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1. INTRODUCTION
One of the most important issues in the design and
development of intelligent mobile robots is the naviga-
tion problem which is the ability of a vehicle to plan
and execute collision-free motions within its environ-
ment .

This problem can be divided into two hierarchical
levels. The higher level, called global navigation or
path planning, is concerned with the generation of a
trajectory (space-time) from an initial configuration to
a goal configuration, avoiding the static and mobile
obstacles in the environment, which are considered to
be known. This planning stage is accomplished off-line .
Although some works presented in the literature
consider the kinematic and dynamic models of the
vehicle, 22 most of them consider only the geometric
approach to the problem, and are usually based on the
configuration space approach.' Their computation
time is not acceptable for real-time control of mobile
robots . Some well-known solutions have been pro-
posed . Fujimura and Samet' included time as one of
the dimensions of the model world. This allowed them
to regard the moving obstacles as being stationary in
the extended world . Kant and Zucker' proposed a
solution based on dividing the trajectory planning
problem (TPP) into two subproblems : the path
planning problem (PPP), which is concerned with
planning the path to avoid stationary obstacles, and
the velocity planning problem (VPP), which is con-
cerned with planning the velocities along the path to
avoid moving obstacles . Although this reduces the
complexity of the global problem, this solution does
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This paper presents a way of implementing a model-based predictive controller (MBPC) for mobile robot path
tracking. The method uses a non-linear model of mobile robot dynamics and thus allows an accurate prediction of the
future trajectories . Constraints on the maximum attainable speeds are also considered by the algorithm . A multilayer
perceptron is used to implement the MBPC . The perceptron has been trained to reproduce the MBPC behaviour in a
supervised way . Experimental results obtained when applying the neural network controller to a TRC Intimate mobile
platform are given in the paper .

not change the predefined path and it cannot avoid
moving obstacles with trajectories collinear to the
robot's. Erdmann and Lozano-Perez' proposed a
solution based on a planner for moving objects that
constructs a configuration space each time an object in
the scene changes its velocity .

The lower level, called local navigation or path
tracking, is concerned with driving the vehicle through
the trajectory generated by the global planner . The
objective can be either to follow a desired path defined
by a set of geometric primitives (such as right segments,
arcs, target points), as in this work, or simply to follow
some environmental feature, like a road edge ." As the
future desired outputs are known previously, a model-
based predictive control technique (MBPC) seems to
be a suitable approach for solving this problem .

The objective of the MBPC is to drive future system
outputs (in this case robot position and heading) close
to the desired values in some way, bearing in mind the
control activity required to do so . At each sampling
interval, and by using a suitable model of the plant, a
sequence of control actions is computed in such a way
that the predicted output will be driven as close as
possible to the desired path . This is accomplished by
minimizing a quadratic function that measures the
tracking errors and the control effort over the costing
and control horizons .

If the plant is linear and signals are not bounded, the
MBPC leads to a linear set of equations that have to be
solved at each sampling period.' if the process is time
invariant, most of the computation has to be carried
out only once and the MBPC requires little compu-
tation time . If the control signal is constrained (as is
always the case in real processes), the MB PC results in
a much more complex and time consuming problem :
that is, a quadratic problem with linear constraints=
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Hopfield neural networks have been proposed in
Ref. 15 to reduce the computation time needed for
processes that can be modelled by the reaction curve
method. When the system is non-linear (as is the case of
mobile robots) the MBPC turns out to be a much more
complex and time consuming problem .

This paper presents a way of implementing MBPC
for mobile robot path tracking that solves the prob-
lems mentioned above . An MBPC was proposed by
Ollero and Amidi," but only a linearized prediction
model for future positions and headings of the mobile
robot was used and robot constraints, such as
maximum velocities, were not taken into account .
However, linear models are not accurate enough when
the angle between the robot heading and the desired
path orientation is not sufficiently small. The method
presented here uses a non-linear and therefore more
precise model of the mobile robot, thus allowing a
more accurate prediction of the future trajectories .
Constraints on the maximum attainable speeds are
also considered by the algorithm . As the resulting
MBPC gives rise to a very complex optimization
problem that has to be solved by numerical methods
requiring high computation time, a multilayer percep-
tron is used to implement the MBPC controller . The
perceptron has been trained to reproduce the MBPC
controller behaviour in a supervised way .

