the corresponding feasible parameter range, the run would
be terminated because further search would not result in
significant improvement of the parameter estimates (param-
eter convergence). In this case, the optimization run was
considered to be a failure.

Testing of the MSX Method

The single-start failure probability of the MSX method on
the SAC-SMA model was estimated by conducting 100
independent optimization trials of the simplex method. Fig-
ure 3 shows the convergence behavior of the 100 runs for
four of the parameters; not one of the runs was able to locate
the “‘true’’ parameter values, and the termination points
were distributed throughout the feasible parameter space.
Figure 4 plots the distance of the 100 different termination
points from the “‘true’” parameter set. Consider an rn-dimen-
sional rectangular box centered on the ‘‘true‘ parameter set,
with each side length of the box equal to A% of the
corresponding parameter range. Figure 4 was constructed by
counting how many of the termination points fall within the
box as A varies from 0 to 100. It reveals that none of the 100
runs converged to locations which are close to the “‘true”’
parameter set. In fact, only one run converged inside the
20% n-dimensional rectangular box.

For the sake of discussion, suppose we relax our criterion
and define a ‘‘successful’ trial as one for which the final
parameter set falls within 20% of the true parameter set. In
this case the failure probability of a simplex trial is approx-
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Fig. 3. Convergence behavior of four of the parameters for 100

independent trials of the simplex algorithm (synthetic data study);
dotted lines represent the ‘‘true’’ parameter values.

imately equal to 0.99. Referring to the theoretical perfor-
mance curve for a multistart algorithm (see Figure 5, repro-
duced from Duan et al. {1992]) we see that to achieve a 95%
probability of success a minimum number of starts greater
than 100 would be required.

Nevertheless, 10 independent trials of the MSX algorithm
were run on the SAC-SMA model to evaluate the consis-
tency of the algorithm performance. Limitations on compu-
tational resources prevented the larger number of trials that
would have provided a better statistical representation of
algorithm effectiveness. Each trial was run with 50 indepen-
dent starts of the simplex algorithm; Figures 6a—6d show the
best parameter sets obtained after 1, 10, 20, and 50 starts,
respectively, for each trial. Each solid line indicates a
parameter set obtained by one of the trials; the x axis of each
figure indicates the 13 different parameters, and the y axis
indicates the parameter value obtained, normalized to the
feasible range (0.0 indicates the lower bound and 1.0 indi-
cates the upper bound). The figures show that some of the
parameters (e.g., UZTWM, UZFWM, LZTWM, and
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LZFPM) have consistently converged to the same region of
the feasible space while others (e.g., LZSK, ZPERC, and
REXP) are quite spread out. The results have stabilized by
about 20 starts with little improvement between 20 and 50
starts; the marginal benefit of further starts seems minimal.
Table 3 gives the best function value and total number of
function evaluations after 50 starts; the average number of
function evaluations required was 45,887.
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Testing of the SCE-UA Algorithm

The SCE-UA method has only one variable that must be
specified by the user: the number of complexes of points in
the parameter space to be randomly generated at the begin-
ning of the search. Preliminary testing indicated that a
suitable number for the initial number of complexes was 20.
Ten independent trials of the SCE-UA algorithm were run on
the SAC-SMA model to evaluate the consistency of the
algorithm performance. For all 10 trials, the algorithm con-
verged to the “‘true’’ values of the parameters; the parameter
convergence behavior of the algorithm is displayed in Figure
7 for four of the parameters. Table 3 gives the best function
value and total number of function evaluations for each trial;
the average number of function evaluations to converge to
the ‘‘true’” parameter set was 23,024.

Discussion

The synthetic data study demonstrates a 100% success
rate for the SCE-UA algorithm when calibrating the SAC-
SMA model under ‘‘ideal”’ conditions, using 1 year of
calibration data from the Leaf River watershed. Under
identical conditions, none of the MSX runs was able to
exactly locate the global optimum (‘‘true’’ parameter values)
even with more than twice the number of function evalua-
tions; however, the MSX method was consistently able to
obtain good estimates for some of the parameters while
improving, to some extent, the estimates of the others.

CALIBRATION TRIALS USING HISTORICAL DATA

Calibration and Verification Data

The MSX and SCE-UA algorithms were next used to
calibrate the SAC-SMA model using historical data from the
Leaf River watershed. Data from the 7-water year period
(October 1, 1955, to September 30, 1962) was used for
calibration. The precipitation and streamflow data are dis-
played in Figure 8; for this period, the mean annual precip-
itation is 1407 mm and the mean annual runoff is 516 mm. To
minimize the effects of errors in the estimates of the initial
soil moisture storage contents, the 6-month period April 1 to
September 30, 1955, was used as a buffer (or warm-up)
period (i.e., the estimation criterion computed did not in-
clude this period). Data from the subsequent 7-year period
(October 1, 1962, to September 30, 1969) was used in the
verification phase of the study; the 6-month period April 1 to
September 30, 1962 was used as a buffer.

Estimation Criteria

Due to the existence of model and data errors, it is
important that an appropriate estimation criterion (measure
of the match between the model output and the output
behavior of the watershed; also called objective function) be
chosen [Sorooshian and Dracup, 1980; Sorooshian, 1981;
Sorooshian et al., 1982, 1983; Kuczera, 1982, 1983; Ibbitt
and Hutchinson, 1984; Duan et al., 1988, Gan and Burges,
1990a, b]. The HRL-NWS commonly uses the DRMS
function (presented above) as the estimation criterion. So-
rooshian et al. [1983] suggest that heteroscedastic errors are
frequently encountered in practice and that the heterosce-
dastic maximum likelihood estimator (HMLE) function (see
appendix) that accounts for heteroscedasticity may be more
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TABLE 3. Results of Synthetic Data Study
Trial
1 2 3 4 5 6 7 8 9 10 Average
) MSX Method (50 Starts)

Function evaluations 45759 46,937 45,958 43,860 43,997 46,150 44,217 48,636 46,577 46,782 45,887
DRMS value 0.6426  0.7824  0.6602  0.7253  0.7157 1.056  0.6957 0.2733  0.6387  0.9433 0.7133
SCE-UA Method
Function evaluatioris 18,762 22,253 21,620 24,402 21,391 23,571 34,537 22,453 16,888 24,361 23,024
DRMS value 0.0024 0.0013 0.0011 0.0014 0.0011 0.0016 0.00i6  0.0017  0.0028  0.0011 0.0016

suitable. Both the DRMS and the HMLE estimation criteria
were used in the calibration trials reported here.

Stopping Criteria

Due to the existence of data and model errors, it is not
appropriate to use an objective function convergence crite-
rion (as in the synthetic data studies) as a basis for termina-
tion of the optimization process. In the case of the SCE-UA
algorithin, experience with the algorithm indicated that after
about 20 shuffling iterations the parameter estimates would
stabilize in a region where search would subsequently ter-
minate due to parameter convergence; therefore the
SCE-UA calibration rums reported here were terminated
when the algorithm completed 20 shuffling iterations. In the
case of the MSX algorithm, the calibration runs were termi-
nated after 20 starts.

Calibration Using the MSX Method

For each estimation criterion, 10 independent trials of the
MSX algorithm were run on the SAC-SMA model to evalu-
ate the consistency of the algorithm performance. Figures
9a-9d show the best parameter sets obtained after 1, 5, 10,
and 20 starts, respectively, of each trial for the DRMS runs,
and Figures 10a-10d show the same for the HMLE runs.
The average number of function evaluations for 20 starts for
the DRMS runs was 15,050, while the average for the HMLE
runs was 18,266. As with the synthetic studies, some of the
parameters seem to be better determined than the others.
Also, the HMLE parameter estimates seem better grouped
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Fig. 7. Convergence behavior of four of the parameters for 10
independent trials of the SCE-UA algorithm (synthetic data study);
dashed lines represent the ‘‘true’’ parameter values.

and of more reasonableé value than the DRMS parameter
estimates; some of the DRMS estimates are at or very close
to their bounding values.

Calibration Using the SCE-UA Algorithm

For each estimation criterion, 10 independent trials of the
SCE-UA algorithm with 20 initial complexes were run on the
SAC-SMA model to evaluate the consistency of the algo-
rithm performance. Figure 11a shows the best parameter
séts obtained for each DRMS trial, after 20 shuffling itera-
tions, and Figure 115 shows the same for the HMLE trials.
Note that the HMLE parameter estimates are more tightly
grouped than the DRMS estimates.