The paper is organized as follows . Section 2 presents
the MBPC approach. The neural network solution is
described in Section 3 . Experimental results obtained
when applying the neural network controller to a TRC
labmate mobile platform are given in Section 4 .
Finally, some concluding remarks are made in
Section 5 .

2. MODEL-BASED PREDICTIVE CONTROL
PATH TRACKING

MBPC is a set of optimal control techniques that have
inspired much research work in recent years . The
MBPC approach consists of applying a control
sequence that minimizes a multistage cost function of
the form

J(H„ H2, H3) - EI1 ~' S(i)[Y(t+iIt)
i=H,

-Yd(t+i)]2+ Z A(i)[AU(t+i-1)]2}
i=1

where E{-} is the expectation operator, f(t+iIt) is an
i-step prediction of the system outputs, Yd(t+i) is a
future desired output sequence, U(r+i) is the control
signal vector foreseen for the sampling time t+i at
instant t, and A=1-q - ', where q - ' is the backward
shift operator . In this function, the position errors and
the control effort are penalized through the weighting
factors sequences g(i) and A (i) . HI and H2 are the
minimum and maximum prediction horizons, respect-
ively, and H3 is the costing horizon . In order to reduce
the dimension of the optimization problem usually

infinity value is given to the weighting factors after a
control horizon H. 116

The objective function used here is :

J(H„ Hi , H,)=E(1I

	

[Y(t+t)-Yd(t+i)]2
i=I7,

H3
+

	

(21([Aw,(t+i-1)]2+[Aw,(t+i-1)]2)
i=1

H3

+ Y (22[w,(t+i-1)-w,(t+i--1)]-)
i=1

where Y(t+iit)={xd(t+iIt), y d(t+ilt)} is an i-step
prediction of the robot position, w, and w, are the right
and left angular velocities of the two driving wheels,
which are the control variables, and %, , h2 are constant
weighting factors . The objective of predictive control is
to compute the future control sequence (w,(t), (o,(t)),
(w,(t+1), w,(t+1)), . . . in such a way that the future
robot position Y(t+i) is driven close to Yd(t+ i) . This is
accomplished by minimizing J, where the control
activity for doing so has been taken into account . The
first term in J penalizes the position error, the second
term penalizes the acceleration and the third penalizes
the robot angular velocity . The last two terms ensure
smooth robot guidance . An error in the robot heading
could be considered in J but it has been noticed that it
is not necessary when the control horizon H is
sufficiently large .

A receding horizon approach is used and only the
first element of the computed control sequence is
applied . The process is repeated in the next sampling
intervals, resulting in a control law that belongs to the
class known as Open-Loop-Feedback-Optimal con-
trol. A block diagram of the system is shown in Fig . I .
Notice that the minimum output horizon H, should be
set to a value bigger than the dead time d of the system,
since the output for smaller time horizons cannot be
affected by the first action [u),(t), w#)] . In the
following II, and H2 will be considered to be H, = d + 1
and H2 = d + H, and H, is given a value of If, . In this
formulation it is assumed that after the control horizon
H, further increments in control are zero .
The predictive problem, formulated under these

circumstances, has to be solved with numerical optim-
ization methods, which are not acceptable for real-time
control . The controller proposed in this work will be
implemented using a neural network scheme, which
allows real time .

2 .1 . Prediction model
For an MBPC formulation, a dynamic model of the
mobile platform is needed to predict the future
positions and headings of the robot . As a testbed for
the experiments, a TRC LABMATE 22 mobile robot
has been used (Fig . 2) .

The mobile robot has been designed for indoor
environments. Its dimensions are 0 .8 x 0.8 m with a
weight of 50 kg (without batteries) . The carrying
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Fig . 2. The LABMATE mobile robot .

capacity for payload is up to 90 kg . It provides the
mechanical base, a two wheel differential driving
system (supported by four passive casters), as well as
the servocontrol of the motors. The maximum attain-
able linear velocity is 1000 mm/sec . A RS-232 radio-
modem interface (of 915 MHz) is used to communicate
the host (where the MBPC neural network algorithm is
executed) with the low level control microprocessor .
The robot architecture is shown in Fig . 3 .