Discussion

When comparing the MSX and SCE-UA algorithm perfor-
mance, we see that (1) the SCE-UA best function values are
consistently lower (see Figure 12a for DRMS and Figure
126 for HMLE), (2) the SCE-UA parameter estimates are
much more closely grouped together (compare Figure 11a
with Figure 94 for DRMS, and Figure 115 with Figure 10d
for HMLE), and (3) the SCE-UA required fewer function
evaluations: 10,748 compared to 15,050 when the DRMS
criterion is used, and 10,510 compared to 18,266 when the
HMLE criterion is used. These results suggest that the
SCE-UA algorithm is more corsistent, effective; and effi-
cient than the MSX algorithm in finding the parameter values
that minimize the estimation criterion used for model cali-
bration.
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Fig. 8. The precipitation and streamflow data (water years 1955-
1962) used for the historical data study.
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Notice that some discrepancies were observed in the final
parameter estimates even in the SCE-UA trials, especially
when DRMS was used as the calibration criterion (e.g.,
parameters UZK, LZSK, and REXP; see Figure 11a). This
occurred despite the fact that the final criterion values of all
trials were very similar (see Figure 12). This phenomenon is
probably attributable to the fact that it is very difficult to
define a calibration criterion that wholly captures all aspects
of the stochastic nature of the errors in hydrologic data
[Sorooshian and Dracup, 1980; Sorooshian ét al., 1983;
Kuczera, 1983]. Another possible cause is that the global
optimum is not unique because the model contains structural
errors and the calibration data do not contain sufficient
information. The importance of these issues has been iden-
tified in our earlier publications [Sorooshian and Gupta,
1983; Gupta and Sorooshian, 1983; Sorooshian and Gupta,
1985]; these issues require further study.

Verification

Although the main focus of this paper is the abilities and
consistency of performance of the global optimization algo-
rithms in finding the parameter values that minimize the
estimation criterion, the results of verification studies are
also presented here for completeness. The historical data
calibration studies reported above constitute four sets of
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Fig. 10. The best parameter sets obtained after (a) 1, (b) 5, (¢)
10 and (d) 20 starts for the 10 trials of the MSX algorithm using the
HMLE estimation criterion (historical data study).

trials: MSX-DRMS, MSX-HMLE, SCE-UA-DRMS, and
SCE-UA-HMLE. From each of these sets, the parameter set
with the lowest estimation criterion value was selected.
These four parameter sets (see Table 4) were used to
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Fig. 11. The best parameter sets obtained for the 10 trials of the

SCE-UA algorithm (historical data study): (a) DRMS criterion; (b)
HMLE criterion.
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Fig. 12. Comparison of the best function values obtained using
the MSX and SCE-UA algorithms: (a) DRMS criterion; (b) HMLE
criterion:

simulate streamflows for the 7-water year verification data
set period; three statistics are presented in Table 4: DRMS,
HMLE, and percent bias (PBIAS) of the residuals. The
percent bias is defined as follows:

n

PBIAS = 100 D, [Qqin(t) = Qobs(t)/Qops(t)] (1)

t=1

where Qin(2) and Q,s(2) are the simulated and observed
mean flows.

The results indicate that no one parameter set is signifi-
cantly superior to the others. While the DRMS calibration
parameter sets have lower DRMS statistics for the verifica-
tion period than the HMLE, the DRMS parameter sets tend
to overestimate the flows (positive PBIAS) and the HMLE
parameter sets tend to underestimate the flows (negative
PBIAS).
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SUMMARY AND DISCUSSION

This paper has investigated the consistency with which
two global optimization algorithms are able to find the
optimal parameter values during calibration of the SAC-
SMA flood forecasting model. In the synthetic data study, a
100% success rate was obtained using the SCE-UA algo-
rithm, while none of the MSX runs were able to exactly
locate the global optimum (*‘true’’ parameter values) even
with more than twice the number of function evaluations.
However, the MSX algorithm was consistently able to
obtain good estimates for some of the parameters while
improving, to some extent, the estimates of the others. In the
real data study, the SCE-UA algorithm obtained consistently
lower function values and more closely grouped parameter
estimates, while using one-third fewer function evaluations
than the MSX algorithm.

We have shown that the SCE-UA algorithm is a relatively
consistent, effective, and efficient optimization method ca-
pable of locating the global optimum in the parameter space.:
However, as we have discussed in our previous work, the
location of the global optimum of CRR models is greatly
influenced by a combination of factors such as imperfections
in model structure, data errors, and the choice of estimation
criteria, among others. Any additional improvements in the
performance of models can only be achieved if the above
mentioned factors contributing to model nonidentifiability
problems are addressed. It is only then that the optimized
parameters are accurate representations of their underlying
physical values.

APPENDIX

The HMLE estimator [Sorooshian 1978, 1981; Sorooshian
and Dracup, 1980] is the maximum likelihood, minimum
variance, asymptotically unbiased estimator when the errors
in the output data are Gaussian, zero mean, and uncorrelated
and have nonstationary variance in time. The variance of the
errors is assumed to be related to the level of the output
(magnitude of the flows). Such errors are believed to be
common in streamflow data. The estimator has the form

TABLE 4. Verification Results

DRMS Results

HMLE Results

Parameter MSX SCE-UA MSX SCE-UA
UZTWM 10.38 10.08 63.62 61.61
UZFWM 29.88 30.10 46.02 46.02
LZTWM 217.9 208.5 347.3 344 .4
LZFPM 84.90 82.97 125.7 122.3
LZFSM 34.37 10.14 92.33 92.17
ADIMP 0.196 0.199 0.145 0.099
UZK 0.399 0.372 0.389 0.399
LZPK 0.008 0.016 0.003 0.004
LZSK 0.040 0.047 0.064 0.064
PCTIM 0.007 0.004 0.012 0.011
ZPERC 249.4 249.2 159.8 241.8
REXP 1.651 1.359 3.064 3.664
PFREE 0.000 0.001 0.171 0.165

Statistics
Calibration period (DRMS) 19.30 19.09
Forecast period (DRMS) 15.49 16.13 17.72 17.30
Calibration period (HMLE) 19.81 19.55
Forecast period (HMLE) 21.58 20.60
Percent bias 14.67 9.65 -11.74 —10.50
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1 n
"2 Wtet2
P

min HMLE = ————

8,1 n
H W

t=1

(A1)

where £, = ¢, obs — 4,,sim 1S the model residual at time ¢;
Qt,0bs @and ¢, g, are observed and simulated flows respec-
tively; w, is the weight assigned to time 7, computed as

2(a -1
-0 (A2)

w, =
where f, = g, i is the expected true flow at time ¢, 7 is the
number of data points, and A is the unknown transformation
parameter which stabilizes the variance. The expected flow
d:1e is approximated using either g, ops OF g, gm [So-
rooshian et al., 1983]. Fulton [1982] showed that the estima-
tor can become unstable when ¢, g, is used to approximate
f; and recommended using g, ps. While this is the recom-
mended procedure at present, it should be noted that use of
d;.00s Will cause some degree of bias in the estimate of A
[Gupta, 1984].

The HMLE is solved in two stages. First, given a set of
model parameters, the residuals of the model are obtained.
Next an estimate of A must be obtained; Sorooshian [1978]
showed that this could be done by solving the following
implicit expression to obtain an estimate of the parameter A
using an iterative numerical procedure:

2 () X wel|=nl X w,In(fe] =0

t=1 t=1 t=1

(A3)

The value of A is substituted into (A1) and (A2) to compute
the value of the HMLE function.

Duan [1991] has devised an equivalent, but more stable,
procedure for estimating A, by rearranging (A3) as follows:

R=2d_1_p A4
"R, = (A4)
where
n
Ry= > wel (AS)
t=
N
R,= Y wela, (A6)
=1
In f,
a,=— (A7)
a4
1 n
aa=~ > inf, (A8)

t=1

With this arrangement of terms, the HMLE function value
can be computed as
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(1/m)R4

HMLE= ——M———
exp [2(A — Day]

(A9)

The revised procedure for estimating A and computing
HMLE, given f, o5 and f; gim» is as follows: (1) Select f, =
St,00s O f1 sim O (&f s obs + Bf1,sim)» Where a + B=1,a, =
0,andr =1, 2, ---, n. 2) Compute a,, using (A8), and a,
(for t = 1, 2, -+, n) using (A7). (3) Use an iterative
procedure (e.g., golden section, or Fibonacci method) to
estimate A such that R = 0 in (A4); if the procedure requires
an initial value, use A = 1. (4) Compute HMLE using (A9).
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