A model of the LABMATE mobile robot taking into
account the low level servocontrol dynamics, as well as
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t
Fig . 1 . The predictive controller scheme .
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the dead time produced by communications with the
host process, was obtained by using kinematic equa-
tions and identification tests . A more detailed model
can be found in Ref. 6.

The following dynamic model (which corresponds
to a differential-drive vehicle) is used for computing the
predictions :

0(k+l)=0(k)+dT

x(k+f)=x(k)+- (sin(©(k)+dT)-sin(0(k)))
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Fig . 3 . LABMATE architecture .
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Fig. 4. Reference frame.
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y(k+l)=y(k)- V (cos(0(k)+dT)-cos(0(k)))

wa(k-I)-w,(k-1)
2WR

V wd(k-I)+w,(k-1)
2R

where x, y, 0 are the position and heading of the robot
in a fixed reference frame, T is the sample interval and
W is the half-distance between wheels, the value of
which has been estimated to be 168 mm (Fig . 4). V is
the lineal velocity of the mobile robot and R1 is the
steering speed . These equations are valid in the case of
a steering speed sP -AO . In the case of a linear trajectory,
the equations of motion are given by :

0(k+ 1)=0(k)

x(k+ l)=x(k)+VT eos 0(k)

y(k+ l)=y(k)+VT sin 0(k) .

X r

I

V( 2)

V(k-I)

1 k krl
Fig . 5 . Simplified dynamics of the LABMATE servomotors .
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Fig . 6 . Desired path parameterization .

Using the maximum acceleration value, the velocities
of both wheels have been considered constants for each
sample period (Fig . 5) .

2 .2. Desired path parameterization
The desired path is given to the MBPC neural network
controller as a set of straight lines and circular arcs .
The MBPC approach needs the desired positions and
headings of the mobile platform in the next Hr time
instants ; so, given the current position and heading of
the robot, it is necessary to parameterize the desired
path for the next H periods of time, in order to
calculate theH future desired path points . As is shown
in Fig. 6, the desired point for the current instant
[Xd(t), Yd(t)] is obtained first. It is located at the
intersection between the desired path and its perpen-
dicular, traced from the actual robot position [X.(t),
Yr(t)] . The next H points are spaced equally on the
path, with a separation between them of AS .

By using this approach, no approximation traject-
ory is needed when the robot position is not located on
the desired path .

3. THE NEURAL NETWORK APPROACH
The artificial neural networks (ANNs) arc parallel
information process systems that can learn, from a set
of training patterns, different relationships between
variables regardless of their analytical dependency- 7
Once the training stage is finished, the ANN can
reproduce this behaviour in real time, even for input
patterns that have not been learned .

As was mentioned before, the minimization of the
cost function J has to be carried out by a numerical
optimization method which requires too much compu-
tation time to be used in real time . A neural network
solution is proposed, which guarantees real time for
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the robot control . Neural network approaches for
robot guidance has been proposed by other
researchers"'1 14

There are many different ANN architectures, with
different functional capabilities . The one chosen here is
a multilayer perceptron, 17" 8 with one hidden layer .
The input layer consists of five neurons (see Fig . 7) .
The first two inputs correspond to the previous linear
and angular velocities of the robot (these control
variables are kinematically equivalent to the right and
left wheel velocities) . The last three inputs are associ-
ated with the parameterization of the desired trajectory
over the prediction horizon. In order to reduce the
number of inputs, the parameters given to the network
are the distance d from the robot guide point to the
path, the angle 6 between the robot heading and the
path orientation and an average of the inverse of the
curvature of the future desired points, (1/p) (Fig . 6) .
The output layer consists of two nodes which corres-
pond to the control command (the linear and angular
robot velocities) .

The training is done by backpropagation, 19 using
the scheme shown in Fig . 8, where the training output
patterns are generated by an MBPC module which
uses a numerical optimization method to calculate the
outputs (a Powell algorithm 20 has been used in this
case as it does not require the calculation of the
objective function derivate). The training patterns
were selected to represent a significant variety of
possible driving situations .

In order to reduce the range of parameter variation,
a local reference system was used . Also, the symmetry
analysis made reduces the number of training patterns

1/p

S
6

Fig. 7 . Neural network scheme .

PA PL

	

O

OROr Stan
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Fig. 8 . Neural network training scheme .
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Fig . 11 . Backpropagation error function .

needed to obtain good performance of the neural
network .

The symmetry analysis for the inputs follows this
scheme :

aw® uro , Mob'
robot
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Fig . 12. Neural network experimental results .
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where s; are the ANN outputs .
The symmetry cases arc shown in Fig . 9 . When an

input pattern is detected as being symmetrical to one
learned by the ANN, the input data to the network will
be those learned . Afterwards, the outputs generated by
the ANN will be symmetrically changed before sending
t e col t ons t bi e t . T lr a o e m or e neure, = V(t-1)
network guidance system is shown in Fig . 10 .

e 2 = - A(t - 1)

e,=-d(t)

	

4. RESULTS
The proposed control structure has been tested with

e4= - b

	

the LABMATE mobile robot. The neural network
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used consisted of five input neurons corresponding to
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the past control actions and a future reference
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trajectory . The hidden layer was composed of 10
where e; are the ANN inputs, and for the outputs :

	

neurons and the output layer consisted of two neurons
corresponding to the linear and angular robot velocit-
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The neural network was trained in a supervised
manner, as described previously . The sampling inter-

B(t)=s 2 (t)

	

val T was given a value of 0 .6 sec. The control horizon
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tracking error observed in Fig . 12(b) is due to the
saturation in the angular velocity [see Fig . 13(b)] and
to the penalization chosen for the control actions .

In Figs 13 and 14 the control variables for MBPC
simulation using numerical methods, and the neural
network outputs for the real experiment are presented .
From the analysis of Fig . 13, it can be seen that the
neural network experimental results are not as smooth
as the MBPC simulation angular velocity . This is
because only integer values for the angular velocity can
be sent to the low level control processor of the
LABMATE .

As expected, the neural network reproduces the
behaviour of the MBPC quite well and takes only a
small fraction of the computation time required for
solving the MBPC which has to be solved using a
numerical optimization algorithm .

(a)

GPC (Simulation)- Neu .Nel .(E, enmenlel)

50 .0

	

100.0
Sample time

(b)
Fig. 14 . Robot linear velocity .

H chosen for the MBPC was made equal to six, thus Hr
and H2 were given the values 2 and 7, respectively, and
the weighting factors were given the values dr = 35 and
22=5. The maximum and minimum linear and
angular velocities were given the following values
respectively: 0 m/sec, 0 .4 m/sec, -20`/ s and 20°/s . For
As, a value of 0 .15 m was chosen, which leads to an
average linear robot velocity of 0.25 m/sec. Figure 11
shows the evolution of the error function

N
E(i) = YE (GAi)-0(1))2

E-1

of the training phase, where N is the number of training
patterns and 04(1) and 0(i) are the desired output and
the network output for the iteration i .

Figure 12 shows some of the experimental results
obtained in the laboratory when applying the pro-
posed algorithm to the LABMATE mobile robot .
Figure 12(a) shows the desired trajectory and the
trajectory through a narrow corridor and a door
followed by the robot . As can be seen, the mobile robot
follows the desired trajectory in spite of being in an
initial position separated about 400 mm from the
desired path . Figure 12(b) shows another test for a
path where small curvature radii are specified . The

5. CONCLUSIONS
A neural network-based path tracking algorithm for
mobile robots has been presented . The neural network
has been trained in a supervised way with a back-
propagation algorithm . The desired neural network
output was computed off line by a predictive con-
troller . Control signal saturations and non-linearities
of the model were considered in order to obtain
accurate predictions of the robot trajectories . The
computation time required to solve this MBPC
problem under these circumstances would be prohibi-
tive for real time . The neural network approach has
proved to be an effective way of implementing the path
tracking predictive algorithm as shown by the simula-
tion and experimental tests .
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